JP2011219856A - Carbon-material-containing agglomerate, method for producing the same, and method for producing reduced iron using the same - Google Patents

Carbon-material-containing agglomerate, method for producing the same, and method for producing reduced iron using the same Download PDF

Info

Publication number
JP2011219856A
JP2011219856A JP2010236743A JP2010236743A JP2011219856A JP 2011219856 A JP2011219856 A JP 2011219856A JP 2010236743 A JP2010236743 A JP 2010236743A JP 2010236743 A JP2010236743 A JP 2010236743A JP 2011219856 A JP2011219856 A JP 2011219856A
Authority
JP
Japan
Prior art keywords
slag
cao
sio
temperature
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010236743A
Other languages
Japanese (ja)
Other versions
JP5503495B2 (en
Inventor
Motohiro Horiguchi
元宏 堀口
Kazutaka Kunii
一孝 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010236743A priority Critical patent/JP5503495B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to PCT/JP2011/057254 priority patent/WO2011118738A1/en
Priority to AU2011230263A priority patent/AU2011230263A1/en
Priority to CN2011800147443A priority patent/CN102803523A/en
Priority to US13/583,979 priority patent/US20130047787A1/en
Priority to CA2792955A priority patent/CA2792955A1/en
Priority to RU2012145284/02A priority patent/RU2012145284A/en
Priority to EP20110759543 priority patent/EP2551362A1/en
Priority to TW100110422A priority patent/TW201211272A/en
Publication of JP2011219856A publication Critical patent/JP2011219856A/en
Application granted granted Critical
Publication of JP5503495B2 publication Critical patent/JP5503495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a carbon-material-containing iron oxide agglomerate which does not pulverize and is not accumulated in a movable furnace-type reduction furnace when it is heated in the reduction furnace to obtain reduced iron, and surely prevents a drop in yield due to the occurrence of the pulverization when the reduced iron thus obtained is conveyed; and to provide a method for producing the same and a method for producing the reduced iron using the same.SOLUTION: The carbon-material-containing iron oxide agglomerate contains pre-melt slag (for example, blast furnace slag and/or steelmaking slag) which is a ternary-system slag of AlO-CaO-SiOwhose solidus temperature, which is determined by an AlOcontent, a CaO content and an SiOcontent, is at most 1300°C, preferably at most 1200°C. More preferably, the solidus temperature of a ternary-system slag of AlO-CaO-SiOis also at most 1300°C, preferably at most 1200°C, the solidus temperature concerned being determined by the AlOcontent, CaO content and SiOcontent of the whole agglomerate, and, in addition, the liquefaction rate of the ternary-system slag of AlO-CaO-SiOin obtained reduced iron is 1-20%.

Description

本発明は、還元鉄を製造するための移動炉床式還元炉の原料として用いられる炭材内装塊成化物およびその製造方法、ならびにそれを用いた還元鉄製造方法に関する。   The present invention relates to a carbonaceous material agglomerate used as a raw material for a moving hearth type reduction furnace for producing reduced iron, a method for producing the same, and a method for producing reduced iron using the same.

鉄鉱石や製銑・製鋼工程で発生する酸化鉄を多量に含有するダスト粉などの粉状の酸化鉄含有原料に、還元材として石炭やコークスを製造する際に発生する粉などの炭素を含有した炭材と水分やバインダー分を添加・混合し、ペレットまたはブリケットに成形し、その成形体(炭材内装酸化鉄塊成化物)を乾燥し、次いで、回転炉床炉で加熱して還元反応を起こさせて還元鉄を製造する技術が知られている。この成形体は、もともと微粉で構成されていることから未還元であればもとの粉が発生し、また還元が終了した段階でも還元に用いられなかった炭素分が含有されており、還元鉄が炉外へ排出される際に衝撃で割れて内部の炭素や還元鉄粒子および原料に含まれる酸化物成分が粉となって炉内に残留することがある。さらには排出された還元鉄もベルトコンベアなどの搬送機器で移送される際に還元鉄同士の摩擦やベルトコンベアなどの乗り継ぎの際の落下衝突により微粒粉が発生する。   Contains powdered iron oxide-containing materials such as dust powder containing a large amount of iron oxide generated in iron ore and ironmaking and steelmaking processes, and carbon such as powder generated when producing coal and coke as a reducing material Add and mix the carbonaceous material, moisture and binder, form into pellets or briquettes, dry the compact (carbonized iron agglomerate), then heat in a rotary hearth furnace to reduce the reaction. A technique for producing reduced iron by causing oxidization is known. Since this molded body was originally composed of fine powder, if it was not reduced, the original powder was generated, and it contained carbon that was not used for reduction even when the reduction was completed. May be cracked by impact when discharged to the outside of the furnace, and the internal carbon, reduced iron particles and oxide components contained in the raw material may become powder and remain in the furnace. Further, when the discharged reduced iron is also transferred by a conveying device such as a belt conveyor, fine powder is generated due to friction between the reduced irons and drop collision at the time of transfer of the belt conveyor or the like.

ところで、還元鉄を製造する際に回転床式還元炉内の加熱温度の変更や滞留時間の調整などの変更を行うだけでは還元された金属鉄の凝集に影響するスラグの形成を調整することが困難であり還元鉄の圧潰強度が弱くなる。このため還元鉄を回転床式還元炉から排出する時に紛化・破損し、回転床式炉からの排出が困難になるうえ、排出できなかった還元鉄粒子やスラグ分が炉内に残留し、炉床の耐火物と反応して損傷を引き起こしてしまう。また排出時に紛化・破壊した還元鉄の一部は、炉内のガス気流中に浮遊して、回転床式還元炉内壁及び排ガス設備ダクト壁に付着することもある。さらに排出された還元鉄が、搬送中に紛化・破損するとダストとなって再度原料として使用する必要が生じる上、電気炉や高炉といった還元鉄を溶解して銑鉄とする工程においても歩留まりが低下する。   By the way, when manufacturing reduced iron, it is possible to adjust the formation of slag that affects the aggregation of reduced metallic iron simply by changing the heating temperature in the rotary bed type reduction furnace or adjusting the residence time. It is difficult and the crushing strength of reduced iron is weakened. For this reason, reduced iron is pulverized and damaged when discharged from the rotating bed type reducing furnace, making it difficult to discharge from the rotating bed type furnace, and reduced iron particles and slag that could not be discharged remain in the furnace. Reacts with hearth refractories and causes damage. In addition, some of the reduced iron that has been pulverized and destroyed at the time of discharge may float in the gas flow in the furnace and adhere to the inner wall of the rotary bed type reduction furnace and the exhaust gas equipment duct wall. Furthermore, if the discharged reduced iron is pulverized or damaged during transportation, it becomes a dust and needs to be used again as a raw material. In addition, the yield decreases in the process of melting reduced iron such as electric furnaces and blast furnaces to make pig iron. To do.

このため、炉内での還元過程や炉外への搬出および搬送の際において微粒粉の発生を抑制ないし防止する技術が望まれている。   For this reason, the technique which suppresses thru | or prevents generation | occurrence | production of a fine particle in the reduction | restoration process in a furnace, the time of carrying out outside a furnace, and conveyance is desired.

一方、製造された還元鉄は、高炉や転炉、電気炉などの鉄原料として使用されることから、炉のエネルギ効率を改善するためできるだけ高炭素含有量のものが望まれているものの、炭素含有量が高くなるほど、還元鉄の強度が低下することが知られている。   On the other hand, since the produced reduced iron is used as an iron raw material for blast furnaces, converters, electric furnaces, etc., it is desired to have a carbon content as high as possible in order to improve the energy efficiency of the furnace. It is known that the strength of reduced iron decreases as the content increases.

そこで、上記課題を解決するために、炭材内装酸化鉄塊成化物や還元鉄の強度を高める方策が種々検討されている。   In order to solve the above problems, various measures for increasing the strength of the carbonaceous material-incorporated iron oxide agglomerates and the reduced iron have been studied.

例えば、これまでスラグ成分の溶融と固着によって還元鉄粒子を固めることに着眼し、スラグの塩基度調整用原料としてCaCOなどのCa含有化合物を用いて塩基度(CaO/SiO)比を0.3以上0.6以下とすることにより還元鉄の圧潰強度を向上させることで粉化を抑制する方法や塩基度を1.4〜1.6に調整し、塊成化物中の炭素を10〜20%として1250℃〜1350℃で加熱する方法が提案されている(特許文献1、2参照)。しかし鉄鉱石やダストといった鉄源にはCaOやSiO以外にもAlやMgOを含むものもあり、単に(CaO/SiO)比を制御するだけではスラグの溶融温度を精度良く制御することができず、確実に還元鉄の強度を高めることはできない。 For example, focusing on solidifying the reduced iron particles by melting and fixing the slag component so far, a basicity (CaO / SiO 2 ) ratio of 0 is used by using a Ca-containing compound such as CaCO 3 as a raw material for adjusting the basicity of slag. .3 or more and 0.6 or less, by improving the crushing strength of the reduced iron, the method and the basicity to suppress the pulverization is adjusted to 1.4 to 1.6, the carbon in the agglomerate is 10 A method of heating at 1250 ° C. to 1350 ° C. as ˜20% has been proposed (see Patent Documents 1 and 2). However, some iron sources such as iron ore and dust contain Al 2 O 3 and MgO in addition to CaO and SiO 2. By simply controlling the (CaO / SiO 2 ) ratio, the slag melting temperature can be accurately controlled. The strength of reduced iron cannot be reliably increased.

また、炉内への装入過程において微粒粉の発生を抑制するため、粉状鉄原料中のAlとSiOの合計量を塊成化物中に4〜10質量%の範囲に調整して成形体の強度を高める技術が提案されている(特許文献3参照)。しかし、原料中のAlとSiOの合計を規定するだけではスラグの融点を精度良く制御することはできず、やはり圧潰強度を上げて粉化を防止できるものではない。 Further, in order to suppress the generation of fine powder in the charging process to the furnace, adjusting the total amount of Al 2 O 3 and SiO 2 in Konajotetsu material in the range of 4 to 10 wt% in the agglomerates And the technique which raises the intensity | strength of a molded object is proposed (refer patent document 3). However, the melting point of slag cannot be accurately controlled simply by defining the total of Al 2 O 3 and SiO 2 in the raw material, and it is not possible to increase the crushing strength and prevent pulverization.

またさらに、CaO、Al、MgOおよびSiOの存在量から(XCaO+Al+XMgO)/XSiOを求め、この値が1〜5となるよう調整する方法も提案されている(特許文献4参照)。しかし、これは炉床に付着した付着物を除去しようとする際に容易に切削しうる付着物成分に着目したものであって、還元鉄自体の強度を高め、粉化を防止できるものではない。 Furthermore, a method for obtaining (XCaO + Al 2 O 3 + XMgO) / XSiO 2 from the abundance of CaO, Al 2 O 3 , MgO and SiO 2 and adjusting the value to 1 to 5 has been proposed. (See Patent Document 4). However, this focuses on the deposit component that can be easily cut when trying to remove the deposit attached to the hearth, and does not increase the strength of the reduced iron itself and prevent pulverization. .

また、(CaO+Al)/SiOで計算される値が1.6以上とする方法やさらにCa含有物質としてカルシウムイオンを含む水和物を添加する方法が提案されている(特許文献5参照)。しかし、この方法では水和物を形成するのに3日かかるとされており、原料を3日以上保持するヤードが必要となる。 In addition, a method in which a value calculated by (CaO + Al 2 O 3 ) / SiO 2 is 1.6 or more, and a method of adding a hydrate containing calcium ions as a Ca-containing substance have been proposed (Patent Document 5). reference). However, in this method, it takes 3 days to form a hydrate, and a yard for holding the raw material for 3 days or more is required.

また、CaF成分を添加するとともに、(CaO/SiO)比を0.3〜1.0とする方法が提案されている(特許文献6参照)。しかし近年、CaFについては環境への影響が懸念されるためにCaFを含有するスラグは廃棄が規制されるようになっており、CaFの使用も制限されることが多い。 Moreover, with the addition of CaF 2 component, (CaO / SiO 2) method of 0.3 to 1.0 the ratio has been proposed (see Patent Document 6). However, in recent years, since CaF 2 is concerned about the environmental impact, the disposal of slag containing CaF 2 has been regulated, and the use of CaF 2 is often limited.

また、炉内でバースティングして粉が発生することを防ぐ目的で、(CaO/SiO)比を0.5〜1.5とし、結晶水と揮発分の合計量を10.5質量%以下とし、付着水分の含有量を1.0%以下とする方法も提案されている(特許文献7参照)。しかし、酸化物原料中に結晶水を10.5質量%を超えて含有する原料には適用できず、水分を1質量%以下に乾燥するには乾燥時間を多く必要とする。 For the purpose of preventing the generation of powder by bursting in the furnace, the (CaO / SiO 2 ) ratio is set to 0.5 to 1.5, and the total amount of crystallization water and volatile matter is 10.5% by mass. A method has also been proposed in which the content of adhered moisture is 1.0% or less (see Patent Document 7). However, it cannot be applied to a raw material containing more than 10.5% by mass of crystal water in the oxide raw material, and much drying time is required to dry the water to 1% by mass or less.

(CaO−MgO)/T.Feを0.1以下とし、かつ(CaO−MgO)/SiOを2以下として酸化鉄原料の大きさを50μm以下として還元帯内の一酸化炭素に対する二酸化炭素の比を0.3から1として、還元鉄の金属化率を50〜85%とし該還元鉄中の残留炭素を2質量%以下とする方法も提案されている(特許文献8参照)。しかし、この方法では酸化鉄原料が50ミクロンを超えるものは粉砕工程が必要になり、大きな粒径のものほど粉砕に時間を要する上、炭素を多く含んだ還元鉄を得ることができない。 (CaO-MgO) /T.Fe is 0.1 or less, and (CaO-MgO) / SiO 2 is 2 or less, and the size of the iron oxide raw material is 50 μm or less. A method has also been proposed in which the ratio is 0.3 to 1, the metalization rate of reduced iron is 50 to 85%, and the residual carbon in the reduced iron is 2% by mass or less (see Patent Document 8). However, this method requires a pulverization step if the iron oxide raw material exceeds 50 microns, and the larger the particle size, the longer the time required for pulverization, and it is not possible to obtain reduced iron containing a large amount of carbon.

特開2004−169140号公報JP 2004-169140 A 特開平10−147806号公報Japanese Patent Laid-Open No. 10-147806 特開平11−12626号公報Japanese Patent Laid-Open No. 11-12626 特開2006−283136号公報JP 2006-283136 A 特開2007−197783号公報JP 2007-197783 A 特開2008−56986号公報JP 2008-56986 A 特開2009−35820号公報JP 2009-35820 A 特開2009−84688号公報JP 2009-84688 A

そこで、本発明は、炭材内装酸化鉄塊成化物を移動炉床式還元炉内で加熱して還元鉄を得るに際して炉内で粉化を起こして粉が蓄積されることがなく、また得られた還元鉄が搬送されるに際して粉化して歩留まりが下がることを確実に防止しうる炭材内装酸化鉄塊成化物、および、その製造方法、ならびに、それを用いた還元鉄の製造方法を提供することを目的とする。   In view of this, the present invention provides a carbonaceous iron-incorporated iron oxide agglomerate that is heated in a moving hearth-type reducing furnace to obtain reduced iron, so that no powder is accumulated due to pulverization in the furnace. Provided with a carbonaceous material-containing iron oxide agglomerate that can reliably prevent yield reduction due to pulverization when the reduced iron is conveyed, and a method for producing the same, and a method for producing reduced iron using the same The purpose is to do.

請求項1に記載の発明は、還元鉄を製造するための移動炉床式還元炉の原料として用いられる炭材内装酸化鉄塊成化物であって、Al、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(以下、「プリメルトスラグ固相線温度」という。)TS・Pが1300℃以下であるプリメルトスラグが配合されてなることを特徴とする炭材内装酸化鉄塊成化物である。
請求項2に記載の発明は、前記プリメルトスラグの固相線温度TS・Pが1200℃以下である請求項1に記載の炭材内装酸化鉄塊成化物である。
The invention according to claim 1 is a carbonaceous material-containing iron oxide agglomerate used as a raw material of a moving hearth type reduction furnace for producing reduced iron, and contains Al 2 O 3 , CaO and SiO 2 . Pre-melt slag having a solid phase temperature (hereinafter referred to as “pre-melt slag solid-phase temperature”) T S · P of 1300 ° C. or less of Al 2 O 3 —CaO—SiO 2 ternary slag determined from It is a carbonaceous material-incorporated iron oxide agglomerate characterized by being made.
The invention according to claim 2 is the carbonaceous material-incorporated iron oxide agglomerated product according to claim 1, wherein the premelt slag has a solidus temperature T S · P of 1200 ° C or lower.

請求項3に記載の発明は、前記プリメルトスラグが、高炉スラグおよび/または製鋼スラグである請求項1に記載の炭材内装酸化鉄塊成化物である。
請求項4に記載の発明は、前記プリメルトスラグが、高炉スラグおよび/または製鋼スラグである請求項1に記載の炭材内装酸化鉄塊成化物である。
The invention according to claim 3 is the carbonized iron oxide agglomerate according to claim 1, wherein the premelt slag is blast furnace slag and / or steelmaking slag.
The invention according to claim 4 is the carbonized iron oxide agglomerated material according to claim 1, wherein the premelt slag is blast furnace slag and / or steelmaking slag.

請求項5に記載の発明は、請求項1または3に記載の炭材内装酸化鉄塊成化物を製造する方法であって、当該塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(以下、「全スラグ固相線温度」という。)TS・Sが1300℃以下であり、かつ、当該塊成化物を前記移動炉床式還元炉内において前記全スラグ固相線温度TS・Sより高く、前記塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの液相線温度(以下、「全スラグ液相線温度」という。)TL・Sよりも低い加熱処理温度で加熱処理して製造した還元鉄中のAl−CaO−SiO3元系スラグの融液率が1〜20%となるように、前記プリメルトスラグの配合割合を調整することを特徴とする炭材内装酸化鉄塊成化物の製造方法である。
ここに、還元鉄中のAl−CaO−SiO3元系スラグの融液率とは、該還元鉄全体に対する、該還元鉄中のAl−CaO−SiO3元系スラグのうち前記加熱処理温度において液相となる部分の質量比率として定義されるものである(以下、同じ)。
請求項6に記載の発明は、請求項2または4に記載の炭材内装酸化鉄塊成化物を製造する方法であって、当該塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(以下、「全スラグ固相線温度」という。)TS・Sが1200℃以下であり、かつ、当該塊成化物を前記移動炉床式還元炉内において前記全スラグ固相線温度TS・Sより高く、前記塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの液相線温度(以下、「全スラグ液相線温度」という。)TL・Sよりも低い加熱処理温度で加熱処理して製造した還元鉄中のAl−CaO−SiO3元系スラグの融液率が1〜20%となるように、前記プリメルトスラグの配合割合を調整することを特徴とする炭材内装酸化鉄塊成化物の製造方法である。
The invention according to claim 5 is a method for producing the carbonaceous material-containing iron oxide agglomerated product according to claim 1 or 3, wherein the content of Al 2 O 3 , CaO and SiO 2 in the whole agglomerated material is included. The solidus temperature of Al 2 O 3 —CaO—SiO 2 ternary slag determined from the following (hereinafter referred to as “total slag solidus temperature”) T S · S is 1300 ° C. or less, and the agglomeration Al 2 O 3 —CaO determined from the content of Al 2 O 3 , CaO and SiO 2 of the whole agglomerated material in the moving hearth type reduction furnace, which is higher than the total slag solidus temperature T S · S. The liquidus temperature of SiO 2 ternary slag (hereinafter referred to as “total slag liquidus temperature”) Al 2 O in reduced iron produced by heat treatment at a heat treatment temperature lower than TL · S The melt rate of 3- CaO-SiO 2 ternary slag is 1 It is a manufacturing method of the carbonaceous material internal iron oxide agglomerate characterized by adjusting the compounding ratio of the said premelt slag so that it may become -20%.
Here, the Al 2 O 3 -CaO-SiO 2 3 ternary melt index of the slag during the reduction of iron, for the entire reduced iron, Al 2 O 3 -CaO-SiO 2 3 -way system in reduced iron It is defined as the mass ratio of the portion of the slag that becomes a liquid phase at the heat treatment temperature (hereinafter the same).
The invention according to claim 6 is a method for producing the carbonaceous material-containing iron oxide agglomerated product according to claim 2 or 4, wherein the content of Al 2 O 3 , CaO and SiO 2 in the whole agglomerated material is included. The solidus temperature of Al 2 O 3 —CaO—SiO 2 ternary slag determined from the following (hereinafter referred to as “total slag solidus temperature”) T S · S is 1200 ° C. or lower, and the agglomeration Al 2 O 3 —CaO determined from the content of Al 2 O 3 , CaO and SiO 2 of the whole agglomerated material in the moving hearth type reduction furnace, which is higher than the total slag solidus temperature T S · S. The liquidus temperature of SiO 2 ternary slag (hereinafter referred to as “total slag liquidus temperature”) Al 2 O in reduced iron produced by heat treatment at a heat treatment temperature lower than TL · S The melt rate of 3- CaO-SiO 2 ternary slag is 1 It is a manufacturing method of the carbonaceous material internal iron oxide agglomerate characterized by adjusting the compounding ratio of the said premelt slag so that it may become -20%.

請求項7に記載の発明は、請求項1、2、3もしくは4に記載の炭材内装酸化鉄塊成化物、または、請求項5もしくは6に記載の製造方法で製造された炭材内装酸化鉄塊成化物であって、炭材配合量が調整された炭材内装酸化鉄塊成化物を、前記移動炉床式還元炉内で加熱処理して還元鉄を製造する方法であって、下記式で定義される炭素利用効率ηが0.08〜0.12の範囲内になるように、加熱処理温度を前記全スラグ固相線温度TS・Sより高く、前記全スラグ液相線温度TL・Sよりも低い温度範囲で調整して、炭素含有量が6質量%以下の還元鉄を得ることを特徴とする還元鉄製造方法である。
式 η=NCO2/(NCO+NCO2
ここに、NCOおよびNCO2は、それぞれ、上記加熱処理の際に上記炭材内装酸化鉄塊成化物中から発生する、COの総モル量およびCOの総モル量である。
The invention according to claim 7 is the carbonaceous material-containing iron oxide agglomerated product according to claim 1, 2, 3 or 4, or the carbonaceous material-oxidized oxide produced by the production method according to claim 5 or 6. An iron agglomerate, wherein the carbonaceous material-incorporated iron oxide agglomerated material whose carbon material blending amount is adjusted is a method for producing reduced iron by heat treatment in the moving hearth type reducing furnace, comprising: The heat treatment temperature is higher than the total slag solidus temperature T S · S so that the carbon utilization efficiency η C defined by the formula is in the range of 0.08 to 0.12, and the total slag liquidus It is a reduced iron production method characterized by obtaining reduced iron having a carbon content of 6% by mass or less by adjusting in a temperature range lower than the temperature T L · S.
Formula η C = N CO 2 / (N CO + N CO 2 )
Here, N CO and N CO2, respectively, generated from the carbonaceous material furnished oxide TetsukatamariNaru in product during the heat treatment, the total molar amount of the total molar amount and CO 2 in the CO.

本発明によれば、炭材内装酸化鉄塊成化物中にAl−CaO−SiO3元系スラグの固相線温度が1300℃以下、より好ましくは1200℃以下のプリメルトスラグを配合することで、該炭材内装酸化鉄塊成化物を移動炉床式還元炉内で加熱処理した際に該プリメルトスラグの一部が容易に溶融し、金属鉄の焼結反応が促進され、より高い圧潰強度を備えた還元鉄が製造できるようになった。 According to the present invention, a premelt slag having a solidus temperature of Al 2 O 3 —CaO—SiO 2 ternary slag of 1300 ° C. or less, more preferably 1200 ° C. or less, in the carbonaceous material-containing iron oxide agglomerated material. By blending, when the carbonaceous material-incorporated iron oxide agglomerate is heat-treated in a moving hearth type reducing furnace, a part of the premelt slag is easily melted, and the sintering reaction of metallic iron is promoted. It is now possible to produce reduced iron with higher crushing strength.

炭材内装酸化鉄塊成化物のスラグ組成と固相線温度との関係を説明するためのAl−CaO−SiO3元系状態図である。It is Al 2 O 3 -CaO-SiO 2 3 ternary phase diagram for explaining a relationship between the slag composition and the solidus temperature of the carbonaceous material furnished oxide TetsukatamariNaru product. 還元試験に用いた小型高周波急速加熱炉の装置概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the apparatus outline | summary of the small high-frequency rapid heating furnace used for the reduction test. 還元試験における加熱パターンを模式的に示す図である。It is a figure which shows typically the heating pattern in a reduction test. 還元試験に用いた炭材内装酸化鉄ペレットのスラグ組成と固相線温度との関係を説明するためのAl−CaO−SiO3元系状態図である。Is Al 2 O 3 -CaO-SiO 2 3 ternary phase diagram for explaining a relationship between the slag composition and the solidus temperature of the carbonaceous composite iron oxide pellets used for the reduction test.

以下、本発明について、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

(実施形態)
本発明は、炭材内装酸化鉄塊成化物(以下、単に「塊成化物」ともいう。)中にAl−CaO−SiO3元系スラグの固相線温度(プリメルトスラグ固相線温度)TS・Pが1300℃以下、より好ましくは1200℃以下であるプリメルトスラグを配合することを特徴とし、これにより、高炉や電気炉、転炉などの鉄原料としてより適した、圧潰強度がさらに高められた製品還元鉄が得られる。
(Embodiment)
The present invention relates to the solidus temperature (pre-melt slag solids) of Al 2 O 3 —CaO—SiO 2 ternary slag in a carbonaceous material-containing iron oxide agglomerate (hereinafter also simply referred to as “agglomerated product”). Preliminary slag having a phase line temperature (T S · P ) of 1300 ° C. or lower, more preferably 1200 ° C. or lower, which is more suitable as an iron raw material for blast furnaces, electric furnaces, converters, etc. In this way, product reduced iron with further increased crushing strength is obtained.

以下に、上記要件の設定根拠を説明する。   The basis for setting the above requirements will be described below.

まず、プリメルトスラグを使用することとしたのは、従来技術のように、炭材内装酸化鉄塊成化物中のスラグ成分の調整に、例えば副原料として石灰石(CaO源)や珪石(SiO源)を用いるとCaO単体やSiO単体は溶融温度(融点)が高いためこれらの副原料からは液相が発生しにくくスラグ化に時間がかかるのに対し、プリメルトスラグはそれ自体すでにスラグ化されているため溶融温度が低く、短時間で液相が生成して金属鉄の焼結をより促進させるためである。 First, pre-melt slag was used because, for example, limestone (CaO source) or silica (SiO 2 ) as an auxiliary material was used to adjust the slag component in the carbonaceous material-incorporated iron oxide agglomerated material as in the prior art. Source), CaO alone and SiO 2 alone have high melting temperature (melting point), so liquid phase is hardly generated from these auxiliary materials, and it takes time to slag, while premelt slag is already slag itself. This is because the melting temperature is low and the liquid phase is generated in a short time to further promote the sintering of metallic iron.

Al−CaO−SiO3元系スラグを対象としたのは、プリメルトスラグの成分は、主としてAl、CaOおよびSiOで構成されることによる。 The reason for targeting the Al 2 O 3 —CaO—SiO 2 ternary slag is that the components of the premelt slag are mainly composed of Al 2 O 3 , CaO and SiO 2 .

また、該3元系スラグの、液相線温度でなく、固相線温度を規定することとしたのは、以下の理由による。   The reason why the solidus temperature, not the liquidus temperature, of the ternary slag is specified is as follows.

すなわち、液相線温度はプリメルトスラグが全量溶融状態となる温度であるのに対し、固相線温度は一部溶融状態のスラグが発生し始める温度である。つまり、プリメルトスラグの液相線温度を規定し、この液相線温度より高い温度で加熱すると、プリメルトスラグが一挙に全量溶融してしまい、塊成化物内に空隙を多く作り、却って金属鉄の焼結の促進を妨げるため、高強度の還元鉄が得られない。これに対し、プリメルトスラグの固相線温度を規定し、この固相線温度より高い温度で加熱すると、プリメルトスラグの全量ではなく一部が溶融した固液共存状態が得られることにより、プリメルトスラグの溶融による空隙の形成を抑制しつつ、金属鉄の焼結を促進させることができることになる。要するに、還元鉄の強度発現は、スラグ相の形成によるものでなく、金属鉄の焼結構造によるものである。   That is, the liquidus temperature is a temperature at which the pre-melt slag is fully melted, whereas the solidus temperature is a temperature at which a partially molten slag begins to be generated. In other words, when the liquidus temperature of the premelt slag is defined and heated at a temperature higher than the liquidus temperature, the premelt slag melts all at once, creating a lot of voids in the agglomerate, and the metal Since the promotion of iron sintering is hindered, high strength reduced iron cannot be obtained. On the other hand, by prescribing the solidus temperature of the premelt slag and heating at a temperature higher than the solidus temperature, a solid-liquid coexistence state in which a part of the premelt slag is melted and not partially obtained is obtained Sintering of metallic iron can be promoted while suppressing formation of voids due to melting of the premelt slag. In short, the strength of reduced iron is not due to the formation of a slag phase, but due to the sintered structure of metallic iron.

また、固相線温度を1300℃以下としたのは、回転炉床式還元炉で還元鉄を製造する場合、加熱温度としては1300℃ないしそれ以下の温度を採用する例が多いことを考慮したものである。
さらに、固相線温度を、より好ましくは1200℃以下としたのは、加熱処理の早い段階で固液共存状態を作り出すことにより、金属鉄の焼結を促進できることが判明したためである。
The reason why the solidus temperature is set to 1300 ° C. or lower is that when reducing iron is produced in a rotary hearth type reducing furnace, the heating temperature is often 1300 ° C. or lower in many cases. Is.
Furthermore, the solidus temperature is more preferably set to 1200 ° C. or less because it has been found that the sintering of metallic iron can be promoted by creating a solid-liquid coexistence state at an early stage of the heat treatment.

ここで、Al−CaO−SiO3元系スラグの固相線温度(プリメルトスラグ固相線温度)TS・Pは、例えば以下のようにして決定することができる。 Here, the solidus temperature (premelt slag solidus temperature) T S · P of the Al 2 O 3 —CaO—SiO 2 ternary slag can be determined as follows, for example.

図1は、一般的に用いられるCaO−SiO−Al3元系複合酸化物の相平衡状態図(SLAG ATLAS 2nd Edition(1995),Verlag Stahleisen GmbH,p.105)であるが、この図には液相線温度(T)は記載されているものの、固相線温度(T)は記載されていない。そこで、熱力学平衡計算ソフトウェア「FactSage」(Thermfact and GTT−Technologies社製)を用いて、上記3元系複合酸化物における固相線温度(T)を算出し、同図上に固相線温度(T)が1300℃以下となる領域(点P、Q、R、Sで囲まれた領域;点P、Q、R、Sの各組成は下記表1に示すとおり。)、および、その内1200℃以下となる領域を、それぞれハッチングで示した。 1 is a phase equilibrium diagram of a commonly used CaO—SiO 2 —Al 2 O 3 ternary composite oxide (SLAG ATLAS 2nd Edition (1995), Verlag Stahleisen GmbH, p. 105). Although the liquidus temperature (T L ) is described in this figure, the solidus temperature (T S ) is not described. Therefore, using the thermodynamic equilibrium calculation software “FactSage” (Thermact and GTT-Technologies), the solidus temperature (T S ) in the ternary composite oxide is calculated, and the solidus A region where the temperature (T S ) is 1300 ° C. or less (region surrounded by points P, Q, R, and S; each composition of the points P, Q, R, and S is as shown in Table 1 below), and Of these, the regions of 1200 ° C. or lower are indicated by hatching.

Figure 2011219856
Figure 2011219856

したがって、塊成化物に配合されるプリメルトスラグ中の上記3元系スラグの組成が上記領域内の組成となるようなプリメルトスラグを選択して配合すればよい。また、プリメルトスラグ固相線温度TS・Pが1300℃以下、より好ましくは1200℃以下の、複数の異なる組成を有するプリメルトスラグを併用して配合してもよい。 Therefore, what is necessary is just to select and mix the premelt slag so that the composition of the ternary slag in the premelt slag blended in the agglomerated product becomes a composition in the above region. Further, premelt slag having a plurality of different compositions having a premelt slag solidus temperature T S · P of 1300 ° C. or lower, more preferably 1200 ° C. or lower, may be used in combination.

プリメルトスラグとしては、例えば、高炉スラグおよび/または製鋼スラグを用いることができる。ここに、製鋼スラグには、転炉スラグ、溶銑予備処理スラグ、電気炉スラグなどが含まれる。   As the premelt slag, for example, blast furnace slag and / or steelmaking slag can be used. Here, the steelmaking slag includes converter slag, hot metal pretreatment slag, electric furnace slag, and the like.

上記においては、塊成化物に配合するプリメルトスラグの固相線温度(プリメルトスラグ固相線温度)TS・Pのみを規定したが、さらに、プリメルトスラグを配合した後の塊成化物中のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(全スラグ固相線温度)TS・Sをも1300℃以下、より好ましくは1200℃以下とするとともに、当該塊成化物を前記移動炉床式還元炉内において前記全スラグ固相線温度TS・Sより高く、前記塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの液相線温度(全スラグ液相線温度)TL・Sよりも低い加熱処理温度で加熱処理して製造した還元鉄中のAl−CaO−SiO3元系スラグの融液率が1〜20%となるように、前記プリメルトスラグの配合割合を調整することがより好ましい。 In the above, only the solidus temperature (premelt slag solidus temperature) TS / P of the premelt slag to be blended with the agglomerated material is specified, but the agglomerated material after blending the premelt slag. The solidus temperature (total slag solidus temperature) T S · S of Al 2 O 3 —CaO—SiO 2 ternary slag determined from the content of Al 2 O 3 , CaO and SiO 2 in the interior is also 1300 ° C. or less. More preferably 1200 ° C. or less, and the agglomerate is higher than the total slag solidus temperature T S · S in the moving hearth type reducing furnace, and the entire agglomerated Al 2 O 3 , Manufactured by heat treatment at a heat treatment temperature lower than the liquidus temperature (total slag liquidus temperature) TL · S of Al 2 O 3 —CaO—SiO 2 ternary slag determined from CaO and SiO 2 content In reduced iron As l 2 O 3 -CaO-SiO 2 3 ternary melt index of the slag is 1-20%, and more preferable to adjust the mixing ratio of the pre-melt slag.

上記のように、全スラグ固相線温度TS・Sをも1300℃以下、より好ましくは1200℃以下に制限することで、炉内で塊成化物が加熱された際に、先ずプリメルトスラグから生成した液相(溶融スラグ)が、塊成化物を構成する、酸化鉄含有原料中の脈石成分や炭材の灰分と反応してスラグ組成が変化しても液相状態を維持できることとなる。 As described above, by limiting the total slag solidus temperature T S · S to 1300 ° C. or less, more preferably 1200 ° C. or less, when the agglomerated material is heated in the furnace, first the premelt slag The liquid phase (molten slag) produced from the slag reacts with the gangue components in the iron oxide-containing raw material and the ash content of the carbonaceous material constituting the agglomerate, and the liquid phase state can be maintained even if the slag composition changes. Become.

なお、全スラグ固相線温度TS・Sは、上述した上記プリメルトスラグ固相線温度TS・Pと同様の手法にて決定することができる。 The total slag solidus temperature T S · S can be determined by the same method as the pre-melt slag solidus temperature T S · P described above.

さらに、還元鉄中のAl−CaO−SiO3元系スラグの融液率を1〜20%の範囲に制御することで、スラグを適量溶融して金属鉄の焼結反応をより確実に進行させることができる。すなわち、融液率が1%未満ではスラグ融液が少なすぎて金属鉄の焼結が十分に進行せず、一方、融液率が20%を超えてスラグ融液が過剰になると、冷却後の還元鉄の強度発現機構が金属鉄の焼結律速からスラグボンド律速へと変化するため、スラグボンドの部位で脆性破壊を生じやくすくなり、還元鉄の歩留が低下する。上記融液率は5〜18%の範囲とするのがさらに好ましい。 Furthermore, by controlling the melt rate of the Al 2 O 3 —CaO—SiO 2 ternary slag in the reduced iron within a range of 1 to 20%, the slag can be melted in an appropriate amount so that the sintering reaction of metallic iron can be further performed. It is possible to proceed reliably. That is, if the melt rate is less than 1%, the slag melt is too small and the sintering of metallic iron does not proceed sufficiently. On the other hand, if the melt rate exceeds 20% and the slag melt becomes excessive, Since the strength development mechanism of reduced iron changes from the sintering-controlled rate of metallic iron to the slag bond-controlled rate, brittle fracture easily occurs at the slag bond site, and the yield of reduced iron decreases. The melt rate is more preferably in the range of 5 to 18%.

ここに、還元鉄中のAl−CaO−SiO3元系スラグの融液率とは、還元鉄全体に対する、該還元鉄中のAl−CaO−SiO3元系スラグのうち加熱処理温度において液体(すなわち、液相)となる部分の質量比率として定義されるものである。 Here, the Al 2 O 3 -CaO-SiO 2 3 ternary melt index of the slag during the reduction of iron, for the entire reduced iron, Al 2 O 3 -CaO-SiO 2 3 ternary slag in reduced iron Is defined as a mass ratio of a portion that becomes a liquid (that is, a liquid phase) at the heat treatment temperature.

なお、塊成化物中の炭材には灰分が含まれ、この灰分組成も下記塊成化物全体3元系スラグの組成の決定に影響するが、塊成化物中の炭材の配合量は、後述の還元鉄中の残留炭素量見合いで最終的に決定されるため、上記塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグ(以下、「塊成化物全体3元系スラグ」と略称する。)の組成は、主として酸化鉄含有原料、プリメルトスラグおよび副原料の配合量で調整することになる。すなわち、上記塊成化物全体3元系スラグの組成は、酸化鉄原料である、複数の異なるスラグ成分組成を有する製鉄ダストや鉄鉱石の配合割合に応じて、プリメルトスラグの添加量と、さらに必要により、副原料である、石灰石、生石灰等の酸化カルシウム含有物質や珪石等の酸化珪素含有物質の添加量を調整することによって行うことができる。 The carbonaceous material in the agglomerated material contains ash, and this ash composition also affects the determination of the composition of the whole agglomerated ternary slag below, but the blending amount of the carbonaceous material in the agglomerated material is: Al 2 O 3 —CaO—SiO 2 ternary system determined from the content of Al 2 O 3 , CaO and SiO 2 of the entire agglomerated material because it is finally determined by the amount of residual carbon in the reduced iron described later. The composition of the slag (hereinafter abbreviated as “total agglomerated ternary slag”) is adjusted mainly by the blending amount of the iron oxide-containing raw material, the premelt slag and the auxiliary raw material. That is, the composition of the entire agglomerated ternary slag is the amount of premelt slag added according to the mixing ratio of iron dust or iron ore having a plurality of different slag component compositions, which is an iron oxide raw material. If necessary, it can be performed by adjusting the amount of addition of a calcium oxide-containing substance such as limestone or quicklime, or a silicon oxide-containing substance such as silica, which is an auxiliary material.

また、塊成化物中の炭材配合量は、下記式で定義される炭素利用効率ηが0.08〜0.12の範囲内になるように、前記全スラグ固相線温度TS・Sより高く、前記全スラグ液相線温度TL・Sよりも低い温度範囲で調整された加熱処理温度で加熱処理して得られた還元鉄中に残留する炭素が6質量%以下となるようにするのが好ましい。 Moreover, the amount of carbonaceous material in the agglomerated material is such that the carbon utilization efficiency η C defined by the following formula is within the range of 0.08 to 0.12, and the total slag solidus temperature T S · The amount of carbon remaining in the reduced iron obtained by heat treatment at a heat treatment temperature that is higher than S and lower than the total slag liquidus temperature TL · S is 6% by mass or less. Is preferable.

ここに、加熱処理温度とは、回転炉床式還元炉内における最高雰囲気温度を意味するものとする。   Here, the heat treatment temperature means the highest atmospheric temperature in the rotary hearth type reduction furnace.

加熱処理温度を全スラグ固相線温度TS・Sより高く、全スラグ液相線温度TL・Sより低い温度で調整することとしたのは、スラグを一部液相化して金属鉄の焼結を促進させるためである。具体的には、例えば加熱処理温度が1300℃の場合には、全スラグ液相線温度TL・Sが1300℃超えとなるようなスラグ組成を選定すればよい。 The reason for adjusting the heat treatment temperature at a temperature higher than the total slag solidus temperature T S · S and lower than the total slag liquidus temperature T L · S is that the slag is partially liquid phased This is to promote sintering. Specifically, for example, when the heat treatment temperature is 1300 ° C., the slag composition may be selected such that the total slag liquidus temperature TL · S exceeds 1300 ° C.

また、上記特許文献8に記載の方法では、還元鉄中の残留炭素を2質量%以下に制限しているが、本発明では、上記のようにスラグ成分の溶融制御を適正に行うことで、さらに高い炭素含有量でも還元鉄強度を確保できる。ただし6質量%を超えると、金属鉄の凝集を阻害するため、還元鉄の圧潰強度が低下してしまう。還元鉄強度を確保する観点からは、還元鉄中に残留する炭素は少ないほど好ましいが、上述したように、高炉や転炉、電気炉などのエネルギ効率を改善する観点からは、できるだけ高C含有量が好ましく、還元鉄中に残留する炭素は2質量%超、さらには3質量%以上とするのが推奨される。   Further, in the method described in Patent Document 8, the residual carbon in the reduced iron is limited to 2% by mass or less, but in the present invention, by appropriately controlling the melting of the slag component as described above, Furthermore, reduced iron strength can be secured even with a high carbon content. However, if it exceeds 6% by mass, the crushing strength of the reduced iron is lowered because the aggregation of metallic iron is inhibited. From the viewpoint of ensuring reduced iron strength, the less carbon that remains in the reduced iron is preferable, but as described above, from the viewpoint of improving the energy efficiency of blast furnaces, converters, electric furnaces, etc., as high C content as possible It is recommended that the amount of carbon remaining in the reduced iron be more than 2% by mass, further 3% by mass or more.

還元鉄中の残留炭素量の調整は、炭材内装酸化鉄塊成化物中の炭材配合量(炭素含有量)を調整することよって行うことができ、例えば、炭材内装酸化鉄塊成化物の製造時において、炭素含有量の高い高炉ダストの配合割合や、石炭、コークス粉等の炭材の添加量を調整することによって行うことができる。   The amount of residual carbon in the reduced iron can be adjusted by adjusting the amount of carbonaceous material (carbon content) in the carbonaceous material-incorporated iron oxide agglomerated material. Can be performed by adjusting the blending ratio of blast furnace dust having a high carbon content and the addition amount of coal such as coal and coke powder.

炭材内装酸化鉄塊成化物中の炭材配合量は、以下のような考え方で設定することができる。   The amount of carbonaceous material in the carbonaceous material-incorporated iron oxide agglomerate can be set based on the following concept.

すなわち、炭材として石炭などの揮発分と固定炭素分を含有するものを用いた場合には、回転炉床式還元炉内で塊成化物が加熱された際、まずその昇温過程にて500〜600℃で揮発分が除去されるが、この揮発分は酸化鉄の還元にはほとんど寄与しない。そして、さらに塊成化物の温度が上昇し、約700℃に達したときに、固定炭素により酸化鉄の還元反応が実質的に開始されることが知られている。   That is, when a material containing volatile matter such as coal and fixed carbon content is used as the carbon material, when the agglomerate is heated in the rotary hearth type reducing furnace, first, in the temperature raising process, 500 Volatiles are removed at ˜600 ° C., but these volatiles contribute little to the reduction of iron oxide. Further, it is known that when the temperature of the agglomerate further increases and reaches about 700 ° C., the reduction reaction of iron oxide is substantially initiated by the fixed carbon.

したがって、塊成化物中の固定炭素質量Xcは、下記式(2)に示すように、酸化鉄および酸化亜鉛を完全に金属まで還元するのに必要な炭素質量Xcと、還元後の還元鉄中の残留炭素質量Xcとの合計質量とみなすことができる。 Therefore, the fixed carbon mass Xc in the agglomerated material is expressed by the following formula (2): the carbon mass Xc T required to completely reduce iron oxide and zinc oxide to metal, and the reduced iron after reduction. It can be regarded as the total mass with the residual carbon mass Xc R in the medium.

Xc=Xc+Xc…式(2) Xc = Xc T + Xc R Formula (2)

ここで、酸化鉄および酸化亜鉛を完全に金属まで還元するのに必要な炭素質量Xcは、下記式(3)で推定することができる。 Wherein the carbon mass Xc T required for complete reduction to metallic iron oxide and zinc oxide can be estimated by the following equation (3).

Xc=(12/16)・Xo/(1+η …式(3)
ただし、Xoは、炭材内装酸化鉄塊成化物中における、酸化鉄の酸素と酸化亜鉛の酸素の合計質量であり、ηは炭素利用効率(詳細は後述)である。
Xc T = (12/16) · Xo / (1 + η C ) ... Formula (3)
However, Xo is the total mass of oxygen of iron oxide and oxygen of zinc oxide in the carbonaceous material-incorporated iron oxide agglomerated material, and η C is carbon utilization efficiency (details will be described later).

上記式(3)において、酸化鉄の他に酸化亜鉛の還元を考慮したのは、原料として製鉄ダストを用いる場合には、相当量の酸化亜鉛が含まれ、その還元に相当量の炭素質量を必要とするためである。ただし、鉛、アルカリ金属など他の非鉄金属の酸化物の含有量は酸化鉄や酸化亜鉛に比べて少ないので無視した。   In the above formula (3), the reduction of zinc oxide in addition to iron oxide is considered because when iron dust is used as a raw material, a considerable amount of zinc oxide is included, and a considerable amount of carbon mass is reduced for the reduction. This is necessary. However, the content of other non-ferrous metal oxides such as lead and alkali metals was negligible compared to iron oxide and zinc oxide.

また、上記式(3)中の1/(1+η)の項は、還元反応により発生するCO+COガス中のCOガス成分の割合が高くなるにつれて酸化鉄および酸化亜鉛を完全に金属まで還元するのに必要な炭素質量が少なくなることを意味するものである。 Further, the term 1 / (1 + η C ) in the above formula (3) indicates that iron oxide and zinc oxide are completely reduced to metal as the proportion of the CO 2 gas component in the CO + CO 2 gas generated by the reduction reaction increases. This means that the carbon mass required to do this is reduced.

ここに、炭材内装酸化鉄塊成化物を回転炉床式還元炉内で加熱処理した際の炭素利用効率ηは、後述の実施例で用いた小型高周波急速加熱炉で炭材内装酸化鉄塊成化物を不活性ガス雰囲気中で加熱処理して還元鉄を作製する試験を行い、その際に塊成化物から発生するCO、COガス組成を分析することにより求めることができる。その結果、炭素利用効率ηは、加熱処理温度により変化するものの、0.08〜0.12の範囲にあることがわかった。 Here, the carbon utilization efficiency η C when the carbon material-containing iron oxide agglomerate is heat-treated in the rotary hearth type reduction furnace is the carbon material-containing iron oxide in the small high-frequency rapid heating furnace used in the examples described later. The agglomerate can be obtained by conducting a test for producing reduced iron by heat treatment in an inert gas atmosphere and analyzing the composition of CO and CO 2 gas generated from the agglomerate. As a result, it was found that the carbon utilization efficiency η C is in the range of 0.08 to 0.12, although it varies depending on the heat treatment temperature.

したがって、まず、炭素利用効率ηを実際に用いる炉の加熱処理温度に応じて0.08〜0.12の間で設定し、上記式(3)を用いて酸化鉄の還元に必要な炭素量Xcを算出し、次いで、式(2)を用いて塊成化物中の固定炭素量Xcを算出する。そして、この計算結果に基づいて塊成化物中の炭材配合量を設定することができる。 Therefore, first, the carbon utilization efficiency η C is set between 0.08 and 0.12 according to the heat treatment temperature of the furnace actually used, and the carbon necessary for the reduction of iron oxide using the above formula (3). The amount Xc T is calculated, and then the fixed carbon amount Xc in the agglomerated material is calculated using Equation (2). And based on this calculation result, the carbonaceous material compounding quantity in an agglomerate can be set.

そして、上記のようにして製造された炭材内装酸化鉄塊成化物を、回転炉床式還元炉内で加熱処理するに際し、下記再掲式(1)で定義される炭素利用効率ηが0.08〜0.12の範囲内になるように、加熱処理温度を前記全スラグ固相線温度TS・Sより高く、前記全スラグ液相線温度TL・Sよりも低い温度範囲で調整すればよい。 When the carbonized iron oxide agglomerate produced as described above is heat-treated in a rotary hearth type reduction furnace, the carbon utilization efficiency η C defined by the following re-expression (1) is 0. The heat treatment temperature is adjusted in a temperature range higher than the total slag solidus temperature T S · S and lower than the total slag liquidus temperature T L · S so that it falls within the range of 0.08 to 0.12. do it.

η=NCO2/(NCO+NCO2 …再掲式(1)
ここに、NCOおよびNCO2は、それぞれ、上記加熱処理の際に上記炭材内装酸化鉄塊成化物中から発生する、COの総モル量およびCOの総モル量である。
η C = N CO2 / (N CO + N CO2 ) ... Reprinting ceremony (1)
Here, N CO and N CO2, respectively, generated from the carbonaceous material furnished oxide TetsukatamariNaru in product during the heat treatment, the total molar amount of the total molar amount and CO 2 in the CO.

炭素利用効率ηは、加熱処理温度を前記固相線温度と前記液相線温度の間で調整することで変化させることが可能であり、例えば、加熱処理温度を高くするほど塊成化物内でカーボンソリューション反応(C+CO→2CO)が促進されるので、炭素利用効率ηは低下する傾向を示す。 The carbon utilization efficiency η C can be changed by adjusting the heat treatment temperature between the solidus temperature and the liquidus temperature. For example, the higher the heat treatment temperature, the higher the heat treatment temperature in the agglomerate. Since the carbon solution reaction (C + CO 2 → 2CO) is promoted, the carbon utilization efficiency η C tends to decrease.

(変形例)
上記実施形態では、移動炉床式還元炉の炉形式として回転炉床炉を例示したが、直線炉を用いてもよい。
(Modification)
In the above embodiment, the rotary hearth furnace is exemplified as the furnace type of the moving hearth type reducing furnace, but a linear furnace may be used.

本発明の効果を確証するために、下記表2に示す原料を使用して、以下の試験を実施した。   In order to confirm the effect of the present invention, the following tests were conducted using the raw materials shown in Table 2 below.

Figure 2011219856
Figure 2011219856

〔実験方法〕
本実施例では、炭材内装酸化鉄塊成化物の形態としてペレットを採用した。
〔experimental method〕
In this example, pellets were adopted as the form of the carbonaceous material-containing iron oxide agglomerated material.

表3に示すような種々の配合割合で配合した、酸化鉄含有原料(a)、炭材(b)、および、プリメルトスラグもしくは副原料(c)に、結合剤として小麦粉を1.5質量%(一定)添加し、さらに適量の水分を添加してタイヤ型造粒機を用いて直径17mmの生ペレットに造粒した。この生ペレットを乾燥機中で105℃、20時間乾燥して付着水を完全に除去した。乾燥後のペレット(炭材内装酸化鉄ペレット)の見掛密度は、1800〜2000kg/mの範囲内であった。 1.5 mass of flour as a binder in the iron oxide-containing raw material (a), carbonaceous material (b), and premelt slag or auxiliary raw material (c) blended in various blending ratios as shown in Table 3 % (Constant) was added, and an appropriate amount of water was added, and the mixture was granulated into raw pellets having a diameter of 17 mm using a tire type granulator. The raw pellets were dried in a dryer at 105 ° C. for 20 hours to completely remove the attached water. The apparent density of the dried pellets (carbon material-containing iron oxide pellets) was in the range of 1800 to 2000 kg / m 3 .

この乾燥後のペレット(炭材内装酸化鉄ペレット)を、図2に装置概要を示す小型高周波急速加熱炉(セキスイメディカル電子製:発振器の型式MU−1700、炉の型式UD−250)で加熱処理を行った。なお、加熱スリーブとしては、ペレットを加熱した際に発生するCO含有ガスによる黒鉛の消耗を防止するため、アルミナで被覆した黒鉛チューブを使用した。 The dried pellets (carbon material-containing iron oxide pellets) are heated in a small high-frequency rapid heating furnace (Sekisui Medical Electronics: oscillator type MU-1700, furnace type UD-250) whose outline is shown in FIG. Went. As the heating sleeve, a graphite tube coated with alumina was used in order to prevent the graphite from being consumed by the CO 2 -containing gas generated when the pellet was heated.

加熱パターンは、図3に示すように、室温〜1250℃は150℃/minの昇温速度、1250〜1300℃は15℃/minの昇温速度で加熱し、1300℃到達後、直ちに加熱を中止して急冷を行った。なお、加熱時の雰囲気としてはNガス3NL/min、冷却時の雰囲気としてはHeガス3NL/minをそれぞれ用いた。 As shown in FIG. 3, the heating pattern is as follows: room temperature to 1250 ° C. is heated at a heating rate of 150 ° C./min, and 1250 to 1300 ° C. is heated at a heating rate of 15 ° C./min. Stopped and performed rapid cooling. Note that N 2 gas 3 NL / min was used as the atmosphere during heating, and He gas 3 NL / min was used as the atmosphere during cooling.

Figure 2011219856
Figure 2011219856

上記加熱パターンにて加熱処理して得られた還元鉄について炭素含有量および厚潰強度を測定し、その結果を表4に示す。同表には還元前のペレット(炭材内装酸化鉄ペレット)中のSiO、CaOおよびAlの各含有量、ならびに、塊成化物全体3元系スラグの固相線温度TS・S、液相線温度TL・Sおよび液相率、ならびに、還元鉄中のAl−CaO−SiO3元系スラグの融液率を併記した。 About the reduced iron obtained by heat-processing with the said heating pattern, carbon content and crushing strength were measured, and the result is shown in Table 4. The table shows the contents of SiO 2 , CaO and Al 2 O 3 in the pellets before reduction (carbonaceous iron oxide pellets), and the solidus temperature T S · of the agglomerated ternary slag as a whole. S , the liquidus temperature TL · S, the liquid phase ratio, and the melt ratio of the Al 2 O 3 —CaO—SiO 2 ternary slag in the reduced iron are also shown.

なお、液相率とは、平衡状態図上では固相線と液相線の間に位置し、固体+液体(すなわち、固相+液相)中に占める液体の質量比率として定義されるものであり(特開2005−48197号公報の段落[0036]参照)、本実施例では、既述の熱力学平衡計算ソフトウェア「FactSage」を用いて、加熱処理温度(1300℃)における、固相+液相中に占める液相の質量比率(%)を算出した。
また、還元鉄中のAl−CaO−SiO3元系スラグの融液率(%)は、還元鉄中におけるAl−CaO−SiO3成分の合計質量%に、上記液相率(%)/100を掛けて求めた。
The liquid phase ratio is defined as the mass ratio of the liquid in the solid + liquid (that is, solid phase + liquid phase) located between the solid phase line and the liquid phase line on the equilibrium diagram. (See paragraph [0036] of Japanese Patent Application Laid-Open No. 2005-48197), and in this example, using the thermodynamic equilibrium calculation software “FactSage” described above, the solid phase + at the heat treatment temperature (1300 ° C.) The mass ratio (%) of the liquid phase in the liquid phase was calculated.
Further, the melt rate (%) of the Al 2 O 3 —CaO—SiO 2 ternary slag in the reduced iron is equal to the total mass% of the Al 2 O 3 —CaO—SiO 2 3 component in the reduced iron. Obtained by multiplying by liquid phase ratio (%) / 100.

また、同表中の還元鉄の圧潰強度の単位kgfは9.80665Nに相当する。   Moreover, the unit kgf of the crushing strength of reduced iron in the table corresponds to 9.80665N.

また、図1の3元系状態図上に発明例1〜7および比較例1〜5の各炭材内装酸化鉄ペレットのAl−CaO−SiO3元系スラグ組成をプロットしたものを図4に示す。 Also, a plot of the Al 2 O 3 -CaO-SiO 2 3 ternary slag composition of the carbonaceous composite iron oxide pellets of the invention Examples 1 to 7 and Comparative Examples 1 to 5 on a ternary phase diagram of Figure 1 Is shown in FIG.

なお、すべての発明例および比較例において、炭素利用効率は0.08〜0.12の範囲にあった。   In all the inventive examples and comparative examples, the carbon utilization efficiency was in the range of 0.08 to 0.12.

発明例1〜7の炭材内装酸化鉄ペレットはいずれも、Al、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(プリメルトスラグ固相線温度)TS・Pが1300℃以下であるプリメルトスラグが配合されている。 Both carbon composite iron oxide pellets of Inventive Example 1-7, Al 2 O 3, CaO and SiO 2 determined from the content of Al 2 O 3 -CaO-SiO 2 3 ternary slag solidus temperature (pre-melt Premelt slag having a slag solidus temperature (T S · P ) of 1300 ° C. or lower is blended.

しかも、これらの発明例のペレットは、当該ペレット全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(全スラグ固相線温度)TS・Sも1300℃以下であり、かつ、当該ペレットを回転炉床式還元炉内において前記全スラグ固相線温度TS・Sより高く、前記ペレット全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの液相線温度(全スラグ液相線温度)TL・Sよりも低い加熱処理温度である1320℃で加熱処理されて得られた還元鉄中のAl−CaO−SiO3元系スラグの融液率が1〜20%の範囲にある。 In addition, the pellets of these inventive examples are the solidus temperature of the Al 2 O 3 —CaO—SiO 2 ternary slag determined from the content of Al 2 O 3 , CaO and SiO 2 of the whole pellet (all slag solid phase (Line temperature) T S · S is also 1300 ° C. or less, and the pellet is higher than the total slag solidus temperature T S · S in the rotary hearth type reducing furnace, and Al 2 O 3 of the whole pellet, Heated at 1320 ° C., which is a heat treatment temperature lower than the liquidus temperature (total slag liquidus temperature) TL · S of Al 2 O 3 —CaO—SiO 2 ternary slag determined from CaO and SiO 2 content The melt rate of the Al 2 O 3 —CaO—SiO 2 ternary slag in the reduced iron obtained by the treatment is in the range of 1 to 20%.

さらに、これらの発明例のペレットは、同温度で加熱処理されて得られた還元鉄中の残留炭素量が6質量%以下(3質量%以上でもある)である。
したがって、発明例のペレットはいずれも本発明の要件を満足し、還元鉄の圧潰強度は25kgf/個を超える高い値が得られている。
特に発明例7は、プリメルトスラグとしてその固相線温度TS・Pがより好ましい1200℃以下の製鋼スラグを配合し、残留炭素量が3%以上で、かつ全スラグ固相線温度TS・Sがより好ましい1200℃以下となった結果、還元鉄の圧潰強度は40kgf/個を超える最も高い値が得られた。
Furthermore, the pellets of these invention examples have a residual carbon content in reduced iron obtained by heat treatment at the same temperature of 6% by mass or less (also 3% by mass or more).
Therefore, all of the pellets of the inventive examples satisfy the requirements of the present invention, and the crushing strength of reduced iron has a high value exceeding 25 kgf / piece.
In particular, Invention Example 7 includes steelmaking slag having a solidus temperature T S · P of 1200 ° C. or less, which is more preferably a premelt slag, a residual carbon content of 3% or more, and a total slag solidus temperature T S. -As a result of S becoming more preferable 1200 degrees C or less, the crushing strength of reduced iron obtained the highest value exceeding 40 kgf / piece.

これに対し、比較例1〜3の炭材内装酸化鉄ペレットはいずれも、全スラグ固相線温度TS・Sが1300℃以下であり、かつ、上記融液率が1〜20%の範囲にあるものの、プリメルトスラグを配合していないことから、本発明の要件を満たしておらず、得られた還元鉄の圧潰強度は15kgf/個未満の低い値に留まっている。 On the other hand, all the carbonaceous iron-containing iron pellets of Comparative Examples 1 to 3 have a total slag solidus temperature T S · S of 1300 ° C. or less and the melt ratio in the range of 1 to 20%. However, since the premelt slag is not blended, the requirements of the present invention are not satisfied, and the crushing strength of the obtained reduced iron remains at a low value of less than 15 kgf / piece.

また、比較例4の炭材内装酸化鉄ペレットは、プリメルトスラグ固相線温度TS・Pが1300℃以下のプリメルトスラグを配合するとともに、全スラグ固相線温度TS・Sが1300℃以下あるものの、上記融液率が20%を超えていることから、本発明の要件を満たしておらず、得られた還元鉄の圧潰強度は約4kgf/個と非常に低い値に留まっている。 Moreover, the carbonaceous material-containing iron oxide pellets of Comparative Example 4 contain a premelt slag having a premelt slag solidus temperature T S · P of 1300 ° C. or lower and a total slag solidus temperature T S · S of 1300. Although the melting rate is over 20%, it does not satisfy the requirements of the present invention, and the crushing strength of the obtained reduced iron remains at a very low value of about 4 kgf / piece. Yes.

Figure 2011219856
Figure 2011219856

Claims (7)

還元鉄を製造するための移動炉床式還元炉の原料として用いられる炭材内装酸化鉄塊成化物であって、Al、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(以下、「プリメルトスラグ固相線温度」という。)TS・Pが1300℃以下であるプリメルトスラグが配合されてなることを特徴とする炭材内装酸化鉄塊成化物。 A carbonaceous material-containing iron oxide agglomerate used as a raw material for a moving hearth type reduction furnace for producing reduced iron, which is determined from the contents of Al 2 O 3 , CaO and SiO 2, Al 2 O 3 —CaO— A charcoal comprising a premelt slag having a solid phase temperature of SiO 2 ternary slag (hereinafter referred to as “premelt slag solidus temperature”) T S · P of 1300 ° C. or less. Material interior iron oxide agglomerates. 前記プリメルトスラグの固相線温度TS・Pが1200℃以下である請求項1に記載の炭材内装酸化鉄塊成化物。 The carbonaceous material-incorporated iron oxide agglomerated product according to claim 1, wherein the premelt slag has a solidus temperature T S · P of 1200 ° C. or less. 前記プリメルトスラグが、高炉スラグおよび/または製鋼スラグである請求項1記載の炭材内装酸化鉄塊成化物。   The carbonized iron oxide agglomerate according to claim 1, wherein the premelt slag is blast furnace slag and / or steelmaking slag. 前記プリメルトスラグが、高炉スラグおよび/または製鋼スラグである請求項2記載の炭材内装酸化鉄塊成化物。   The carbonized iron oxide agglomerate according to claim 2, wherein the premelt slag is blast furnace slag and / or steelmaking slag. 請求項1または3に記載の炭材内装酸化鉄塊成化物を製造する方法であって、当該塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(以下、「全スラグ固相線温度」という。)TS・Sが1300℃以下であり、かつ、当該塊成化物を前記移動炉床式還元炉内において前記全スラグ固相線温度TS・Sより高く、前記塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの液相線温度(以下、「全スラグ液相線温度」という。)TL・Sよりも低い加熱処理温度で加熱処理して製造した還元鉄中のAl−CaO−SiO3元系スラグの融液率が1〜20%となるように、前記プリメルトスラグの配合割合を調整することを特徴とする炭材内装酸化鉄塊成化物の製造方法。
ここに、還元鉄中のAl−CaO−SiO3元系スラグの融液率とは、該還元鉄全体に対する、該還元鉄中のAl−CaO−SiO3元系スラグのうち前記加熱処理温度において液相となる部分の質量比率として定義されるものである(以下、同じ)。
A method for producing a carbonaceous material-containing iron oxide agglomerated product according to claim 1 or 3, wherein Al 2 O 3 -CaO- is determined from the content of Al 2 O 3 , CaO and SiO 2 of the whole agglomerated product. The solidus temperature of SiO 2 ternary slag (hereinafter referred to as “total slag solidus temperature”) T S · S is 1300 ° C. or lower, and the agglomerated product is transferred to the moving hearth type reducing furnace. Liquid of Al 2 O 3 —CaO—SiO 2 ternary slag that is higher than the total slag solidus temperature T S · S and determined from the Al 2 O 3 , CaO and SiO 2 contents of the whole agglomerated material. Phase wire temperature (hereinafter referred to as “total slag liquidus temperature”) Al 2 O 3 —CaO—SiO 2 ternary system in reduced iron produced by heat treatment at a heat treatment temperature lower than TL · S Before the slag melt rate becomes 1-20% The manufacturing method of the carbonaceous material interior iron oxide agglomerate characterized by adjusting the compounding ratio of the said premelt slag.
Here, the Al 2 O 3 -CaO-SiO 2 3 ternary melt index of the slag during the reduction of iron, for the entire reduced iron, Al 2 O 3 -CaO-SiO 2 3 -way system in reduced iron It is defined as the mass ratio of the portion of the slag that becomes a liquid phase at the heat treatment temperature (hereinafter the same).
請求項2または4に記載の炭材内装酸化鉄塊成化物を製造する方法であって、当該塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度(以下、「全スラグ固相線温度」という。)TS・Sが1200℃以下であり、かつ、当該塊成化物を前記移動炉床式還元炉内において前記全スラグ固相線温度TS・Sより高く、前記塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの液相線温度(以下、「全スラグ液相線温度」という。)TL・Sよりも低い加熱処理温度で加熱処理して製造した還元鉄中のAl−CaO−SiO3元系スラグの融液率が1〜20%となるように、前記プリメルトスラグの配合割合を調整することを特徴とする炭材内装酸化鉄塊成化物の製造方法。 A method for producing a carbonaceous material-containing iron oxide agglomerated product according to claim 2 or 4, wherein Al 2 O 3 -CaO- is determined from the content of Al 2 O 3 , CaO and SiO 2 of the whole agglomerated material. The solidus temperature of SiO 2 ternary slag (hereinafter referred to as “total slag solidus temperature”) T S · S is 1200 ° C. or lower, and the agglomerated product is transferred to the moving hearth type reducing furnace. Liquid of Al 2 O 3 —CaO—SiO 2 ternary slag that is higher than the total slag solidus temperature T S · S and determined from the Al 2 O 3 , CaO and SiO 2 contents of the whole agglomerated material. Phase wire temperature (hereinafter referred to as “total slag liquidus temperature”) Al 2 O 3 —CaO—SiO 2 ternary system in reduced iron produced by heat treatment at a heat treatment temperature lower than TL · S Before the slag melt rate becomes 1-20% The manufacturing method of the carbonaceous material interior iron oxide agglomerate characterized by adjusting the compounding ratio of the said premelt slag. 請求項1、2、3もしくは4に記載の炭材内装酸化鉄塊成化物、または、請求項5もしくは6に記載の製造方法で製造された炭材内装酸化鉄塊成化物であって、炭材配合量が調整された炭材内装酸化鉄塊成化物を、前記移動炉床式還元炉内で加熱処理して還元鉄を製造する方法であって、下記式で定義される炭素利用効率ηが0.08〜0.12の範囲内になるように、加熱処理温度を前記全スラグ固相線温度TS・Sより高く、前記全スラグ液相線温度TL・Sよりも低い温度範囲で調整して、炭素含有量が6質量%以下の還元鉄を得ることを特徴とする還元鉄製造方法。
式 η=NCO2/(NCO+NCO2
ここに、NCOおよびNCO2は、それぞれ、上記加熱処理の際に上記炭材内装酸化鉄塊成化物中から発生する、COの総モル量およびCOの総モル量である。
A carbonaceous material-containing iron oxide agglomerated product according to claim 1, 2, 3, or 4, or a carbonaceous material-containing iron oxide agglomerated product produced by the production method according to claim 5 or 6, A method for producing reduced iron by heat-treating a carbonaceous material-containing iron oxide agglomerated material adjusted in the material blending amount in the moving hearth type reducing furnace, wherein the carbon utilization efficiency η defined by the following formula: The heat treatment temperature is higher than the total slag solidus temperature T S · S and lower than the total slag liquidus temperature T L · S so that C is in the range of 0.08 to 0.12. A reduced iron production method characterized by obtaining reduced iron having a carbon content of 6% by mass or less by adjusting in a range.
Formula η C = N CO 2 / (N CO + N CO 2 )
Here, N CO and N CO2, respectively, generated from the carbonaceous material furnished oxide TetsukatamariNaru in product during the heat treatment, the total molar amount of the total molar amount and CO 2 in the CO.
JP2010236743A 2010-03-25 2010-10-21 Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same Expired - Fee Related JP5503495B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2010236743A JP5503495B2 (en) 2010-03-25 2010-10-21 Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same
AU2011230263A AU2011230263A1 (en) 2010-03-25 2011-03-24 Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
CN2011800147443A CN102803523A (en) 2010-03-25 2011-03-24 Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
US13/583,979 US20130047787A1 (en) 2010-03-25 2011-03-24 Carbon-material-containing iron oxide briquette composition, method for producing the same, and method for producing direct reduced iron using the same
PCT/JP2011/057254 WO2011118738A1 (en) 2010-03-25 2011-03-24 Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
CA2792955A CA2792955A1 (en) 2010-03-25 2011-03-24 Carbon-material-containing iron oxide briquette composition, method for producing the same, and method for producing direct reduced iron using the same
RU2012145284/02A RU2012145284A (en) 2010-03-25 2011-03-24 COMPOSITION OF A CARBON-CONTAINING CARBON MATERIAL OF A IRON OXIDE BRIQUET, METHOD FOR ITS PRODUCTION AND METHOD FOR PRODUCING IRON DIRECT RESTORATION WITH ITS USE
EP20110759543 EP2551362A1 (en) 2010-03-25 2011-03-24 Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
TW100110422A TW201211272A (en) 2010-03-25 2011-03-25 Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010070176 2010-03-25
JP2010070176 2010-03-25
JP2010236743A JP5503495B2 (en) 2010-03-25 2010-10-21 Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same

Publications (2)

Publication Number Publication Date
JP2011219856A true JP2011219856A (en) 2011-11-04
JP5503495B2 JP5503495B2 (en) 2014-05-28

Family

ID=45037191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236743A Expired - Fee Related JP5503495B2 (en) 2010-03-25 2010-10-21 Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same

Country Status (1)

Country Link
JP (1) JP5503495B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003341A (en) * 2014-06-13 2016-01-12 株式会社神戸製鋼所 Method for producing granular metal iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123115A1 (en) * 2008-03-31 2009-10-08 新日本製鐵株式会社 Process for production of reduced iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123115A1 (en) * 2008-03-31 2009-10-08 新日本製鐵株式会社 Process for production of reduced iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003341A (en) * 2014-06-13 2016-01-12 株式会社神戸製鋼所 Method for producing granular metal iron

Also Published As

Publication number Publication date
JP5503495B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2011118738A1 (en) Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
JP4757982B2 (en) Method for improving the yield of granular metallic iron
TW200426222A (en) Process for producing particulate iron metal
JP5297077B2 (en) Method for producing ferromolybdenum
WO2011010669A1 (en) Apparatus and method for producing reduced iron using alkali-containing iron production dust as the raw material
CN1462313A (en) Granular refined iron
JP2010229525A (en) Method for producing ferronickel and ferrovanadium
JP4603626B2 (en) Method for producing reduced iron
TW201215682A (en) Process for producing molten steel using particulate metallic iron
WO2011138954A1 (en) Process for production of metal iron
WO2015174450A1 (en) Production method of granular metallic iron
JP2011246760A (en) Method of manufacturing ferromolybdenum, and ferromolybdenum
JP2012207241A (en) Method for producing reduced iron
JP2010090431A (en) Method for producing ferro-alloy containing nickel and vanadium
JP2009270193A (en) Method for producing granular metallic iron
JP5503495B2 (en) Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same
JP3907467B2 (en) Molten metal manufacturing method
JP5503364B2 (en) Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same
JP5042203B2 (en) Production of granular metallic iron
JP2010196148A (en) Iron raw material and manufacturing method therefor
JP2009007621A (en) Method for producing granular metallic iron
JP5608144B2 (en) Method for producing reduced iron
JP5995004B2 (en) Sintering raw material manufacturing method
JP2011179090A (en) Method for producing granulated iron
JP5995005B2 (en) Sintering raw material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees