JP2011220274A - Device for detection of failure in internal combustion engine - Google Patents

Device for detection of failure in internal combustion engine Download PDF

Info

Publication number
JP2011220274A
JP2011220274A JP2010092024A JP2010092024A JP2011220274A JP 2011220274 A JP2011220274 A JP 2011220274A JP 2010092024 A JP2010092024 A JP 2010092024A JP 2010092024 A JP2010092024 A JP 2010092024A JP 2011220274 A JP2011220274 A JP 2011220274A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
inter
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010092024A
Other languages
Japanese (ja)
Other versions
JP4854796B2 (en
Inventor
Takao Ono
貴生 大野
Yuichi Sakaguchi
雄一 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010092024A priority Critical patent/JP4854796B2/en
Publication of JP2011220274A publication Critical patent/JP2011220274A/en
Application granted granted Critical
Publication of JP4854796B2 publication Critical patent/JP4854796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an failure detection device of an internal combustion engine that can detect a variation failure of an inter-cylinder air/fuel ratio irrespective of a state that the supply of fuel is cut and a state that the engine is under cylinder cut-off control.SOLUTION: A control device of the internal combustion engine can detect an air/fuel ratio of the exhaust gas of the engine by an air/fuel ratio sensor which is attached to an exhaust pipe assembly of a multi-cylinder engine, and detects the air/fuel ratio. The control device includes a multi-cylinder air/fuel ratio calculator which partially operates average air/fuel ratios of amounts of the plurality of cylinders which are continued during normal operation by combining all the cylinders, compares the average air/fuel ratios of injection amounts of the plurality of cylinders which are obtained by the multi-cylinder air/fuel ratio calculator, determines the variation failure of the inter-cylinder air/fuel ratio, and also performs correction.

Description

この発明は、複数気筒を有する内燃機関(エンジン)の排出ガス合流部(以下、「排気合流部」という)に空燃比センサを設置し、空燃比センサ出力に基づいて複数気筒の空燃比を気筒ごとに制御する内燃機関の異常検出装置に関し、特に、気筒間空燃比制御システムの異常診断技術に関するものである。   In the present invention, an air-fuel ratio sensor is installed in an exhaust gas merging portion (hereinafter referred to as an “exhaust merging portion”) of an internal combustion engine (engine) having a plurality of cylinders, and the air-fuel ratio of the plurality of cylinders is determined based on the air-fuel ratio sensor output. More specifically, the present invention relates to an abnormality diagnosis technique for an inter-cylinder air-fuel ratio control system.

近年、車両用のエンジンにおいては、エミッションや燃費を悪化させる原因となる内燃機関の気筒間空燃比のばらつき異常を精度よく検出するために、複数気筒の排気合流部に設置された1つの空燃比センサの出力に基づいて複数気筒の空燃比を気筒ごとに推定して、複数気筒の空燃比(燃料噴射量)を気筒ごとに制御する気筒間空燃比制御技術が提案されている(たとえば、特許文献1参照)。   In recent years, in an engine for a vehicle, a single air-fuel ratio installed in an exhaust gas merging section of a plurality of cylinders in order to accurately detect an abnormal variation in the air-fuel ratio between cylinders of an internal combustion engine, which causes deterioration in emissions and fuel consumption. An inter-cylinder air-fuel ratio control technique has been proposed in which the air-fuel ratio of a plurality of cylinders is estimated for each cylinder based on the output of a sensor and the air-fuel ratio (fuel injection amount) of the plurality of cylinders is controlled for each cylinder (for example, a patent Reference 1).

上記特許文献1においては、複数気筒のうち一部の気筒を休止(以下、「減筒制御」という)させ、休止気筒の吸気ポートおよび/または排気ポートを閉じた状態で、休止気筒以外の運転中の気筒における空燃比センサの出力に基づき、気筒間空燃比のばらつき異常を検出する技術が示されている。   In the above-mentioned patent document 1, some cylinders among a plurality of cylinders are deactivated (hereinafter referred to as “cylinder reduction control”), and the operation other than the deactivated cylinder is performed with the intake port and / or the exhaust port of the deactivated cylinder closed. A technique for detecting an abnormal variation in the air-fuel ratio between cylinders based on the output of the air-fuel ratio sensor in the middle cylinder is shown.

しかしながら、気筒間空燃比のばらつき異常を検出するためには、気筒ごとに噴射休止するための特殊な機構を搭載する必要があるうえ、気筒ごとに噴射休止することによるトルクショックやドラビリ悪化を回避するために、異常診断を実行する運転状態を限定する必要がある。   However, in order to detect an abnormal variation in the air-fuel ratio between cylinders, it is necessary to install a special mechanism for stopping the injection for each cylinder, and avoiding torque shock and dribbling deterioration caused by stopping the injection for each cylinder. In order to do this, it is necessary to limit the operating state in which the abnormality diagnosis is executed.

特開2009−24531号公報JP 2009-24531 A

従来の内燃機関の異常検出装置は、特許文献1に記載の技術では、吸気ポートおよび/または排気ポートを、気筒ごとに独立して開閉動作が休止可能なバルブ装置が搭載された一部車両のみに有効であり、このようなバルブ装置を搭載していない多くの車両の内燃機関には適用することができないという課題があった。   The conventional abnormality detection device for an internal combustion engine is based on the technology described in Patent Document 1 only for some vehicles equipped with a valve device that can stop the opening / closing operation of an intake port and / or an exhaust port independently for each cylinder. Therefore, there is a problem that it cannot be applied to an internal combustion engine of many vehicles not equipped with such a valve device.

また、異常診断時に一部気筒を休止することから、通常時などに休止制御した場合のトルクショックやドラビリ悪化を回避するために、異常診断の実行条件として、燃料カット時や減筒制御中という条件が要求されるので、異常診断の実行条件が限定されるという課題があった。   In addition, because some cylinders are deactivated at the time of abnormality diagnosis, in order to avoid torque shock and deterioration of drivability when the engine is deactivated at normal times, the abnormality diagnosis is executed under conditions such as fuel cut or reduced cylinder control. Since the conditions are required, there is a problem that execution conditions for abnormality diagnosis are limited.

この発明は、上記のような課題を解決するためになされたものであり、気筒ごとに独立して開閉動作が休止可能なバルブ装置が搭載されていない車両にも適用することが可能であって、燃料カット時や減筒制御中に限らず、気筒間空燃比のばらつき異常を検出可能な内燃機関の異常検出装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and can be applied to a vehicle that is not equipped with a valve device that can be stopped independently for each cylinder. An object of the present invention is to obtain an abnormality detection device for an internal combustion engine that is capable of detecting an abnormality in the variation in the air-fuel ratio between cylinders, not only during fuel cut or during cylinder reduction control.

この発明に係る内燃機関の異常検出装置は、複数気筒を有するエンジンの排気管集合部に取り付けられてエンジンの排出ガスの空燃比を検出するリニア空燃比センサと、リニア空燃比センサの検出値に基づき、連続した複数気筒噴射分の平均空燃比を、すべての気筒の組合せ分だけ演算する複数気筒空燃比演算手段と、平均空燃比のそれぞれを比較することにより、気筒間空燃比のばらつきを検出する気筒間空燃比異常検出手段と、気筒間空燃比異常検出手段により気筒間空燃比のばらつきの異常が検出された場合に、気筒間空燃比のばらつきを補正する気筒間空燃比補正手段とを備えたものである。   An abnormality detection apparatus for an internal combustion engine according to the present invention includes a linear air-fuel ratio sensor that is attached to an exhaust pipe assembly of an engine having a plurality of cylinders and detects an air-fuel ratio of exhaust gas from the engine, and a detection value of the linear air-fuel ratio sensor. Based on this, the variation in the air-fuel ratio between cylinders is detected by comparing the average air-fuel ratio with the multiple-cylinder air-fuel ratio calculating means for calculating the average air-fuel ratio for consecutive multiple cylinder injections for all cylinder combinations. And an inter-cylinder air-fuel ratio abnormality detecting means, and an inter-cylinder air-fuel ratio abnormality detecting means for correcting an inter-cylinder air-fuel ratio abnormality abnormality when the inter-cylinder air-fuel ratio abnormality detecting means detects abnormality in the inter-cylinder air-fuel ratio. It is provided.

