JP2011218935A - Collision energy absorbing structure - Google Patents

Collision energy absorbing structure Download PDF

Info

Publication number
JP2011218935A
JP2011218935A JP2010089202A JP2010089202A JP2011218935A JP 2011218935 A JP2011218935 A JP 2011218935A JP 2010089202 A JP2010089202 A JP 2010089202A JP 2010089202 A JP2010089202 A JP 2010089202A JP 2011218935 A JP2011218935 A JP 2011218935A
Authority
JP
Japan
Prior art keywords
collision energy
cross
section
collision
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010089202A
Other languages
Japanese (ja)
Other versions
JP4930620B2 (en
Inventor
Takayuki Futatsuka
貴之 二塚
Takeshi Fujita
毅 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010089202A priority Critical patent/JP4930620B2/en
Priority to PCT/JP2011/059223 priority patent/WO2011126146A1/en
Priority to KR1020127026307A priority patent/KR101427020B1/en
Priority to CN201180017895.4A priority patent/CN102834641B/en
Publication of JP2011218935A publication Critical patent/JP2011218935A/en
Application granted granted Critical
Publication of JP4930620B2 publication Critical patent/JP4930620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/121Vibration-dampers; Shock-absorbers using plastic deformation of members the members having a cellular, e.g. honeycomb, structure
    • F16F7/122Vibration-dampers; Shock-absorbers using plastic deformation of members the members having a cellular, e.g. honeycomb, structure characterised by corrugations, e.g. of rolled corrugated material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vibration Dampers (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a collision energy absorbing structure which prevents the structure from getting complicated, and which can be worked by pressing, obtain a stable deformed shape, and keep resistance for load in a deformation process stable at a high level, and the energy absorbing efficiency high.SOLUTION: The collision energy absorbing structure is cylindrical, and displaced in the axial direction to absorb collision energy. The shape of a section perpendicular to the axial direction is a polygonal shape which is symmetrical with respect to the center of the section, and not symmetrical with respect to the center line of the section. When the outline of the section has a rectangular shape, the aspect ratio is less than 1.5, and the ratio of the lengths of the adjacent sides among the sides of the polygonal shape constituting the section is 2.3 or less.

Description

本発明は、自動車等に用いられる衝突エネルギー吸収構造体に関する。   The present invention relates to a collision energy absorbing structure used for automobiles and the like.

自動車等の車体には衝突時の乗員あるいは車体への衝突を緩和するために、衝突の際に変形して衝突エネルギーを吸収する構造体が設けられる。このような衝突エネルギー吸収構造体に求められる性能として、近年の環境問題に配慮した車体軽量化の観点から、エネルギー吸収効率を高め、断面をコンパクト化する、あるいは薄肉化することが要求される。   A vehicle body such as an automobile is provided with a structure that absorbs the collision energy by being deformed during the collision in order to mitigate the collision with the occupant or the vehicle body at the time of the collision. As performance required for such a collision energy absorbing structure, from the viewpoint of reducing the weight of the vehicle body in consideration of recent environmental problems, it is required to increase the energy absorption efficiency and make the cross section compact or thin.

このような衝突エネルギー吸収構造体は、エネルギー吸収効率が高い、つまり変形が開始した後も変形抵抗荷重が高位安定し、高いエネルギー吸収能を有することが求められる。衝突エネルギー吸収構造体は、衝突の際の変形が図21(a)のような不安定変形では十分に衝突エネルギーを吸収できないため、図21(b)に示すように、同心円状にある大小の管状構造体からなり、軸方向の衝突荷重に対し、小径管が大径管に没入しながら塑性変形することによって、衝突エネルギーを吸収するもの(没入型;例えば特許文献1)、あるいは、図21(c)に示すように、軸方向の衝突荷重に対し、構造体が蛇腹状に塑性変形するもの(例えば特許文献2〜7)が求められる。   Such a collision energy absorption structure is required to have high energy absorption efficiency, that is, the deformation resistance load is highly stable even after deformation starts and has high energy absorption ability. Since the collision energy absorbing structure cannot sufficiently absorb the collision energy when the deformation at the time of collision is unstable deformation as shown in FIG. 21 (a), as shown in FIG. 21 (b), large and small concentric circles are formed. It is made of a tubular structure and absorbs collision energy by plastic deformation while the small diameter tube is immersed in the large diameter tube with respect to the collision load in the axial direction (immersion type; for example, Patent Document 1), or FIG. As shown in (c), a structure in which the structure is plastically deformed in an accordion shape with respect to an axial collision load (for example, Patent Documents 2 to 7) is required.

特許文献2〜7のうち、特許文献2は構造体の断面に凹み部を設けて多角断面とするものであり、また、特許文献3は断面中心から各コーナー部を結び放射状の中桟を有する断面形状とするものであり、特許文献4は8の字断面構造を有すものであり、いずれも断面線長や稜線の数を増加させ、エネルギー吸収効率の良好な構造体を得るものである。特許文献5は、構造体内部に充墳材を備えることで、衝突吸収性能を高めるものである。   Of Patent Documents 2 to 7, Patent Document 2 is a polygonal cross section provided with a recess in the cross section of the structure, and Patent Document 3 has a radial intermediate beam connecting each corner from the center of the cross section. Patent Document 4 has an 8-shaped cross-sectional structure, and both increase the cross-sectional line length and the number of ridge lines to obtain a structure with good energy absorption efficiency. . Patent document 5 improves collision absorption performance by providing a filler inside a structure.

また、特許文献6、7は、主に衝突荷重を受ける軸方向に対して、垂直方向に凹凸を設け、斜め荷重を含む、軸方向の衝撃を受けた際にも、連続的に座屈して、図22(c)に示す蛇腹状の塑性変形が生じるように変形形状を制御するものである。   In addition, Patent Documents 6 and 7 are provided with concavities and convexities in the vertical direction with respect to the axial direction mainly subjected to the collision load, and are continuously buckled even when receiving an axial impact including an oblique load. The deformation shape is controlled so that the bellows-like plastic deformation shown in FIG.

特開昭48−1676号公報JP-A 48-1676 特開2008−284931号公報JP 2008-284931 A 特開2001−124128号公報JP 2001-124128 A 特開2008−296716号公報JP 2008-296716 A 特開2001−182769号公報JP 2001-182769 A 特開平2−175452号公報Japanese Patent Laid-Open No. 2-175252 特開2002−104107号公報JP 2002-104107 A

しかしながら、上記特許文献1に示すような没入型のものは、構造が複雑になるため、成形工程の増加を招き、コストや生産性に課題がある。   However, the immersive type as shown in Patent Document 1 has a complicated structure, which causes an increase in the molding process and has problems in cost and productivity.

上記特許文献2〜7に示す構造体が蛇腹状に塑性変形するものは、以下のような問題がある。   The structures shown in Patent Documents 2 to 7 that are plastically deformed in a bellows shape have the following problems.

上記特許文献2の技術は、限られたスペースを有効活用しつつ、エネルギー吸収効率を高める手法としては有効ではあるが、斜め荷重を含む、軸方向の衝撃を受けた際に、大きく座屈し、変形荷重が安定しない場合があり、そのような場合にはエネルギー吸収効率が低下してしまう。   The technique of Patent Document 2 is effective as a method for improving energy absorption efficiency while effectively utilizing a limited space, but greatly buckles when subjected to an axial impact including an oblique load, The deformation load may not be stable, and in such a case, energy absorption efficiency is reduced.

上記特許文献3、4に開示された技術では、断面形状が極めて複雑であり、鍛造加工をせざるを得ず、一般のプレス加工と比較して、コストの増加を招くばかりでなく、生産面でも不利である。   In the techniques disclosed in Patent Documents 3 and 4 above, the cross-sectional shape is extremely complicated, and forging is unavoidable, which not only causes an increase in cost compared to general press processing, but also in terms of production. But it is disadvantageous.

上記特許文献5に開示された技術では、充填材を用いることにより、構造体の重量およびコストが増加してしまう。   In the technique disclosed in Patent Document 5, the use of the filler increases the weight and cost of the structure.

上記特許文献6、7に開示された技術では、軸方向に対して垂直に凹凸部を設けることにより、変形形状が安定するものの、凹凸部にて変形が促進されるため、荷重は低位安定してしまい、エネルギー吸収効率に優れる構造体を得ることは困難である。   In the techniques disclosed in Patent Documents 6 and 7, the uneven shape is provided perpendicularly to the axial direction to stabilize the deformed shape. However, the deformation is promoted in the uneven portion, so the load is stabilized at a low level. Therefore, it is difficult to obtain a structure having excellent energy absorption efficiency.

本発明はこのような点に鑑みてなされたものであり、構造が複雑化せず、プレス加工が可能であり、軽量かつコンパクトであり、安定した変形形状が得られ、変形過程での抵抗荷重が高位安定し、エネルギー吸収効率が高い衝突エネルギー吸収構造体を提供することを課題とする。   The present invention has been made in view of the above points, the structure is not complicated, press working is possible, lightweight and compact, a stable deformed shape is obtained, and the resistance load in the deformation process It is an object of the present invention to provide a collision energy absorption structure that is highly stable and has high energy absorption efficiency.

上記課題は、以下の(1)〜(6)の発明により解決される。
(1)筒状をなし、軸方向に変形して衝突エネルギーを吸収する衝突エネルギー吸収構造体であって、
軸方向に垂直な断面の断面形状が、断面の中心に対して点対称で、かつ非線対称の多角形であって、その断面の外郭を四角形としたときのアスペクト比が1.5未満であり、かつ断面を構成する多角形の辺のうち隣接する辺の長さの比が2.3以下であることを特徴とする衝突エネルギー吸収構造体。
(2)軸方向にテーパー状をなしていることを特徴とする(1)に記載の衝突エネルギー吸収構造体。
(3)先端部に、軸方向に凹む凹み部を有することを特徴とする(1)または(2)に記載の衝突エネルギー吸収構造体。
(4)金属板をプレスして成形されたプレス成形材から構成されることを特徴とする(1)から(3)のいずれかに記載の衝突エネルギー吸収構造体。
(5)少なくとも2つの前記プレス成形材を接合して構成されることを特徴とする(4)に記載の衝突エネルギー吸収構造体。
(6)前記プレス成形材を構成する前記金属板は、270〜1500MPaの引張強度を有する鋼板であることを特徴とする(4)または(5)に記載の衝突エネルギー吸収構造体。
The above problems are solved by the following inventions (1) to (6).
(1) A collision energy absorbing structure that is cylindrical and deforms in the axial direction to absorb collision energy,
The cross-sectional shape of the cross section perpendicular to the axial direction is a polygon that is point-symmetric and non-symmetric with respect to the center of the cross-section, and the aspect ratio when the outer shape of the cross-section is a rectangle is less than 1.5. A collision energy absorbing structure characterized in that a ratio of lengths of adjacent sides among polygon sides constituting a cross section is 2.3 or less.
(2) The collision energy absorbing structure according to (1), which is tapered in the axial direction.
(3) The collision energy absorbing structure according to (1) or (2), wherein the tip has a recess that is recessed in the axial direction.
(4) The collision energy absorbing structure according to any one of (1) to (3), wherein the collision energy absorbing structure is formed of a press-molded material formed by pressing a metal plate.
(5) The collision energy absorbing structure according to (4), wherein at least two of the press-molded materials are joined.
(6) The collision energy absorbing structure according to (4) or (5), wherein the metal plate constituting the press-formed material is a steel plate having a tensile strength of 270 to 1500 MPa.

本発明によれば、軸方向に垂直な断面の断面形状が、断面の中心に対して点対称で、かつ非線対称であり、断面の外郭を四角形としたときのアスペクト比が1.5未満であり、かつ断面を構成する多角形の辺のうち隣接する辺の長さの比が2.3以下であるので、安定した変形形状が得られる。そのため、エネルギー吸収効率が高い衝突エネルギー吸収構造体が生産性を阻害することなくプレス加工にて得られ、構造体のコンパクト化や軽量化が可能となる。   According to the present invention, the cross-sectional shape of the cross section perpendicular to the axial direction is point symmetric with respect to the center of the cross section and non-axisymmetric, and the aspect ratio is less than 1.5 when the outer shape of the cross section is rectangular. In addition, since the ratio of the lengths of adjacent sides among the sides of the polygon forming the cross section is 2.3 or less, a stable deformed shape can be obtained. Therefore, a collision energy absorption structure having high energy absorption efficiency can be obtained by pressing without impairing productivity, and the structure can be made compact and lightweight.

本発明の一実施形態に係る衝突エネルギー吸収構造体を示す斜視図および断面図である。It is the perspective view and sectional drawing which show the collision energy absorption structure which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る衝突エネルギー吸収構造体を示す斜視図である。It is a perspective view which shows the collision energy absorption structure which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る衝突エネルギー吸収構造体を示す斜視図である。It is a perspective view which shows the collision energy absorption structure which concerns on other embodiment of this invention. 図1の衝突エネルギー吸収構造体の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the collision energy absorption structure of FIG. 図1の衝突エネルギー吸収構造体の製造方法の他の例を説明するための図である。It is a figure for demonstrating the other example of the manufacturing method of the collision energy absorption structure of FIG. 本発明例1の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the example 1 of this invention, the shape before and behind a collision, and a load-stroke curve. 本発明例2の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the example 2 of this invention, the shape before and behind a collision, and a load-stroke curve. 本発明例3の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the example 3 of this invention, the shape before and behind a collision, and a load-stroke curve. 本発明例4の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the example 4 of this invention, the shape before and behind a collision, and a load-stroke curve. 本発明例5の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the example 5 of this invention, the shape before and behind a collision, and a load-stroke curve. 本発明例6の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the example 6 of this invention, the shape before and behind a collision, and a load-stroke curve. 本発明例7の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the example 7 of this invention, the shape before and behind a collision, and a load-stroke curve. 比較例1の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the comparative example 1, the shape before and behind a collision, and a load-stroke curve. 比較例2の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the comparative example 2, the shape before and behind a collision, and a load-stroke curve. 比較例3の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the comparative example 3, the shape before and behind a collision, and a load-stroke curve. 比較例4の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the comparative example 4, the shape before and behind a collision, and a load-stroke curve. 比較例5の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the comparative example 5, the shape before and behind a collision, and a load-stroke curve. 比較例6の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the comparative example 6, the shape before and behind a collision, and a load-stroke curve. 比較例7の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the comparative example 7, the shape before and behind a collision, and a load-stroke curve. 比較例8の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を示す図である。It is a figure which shows the cross-sectional shape of the structure of the comparative example 8, the shape before and behind a collision, and a load-stroke curve. 衝突エネルギー吸収構造体の変形形態を説明するための図である。It is a figure for demonstrating the deformation | transformation form of a collision energy absorption structure.

以下、添付図面を参照して、本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

<構造体の形状>
図1は、本発明の一実施形態に係る衝突エネルギー吸収構造体を示すものであり、(a)は斜視図であり、(b)は断面図である。
<Shape of structure>
FIG. 1 shows a collision energy absorbing structure according to an embodiment of the present invention, in which (a) is a perspective view and (b) is a cross-sectional view.

本実施形態に係る衝突エネルギー吸収構造体は、図1の(a)に示すように、基本的に筒状体からなり、一方の端部(例えば上端)が衝突先端となり、その衝突先端に衝突物が衝突した際に軸Lの方向に変形することにより、衝突エネルギーを吸収するようになっている。   As shown in FIG. 1A, the collision energy absorbing structure according to the present embodiment is basically formed of a cylindrical body, and one end (for example, the upper end) is a collision tip, and collides with the collision tip. When an object collides, it is deformed in the direction of the axis L to absorb collision energy.

図1の(b)に示すように、軸L方向に垂直な断面の形状は、断面の中心Oに対して点対称で、かつ非線対称の多角形からなる。図は、断面形状が凹部を含む16角形である場合を示している。   As shown in FIG. 1B, the shape of the cross section perpendicular to the direction of the axis L is a polygon that is point-symmetric and non-axisymmetric with respect to the center O of the cross section. The figure shows a case where the cross-sectional shape is a hexagon including a recess.

軸Lに垂直な断面の形状をこのように多角形とすることにより、プレス加工で生産可能であり、断面線長を長いものとすることができるので、限られたスペースで衝突性能を向上させることができる。   By making the shape of the cross section perpendicular to the axis L into a polygon like this, it can be produced by press working and the cross section line length can be made long, so that the collision performance is improved in a limited space. be able to.

また、衝突時の荷重は、例えば軸方向に入力される場合に限らず、軸方向に対して、角度を持った斜め荷重を受ける場合も想定され、このような斜め荷重を含む衝突を受けた際に、大きく座屈する、あるいは局所的な折れ曲がりにより、部材の変形が不安定化すると、変形荷重の低下が生じ、エネルギー吸収能が顕著に低下するが、筒状体の軸Lに垂直な断面の形状を点対称かつ非線対称とすることにより、このような斜め荷重も含め、圧潰時の変形形態を安定させ、安定した衝突性能を得ることができる。これは、点対称かつ非線対称とすることで、向かい合う辺の座屈の進行にずれが生じ、周期の大きな座屈、横倒しや折れといった大変形が生じにくくなるためと考えられる。   In addition, the load at the time of collision is not limited to being input in the axial direction, for example, and it is assumed that an oblique load having an angle with respect to the axial direction is received. In this case, if the deformation of the member becomes unstable due to large buckling or local bending, the deformation load is reduced and the energy absorption ability is remarkably reduced, but the cross section perpendicular to the axis L of the cylindrical body By making the shape of the point symmetrical and non-linearly symmetric, it is possible to stabilize the deformation mode at the time of crushing including such an oblique load and obtain a stable collision performance. This is considered to be because point buckling and non-linear symmetry cause deviation in the progress of buckling on opposite sides, and it is difficult for large deformations such as buckling, lying down, and folding with a large period to occur.

断面を構成する多角形の外郭をなす四角形Rは、アスペクト比が1.5未満である。ここでアスペクト比は長辺/短辺(図の例ではa/b)の値とする。四角形Rが正方形(a=b)の場合はアスペクト比は1であり、アスペクト比は必ず1以上となる。   A rectangle R forming a polygonal outline constituting the cross section has an aspect ratio of less than 1.5. Here, the aspect ratio is a value of long side / short side (a / b in the example in the figure). When the rectangle R is a square (a = b), the aspect ratio is 1, and the aspect ratio is always 1 or more.

断面を構成する多角形の外郭をなす四角形のアスペクト比を1.5未満に規定したのも、安定した変形を得るためであり、アスペクト比が大きくなる、つまり細長い長方形になるに従い、圧潰時に折れ曲がりが発生しやすくなるからである。   The reason why the aspect ratio of the polygon that forms the outline of the polygon that forms the cross section is specified to be less than 1.5 is to obtain a stable deformation. It is because it becomes easy to generate | occur | produce.

また、断面を構成する多角形の辺のうち隣接する辺の長さの比が2.3以下である。ここで隣接する辺の長さの比は、長いほうの辺/短いほうの辺の値とする。隣接する2つの辺の長さが同じ場合は、隣接する辺の長さの比が1であり、隣接する辺の長さの比は必ず1以上となる。図の例では、隣接する辺の長さの比が最大となる組み合わせは辺L1と辺L2の組み合わせ(L1>L2)であり、L1/L2≦2.3となる。   Moreover, the ratio of the lengths of adjacent sides among the sides of the polygon forming the cross section is 2.3 or less. Here, the ratio of the lengths of adjacent sides is the value of the longer side / shorter side. When the lengths of two adjacent sides are the same, the ratio of the lengths of the adjacent sides is 1, and the ratio of the lengths of the adjacent sides is always 1 or more. In the example in the figure, the combination having the maximum ratio of the lengths of adjacent sides is a combination of the side L1 and the side L2 (L1> L2), and L1 / L2 ≦ 2.3.

断面を構成する多角形の辺のうち隣接する辺の長さの比を2.3以下としたのは、これにより変形形態が安定するからである。これは、おそらく、隣接する辺のうち、辺長が長いほうに大変形が起こりやすく、このような大変形を抑制するためには、隣接する辺のうち、辺長の短いほうの辺の辺長が重要であり、これら隣接する辺の間に最適な比が存在するためと考えられる。   The reason why the ratio of the lengths of adjacent sides among the sides of the polygon constituting the cross section is set to 2.3 or less is that the deformation form is thereby stabilized. This is probably because large deformation is likely to occur in the longer side of the adjacent sides, and in order to suppress such large deformation, the side of the shorter side of the adjacent sides This is probably because the length is important and there is an optimal ratio between these adjacent sides.

変形形態を安定させる観点からは、図2に示すように、衝突エネルギー吸収構造体を軸方向にテーパーをつけた構造にすることが好ましい。この場合のテーパーは、図示するように、先端(衝突先端)から後端にかけて広がるように形成されていることが好ましい。これは、テーパーをつけることにより変形が開始する部位を特定することが可能となり、安定して変形が開始するためと考えられる。   From the viewpoint of stabilizing the deformed form, it is preferable that the collision energy absorbing structure is tapered in the axial direction as shown in FIG. The taper in this case is preferably formed so as to spread from the front end (collision front end) to the rear end, as shown in the figure. This is considered to be because it is possible to specify the part where the deformation starts by attaching a taper, and the deformation starts stably.

図3に示すように、先端(衝突先端)に切り欠きのような凹み形状Nを形成することによっても、同様に変形が開始する部位を特定することが可能となり、安定して変形を開始させることができる。   As shown in FIG. 3, it is also possible to specify a part where deformation starts similarly by forming a notched shape N such as a notch at the tip (collision tip), and stably start the deformation. be able to.

なお、図2のようなテーパーをつけた構造に、図3のような凹み形状Nをつけてもよい。   A concave shape N as shown in FIG. 3 may be added to the tapered structure as shown in FIG.

<構造体の適用材料>
本実施形態の衝突エネルギー吸収構造体は、金属板をプレス成形して構成することが好ましい。適用される金属板としては、熱延鋼板、冷延鋼板、あるいは鋼板に電気亜鉛系めっきや溶融亜鉛系めっき等のめっきを施しためっき鋼板、さらにはステンレス鋼板(SUS)を挙げることができる。溶融亜鉛系めっき鋼板の場合には、合金化処理を施してもよい。また、めっき鋼板には、めっき後、さらに有機皮膜処理を施してもよい。鋼板としては270〜1500MPaの引張強度を有するものが好ましい。また、金属板としては、鋼板の他、アルミニウム、マグネシウム、これらの合金等、他の金属材料を用いることもできる。
<Applicable materials for structures>
The collision energy absorbing structure of the present embodiment is preferably configured by press-molding a metal plate. Examples of the metal plate to be applied include a hot-rolled steel plate, a cold-rolled steel plate, a plated steel plate obtained by subjecting the steel plate to electroplating such as electrogalvanizing or hot-dip galvanizing, and further a stainless steel plate (SUS). In the case of a hot dip galvanized steel sheet, an alloying treatment may be performed. The plated steel sheet may be further subjected to an organic film treatment after plating. A steel plate having a tensile strength of 270 to 1500 MPa is preferable. Moreover, as a metal plate, other metal materials, such as aluminum, magnesium, and these alloys other than a steel plate, can also be used.

<製造方法>
次に、このような衝突エネルギー吸収構造体の製造方法の例について説明する。
ここでは、プレス成形により衝突エネルギー吸収体を製造する場合を示す。図4の例では、(a)に示すように2枚の金属板を準備し、これらをダイおよびパンチからなる金型を用いて(b)に示すように成形し、(c)に示すように、得られた成形品の端面同士を接合することで、(d)に示す構造体を得る。具体的には、図1の構造体を製造するために、2枚の金属板からプレス成形により同じ形状の成形品を製造し、これらを接合する。図5の例では、(a)に示す1枚の金属板を、ダイおよびパンチからなる金型を用いて(b)に示すように成形し、これを曲げ加工により閉断面化して端部同士を接合することによって(c)に示す構造体を得る。プレス成形に用いる金型(ダイおよびパンチ)は、上記断面形状(断面の中心に対して点対称で、かつ非線対称の多角形であって、その断面の外郭を四角形としたときのアスペクト比が1.5未満であり、かつ断面を構成する多角形の辺のうち隣接する辺の長さの比が2.3以下)を考慮して設計されている。
<Manufacturing method>
Next, an example of a method for manufacturing such a collision energy absorbing structure will be described.
Here, the case where a collision energy absorber is manufactured by press molding is shown. In the example of FIG. 4, two metal plates are prepared as shown in (a), these are formed as shown in (b) using a die and a die, and as shown in (c). Further, by joining the end faces of the obtained molded product, the structure shown in (d) is obtained. Specifically, in order to manufacture the structure of FIG. 1, a molded product having the same shape is manufactured by press molding from two metal plates, and these are joined. In the example of FIG. 5, the single metal plate shown in (a) is formed as shown in (b) using a die and a die, and this is closed to form a closed cross section by bending. Are joined to obtain the structure shown in (c). The mold (die and punch) used for press molding is the above cross-sectional shape (a point-symmetrical and non-axisymmetric polygon with respect to the center of the cross-section, and the aspect ratio when the outer shape of the cross-section is a rectangle) Is less than 1.5, and the ratio of the lengths of adjacent sides among the sides of the polygon forming the cross section is 2.3 or less).

図4、図5の例では、1枚ないし2枚の金属板から所定の断面形状の成形部品を製造して接合することにより構造体を製造する場合について説明したが、3枚以上の金属板を用いて各部位を成形し、これらを接合して構造体を製造することも可能である。端面同士を接合するための手法としては、スポット溶接、レーザー溶接、アーク溶接、かしめ、リベット接合、接着剤適用など、種々の手法を採用することができる。   In the example of FIGS. 4 and 5, the case where a structure is manufactured by manufacturing and bonding a molded part having a predetermined cross-sectional shape from one or two metal plates has been described. However, three or more metal plates are used. It is also possible to form the respective parts by using and to manufacture the structure by joining them. As methods for joining the end faces, various methods such as spot welding, laser welding, arc welding, caulking, rivet joining, and application of an adhesive can be employed.

ここでは、種々の形状の衝突エネルギー吸収構造体の特性をシミュレーションにより把握した。
シミュレーションには、汎用の動的陽解法ソフトLS−DYNA ver.971を用いた。適用材料は、引張強度が440MPa、板厚が1.6mmの鋼板とした。本発明の範囲内の形状を有する本発明例1〜7の構造体、および本発明の範囲から外れる比較例1〜8の構造体について、曲率のない平面状の圧子を時速15kmで衝突させた時の圧潰性能をシミュレーションした。圧潰性能は、変形開始後の変形抵抗荷重で評価するため、圧潰距離が20mmから70mmにおける荷重−ストローク曲線から平均荷重を求め、単位重量あたりの平均荷重および変形後の形状にて評価した。その結果を表1にまとめて示し、本発明例1〜7の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を図6〜12に、比較例1〜8の構造体の断面形状、衝突前後の形状、荷重−ストローク曲線を図13〜20に示す。表1において、変形形状の欄は、○が連続的に蛇腹状に変形したものであり、×が折れ曲がりや周期の大きな座屈が発生したものである。また、図6〜20において、(a)が断面形状、(b)が衝突前後の形状、(c)が荷重−ストローク曲線である。これらに示すように、本発明の範囲内である本発明例1〜7では、圧潰時に連続して安定して蛇腹状に塑性変形しており、また、圧潰時の単位重量あたりの平均荷重が高く、吸収エネルギー効率が高いことが確認された。一方、本発明の範囲から外れる比較例1〜8では、軸方向に折れ曲がりや周期の大きな座屈が生じており、変形形状が不安定で、単位重量あたりの平均荷重が低位であることが確認された。
Here, the characteristics of various types of collision energy absorbing structures were grasped by simulation.
For the simulation, general-purpose dynamic explicit software LS-DYNA ver. 971 was used. The applied material was a steel plate having a tensile strength of 440 MPa and a plate thickness of 1.6 mm. With respect to the structures of Invention Examples 1 to 7 having shapes within the scope of the present invention and the structures of Comparative Examples 1 to 8 that deviate from the scope of the present invention, a flat indenter without curvature was caused to collide at a speed of 15 km / h. The crushing performance of time was simulated. In order to evaluate the crushing performance by the deformation resistance load after the start of deformation, the average load was obtained from a load-stroke curve when the crushing distance was 20 mm to 70 mm, and the average load per unit weight and the shape after deformation were evaluated. The results are summarized in Table 1, and the cross-sectional shape of the structures of Invention Examples 1-7, the shape before and after the collision, and the load-stroke curve are shown in FIGS. 6-12, and the cross-sectional shape of the structures of Comparative Examples 1-8. The shape before and after the collision and the load-stroke curve are shown in FIGS. In Table 1, in the column of deformed shape, ◯ is continuously deformed into a bellows shape, and X is bent or a buckle with a large period occurs. Moreover, in FIGS. 6-20, (a) is a cross-sectional shape, (b) is the shape before and behind a collision, (c) is a load-stroke curve. As shown in these figures, Examples 1 to 7 of the present invention within the scope of the present invention are plastically deformed in a stable and bellows continuously during crushing, and the average load per unit weight during crushing is It was confirmed that the absorbed energy efficiency was high. On the other hand, in Comparative Examples 1 to 8 that deviate from the scope of the present invention, it was confirmed that bending in the axial direction and large period buckling occurred, the deformed shape was unstable, and the average load per unit weight was low. It was done.

以上から、本発明のように、軸方向に垂直な断面の断面形状が、断面の中心に対して点対称で、かつ非線対称の多角形であって、その断面の外郭を四角形としたときのアスペクト比が1.5未満であり、かつ断面を構成する多角形の辺のうち隣接する辺の長さの比が2.3以下とすることにより、安定した変形形状が得られ、抵抗荷重が高位安定となり、エネルギー吸収効率が高い衝突エネルギー吸収構造体が得られることが確認された。   From the above, when the cross-sectional shape of the cross section perpendicular to the axial direction is a point-symmetrical and non-axisymmetric polygon with respect to the center of the cross-section as in the present invention, and the outline of the cross-section is a rectangle When the aspect ratio is less than 1.5 and the ratio of the lengths of adjacent sides among the polygon sides constituting the cross section is 2.3 or less, a stable deformed shape can be obtained, and the resistance load It has been confirmed that a collision energy absorption structure with high energy absorption efficiency and high energy absorption efficiency can be obtained.

Claims (6)

筒状をなし、軸方向に変形して衝突エネルギーを吸収する衝突エネルギー吸収構造体であって、
軸方向に垂直な断面の断面形状が、断面の中心に対して点対称で、かつ非線対称の多角形であって、その断面の外郭を四角形としたときのアスペクト比が1.5未満であり、かつ断面を構成する多角形の辺のうち隣接する辺の長さの比が2.3以下であることを特徴とする衝突エネルギー吸収構造体。
A collision energy absorbing structure that is cylindrical and deforms in the axial direction to absorb collision energy,
The cross-sectional shape of the cross section perpendicular to the axial direction is a polygon that is point-symmetric and non-symmetric with respect to the center of the cross-section, and the aspect ratio when the outer shape of the cross-section is a rectangle is less than 1.5. A collision energy absorbing structure characterized in that a ratio of lengths of adjacent sides among polygon sides constituting a cross section is 2.3 or less.
軸方向にテーパー状をなしていることを特徴とする請求項1に記載の衝突エネルギー吸収構造体。   The collision energy absorption structure according to claim 1, wherein the collision energy absorption structure is tapered in the axial direction. 先端部に、軸方向に凹む凹み部を有することを特徴とする請求項1または請求項2に記載の衝突エネルギー吸収構造体。   The collision energy absorption structure according to claim 1 or 2, wherein the tip end portion has a recess portion that is recessed in the axial direction. 金属板をプレスして成形されたプレス成形材から構成されることを特徴とする請求項1から請求項3のいずれか1項に記載の衝突エネルギー吸収構造体。   The collision energy absorption structure according to any one of claims 1 to 3, wherein the collision energy absorption structure is formed of a press-molded material formed by pressing a metal plate. 少なくとも2つの前記プレス成形材を接合して構成されることを特徴とする請求項4に記載の衝突エネルギー吸収構造体。   The collision energy absorbing structure according to claim 4, wherein at least two of the press molding materials are joined. 前記プレス成形材を構成する前記金属板は、270〜1500MPaの引張強度を有する鋼板であることを特徴とする請求項4または請求項5に記載の衝突エネルギー吸収構造体。   The collision energy absorbing structure according to claim 4 or 5, wherein the metal plate constituting the press-formed material is a steel plate having a tensile strength of 270 to 1500 MPa.
JP2010089202A 2010-04-08 2010-04-08 Impact energy absorbing structure Active JP4930620B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010089202A JP4930620B2 (en) 2010-04-08 2010-04-08 Impact energy absorbing structure
PCT/JP2011/059223 WO2011126146A1 (en) 2010-04-08 2011-04-07 Collision energy absorbing structure
KR1020127026307A KR101427020B1 (en) 2010-04-08 2011-04-07 Collision energy absorbing structure
CN201180017895.4A CN102834641B (en) 2010-04-08 2011-04-07 Collision energy absorbing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089202A JP4930620B2 (en) 2010-04-08 2010-04-08 Impact energy absorbing structure

Publications (2)

Publication Number Publication Date
JP2011218935A true JP2011218935A (en) 2011-11-04
JP4930620B2 JP4930620B2 (en) 2012-05-16

Family

ID=44763078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089202A Active JP4930620B2 (en) 2010-04-08 2010-04-08 Impact energy absorbing structure

Country Status (4)

Country Link
JP (1) JP4930620B2 (en)
KR (1) KR101427020B1 (en)
CN (1) CN102834641B (en)
WO (1) WO2011126146A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080129A1 (en) 2013-11-27 2015-06-04 新日鐵住金株式会社 Shock-absorbing part
WO2022085575A1 (en) 2020-10-20 2022-04-28 日本製鉄株式会社 Impact absorption member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2015DN02105A (en) * 2012-11-08 2015-08-14 Jfe Steel Corp
CN103982208A (en) * 2014-05-19 2014-08-13 辽宁工程技术大学 Mine inner and outer turnover resistive energy-absorption anti-impact device
JP6044624B2 (en) * 2014-12-17 2016-12-14 マツダ株式会社 Vehicle frame structure
CN107606019B (en) * 2017-08-09 2019-06-21 西北工业大学 A kind of double overturning endergonic structures of the double-deck end seal with high efficiency buffer energy absorption characteristics
CN114857193B (en) * 2022-04-19 2023-04-14 福建工程学院 Clamping groove type thin-walled tube energy absorption system easy to disassemble and assemble and capable of achieving three-dimensional self-locking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123887A (en) * 2004-09-28 2006-05-18 Aisin Seiki Co Ltd Shock absorbing implement for vehicle and shock absorbing structure for vehicle
JP2006207725A (en) * 2005-01-28 2006-08-10 Sumitomo Metal Ind Ltd Shock absorbing member
JP2009096225A (en) * 2007-10-12 2009-05-07 Kobe Steel Ltd Energy absorbing member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412282B2 (en) * 2003-07-28 2010-02-10 住友金属工業株式会社 Shock absorbing member
JP4280153B2 (en) * 2003-11-28 2009-06-17 キョーラク株式会社 Shock absorber for vehicle
JP4471904B2 (en) 2005-08-01 2010-06-02 豊田鉄工株式会社 Bumper beam for automobile
JP5011516B2 (en) 2007-07-20 2012-08-29 キョーラク株式会社 Shock absorber for vehicle
JP5330674B2 (en) * 2007-11-05 2013-10-30 豊田鉄工株式会社 Crash box
JP2009227037A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Bumper structure of vehicle and energy absorbing body
KR101010177B1 (en) * 2008-05-14 2011-01-20 성준엽 Energy absorber for a car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123887A (en) * 2004-09-28 2006-05-18 Aisin Seiki Co Ltd Shock absorbing implement for vehicle and shock absorbing structure for vehicle
JP2006207725A (en) * 2005-01-28 2006-08-10 Sumitomo Metal Ind Ltd Shock absorbing member
JP2009096225A (en) * 2007-10-12 2009-05-07 Kobe Steel Ltd Energy absorbing member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080129A1 (en) 2013-11-27 2015-06-04 新日鐵住金株式会社 Shock-absorbing part
KR20160075693A (en) 2013-11-27 2016-06-29 신닛테츠스미킨 카부시키카이샤 Shock-absorbing part
US10494027B2 (en) 2013-11-27 2019-12-03 Nippon Steel Corporation Crash energy absorbing part
WO2022085575A1 (en) 2020-10-20 2022-04-28 日本製鉄株式会社 Impact absorption member

Also Published As

Publication number Publication date
CN102834641B (en) 2015-07-08
KR20120135314A (en) 2012-12-12
KR101427020B1 (en) 2014-08-05
WO2011126146A1 (en) 2011-10-13
CN102834641A (en) 2012-12-19
JP4930620B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4930620B2 (en) Impact energy absorbing structure
JP6119844B2 (en) Structural member for automobile and manufacturing method thereof
JP5316935B2 (en) Steel pipe for impact energy absorption for automobile and method for manufacturing the same
EP3037187B1 (en) Production method for press-molded body, and press molding device
JP6402781B2 (en) Bumper beam
KR101947938B1 (en) Structural member
WO2018207668A1 (en) Structural member, vehicle structure, and bumper reinforcement
JP5221861B2 (en) Structural members for vehicles
JP2008120227A (en) Method for manufacturing impact absorbing tool for vehicle
JP6672933B2 (en) Automotive structural member, manufacturing method thereof, and mold
JPWO2018131516A1 (en) Structural member and structural member for vehicle
KR20200035149A (en) Bumper beam and vehicle
KR101970423B1 (en) Press-formed article, method of manufacturing the press-formed article, and manufacturing facility column
JP2003312535A (en) Impact energy absorbing member
JP4395964B2 (en) Impact energy absorbing structure
JP5206805B2 (en) Manufacturing method and apparatus for closed-section structural parts
JP7422080B2 (en) Tailored blank, method for manufacturing tailored blank, press-formed product, and method for manufacturing press-formed product
JP6399268B1 (en) Structural members, body structure and bumper reinforcement
JP2003139179A (en) Collision energy absorption member
JP2005029064A (en) Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof
JP2017071391A (en) Structural member and vehicle
JP5997099B2 (en) Bumper reinforcement for vehicles
JP5136145B2 (en) Automobile frame structure
JP4734129B2 (en) Automotive strength members with excellent impact characteristics
JP2020111088A (en) Structure for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111110

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4930620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250