この発明によれば、気筒ごとの吸気ポートおよび/または排気ポートを、気筒ごとに独立して開閉動作が休止可能なバルブ装置、が搭載されていない車両にも適用することができるうえ、燃料カット時や減筒制御中に限らず、気筒間空燃比のばらつき異常を検出することができる。   According to the present invention, the intake port and / or the exhaust port for each cylinder can be applied to a vehicle that is not equipped with a valve device that can stop the opening / closing operation independently for each cylinder. It is possible to detect an abnormality in the variation of the air-fuel ratio between cylinders, not only during the time or during the cylinder reduction control.

この発明の実施の形態1に係る内燃機関の異常検出装置が適用される内燃機関システムを概略的に示す構成図である。1 is a configuration diagram schematically showing an internal combustion engine system to which an abnormality detection device for an internal combustion engine according to Embodiment 1 of the present invention is applied. FIG. 図1内のエンジンを具体的に示す構成図である。It is a block diagram which shows specifically the engine in FIG. この発明の実施の形態1によるECUを具体的に示すブロック図である。1 is a block diagram specifically showing an ECU according to Embodiment 1 of the present invention. FIG. この発明の実施の形態1による気筒間空燃比の異常検出動作を示すフローチャートである。3 is a flowchart showing an abnormality detection operation for an air-fuel ratio between cylinders according to Embodiment 1 of the present invention. 図3内の複数気筒空燃比演算手段の動作を図式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing the operation of the multiple cylinder air-fuel ratio calculating means in FIG. 3. 図3内の複数気筒空燃比演算手段、気筒間空燃比異常検出手段および気筒間空燃比補正手段の具体的動作を示すフローチャートである。4 is a flowchart showing specific operations of a plurality of cylinder air-fuel ratio calculating means, an inter-cylinder air-fuel ratio abnormality detecting means, and an inter-cylinder air-fuel ratio correcting means in FIG. この発明の実施の形態2による複数気筒空燃比演算手段、気筒間空燃比異常検出手段および気筒間空燃比補正手段の具体的動作を示すフローチャートである。7 is a flowchart showing specific operations of a multi-cylinder air-fuel ratio calculating means, an inter-cylinder air-fuel ratio abnormality detecting means, and an inter-cylinder air-fuel ratio correcting means according to Embodiment 2 of the present invention.

実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について説明する。
図1はこの発明の実施の形態1に係る内燃機関の異常検出装置が適用される内燃機関システムを概略的に示す構成図である。
図1において、エンジン1には、エンジン負荷およびエンジン状態を検出するための各種センサとして、クランク角度を検出するクランク角センサ2と、カム角度を検出するカム角センサ3と、エンジン冷却水温を検出する水温センサ4とが設置されている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
1 is a block diagram schematically showing an internal combustion engine system to which an abnormality detection apparatus for an internal combustion engine according to Embodiment 1 of the present invention is applied.
In FIG. 1, an engine 1 detects a crank angle sensor 2 for detecting a crank angle, a cam angle sensor 3 for detecting a cam angle, and an engine cooling water temperature as various sensors for detecting an engine load and an engine state. A water temperature sensor 4 is installed.

また、エンジン1の吸気側には、他の各種センサとして、吸入空気Aの吸気量を検出するためのエアフロセンサ7と、スロットル8の開度を検出するスロットルセンサ9と、スロットル8よりも下流側の吸入通路10内の圧力を検出する圧力センサ11と、吸入空気Aの温度を検出する吸気温度センサ12とが設置されている。   Further, on the intake side of the engine 1, as various other sensors, an airflow sensor 7 for detecting the intake amount of the intake air A, a throttle sensor 9 for detecting the opening degree of the throttle 8, and downstream of the throttle 8. A pressure sensor 11 for detecting the pressure in the suction passage 10 on the side and an intake air temperature sensor 12 for detecting the temperature of the intake air A are provided.

さらに、エンジン1の排気通路15には、他の各種センサとして、排出ガスBの空燃比を検出するリニア空燃比センサ(以下、「LAFS」ともいう)16と、三元触媒17を通過後の排気ガスC中の酸素濃度を検出するリアO2センサ18とが設置されている。   Further, in the exhaust passage 15 of the engine 1, as various other sensors, a linear air-fuel ratio sensor (hereinafter also referred to as “LAFS”) 16 that detects the air-fuel ratio of the exhaust gas B and a three-way catalyst 17 after passing through A rear O2 sensor 18 for detecting the oxygen concentration in the exhaust gas C is installed.

一方、エンジン1には、ECU(電子制御ユニット)19により駆動制御される各種アクチュエータとして、高電圧を発生させる点火コイル5と、エンジン1の気筒内に火花を発生する点火プラグ6とが設置されている。   On the other hand, the engine 1 is provided with an ignition coil 5 that generates a high voltage and an ignition plug 6 that generates a spark in a cylinder of the engine 1 as various actuators that are driven and controlled by an ECU (electronic control unit) 19. ing.

また、エンジン1の吸気側には、他の各種アクチュエータとして、吸気量を調整するためのスロットル8と、気筒内に吸入される吸入空気Aに燃料を噴射するインジェクタ13と、インジェクタ13に燃料を供給する燃料ポンプ14とが設置されている。
さらに、エンジン1の排気通路15には、排気ガスCを浄化する三元触媒17が設置されている。
Further, on the intake side of the engine 1, as various other actuators, a throttle 8 for adjusting the intake amount, an injector 13 for injecting fuel into the intake air A sucked into the cylinder, and fuel to the injector 13 A fuel pump 14 to be supplied is installed.
Further, a three-way catalyst 17 for purifying the exhaust gas C is installed in the exhaust passage 15 of the engine 1.

ECU19は、車載のバッテリ20から給電されており、クランク角センサ2からのクランク信号と、カム角センサ3からのカム信号と、他の各種センサ信号とを入力情報として、各種制御量を演算し、点火コイル5、スロットル8、インジェクタ13などの各種アクチュエータを駆動することによりエンジン1(内燃機関)を運転制御する。   The ECU 19 is supplied with power from an in-vehicle battery 20, and calculates various control amounts using the crank signal from the crank angle sensor 2, the cam signal from the cam angle sensor 3, and other various sensor signals as input information. The engine 1 (internal combustion engine) is controlled by driving various actuators such as the ignition coil 5, the throttle 8 and the injector 13.

図2は図1内のエンジン1を具体的に示す構成図であり、直列4気筒エンジンの場合を例にとって、LAFS16の取り付け位置を図式的に示している。
図2において、各気筒#1〜#4の吸気側には、個別のインジェクタ13が設置されている。
FIG. 2 is a configuration diagram specifically showing the engine 1 in FIG. 1, and schematically shows the attachment position of the LAFS 16 taking the case of an in-line four-cylinder engine as an example.
In FIG. 2, individual injectors 13 are installed on the intake side of the cylinders # 1 to # 4.

また、気筒#1〜#4の各排気通路15の排気合流部には、排出ガスBの空燃比を検出するための単体のLAFS16が取り付けられている。
ECU19は、LAFS16からの空燃比情報および各種センサ情報に基づき、気筒ごとの燃料噴射量の演算を行い、気筒ごとのインジェクタ13を駆動制御する。
A single LAFS 16 for detecting the air-fuel ratio of the exhaust gas B is attached to the exhaust merging portion of each exhaust passage 15 of the cylinders # 1 to # 4.
The ECU 19 calculates the fuel injection amount for each cylinder based on the air-fuel ratio information from the LAFS 16 and various sensor information, and drives and controls the injector 13 for each cylinder.

図3は図1内のECU19を具体的に示すブロック図であり、この発明の実施の形態1に係る内燃機関の異常検出装置の要部機能構成を示している。
図3において、ECU19は、内燃機関の異常検出装置の主機能として、診断実行条件判定手段301と、複数気筒空燃比演算手段302と、気筒間空燃比異常検出手段303と、気筒間空燃比補正手段304とを備えている。
FIG. 3 is a block diagram specifically showing the ECU 19 in FIG. 1, and shows a functional configuration of a main part of the abnormality detection device for an internal combustion engine according to Embodiment 1 of the present invention.
In FIG. 3, the ECU 19 includes, as main functions of the abnormality detection device for the internal combustion engine, a diagnosis execution condition determination unit 301, a multi-cylinder air-fuel ratio calculation unit 302, an inter-cylinder air-fuel ratio abnormality detection unit 303, and an inter-cylinder air-fuel ratio correction. Means 304.

また、ECU19は、通常の空燃比フィードバック制御装置の機能として、目標空燃比演算手段306と、空燃比補正量演算手段307とを備えている。
目標空燃比演算手段306は、各種センサ300の検出情報(エンジン1の運転状態)に基づき目標空燃比を演算する。
Further, the ECU 19 includes a target air-fuel ratio calculation unit 306 and an air-fuel ratio correction amount calculation unit 307 as functions of a normal air-fuel ratio feedback control device.
The target air-fuel ratio calculating means 306 calculates a target air-fuel ratio based on detection information (operation state of the engine 1) of various sensors 300.

空燃比補正量演算手段307は、LAFS16により検出された空燃比と目標空燃比との偏差に基づき空燃比補正量を演算し、インジェクタ13のフィードバック制御に寄与させる。また、空燃比補正量は、必要に応じて気筒間空燃比異常検出手段303にも入力される。   The air-fuel ratio correction amount calculation means 307 calculates the air-fuel ratio correction amount based on the deviation between the air-fuel ratio detected by the LAFS 16 and the target air-fuel ratio, and contributes to the feedback control of the injector 13. The air-fuel ratio correction amount is also input to the inter-cylinder air-fuel ratio abnormality detecting means 303 as necessary.

診断実行条件判定手段301は、各種センサ300の検出情報から、エンジン1の運転状態が、異常検出処理を実行可能な条件を満たすか否かを判定し、条件を満たす場合に、複数気筒空燃比演算手段302および気筒間空燃比異常検出手段303を有効化する。
する。
The diagnosis execution condition determination unit 301 determines whether or not the operation state of the engine 1 satisfies a condition capable of executing the abnormality detection process based on the detection information of the various sensors 300. The calculation means 302 and the inter-cylinder air-fuel ratio abnormality detection means 303 are validated.
To do.

複数気筒空燃比演算手段302は、クランク角センサ2、カム角センサ3およびLAFS16の各検出情報に基づき、3気筒分の空燃比の平均値(平均空燃比)を演算する。
気筒間空燃比異常検出手段303は、複数気筒空燃比演算手段302で求めた3気筒分の平均空燃比を用いて、気筒間空燃比のばらつき異常を検出する。
を備えている。
The multi-cylinder air-fuel ratio calculating means 302 calculates the average value (average air-fuel ratio) of the air-fuel ratios for the three cylinders based on the detection information of the crank angle sensor 2, the cam angle sensor 3, and the LAFS 16.
The cylinder-to-cylinder air / fuel ratio abnormality detecting unit 303 detects an abnormality in the variation of the cylinder / cylinder air / fuel ratio using the average air / fuel ratio of the three cylinders obtained by the multi-cylinder air / fuel ratio calculating unit 302.
It has.

気筒間空燃比補正手段304は、気筒間空燃比異常検出手段303により気筒間空燃比のばらつき異常が検出された気筒に対して、燃料噴射量を補正して空燃比ばらつきを解消するために、気筒ごとのインジェクタ13の駆動制御量を最適に補正する。   The inter-cylinder air-fuel ratio correcting means 304 corrects the fuel injection amount and eliminates the air-fuel ratio fluctuations for the cylinders in which the inter-cylinder air-fuel ratio abnormality detecting means 303 detects the abnormal abnormality in the inter-cylinder air-fuel ratio. The drive control amount of the injector 13 for each cylinder is optimally corrected.

次に、図4のフローチャートおよび図5の説明図を参照しながら、図1〜図3に示したこの発明の実施の形態1による気筒間空燃比の異常検出動作について説明する。
図3において、まず、診断実行条件判定手段301は、エンジン1の運転状態が気筒間空燃比のばらつき異常を検出できる状態(診断実行条件成立)であるか否かを判定する(ステップ401)。
Next, the abnormality detection operation of the air-fuel ratio between cylinders according to the first embodiment of the present invention shown in FIGS. 1 to 3 will be described with reference to the flowchart of FIG. 4 and the explanatory diagram of FIG.
In FIG. 3, first, the diagnosis execution condition determination unit 301 determines whether or not the operating state of the engine 1 is in a state where abnormality in variation in the air-fuel ratio between cylinders can be detected (diagnosis execution condition is established) (step 401).

具体的には、たとえば、吸入吸気量、エンジン1の回転数、スロットル開度などの運転情報について、所定期間中の各偏差量をモニタし、各偏差量が小さい(定常運転状態を示す)場合に、診断実行条件が成立したと判定することができる。
なお、診断実行条件成立から診断実行終了までの期間では、同一条件でのモニタを行う必要があるので、LAFS16に基づく通常の燃料フィードバック制御を停止することが望ましい。
Specifically, for example, with respect to operation information such as intake air intake amount, engine speed, throttle opening, etc., each deviation amount during a predetermined period is monitored, and each deviation amount is small (indicating a steady operation state). In addition, it can be determined that the diagnosis execution condition is satisfied.
Note that it is necessary to perform monitoring under the same conditions during the period from when the diagnosis execution condition is satisfied to when the diagnosis execution is completed, so it is desirable to stop the normal fuel feedback control based on the LAFS 16.

ステップ401において、診断実行条件が不成立(すなわち、NO)と判定されれば、図4の処理ルーチンを終了する。
一方、ステップ401において、診断実行条件が成立(すなわち、YES)と判定されれば、複数気筒空燃比演算手段302は、通常運転時において、4気筒#1〜#4のうちの1気筒を除いた3気筒分の平均空燃比をすべての気筒の組合せ分だけ演算する(ステップ402)。
If it is determined in step 401 that the diagnosis execution condition is not satisfied (that is, NO), the processing routine of FIG. 4 is terminated.
On the other hand, if it is determined in step 401 that the diagnosis execution condition is satisfied (that is, YES), the multi-cylinder air-fuel ratio calculating means 302 excludes one of the four cylinders # 1 to # 4 during normal operation. The average air-fuel ratio for the three cylinders is calculated for the combination of all the cylinders (step 402).

図5は複数気筒空燃比演算手段302の動作を図式的に示す説明図であり、直列4気筒#1〜#4のうちの演算対象気筒(3気筒)のパターン(1)〜(4)を示している。
図5において、左から順に#1、#3、#4、#2に対応して配列された白丸および黒丸は、通常噴射順序を意味しており、黒丸に対応する気筒に対しては平均空燃比の演算を行うことを意味している。
FIG. 5 is an explanatory diagram schematically showing the operation of the multi-cylinder air-fuel ratio calculating means 302. The patterns (1) to (4) of the calculation target cylinders (three cylinders) among the in-line four cylinders # 1 to # 4 are shown. Show.
In FIG. 5, white circles and black circles arranged corresponding to # 1, # 3, # 4, and # 2 in order from the left mean the normal injection order, and the average empty for the cylinders corresponding to the black circles. It means that the fuel ratio is calculated.

各パターン(1)〜(4)において、平均空燃比の演算対象は、それぞれ3気筒ずつである。
すなわち、パターン(1)では、#3、#4、#2の3気筒の平均空燃比を演算し、パターン(2)では、#4、#2、#1の3気筒の平均空燃比を演算し、パターン(3)では、#2、#1、#3の3気筒の平均空燃比を演算し、パターン(4)では、#1、#3、#4の3気筒の平均空燃比を演算する。
In each of the patterns (1) to (4), the calculation target of the average air-fuel ratio is 3 cylinders each.
That is, in pattern (1), the average air-fuel ratio of the three cylinders # 3, # 4, and # 2 is calculated, and in pattern (2), the average air-fuel ratio of the three cylinders # 4, # 2, and # 1 is calculated. In pattern (3), the average air-fuel ratio of the three cylinders # 2, # 1, and # 3 is calculated. In pattern (4), the average air-fuel ratio of the three cylinders # 1, # 3, and # 4 is calculated. To do.

ステップ402において、複数気筒空燃比演算手段302は、図5に示した計4パターンにより、各3気筒分の平均空燃比を演算する。
なお、さらに精度向上を実現するために、パターン(1)〜(4)の各演算をそれぞれ所定回数だけ積算し、積算値の平均値を求めて、以後の演算で用いてもよい。
In step 402, the multi-cylinder air-fuel ratio calculating means 302 calculates the average air-fuel ratio for each of the three cylinders using a total of four patterns shown in FIG.
In order to further improve the accuracy, the respective calculations of the patterns (1) to (4) may be integrated a predetermined number of times, and an average value of the integrated values may be obtained and used in the subsequent calculations.

続いて、気筒間空燃比異常検出手段303は、ステップ402で演算された3気筒分の平均空燃比から、気筒間空燃比のばらつき異常の有無を判定する(ステップ403)。
ステップ403において、気筒間空燃比のばらつき異常無し(すなわち、NO)と判定されれば、図4の処理ルーチンを終了する。
Subsequently, the inter-cylinder air / fuel ratio abnormality detecting means 303 determines the presence / absence of an abnormal variation in the inter-cylinder air / fuel ratio from the average air / fuel ratio of the three cylinders calculated in step 402 (step 403).
If it is determined in step 403 that there is no abnormality in variation in the air-fuel ratio between cylinders (that is, NO), the processing routine of FIG. 4 is terminated.

一方、ステップ403において、気筒間空燃比のばらつき異常有り(すなわち、YES)と判定されれば、気筒間空燃比補正手段304は、異常と判定された気筒への燃料噴射量を補正して、補正量が反映された燃料噴射量を演算し(ステップ404)、図4の処理ルーチンを終了する。   On the other hand, if it is determined in step 403 that there is an abnormal variation in the air-fuel ratio between cylinders (that is, YES), the air-fuel ratio correcting means 304 between cylinders corrects the fuel injection amount to the cylinder determined to be abnormal, The fuel injection amount reflecting the correction amount is calculated (step 404), and the processing routine of FIG. 4 is terminated.

以下、インジェクタ13は、補正量が反映された燃料噴射量を対象気筒に供給する。
一方、ステップ401で診断実行条件が不成立(NO)、または、ステップ403で気筒間空燃比のばらつきが正常(NO)と判定された場合は、ステップ404の補正演算を実行せずに燃料噴射量が演算され、インジェクタ13は、補正量されない燃料噴射量を対象気筒に供給する。
Hereinafter, the injector 13 supplies a fuel injection amount reflecting the correction amount to the target cylinder.
On the other hand, if the diagnosis execution condition is not satisfied in step 401 (NO), or if the variation in the air-fuel ratio between cylinders is determined to be normal (NO) in step 403, the fuel injection amount is not executed without executing the correction calculation in step 404. Is calculated, and the injector 13 supplies a fuel injection amount that is not corrected to the target cylinder.

次に、図5とともに、図6を参照しながら、図4内のステップ402〜404における具体的な処理について説明する。
図6は複数気筒空燃比演算手段302、気筒間空燃比異常検出手段303および気筒間空燃比補正手段304の具体的動作を示すフローチャートである。
Next, specific processing in steps 402 to 404 in FIG. 4 will be described with reference to FIG. 6 together with FIG.
FIG. 6 is a flowchart showing specific operations of the multi-cylinder air-fuel ratio calculating means 302, the inter-cylinder air-fuel ratio abnormality detecting means 303, and the inter-cylinder air-fuel ratio correcting means 304.

図6において、まず、複数気筒空燃比演算手段302は、図5に示したパターン(1)〜(4)の3気筒分の平均空燃比を演算し(ステップ601)、気筒間空燃比異常検出手段303に入力する。
続いて、気筒間空燃比異常検出手段303は、まず、パターン(1)〜(4)の各平均空燃比が「(3)=(4)=(2)≠(1)」の関係を満たすか否かを判定する(ステップ602)。
In FIG. 6, first, the multi-cylinder air-fuel ratio calculating means 302 calculates an average air-fuel ratio for three cylinders of the patterns (1) to (4) shown in FIG. Input to means 303.
Subsequently, in the inter-cylinder air / fuel ratio abnormality detecting means 303, first, the average air / fuel ratios of the patterns (1) to (4) satisfy the relationship “(3) = (4) = (2) ≠ (1)”. Whether or not (step 602).

なお、ここで、等号「=」は、3気筒分の平均空燃比の差分が所定範囲内であることを意味し、不等号「≠」は、平均空燃比の差分が所定範囲外であることを意味している。
したがって、ステップ602においては、各パターン(3)、(4)、(2)の平均空燃比がほぼ同等の値を示し、パターン(1)の平均空燃比のみが異なる値(異常)を示すか否かを判定する。
Here, the equal sign “=” means that the difference in average air-fuel ratio for the three cylinders is within a predetermined range, and the inequality sign “≠” means that the difference in average air-fuel ratio is outside the predetermined range. Means.
Therefore, in step 602, whether the average air-fuel ratio of each pattern (3), (4), (2) shows a substantially equivalent value and only the average air-fuel ratio of pattern (1) shows a different value (abnormal)? Determine whether or not.

ステップ602において、「(3)=(4)=(2)≠(1)」の関係を満たす(すなわち、YES)と判定されれば、#1気筒が含まれているパターン(3)、(4)、(2)と、#1気筒が含まれていないパターン(1)との間に差違があるので、#1気筒を異常と判定する(ステップ603)。
以下、気筒間空燃比補正手段304は、#1気筒をリーンまたはリッチに補正し(ステップ611)、図6の処理ルーチンを終了する。
If it is determined in step 602 that the relationship of “(3) = (4) = (2) ≠ (1)” is satisfied (that is, YES), the pattern (3) including the # 1 cylinder, ( 4) Since there is a difference between (2) and the pattern (1) not including the # 1 cylinder, it is determined that the # 1 cylinder is abnormal (step 603).
Thereafter, the inter-cylinder air-fuel ratio correcting unit 304 corrects the # 1 cylinder to be lean or rich (step 611), and ends the processing routine of FIG.

一方、ステップ602において、「(3)=(4)=(2)≠(1)」の関係を満たさない(すなわち、NO)と判定されれば、続いて、気筒間空燃比異常検出手段303は、平均空燃比が「(1)=(4)=(2)≠(3)」の関係を満たすか否かを判定する(ステップ604)。
ステップ604においては、パターン(1)、(4)、(2)の平均空燃比がほぼ同等の値を示し、パターン(3)の平均空燃比のみが異なる値を示すか否かを判定する。
On the other hand, if it is determined in step 602 that the relationship of “(3) = (4) = (2) ≠ (1)” is not satisfied (that is, NO), then the inter-cylinder air / fuel ratio abnormality detecting means 303 is continued. Determines whether the average air-fuel ratio satisfies the relationship of “(1) = (4) = (2) ≠ (3)” (step 604).
In step 604, it is determined whether or not the average air-fuel ratios of patterns (1), (4), and (2) show substantially the same value, and only the average air-fuel ratio of pattern (3) shows a different value.

ステップ604において、「(3)=(4)=(2)≠(3)」の関係を満たす(すなわち、YES)と判定されれば、#3気筒が含まれているパターン(1)、(4)、(2)と、#3気筒が含まれていないパターン(3)との間に差違があるので、#3気筒を異常と判定する(ステップ605)。
以下、気筒間空燃比補正手段304は、#3気筒をリーンまたはリッチに補正し(ステップ611)、図6の処理ルーチンを終了する。
If it is determined in step 604 that the relationship of “(3) = (4) = (2) ≠ (3)” is satisfied (that is, YES), the pattern (1) including the # 3 cylinder, ( 4) Since there is a difference between (2) and the pattern (3) not including the # 3 cylinder, the # 3 cylinder is determined to be abnormal (step 605).
Thereafter, the inter-cylinder air-fuel ratio correcting means 304 corrects the # 3 cylinder to be lean or rich (step 611), and ends the processing routine of FIG.

一方、ステップ604において、「(1)=(4)=(2)≠(3)」の関係を満たさない(すなわち、NO)と判定されれば、続いて、気筒間空燃比異常検出手段303は、平均空燃比が「(1)=(3)=(2)≠(4)」の関係を満たすか否かを判定する(ステップ606)。
ステップ606においては、パターン(1)、(3)、(2)の平均空燃比がほぼ同等の値を示し、パターン(4)の平均空燃比のみが異なる値を示すか否かを判定する。
On the other hand, if it is determined in step 604 that the relationship of “(1) = (4) = (2) ≠ (3)” is not satisfied (that is, NO), then the inter-cylinder air / fuel ratio abnormality detecting means 303 is continued. Determines whether the average air-fuel ratio satisfies the relationship of “(1) = (3) = (2) ≠ (4)” (step 606).
In step 606, it is determined whether or not the average air-fuel ratios of the patterns (1), (3), and (2) show substantially the same value, and only the average air-fuel ratio of the pattern (4) shows a different value.

ステップ606において、「(1)=(3)=(2)≠(4)」の関係を満たす(すなわち、YES)と判定されれば、#4気筒が含まれているパターン(1)、(3)、(2)と、#4気筒が含まれていないパターン(4)との間に差違があるので、#4気筒を異常と判定する(ステップ607)。
以下、気筒間空燃比補正手段304は、#4気筒をリーンまたはリッチに補正し(ステップ611)、図6の処理ルーチンを終了する。
If it is determined in step 606 that the relationship of “(1) = (3) = (2) ≠ (4)” is satisfied (that is, YES), the pattern (1) including the # 4 cylinder, ( 3) Since there is a difference between (2) and the pattern (4) not including the # 4 cylinder, the # 4 cylinder is determined to be abnormal (step 607).
Thereafter, the inter-cylinder air-fuel ratio correcting means 304 corrects the # 4 cylinder to be lean or rich (step 611), and ends the processing routine of FIG.

一方、ステップ606において、「(1)=(3)=(2)≠(4)」の関係を満たさない(すなわち、NO)と判定されれば、続いて、気筒間空燃比異常検出手段303は、平均空燃比が「(1)=(3)=(4)≠(2)」の関係を満たすか否かを判定する(ステップ608)。
ステップ608においては、パターン(1)、(3)、(4)の平均空燃比がほぼ同等の値を示し、パターン(2)の平均空燃比のみが異なる値を示すか否かを判定する。
On the other hand, if it is determined in step 606 that the relationship of “(1) = (3) = (2) ≠ (4)” is not satisfied (that is, NO), then the inter-cylinder air / fuel ratio abnormality detecting means 303 is continued. Determines whether the average air-fuel ratio satisfies the relationship of “(1) = (3) = (4) ≠ (2)” (step 608).
In step 608, it is determined whether or not the average air-fuel ratios of patterns (1), (3), and (4) show substantially the same value, and only the average air-fuel ratio of pattern (2) shows a different value.

ステップ608において、「(1)=(3)=(4)≠(2)」の関係を満たす(すなわち、YES)と判定されれば、#2気筒が含まれているパターン(1)、(3)、(4)と、#2気筒が含まれていないパターン(2)との間に差違があるので、#2気筒を異常と判定する(ステップ607)。
以下、気筒間空燃比補正手段304は、#2気筒をリーンまたはリッチに補正し(ステップ611)、図6の処理ルーチンを終了する。
If it is determined in step 608 that the relationship of “(1) = (3) = (4) ≠ (2)” is satisfied (that is, YES), the pattern (1) including the # 2 cylinder, ( 3) Since there is a difference between (4) and the pattern (2) not including the # 2 cylinder, it is determined that the # 2 cylinder is abnormal (step 607).
Thereafter, the inter-cylinder air-fuel ratio correcting unit 304 corrects the # 2 cylinder to be lean or rich (step 611), and ends the processing routine of FIG.

一方、ステップ608において、「(1)=(3)=(4)≠(2)」の関係を満たさない(すなわち、NO)と判定されれば、異常なパターンのいずれにも当てはまらないので、気筒間空燃比異常検出手段303は、気筒間空燃比のばらつきが正常と判定して(ステップ610)、図6の処理ルーチンを終了する。   On the other hand, if it is determined in step 608 that the relationship of “(1) = (3) = (4) ≠ (2)” is not satisfied (that is, NO), it does not apply to any abnormal pattern. The inter-cylinder air / fuel ratio abnormality detecting means 303 determines that the variation in the inter-cylinder air / fuel ratio is normal (step 610), and ends the processing routine of FIG.

ステップ611において、気筒間空燃比補正手段304は、複数気筒空燃比演算手段302および気筒間空燃比異常検出手段303の演算結果から、気筒間空燃比のばらつきを補正する。
すなわち、#1気筒が異常な場合は、#1気筒を含むパターン(3)、(4)、(2)と、#1気筒を含まないパターン(1)とのリッチ/リーン関係を判定し、#1気筒を含むパターンの方がリッチの場合には#1気筒をリーン側に補正し、#1気筒を含むパターンの方がリーンの場合には#1気筒をリッチ側に補正することにより気筒間空燃比のばらつきを補正する。
In step 611, the inter-cylinder air-fuel ratio correcting unit 304 corrects the variation in the inter-cylinder air-fuel ratio from the calculation results of the multi-cylinder air-fuel ratio calculating unit 302 and the inter-cylinder air-fuel ratio abnormality detecting unit 303.
That is, when the # 1 cylinder is abnormal, the rich / lean relationship between the patterns (3), (4), (2) including the # 1 cylinder and the pattern (1) not including the # 1 cylinder is determined, When the pattern including # 1 cylinder is richer, the cylinder # 1 is corrected to the lean side, and when the pattern including # 1 cylinder is leaner, the cylinder # 1 is corrected to the rich side. Correct the variation in the air-fuel ratio.

なお、気筒間空燃比異常検出手段303は、たとえばステップ602において、#1気筒を含むパターン(3)、(4)、(2)と、#1気筒を含まないパターン(1)とを比較したが、#1気筒を含むパターンと目標空燃比とを比較してもよい。
この場合、気筒間空燃比補正手段304は、#1気筒を含むパターンと目標空燃比とを比較して、#1気筒を含むパターンの方がリッチの場合には#1気筒をリーン側に補正し、#1気筒を含むパターンの方がリーンの場合には、#1気筒をリッチ側に補正することにより、気筒間空燃比のばらつきを補正する。
Note that the inter-cylinder air / fuel ratio abnormality detecting means 303 compares the patterns (3), (4), (2) including the # 1 cylinder with the pattern (1) not including the # 1 cylinder in step 602, for example. However, the pattern including the # 1 cylinder may be compared with the target air-fuel ratio.
In this case, the inter-cylinder air / fuel ratio correcting means 304 compares the pattern including the # 1 cylinder with the target air / fuel ratio, and corrects the # 1 cylinder to the lean side when the pattern including the # 1 cylinder is richer. When the pattern including the # 1 cylinder is leaner, the variation in the air-fuel ratio between the cylinders is corrected by correcting the # 1 cylinder to the rich side.

以上のように、この発明の実施の形態1(図1〜図6)に係る内燃機関の異常検出装置は、複数気筒#1〜#4を有するエンジン1の排気管集合部に取り付けられてエンジン1の排出ガスBの空燃比を検出するリニア空燃比センサ16と、リニア空燃比センサ16の検出値に基づき、連続した複数気筒噴射分の平均空燃比を、すべての気筒の組合せ分だけ演算する複数気筒空燃比演算手段302と、平均空燃比のそれぞれを比較することにより、気筒間空燃比のばらつきを検出する気筒間空燃比異常検出手段303と、気筒間空燃比異常検出手段303により気筒間空燃比のばらつきの異常が検出された場合に、気筒間空燃比のばらつきを補正する気筒間空燃比補正手段304とを備えている。   As described above, the abnormality detection apparatus for an internal combustion engine according to Embodiment 1 (FIGS. 1 to 6) of the present invention is attached to an exhaust pipe assembly portion of an engine 1 having a plurality of cylinders # 1 to # 4. Based on the linear air-fuel ratio sensor 16 that detects the air-fuel ratio of one exhaust gas B, and the detected value of the linear air-fuel ratio sensor 16, the average air-fuel ratio for consecutive multiple cylinder injections is calculated for the combination of all cylinders. The multi-cylinder air-fuel ratio calculating unit 302 compares the average air-fuel ratio with each other to detect a variation in the inter-cylinder air-fuel ratio, and the inter-cylinder air-fuel ratio abnormality detecting unit 303 detects the variation between the cylinders. Inter-cylinder air-fuel ratio correcting means 304 is provided for correcting the variation in the air-fuel ratio between cylinders when an abnormality in the air-fuel ratio variation is detected.

このように、気筒間空燃比のばらつき異常が発生している気筒を判別し、異常を検出した気筒に対し、複数気筒空燃比演算手段302で算出した各平均空燃比の比較結果に基づき、気筒間空燃比のばらつき補正を行うことにより、気筒ごとの吸気ポートおよび/または排気ポートを、気筒ごとに独立して開閉動作が休止可能なバルブ装置が搭載されていない車両にも適用することが可能であって、燃料カット時や減筒制御中に限らず、気筒間空燃比のばらつき異常を検出して、通常運転時に補正することのできる内燃機関の異常検出装置を得ることができる。   In this way, the cylinder in which the variation in the air-fuel ratio between the cylinders is abnormal is determined, and the cylinder in which the abnormality is detected is determined based on the comparison result of the average air-fuel ratios calculated by the multiple-cylinder air-fuel ratio calculation means 302. By correcting the variation in the air-fuel ratio, the intake port and / or exhaust port for each cylinder can be applied to a vehicle that is not equipped with a valve device that can stop the opening / closing operation independently for each cylinder. Thus, it is possible to obtain an abnormality detection device for an internal combustion engine that can detect an abnormality in the variation of the air-fuel ratio between cylinders and correct it during normal operation, not only during fuel cut or during cylinder reduction control.

また、図3のように、エンジン1の運転状態を検出する各種センサと、各種センサの検出情報に基づき目標空燃比を演算する目標空燃比演算手段306と、リニア空燃比センサ16の検出値と目標空燃比との偏差に基づき空燃比補正量を演算する空燃比補正量演算手段307とを備えており、気筒間空燃比異常検出手段303は、空燃比補正量または空燃比補正量の学習値から平均空燃比を演算して、気筒間空燃比のばらつきを検出することもできる。   Further, as shown in FIG. 3, various sensors for detecting the operating state of the engine 1, target air-fuel ratio calculating means 306 for calculating a target air-fuel ratio based on detection information of the various sensors, and detection values of the linear air-fuel ratio sensor 16 Air-fuel ratio correction amount calculating means 307 for calculating the air-fuel ratio correction amount based on the deviation from the target air-fuel ratio, and the inter-cylinder air-fuel ratio abnormality detecting means 303 is an air-fuel ratio correction amount or a learned value of the air-fuel ratio correction amount. From this, the average air-fuel ratio can be calculated to detect variations in the air-fuel ratio between cylinders.

実施の形態2.
なお、上記実施の形態1(図6)では、各平均空燃比の比較に基づき異常判定したが、図7のように、各平均空燃比の中の最大値および最小値を考慮してばらつき異常を判定してもよい。
Embodiment 2. FIG.
In the first embodiment (FIG. 6), the abnormality is determined based on the comparison of the average air-fuel ratios. However, as shown in FIG. 7, the variation abnormality is considered in consideration of the maximum value and the minimum value in each average air-fuel ratio. May be determined.

図7はこの発明の実施の形態2によるばらつき異常検出動作を示すフローチャートであり、前述(図6)と同様に、図3内の複数気筒空燃比演算手段302、気筒間空燃比異常検出手段303および気筒間空燃比補正手段304の処理動作を示している。
なお、この発明の実施の形態2における基本的な構成および動作については、図1〜図5に示した通りである。
FIG. 7 is a flowchart showing a variation abnormality detection operation according to the second embodiment of the present invention. Similar to the above (FIG. 6), the multi-cylinder air-fuel ratio calculation means 302 and the inter-cylinder air-fuel ratio abnormality detection means 303 in FIG. The processing operation of the inter-cylinder air-fuel ratio correcting means 304 is shown.
The basic configuration and operation of the second embodiment of the present invention are as shown in FIGS.

図7において、ステップ701および703は、前述(図6)のステップ601および610と同様の処理である。
まず、複数気筒空燃比演算手段302は、前述と同様に、各パターン(1)〜(4)の平均空燃比を演算する(ステップ701)。
In FIG. 7, steps 701 and 703 are the same processing as steps 601 and 610 described above (FIG. 6).
First, the multi-cylinder air-fuel ratio calculating means 302 calculates the average air-fuel ratio of each of the patterns (1) to (4) as described above (step 701).

続いて、気筒間空燃比異常検出手段303は、各パターン(1)〜(4)の3気筒分の平均空燃比を入力情報として、(1)〜(4)の3気筒分の平均空燃比の中で最大値および最小値を演算し、最大空燃比と最小空燃比との偏差ΔAFが所定値(許容範囲)以上か否かを判定する(ステップ702)。
ステップ702において、偏差ΔAFが所定値未満(すなわち、NO)と判定されれば、正常と判定して(ステップ703)、図7の処理ルーチンを終了する。
Subsequently, the inter-cylinder air-fuel ratio abnormality detecting means 303 uses the average air-fuel ratio for the three cylinders of each pattern (1) to (4) as input information, and the average air-fuel ratio for the three cylinders of (1) to (4). The maximum value and the minimum value are calculated, and it is determined whether or not the deviation ΔAF between the maximum air-fuel ratio and the minimum air-fuel ratio is equal to or greater than a predetermined value (allowable range) (step 702).
If it is determined in step 702 that the deviation ΔAF is less than the predetermined value (that is, NO), it is determined that the deviation is normal (step 703), and the processing routine of FIG.

一方、ステップ702において、偏差ΔAFが所定値以上(すなわち、YES)と判定されれば、3気筒分の平均空燃比から各気筒の空燃比の大小関係を推定する(ステップ704)。
たとえば、図5内のパターン(1)〜(4)の3気筒分の平均空燃比が、大きい順に、(1)→(3)→(4)→(2)となっている場合、3気筒分の平均空燃比のパターンの大小関係から、以下のように、各気筒の空燃比の大小関係を推定することができる。
On the other hand, if it is determined in step 702 that the deviation ΔAF is greater than or equal to a predetermined value (that is, YES), the magnitude relationship of the air-fuel ratio of each cylinder is estimated from the average air-fuel ratio for the three cylinders (step 704).
For example, if the average air-fuel ratio for the three cylinders of patterns (1) to (4) in FIG. 5 is (1) → (3) → (4) → (2) in descending order, three cylinders From the magnitude relation of the average air-fuel ratio pattern of the minute, the magnitude relation of the air-fuel ratio of each cylinder can be estimated as follows.

パターン(1)および(3)に着目して考えると、#4気筒および#2気筒は共通であり、(1)>(3)であることから、空燃比の大小関係は、#3>#1であることが分かる。   Considering the patterns (1) and (3), the # 4 cylinder and the # 2 cylinder are common and (1)> (3). Therefore, the magnitude relationship of the air-fuel ratio is # 3> # It turns out that it is 1.

同様に、パターン(3)および(4)に着目して考えると、#2気筒および#1気筒は共通であり、(3)>(4)であることから、空燃比の大小関係は、#4>#3であることが分かる。   Similarly, considering the patterns (3) and (4), the # 2 cylinder and the # 1 cylinder are common, and (3)> (4). It can be seen that 4> # 3.

また、パターン(4)および(2)に着目して考えると、#1気筒および#3気筒は共通であり、(4)>(2)であることから、空燃比の大小関係は、#2>#4であることが分かる。
この結果、ステップ704において、各気筒の空燃比の大小関係は、#2>#4>#3>#1であることが推定される。
Further, considering the patterns (4) and (2), since the # 1 cylinder and the # 3 cylinder are common and (4)> (2), the magnitude relationship of the air-fuel ratio is # 2. It can be seen that># 4.
As a result, in step 704, it is estimated that the magnitude relationship between the air-fuel ratios of the cylinders is # 2>#4>#3># 1.

次に、気筒間空燃比異常検出手段303は、目標空燃比に対し、パターン(1)〜(4)の3気筒分の平均空燃比の中の最大値と最小値とのどちらとの偏差の絶対値が大きいかを判定する(ステップ705)。
つまり、ステップ705においては、パターン(1)〜(4)の中の最大空燃比と目標空燃比との偏差ΔAFmaxの絶対値が、パターン(1)〜(4)の中の最小空燃比と目標空燃比との偏差ΔAFminの絶対値よりも大きいか否かを判定する。
Next, the inter-cylinder air-fuel ratio abnormality detecting means 303 determines the deviation between the maximum value and the minimum value among the average air-fuel ratios of the three cylinders of the patterns (1) to (4) with respect to the target air-fuel ratio. It is determined whether the absolute value is large (step 705).
That is, in step 705, the absolute value of the deviation ΔAFmax between the maximum air-fuel ratio in the patterns (1) to (4) and the target air-fuel ratio becomes the minimum air-fuel ratio in the patterns (1) to (4) and the target. It is determined whether or not the deviation ΔAFmin from the air-fuel ratio is larger than the absolute value.

ステップ705において、|ΔAFmax|>|ΔAFmin|(すなわち、YES)と判定されれば、ステップ704で推定した最大空燃比の気筒をばらつき異常気筒と判定する(ステップ706)。
以下、気筒間空燃比補正手段304は、ばらつき異常気筒をリッチ側に補正して(ステップ707)、図7の処理ルーチンを終了する。
If it is determined in step 705 that | ΔAFmax |> | ΔAFmin | (that is, YES), the cylinder with the maximum air-fuel ratio estimated in step 704 is determined as a variation abnormal cylinder (step 706).
Thereafter, the inter-cylinder air-fuel ratio correcting unit 304 corrects the variation abnormality cylinder to the rich side (step 707) and ends the processing routine of FIG.

一方、ステップ705において、|ΔAFmax|≦|ΔAFmin|(すなわち、NO)と判定されれば、ステップ704で推定した最小空燃比の気筒をばらつき異常気筒と判定する(ステップ708)。
以下、気筒間空燃比補正手段304は、ばらつき異常気筒をリーン側に補正して(ステップ709)、図7の処理ルーチンを終了する。
On the other hand, if it is determined in step 705 that | ΔAFmax | ≦ | ΔAFmin | (that is, NO), the cylinder having the minimum air-fuel ratio estimated in step 704 is determined as a variation abnormality cylinder (step 708).
Thereafter, the inter-cylinder air-fuel ratio correcting unit 304 corrects the variation abnormal cylinder to the lean side (step 709), and ends the processing routine of FIG.

以上の処理(ステップ701〜709)は、正常判定(ステップ703)が成立するまで、繰り返し実行される。
これにより、気筒間空燃比のばらつきを極めて小さくすることができる。
The above processing (steps 701 to 709) is repeatedly executed until normality determination (step 703) is established.
Thereby, the dispersion | variation in the air-fuel ratio between cylinders can be made very small.

以上のように、この発明の実施の形態2(図7)によれば、気筒間空燃比異常検出手段303は、各平均空燃比に基づき気筒ごとの空燃比の大小関係を推定し、空燃比の大小関係と平均空燃比の大小関係との相関から、気筒間空燃比のばらつきを検出することもできるので、前述の実施の形態1と同様の効果に加えて、気筒間空燃比のばらつきをさらに抑制することができる。   As described above, according to the second embodiment (FIG. 7) of the present invention, the inter-cylinder air-fuel ratio abnormality detecting means 303 estimates the magnitude relation of the air-fuel ratio for each cylinder based on each average air-fuel ratio, and the air-fuel ratio. Since the variation in the air-fuel ratio between the cylinders can be detected from the correlation between the magnitude relationship between the average air-fuel ratio and the average air-fuel ratio, in addition to the effects similar to those of the first embodiment, Further suppression can be achieved.

また、前述と同様に、気筒間空燃比異常検出手段303は、空燃比補正量またはその学習値から複数気筒噴射分の平均値を演算し、気筒間空燃比のばらつき異常を検出することもできる。   Similarly to the above, the inter-cylinder air-fuel ratio abnormality detecting means 303 can also calculate an average value for the injection of a plurality of cylinders from the air-fuel ratio correction amount or the learned value thereof, and detect an abnormal variation in the inter-cylinder air-fuel ratio. .

なお、上記実施の形態1、2では、複数気筒空燃比演算手段302において、3気筒分の平均空燃比を演算したが、これに限定されることはなく、3気筒分の空燃比補正量の平均値または、3気筒分の学習値の平均値を演算してもよい。この場合も、気筒間空燃比異常検出手段303および気筒間空燃比補正手段304において、気筒間空燃比のばらつき異常の検出および補正を行うことができる。   In the first and second embodiments, the average air-fuel ratio for three cylinders is calculated by the multi-cylinder air-fuel ratio calculating means 302. However, the present invention is not limited to this, and the air-fuel ratio correction amount for three cylinders is calculated. An average value or an average value of learning values for three cylinders may be calculated. Also in this case, the inter-cylinder air-fuel ratio abnormality detecting means 303 and the inter-cylinder air-fuel ratio correcting means 304 can detect and correct the variation abnormality of the inter-cylinder air-fuel ratio.

また、この発明は、上記実施の形態1、2に限定されることはなく、たとえば、4気筒以上の内燃機関にも適用することができ、要旨を逸脱しない範囲内で種々変更することもできる。   The present invention is not limited to the first and second embodiments, and can be applied to, for example, an internal combustion engine having four or more cylinders, and various modifications can be made without departing from the scope of the invention. .

1 エンジン、2 クランク角センサ、3 カム角センサ、4 水温センサ、5 点火コイル、6 点火プラグ、7 エアフロセンサ、8 スロットル、9 スロットルセンサ、10 吸入通路、11 圧力センサ、12 吸気温度センサ、13 インジェクタ、14 燃料ポンプ、15 各排気通路、15 排気通路、16 リニア空燃比センサ、17 三元触媒、18 リアO2センサ、20 バッテリ、300 各種センサ、301 診断実行条件判定手段、302 複数気筒空燃比演算手段、303 気筒間空燃比異常検出手段、304 気筒間空燃比補正手段、306 目標空燃比演算手段、307 空燃比補正量演算手段、A 吸入空気、B 排出ガス。   1 engine, 2 crank angle sensor, 3 cam angle sensor, 4 water temperature sensor, 5 ignition coil, 6 spark plug, 7 air flow sensor, 8 throttle, 9 throttle sensor, 10 intake passage, 11 pressure sensor, 12 intake air temperature sensor, 13 Injector, 14 Fuel pump, 15 Exhaust passage, 15 Exhaust passage, 16 Linear air-fuel ratio sensor, 17 Three-way catalyst, 18 Rear O2 sensor, 20 Battery, 300 Various sensors, 301 Diagnosis execution condition determination means, 302 Multi-cylinder air-fuel ratio Arithmetic means, 303 inter-cylinder air-fuel ratio abnormality detecting means, 304 inter-cylinder air-fuel ratio correcting means, 306 target air-fuel ratio calculating means, 307 air-fuel ratio correction amount calculating means, A intake air, B exhaust gas.

Claims (3)

複数気筒を有するエンジンの排気管集合部に取り付けられて前記エンジンの排出ガスの空燃比を検出するリニア空燃比センサと、
前記リニア空燃比センサの検出値に基づき、連続した複数気筒噴射分の平均空燃比を、すべての気筒の組合せ分だけ演算する複数気筒空燃比演算手段と、
前記平均空燃比のそれぞれを比較することにより、気筒間空燃比のばらつきを検出する気筒間空燃比異常検出手段と、
前記気筒間空燃比異常検出手段により前記気筒間空燃比のばらつきの異常が検出された場合に、前記気筒間空燃比のばらつきを補正する気筒間空燃比補正手段と
を備えた内燃機関の異常検出装置。
A linear air-fuel ratio sensor that is attached to an exhaust pipe assembly of an engine having a plurality of cylinders and detects an air-fuel ratio of the exhaust gas of the engine;
Multi-cylinder air-fuel ratio calculating means for calculating an average air-fuel ratio for continuous multiple-cylinder injection based on a detection value of the linear air-fuel ratio sensor by a combination of all cylinders;
An inter-cylinder air-fuel ratio abnormality detecting means for detecting a variation in the inter-cylinder air-fuel ratio by comparing each of the average air-fuel ratios;
Abnormality detection of an internal combustion engine comprising: apparatus.
前記気筒間空燃比異常検出手段は、前記平均空燃比に基づき気筒ごとの空燃比の大小関係を推定し、前記空燃比の大小関係と前記平均空燃比の大小関係との相関から、前記気筒間空燃比のばらつきを検出することを特徴とする請求項1に記載の内燃機関の異常検出装置。   The inter-cylinder air-fuel ratio abnormality detecting means estimates the air-fuel ratio magnitude relationship for each cylinder based on the average air-fuel ratio, and from the correlation between the air-fuel ratio magnitude relationship and the average air-fuel ratio magnitude, The abnormality detection device for an internal combustion engine according to claim 1, wherein a variation in the air-fuel ratio is detected. 前記エンジンの運転状態を検出する各種センサと、
前記各種センサの検出情報に基づき目標空燃比を演算する目標空燃比演算手段と、
前記リニア空燃比センサの検出値と前記目標空燃比との偏差に基づき空燃比補正量を演算する空燃比補正量演算手段とを備え、
前記気筒間空燃比異常検出手段は、前記空燃比補正量または前記空燃比補正量の学習値から前記平均空燃比を演算して、前記気筒間空燃比のばらつきを検出することを特徴とする請求項1または請求項2に記載の内燃機関の異常検出装置。
Various sensors for detecting the operating state of the engine;
Target air-fuel ratio calculating means for calculating a target air-fuel ratio based on detection information of the various sensors;
Air-fuel ratio correction amount calculating means for calculating an air-fuel ratio correction amount based on a deviation between the detected value of the linear air-fuel ratio sensor and the target air-fuel ratio;
The inter-cylinder air-fuel ratio abnormality detecting means calculates the average air-fuel ratio from the air-fuel ratio correction amount or a learned value of the air-fuel ratio correction amount, and detects variations in the inter-cylinder air-fuel ratio. The abnormality detection device for an internal combustion engine according to claim 1 or 2.
JP2010092024A 2010-04-13 2010-04-13 Abnormality detection device for internal combustion engine Expired - Fee Related JP4854796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092024A JP4854796B2 (en) 2010-04-13 2010-04-13 Abnormality detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092024A JP4854796B2 (en) 2010-04-13 2010-04-13 Abnormality detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011220274A true JP2011220274A (en) 2011-11-04
JP4854796B2 JP4854796B2 (en) 2012-01-18

Family

ID=45037554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092024A Expired - Fee Related JP4854796B2 (en) 2010-04-13 2010-04-13 Abnormality detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4854796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015841A (en) * 2012-07-05 2014-01-30 Toyota Motor Corp Device for detecting abnormal air-fuel ratio variation between cylinders of multi-cylinder internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015841A (en) * 2012-07-05 2014-01-30 Toyota Motor Corp Device for detecting abnormal air-fuel ratio variation between cylinders of multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
JP4854796B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4363398B2 (en) Air-fuel ratio control device for internal combustion engine
US8548718B2 (en) Air/fuel ratio variation abnormality detection apparatus, and abnormality detection method
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
JP4070961B2 (en) Failure determination device for variable cylinder internal combustion engine
US10247114B2 (en) Exhaust gas control system for internal combustion engine and control method for internal combustion engine
US8676477B2 (en) Rotational fluctuation malfunction detection device and rotational fluctuation malfunction detection method for internal combustion engine
JP2008121534A (en) Abnormality diagnostic device of internal combustion engine
JP5235739B2 (en) Fuel injection control device for internal combustion engine
US8219302B2 (en) Fuel injection controller for internal combustion engine
US9279377B2 (en) Air-fuel ratio imbalance determination apparatus and air-fuel ratio imbalance determination method
US20120303248A1 (en) Abnormality detection apparatus and abnormality detection method for multi-cylinder internal combustion engine
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
US8725389B2 (en) Control device for multi-cylinder internal combustion engine
JP2009270492A (en) Failure diagnosis device of cylinder deactivation system
JP2008128160A (en) Control device of internal combustion engine
JP4868173B2 (en) Abnormality diagnosis device for internal combustion engine
JP2011226363A (en) Abnormality diagnosis apparatus of internal combustion engine
US20210324814A1 (en) Control Device and Diagnostic Method for Internal Combustion Engine
JP4854796B2 (en) Abnormality detection device for internal combustion engine
JP2012145054A (en) Apparatus for detecting fluctuation abnormality of air-fuel ratios among cylinders of multi-cylinder internal combustion engine
WO2015060068A1 (en) Control device for internal combustion engine
US8989988B2 (en) Control apparatus for internal combustion engine
US10190469B2 (en) Failure detection device of internal combustion engine
US20130110378A1 (en) Control Device of Engine
JP5565269B2 (en) Exhaust gas sensor signal processing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees