JP2011218339A - Method for preparing thermit agent - Google Patents

Method for preparing thermit agent Download PDF

Info

Publication number
JP2011218339A
JP2011218339A JP2010099253A JP2010099253A JP2011218339A JP 2011218339 A JP2011218339 A JP 2011218339A JP 2010099253 A JP2010099253 A JP 2010099253A JP 2010099253 A JP2010099253 A JP 2010099253A JP 2011218339 A JP2011218339 A JP 2011218339A
Authority
JP
Japan
Prior art keywords
powder
iron oxide
thermite
aluminum
aluminum dross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010099253A
Other languages
Japanese (ja)
Inventor
Shoko Numa
晶子 沼
Eiichi Kajii
英一 梶井
Seiichiro Miyata
征一郎 宮田
Masahiro Matsunaga
全央 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAJII KOGYO KK
Terabondo KK
Original Assignee
KAJII KOGYO KK
Terabondo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAJII KOGYO KK, Terabondo KK filed Critical KAJII KOGYO KK
Priority to JP2010099253A priority Critical patent/JP2011218339A/en
Publication of JP2011218339A publication Critical patent/JP2011218339A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

PROBLEM TO BE SOLVED: To provide an ultrahigh temperature region product which can easily, simply and stably generate, always and anywhere, a temperature zone of 1,700 to 1,800°C required for asbestos melting artificially by chemical reaction utilizing inorganic scrap wood.SOLUTION: The thermit agent is characterized in that iron oxide powder and aluminum dross powder are mixed and adhered with Konnyaku fly powder, and the mixture is pelletized. Furthermore, iron oxide powder and aluminum dross powder are mixed and adhered with water glass, the mixture is pelletized, and a thermit agent with the aluminum dross powder as a main raw material is made into a pill with Konnyaku scrap wood.

Description

本発明は、無機物廃材を利用して超高温領域の温度環境を作るために発熱する新燃料を開発する事により、溶融化若しくは常温下では処理できない有害無機物の無害化処理を可能とする新燃料の製造に関するものである。  The present invention develops a new fuel that generates heat in order to create a temperature environment in an ultra-high temperature region using inorganic waste materials, thereby enabling detoxification treatment of harmful inorganic substances that cannot be melted or treated at room temperature. It relates to the manufacture of

テルミット剤に関する従来技術では酸化鉄粉末やアルミドロス粉末などの主原料の取り扱いが難しく、実際の利用に際しては、それぞれの混合比率に応じた、小さな袋詰めが主流である。しかし袋詰の場合、有機性の袋が溶融炉内では優先的に反応し燃焼するがその際当然周辺の酸素を消費する。その酸素消費量を出来る限り少量に抑える為に袋材は限りなく薄物にする。その為、被溶融対象物が固体から液状に変化する溶融炉内の溶融箇所に届く前に、ほとんどの袋が破袋し、テルミット反応を必要とする実際の溶融すべき箇所では既に袋中のテルミット剤はそれぞれの物質が分散して被溶融物質中に分散され、単なる単体の無機物粉末に過ぎないものとなり、テルミット剤としては実質上機能しない、単なる粉体に過ぎない状態がほとんどであるという欠点がある。  In the prior art relating to the thermit agent, it is difficult to handle main raw materials such as iron oxide powder and aluminum dross powder, and in actual use, small bagging according to each mixing ratio is mainstream. However, in the case of bagging, the organic bag preferentially reacts and burns in the melting furnace, but naturally the surrounding oxygen is consumed. To keep the oxygen consumption as small as possible, the bag material should be as thin as possible. Therefore, before reaching the melting point in the melting furnace where the object to be melted changes from solid to liquid, most of the bags are broken and already in the bag where the thermite reaction is required. Each thermite agent is dispersed in the melted material and is merely a single inorganic powder, and it is virtually non-functional as a thermite agent, and is simply a powder. There are drawbacks.

今日、テルミット剤として実践で使用されている分野としては、ほとんどが灰溶融炉の分野であり、これ等の灰溶融炉では灰がクレーンなどによりホッパーに投入され磁選機や破砕機やベルトコンベアやスクリューコンベアなどを経由して溶融炉に搬送されるが、テルミット剤はこのいずれかの過程で被溶融物質中に投入され、その後溶融炉内に入る。しかしテルミット剤は溶融炉内における最終工程とも言うべくバーナー直下に届くまでには、溶融炉内に限ってもプッシャーに押されて灰の中に混合されながら到達するが、灰そのものが一般の食品パウダーのようにソフト感には程遠く、元々廃棄物の燃えカスであるが為、常時破袋環境にあるため、テルミット剤の袋がまともに届く方が不思議なくらい、正常でないのが実際の現場である。  Today, the field of practical use as thermite is mostly in the field of ash melting furnaces. In these ash melting furnaces, ash is introduced into a hopper by a crane or the like, and a magnetic separator, crusher, belt conveyor, Although it is conveyed to a melting furnace via a screw conveyor or the like, the thermite agent is introduced into the material to be melted in any of these processes, and then enters the melting furnace. However, the thermite agent arrives under the burner so that it can be called the final process in the melting furnace. Because it is far from soft feeling like powder, it is originally a waste waste, so it is always in a broken bag environment, so it is strange that the thermite bag will arrive properly, so it is not normal to actually It is.

先願特許においてもテルミットに関するものは炉体の構造例えば特開2000−97425廃棄物溶融装置や特開2003−56989テルミット式溶融炉の炉内温度制御方法及び炉内温度制御装置、或いはテルミット剤の固化方法としては特開2005−288453固形状テルミット剤及び固形状テルミット剤製造装置などが唯一あるが、これは水を利用した固化方法であり水の使用は当然アルミ粉体の水和反応を招き当然目的とすべきエネルギーの劣化を事前に招く大きな欠点があると共に、アルミ粉体それぞれの固体周囲を水酸化アルミの皮膜が包み込む事となり、発熱エネルギー劣化の原因となる。酸化鉄粉末とアルミドロス粉末の反応は酸化還元反応であり、これは両者の界面接触時、初めて本来の効果が期待されるものでありアルミの水による酸化皮膜は当然、効果並びにエネルギーの損失を招くものである。  Also in the prior patents, thermite-related ones are the structure of the furnace body, for example, the in-furnace temperature control method and the in-furnace temperature control device of the JP 2000-97425 waste melting apparatus, the JP 2003-56989 thermite type melting furnace, or the thermite agent. As the solidification method, there is only JP 2005-288453 solid thermite agent and solid thermite agent production apparatus, but this is a solidification method using water, and the use of water naturally causes the hydration reaction of the aluminum powder. Naturally, there is a major drawback that leads to the deterioration of the energy that should be the target in advance, and the aluminum hydroxide film wraps around the solid of each of the aluminum powder, which causes a deterioration of the heat generation energy. The reaction between iron oxide powder and aluminum dross powder is an oxidation-reduction reaction, and this is the first effect expected when the two interface contact each other. Invite.

特開2000−97425廃棄物溶融装置JP-A 2000-97425 waste melting apparatus 特開2003−56989テルミット式溶融炉の炉内温度制御方法及び炉内温度制御装置、In-furnace temperature control method and in-furnace temperature control apparatus for Japanese Patent Application Laid-Open No. 2003-56889 特開2005−288453固形状テルミット剤及び固形状テルミット剤製造装置などがあるが、特許文献1並びに特許文献2は溶融装置に関するものであり特許文献3は水を利用したテルミット剤の固化方法であり、水の使用は当然アルミ粉体の酸化反応を招き使用前の酸化皮膜は当然エネルギーの損失と劣化を招くものである。Japanese Patent Application Laid-Open No. 2005-288453 includes a solid thermite agent and a solid thermite agent production apparatus. Patent Document 1 and Patent Document 2 relate to a melting apparatus, and Patent Document 3 is a method for solidifying a thermite agent using water. The use of water naturally causes an oxidation reaction of the aluminum powder, and the oxide film before use naturally leads to energy loss and deterioration.

本発明は、かかる問題点に鑑みてなされたもので、その目的は、アスベストのような特殊な無機物を無害化するための溶融には超高温域の特別な温度を必要とする。無機物類で最も市場性のある鉄でさえ1,500度前後の温度を必要とし、その熱源にはコークスの酸素燃焼を必要とするが、アスベストはそれ以上の溶融温度を要求する。この超高温域を人工的に作り出すには重油バーナーで1,400℃前後、ガスバーナーでおよそ1,700℃が限度と言ったところでありアスベスト溶融にはかなり困難な温度帯である。本案はアスベスト溶融に必要な1,700〜1,800℃の温度帯を、無機物廃材を利用した化学反応によって人工的に、常時何処でも簡易且つ手軽に安定的に発生させることが出来る超高温領域生成物質を作り出そうとするものである。  The present invention has been made in view of such problems, and its object is to require a special temperature in the ultra-high temperature range for melting for detoxifying special inorganic substances such as asbestos. Even the most marketable iron in inorganics requires temperatures around 1500 ° C., and its heat source requires coke oxy-combustion, while asbestos requires higher melting temperatures. In order to artificially create this ultra-high temperature range, the limit is around 1,400 ° C. with a heavy oil burner and about 1,700 ° C. with a gas burner, which is a fairly difficult temperature zone for asbestos melting. This plan is an ultra-high temperature range where the temperature range of 1,700 to 1,800 ° C required for melting asbestos can be generated easily, easily, and stably at any time by chemical reaction using inorganic waste. It is intended to create a product.

問題を解決するための手段Means to solve the problem

本発明者は、上記課題に関して鋭意研究を行った結果、次の知見を得た。
即ち、テルミット剤の一方を占める超微粒子で飛散性の高い乾燥酸化鉄粉末、これは稀少金属チタンを抽出した時の廃材残土そのものであり、他方アルミドロスは回収した古アルミ製品やアルミ廃材を再溶解した際に発生する超微粒子の上澄み残渣を乾燥したものであり再利用からの除外品、不純物の多い正に廃材いわゆる通称アルミドロスと呼ばれるものでこれ等いずれも廃材の利用である。化学反応式で、酸化鉄FE203+アルミAL→純鉄Fe+AL203にあるように実証試験においても混合比率は重量ベースで酸化鉄3に対しアルミドロスは1が理想的であるがそれほど精密に測る必要も無く重量比以外に、かさ比でも結果にほとんど差はないようである。
As a result of intensive studies on the above problems, the present inventor has obtained the following knowledge.
That is, dry iron oxide powder with ultra-fine particles that occupy one of the thermite agents and high dispersibility, which is the waste soil left when rare metal titanium is extracted, while aluminum dross recycles recovered old aluminum products and aluminum waste materials. The supernatant residue of ultrafine particles generated when dissolved is dried and excluded from reuse, and it is a waste material with a lot of impurities, so-called so-called aluminum dross, both of which are waste materials. In the chemical reaction formula, iron oxide FE203 + aluminum AL → pure iron Fe + AL203, even in the demonstration test, the mixing ratio is on a weight basis, and aluminum dross is ideal for iron oxide 3, but it is not necessary to measure so precisely Apart from the weight ratio, the bulk ratio does not seem to be much different.

酸化鉄粉末とアルミドロス粉末を水溶液で固化した場合アルミの水和反応によりアルミが劣化する欠点がある、又ポリマー系接着剤或いは溶液系接着剤ではアルミの粒子そのものの外周がコーティングされる為、テルミット反応という界面接触反応を期待するにはかなりのエネルギーの損失がある。  When iron oxide powder and aluminum dross powder are solidified with an aqueous solution, there is a defect that aluminum deteriorates due to the hydration reaction of aluminum, and in the case of polymer adhesive or solution adhesive, the outer periphery of aluminum particles themselves is coated. There is considerable energy loss to expect an interfacial contact reaction called the thermite reaction.

そこで本発明では酸化鉄粉末とアルミドロス粉末と植物系であるコンニャクの廃材粉末通称コンニャク飛粉を混合し、顕微鏡による画面拡大したところ、酸化鉄粉末とアルミドロス粉末とコンニャク飛粉、三者それぞれが理想的な三角形状の界面接触をしており、ポリマー系接着剤などのコーティングによるエネルギー劣化の恐れも無く、テルミット剤充填に有機性材料の袋を利用したに燃焼損失や、コーティング剤による界面接触反応を無くすという損失も無く理想的な素早い酸化還元反応が確認された。Therefore, in the present invention, iron oxide powder, aluminum dross powder and waste material powder of konjac, which is a plant system, are commonly known as konjac flying powder, and when the screen is enlarged by a microscope, iron oxide powder, aluminum dross powder and konjac flying powder, Has an ideal triangular interface contact, there is no risk of energy deterioration due to coating with polymer adhesive, etc., and the loss due to combustion using organic material bags for filling the thermite agent, and the interface due to the coating agent An ideal and quick redox reaction was confirmed with no loss of contact reaction.

よって酸化鉄粉末とアルミドロス粉末とを、コンニャク飛粉をバインダーとして純粋なテルミット玉による助燃発熱剤の完成を見ることが出来た。Therefore, we were able to see the completion of the auxiliary heat generating agent using pure thermite balls with iron oxide powder and aluminum dross powder and konjac flying powder as a binder.

その他有効な粘着、接着成分として想定される糊・接着剤としては、水や溶剤が蒸発した後に固化・接着の機能を持つもの、たとえばニカワ、澱粉、糖蜜、天然ゴム、カゼインおよびPVP、PEO、MC、CMC等の有機質糊材もその可能性がある。Other effective adhesives and adhesives that are assumed as adhesive components include those that have the function of solidification and adhesion after evaporation of water and solvents, such as glue, starch, molasses, natural rubber, casein and PVP, PEO, There is also the possibility of organic paste materials such as MC and CMC.

テルミット丸薬剤を焼却灰に混合して、溶融炉内で加熱溶融した時、テルミット反応が同時に生起され、テルミット反応熱が発生、更に、爆発的な衝撃波も発生して混合物は撹乱される。加熱炉内の加熱により、溶融対象物は表面溶融され、表層部だけが溶融されるに過ぎないが、テルミット丸薬を焼却灰に混入する事によってテルミット反応の爆発的な撹乱作用で溶融対象物の下層部分が表層に上がり上下均等に加熱され、溶融層の深さが深くなり、この結果、溶融炉のバーナー加熱だけによる溶融に比べて時間当たりの混合物の溶融能力が増加する。テルミット丸薬剤の添加によって、その能力アップ度は表面溶融炉のバーナー単独に比較して、120〜170%溶融量が多くなる。  When thermite pills are mixed with incinerated ash and heated and melted in a melting furnace, the thermite reaction occurs simultaneously, thermite reaction heat is generated, and an explosive shock wave is also generated to disturb the mixture. Due to the heating in the heating furnace, the surface of the object to be melted is melted, and only the surface layer is melted.However, by mixing thermite pills into the incineration ash, explosive disturbance of the thermite reaction causes the melting object to melt. The lower layer part goes up to the surface layer and is heated evenly up and down, and the depth of the molten layer becomes deep. As a result, the melting capacity of the mixture per hour is increased as compared with the melting by only the burner heating of the melting furnace. The addition of thermite pills increases the degree of capacity increase by 120-170% compared to the surface melting furnace alone.

テルミット丸薬剤は、アルミ成分を含む原料と酸化鉄成分を含む原料とを混合したものからなる。アルミ成分を含む原料とは、飲料用の廃アルミ缶やアルミ地金の再溶解時に発生するアルミ残灰いわゆるアルミドロスなどのアルミ成分を含む廃棄物が有効であるが、これのみに限定されるものではない。  Thermite pills consist of a mixture of a raw material containing an aluminum component and a raw material containing an iron oxide component. Waste containing aluminum components such as waste aluminum cans for beverages and aluminum residue ash so-called aluminum dross generated when redissolving aluminum bullion is effective as raw materials containing aluminum components, but is limited to this. It is not a thing.

酸化鉄成分を含む原料とは、鉄屑、鉄錆、などの一般的な金属廃材や製鉄工業で発生する転炉ダストや高炉ダストなどの集塵灰、更には磁性酸化鉄製造時に副産物として発生する酸化鉄汚泥やチタン抽出残土、ボーキサイトから水酸化アルミニウムを製造する際の赤泥などが有効であるが、何らこれのみに限定されるものではない。これらの原料は単一種類のまま使用してもよいし、あるいは出発原料の異なる二種以上を適宜混ぜ合わせて使用してもよい。  Raw materials containing iron oxide components are general metal waste such as iron scrap and iron rust, dust collection ash such as converter dust and blast furnace dust generated in the steel industry, and also generated as a by-product during magnetic iron oxide production Iron oxide sludge, titanium extraction residue, red mud when aluminum hydroxide is produced from bauxite are effective, but are not limited thereto. These raw materials may be used as they are, or two or more different starting materials may be appropriately mixed and used.

酸化鉄含有原料として磁性酸化鉄製造時に副生する酸化鉄汚泥を使用する場合には、天日乾燥等で含有水分量を5〜1%程度に乾燥すれば良い。また出来るだけ均一均等な成分バランスを持つ丸薬製造の為には更にアルミニウム原料との混合を良くするために、塊状物を細かく粉砕しておくことが好ましい。  When using iron oxide sludge produced as a by-product during the production of magnetic iron oxide as the iron oxide-containing raw material, the water content may be dried to about 5 to 1% by sun drying or the like. Further, in order to produce a pill having a uniform and uniform component balance as much as possible, it is preferable to pulverize the lump in order to further improve the mixing with the aluminum raw material.

アルミニウム含有原料と酸化鉄含有原料を主原料とするテルミット丸薬の反応組成物中のアルミ含有量は5%以上が好ましい。5%未満ではテルミット発熱反応が起き難いので好ましくない。アルミニウムと酸化鉄の混合比率は、アルミニウム含有量1に対して酸化鉄含有量2.5〜3.0の比率が好ましく、また混合物の中に酸化チタン3〜12重量%、酸化マンガン1〜3重量%含有させることが好ましい。アルミ原料と酸化鉄原料に酸化チタンと酸化マンガンがすでに含まれて入るとき、アルミ原料と酸化原料を混合後、酸化チタンと酸化マンガンの不足分を新たに追加して加えれば良い。酸化チタンと酸化マンガンの添加方法は、酸化チタンと酸化マンガンそのものを添加しても良いし、あるいは酸化チタン、酸化マンガン成分を含有するものを添加しても良い。酸化チタン、酸化マンガンを含む廃棄物の粉粒体を添加するのも有効である。  The aluminum content in the reaction composition of thermite pills mainly composed of an aluminum-containing raw material and an iron oxide-containing raw material is preferably 5% or more. If it is less than 5%, the thermite exothermic reaction hardly occurs, which is not preferable. The mixing ratio of aluminum and iron oxide is preferably a ratio of iron oxide content of 2.5 to 3.0 with respect to aluminum content of 1, 3 to 12% by weight of titanium oxide, and manganese oxide of 1 to 3 in the mixture. It is preferable to make it contain by weight%. When titanium oxide and manganese oxide are already contained in the aluminum raw material and iron oxide raw material, the shortage of titanium oxide and manganese oxide may be added after mixing the aluminum raw material and the oxidation raw material. As a method of adding titanium oxide and manganese oxide, titanium oxide and manganese oxide itself may be added, or those containing titanium oxide and a manganese oxide component may be added. It is also effective to add waste particles containing titanium oxide and manganese oxide.

アルミニウム含有原料と酸化鉄含有原料の比率が上限を超えると酸化鉄が過多となってテルミット発熱反応が起き難くなるので好ましくない。また、下限値未満では、アルミが過多になって反応生成物にアルミニウムが残存するので好ましくない。
酸化チタン含有量が下限値未満ではテルミット反応生成物の粘性が高くて溶流性が悪くなり連続操業できなくなるので好ましくない。又、上限を超えて含有させてもそれ以上の溶流性の改善効果は見込めない。これら組成物の混合方法については、たとえば、フレットミルや高速混合機、ミキサーなど通常の撹拌混合機を用いて混合すればよく、酸化チタン、酸化マンガンなどの添加、混合方法についても特別な限定があるわけではない。
If the ratio of the aluminum-containing raw material and the iron oxide-containing raw material exceeds the upper limit, the iron oxide becomes excessive and the thermite exothermic reaction becomes difficult to occur. On the other hand, if it is less than the lower limit, the amount of aluminum becomes excessive and aluminum remains in the reaction product, which is not preferable.
If the titanium oxide content is less than the lower limit, the thermite reaction product has a high viscosity, so that the meltability becomes poor and continuous operation becomes impossible. Further, even if the content exceeds the upper limit, no further improvement effect of the meltability can be expected. About the mixing method of these compositions, for example, it may be mixed using a normal stirring mixer such as a fret mill, a high speed mixer, a mixer, etc., and there is a special limitation on the addition and mixing method of titanium oxide, manganese oxide and the like. There is no reason.

テルミット剤を丸薬にする理由としては、顆粒、造粒成形すると、粉粒体あるいは袋詰状態に比べて密度が高いため、燃焼熱の伝播速度が速く、より高い発熱効果が得られる。
顆粒あるいは造粒成形の方法は、組成物を構成しているアルミニウム成分が水分と反応しやすいので、乾式成形の方が好ましい。
乾式成形方法に付いては、ブリケットマシンによる高圧成形、あるいは粘着性の無機バインダーなどを添加する方法でも良いが、コンニャク飛粉の粘性を利用すると比較的安価で何よりも全て廃材利用である処が時流にかなって良い。
The reason why the thermit agent is made into a pill is that, when granulated or granulated, the density is higher than that of the powder or packed state, so that the propagation speed of combustion heat is high and a higher heat generation effect can be obtained.
As the granule or granulation molding method, dry molding is preferred because the aluminum component constituting the composition easily reacts with moisture.
The dry molding method may be a high pressure molding with a briquette machine or a method of adding a sticky inorganic binder, etc., but if the viscosity of konjac powder is used, it is relatively cheap and most of all uses waste materials. It's good for the times.

発明の効果The invention's effect

本発明のテルミット剤の丸薬・顆粒化により、生産の規格化、合理化、量産化はもとより、運送や搬送の規格化或いは利用する現場での扱いやすさ、新燃料として安定した市場の確保が可能となる。又廃材の利用は限りある資源の有効利用でもあり、特に酸化鉄並びにアルミは、地球上の資源としてはどちらも含有量1位2位を占める自然界資源の燃料化であることは今後熱の世界に一石を投じるものである。The thermite pills and granules of the present invention enable standardization, rationalization, and mass production of production, standardization of transportation and transportation, ease of handling on site, and stable market as new fuel. It becomes. In addition, the use of waste materials is an effective use of limited resources. In particular, iron oxide and aluminum are fuels for natural resources, both of which are the first and second in content on the earth. One stone is thrown at the door.

以下に本発明実施の形態を、丸薬製造機や玉型菓子製造機或いはペレット製造機など既存の装置や機器でそのまま生産が可能となり大量生産による価格の廉価と安定化は大量消費への道が開け、新燃料として新たな市場が開けると共に超高温域が安定的に供給できる事となり、今後の新技術の開発が見込まれる。なお本実施の形態は、発明の趣旨をよりよく理解して頂くために具体的に説明するものであり、本発明がこれのみに限定されるものでないことはもちろんである。  In the following, the embodiment of the present invention can be produced as it is with existing equipment and equipment such as a pill making machine, a confectionery making machine or a pellet making machine, and the low price and stabilization by mass production are the way to mass consumption. Opening a new market as a new fuel and providing a stable supply of ultra-high temperatures will enable the development of new technologies in the future. This embodiment is specifically described for better understanding of the gist of the invention, and the present invention is of course not limited thereto.

実施例1、ペレット製造機に酸化鉄粉末とアルミドロス粉末と若干湿ったコンニャク飛粉とを混合し投入するだけでそのままテルミット剤の丸薬の製造が容易に可能であった。その後、天日で一日足らずで乾燥し、翌日には直ちに溶接用ガスバーナーを使って反応テストをした結果、正眼視出来ない白色に輝く発熱反応が見られた。その時若干の発熱による焼煙が見られたが通常の有機物の燃焼に比較し煙はほとんど無く、マッチを着火したときの硝煙に等しく正に化学反応であることの確証が得られた。  The thermite pills could be easily produced simply by mixing the iron oxide powder, the aluminum dross powder, and the slightly wet konjac powder into the pellet production machine in Example 1, and adding them. After that, it was dried in less than a day in the sun, and the reaction test was immediately performed using a welding gas burner on the next day. At that time, a slight amount of exothermic smoke was seen, but there was almost no smoke compared to the normal combustion of organic matter, confirming that it was a chemical reaction just like the glass smoke when the match was ignited.

実施例2、テルミット丸薬剤のペレット化
アルミ原料:アルミ地金の再溶解時に発生したアルミ残灰を乾燥したものを使用した。
酸化鉄成分:南方から輸入した赤土素材のチタン抽出残土の赤泥を乾燥後使用した。
補助原料:酸化チタン、酸化マンガンの廃棄物を粉砕したものを使用した。上記アルミ原料、酸化鉄成分、補助原料を下記の成分組成(wt%)に調合して、これにコンニャク飛粉を5%を混合して、ペレタイザーで直径8mm、長さ10〜12mmの大きさのペレットを作った。
テルミット丸薬剤の概算成分組成
アルミ成分 :23%
酸化鉄成分 :58%
酸化チタン : 5%
酸化マンガン : 2%
コンニャク飛粉:10%
Example 2, Pelletized aluminum raw material of thermite pill drug: A dried aluminum residue ash generated during remelting of an aluminum ingot was used.
Iron oxide component: Red mud of red soil material titanium extract imported from the south was used after drying.
Auxiliary materials: Titanium oxide and manganese oxide wastes were used. The above aluminum raw material, iron oxide component, and auxiliary raw material are prepared in the following composition (wt%), konjac powder is mixed with 5%, and the diameter is 8mm and length is 10-12mm with a pelletizer. Made pellets.
Approximate composition of thermite pills Aluminum composition: 23%
Iron oxide component: 58%
Titanium oxide: 5%
Manganese oxide: 2%
Konjac powder: 10%

上記、酸化鉄とアルミドロス約3:1の割合に混合したテルミット丸薬剤のペレットを、表面溶融炉で溶融テストした。
図1は、本実施例で使用した表面溶融炉の説明図である。
図中、1は被溶融原料であり発熱添加剤としてのテルミット丸薬はいわゆる酸化鉄とアルミドロスの混合比3:1を10%のコンニャク飛粉で混合しペレット化したものである。
The thermite pill pellets mixed at a ratio of about 3: 1 to iron oxide and aluminum dross were melt tested in a surface melting furnace.
FIG. 1 is an explanatory diagram of the surface melting furnace used in this example.
In the figure, reference numeral 1 denotes a raw material to be melted, and thermite pills as an exothermic additive are formed by mixing so-called iron oxide and aluminum dross in a mixing ratio of 3: 1 with 10% konjac powder and pelletized.

被溶融原料1は、プッシャーで溶融炉2内に押し込む。
炉内に押し込まれた溶融原料1は溶融されながら傾斜炉床から下に流れ落ちる。
バーナーの燃料にはA重油を使用した。
The material 1 to be melted is pushed into the melting furnace 2 by a pusher.
The molten raw material 1 pushed into the furnace flows down from the inclined hearth while being melted.
Heavy oil A was used as the fuel for the burner.

被溶融テスト剤としては、溶融温度1,400℃〜1,450℃以上を必要とする焼却飛灰を使用した為、テスト剤としてはバーナー火炎で吹き飛ばされ炉内に粉塵が飛び散り、炉外に漏出する恐れもあり、環境上好ましくない為、水ガラスで固化した為、バーナー火炎で飛ばされることも無く、炉内で沈静して加熱ができ、炉外に粉塵が漏出することも無かった。  As the test material to be melted, incineration fly ash requiring a melting temperature of 1,400 ° C. to 1,450 ° C. or higher was used, so that the test agent was blown away by a burner flame and dust was scattered inside the furnace, and the outside of the furnace Since there was a possibility of leakage and it was not environmentally preferable, it was solidified with water glass, so it was not blown away by a burner flame, it could be heated in a furnace, and dust would not leak out of the furnace.

溶融で最も難しいと言われている焼却飛灰を表面溶融炉で溶融する時は、1450℃以上加熱する必要があり、100kgの溶融スラグを得るのに要した時間は僅かでも、炉内温度の溶融環境を整える為30時間かかった。一方、100kgの焼却飛灰に、10kgのペレット化したテルミット丸薬剤を混合してバーナー加熱したところ、炉内温度が1,650℃に到達してからは全量溶融にわずか05時間しか、かからなかった。又、後日の再現性を維持するため、赤外線カメラで溶融温度体を撮影した結果、白色の温度帯が別紙1,700℃以上あることも判明しテルミット剤の効用の確認が出来た。  When incineration fly ash, which is said to be the most difficult to melt, is melted in a surface melting furnace, it is necessary to heat it at 1450 ° C. or higher, and even if the time required to obtain 100 kg of molten slag is small, It took 30 hours to prepare the melting environment. On the other hand, when 100 kg of incinerated fly ash was mixed with 10 kg of pelletized thermite pills and heated by a burner, the total amount of melting was only 05 hours after the furnace temperature reached 1,650 ° C. There wasn't. Moreover, in order to maintain the reproducibility at a later date, as a result of photographing the melting temperature body with an infrared camera, it was found that the white temperature zone was 1,700 ° C. or more, and the effectiveness of the thermite agent could be confirmed.

最も心配した案件の一つはテルミット剤の飛散であるが、本発明により超高温域においてもテルミット剤の飛散を防止することができた。又溶融という超高温域で次なる問題として挙げられる最大の不安材料は、溶融炉内炉床の耐火材の耐熱性であったが、テルミット剤中のアルミが酸化した結果、アルミナに化学変化し炉床のコーティング剤の役目を果たすという思わぬ好結果をもたらした。アルミナの溶融温度は約2,000℃であり、結果として経済的に極めて低いコストで処理できることが判明した。今ひとつ心配した案件として溶融炉への搬送途中に於ける焼却飛灰等の粉塵の飛散であるが、水ガラスによる被溶融原料の荒コーティングで飛散が防止でき、コンニャク飛粉によるテルミット剤の丸薬化によりテルミット剤の飛散も防げる事が判明した。以上の結果、最も難しいと言われている溶融対象物の焼却飛灰が、完全にガラス化して、無害化されており、スラグの溶出試験の分析結果も合格であった。  One of the most worried cases is the scattering of the thermite agent, but the present invention was able to prevent the thermit agent from scattering even in the ultra-high temperature range. In addition, the biggest anxiety material listed as the next problem in the ultrahigh temperature range of melting was the heat resistance of the refractory material in the hearth of the melting furnace, but as a result of the oxidation of aluminum in the thermite agent, it chemically changed to alumina. The result was an unexpected good result of acting as a hearth coating agent. The melting temperature of alumina is about 2,000 ° C., and as a result, it has been found that it can be processed economically at a very low cost. Another concern was the scattering of dust such as incineration fly ash during transport to the melting furnace, but the rough coating of the raw material to be melted with water glass prevents the scattering, and thermite preparation is made into pills with konjac powder. As a result, it was found that the thermite agent could be prevented from scattering. As a result, the incineration fly ash of the object to be melted, which is said to be the most difficult, was completely vitrified and rendered harmless, and the analysis result of the slag elution test was also acceptable.

以上詳述した様に、本発明は、使用する材料全てが廃材利用と言う極めて低コストで完全無公害溶融できるものであり、本来、廃棄する為に処分費を必要とする物質の有効利用であり、今後の静脈産業界に多大の貢献をなすものである。  As described above in detail, the present invention is capable of completely pollution-free melting at a very low cost, in which all materials used are used as waste materials. Yes, it will make a great contribution to the future vein industry.

図1は、表面溶融熱炉にテルミット丸薬を投入する概要図である。FIG. 1 is a schematic view of introducing thermite pills into a surface melting furnace. 図2は、本発明のテルミット剤の形状説明図である。FIG. 2 is an explanatory view of the shape of the thermite agent of the present invention. 図3は、本発明の酸化鉄粒子とアルミドロス粒子がコンニャク飛粉粒子と、界面接着した理想的な状態を顕微鏡レベルに拡大した状態である。FIG. 3 shows a state in which an ideal state in which the iron oxide particles and the aluminum dross particles of the present invention are bonded to the konjac powder particles at an interface is enlarged to a microscopic level. 図4は溶融炉内の温度を赤外線カメラで撮影した結果1,800℃帯が確認できた写真である。FIG. 4 is a photograph in which the 1,800 ° C. band was confirmed as a result of photographing the temperature in the melting furnace with an infrared camera.

1、被溶融対象物(焼却灰等)
2、溶融炉
3、加熱バーナー
4、溶融スラグ
5、丸薬状のテルミット剤をコンベアで被溶融対象物に混入する状態である
6、酸化鉄粉末とアルミドロス粉末をコンニャク飛粉で混合接着し丸薬にした状態
7、酸化鉄粉末とアルミドロス粉末をコンニャク飛粉で混合しペット化した状態
8、コンニャク飛粉粒子
9、酸化鉄粒子
10、アルミ粒子
1. Objects to be melted (incineration ash, etc.)
2, Melting furnace 3, Heating burner 4, Melting slag 5, Pill-like thermite agent is in a state where it is mixed with the object to be melted on the conveyor 6. Iron oxide powder and aluminum dross powder are mixed and bonded with konjac powder and pills 7. State in which it is made 7, Iron oxide powder and aluminum dross powder are mixed with konjac flying powder and made into pets 8. Konjac flying powder particles 9, iron oxide particles 10, aluminum particles

Claims (6)

酸化鉄粉末とアルミドロス粉末をコンニャク飛粉で混合密着させる行程と、該混合物を ペレット化する事を特徴としたテルミット剤。  A thermite agent characterized in that iron oxide powder and aluminum dross powder are mixed and adhered with konjac flying powder, and the mixture is pelletized. 酸化鉄粉末とアルミドロス粉末を水ガラスで混合密着させる行程と、該混合物をペレット化する事を特徴としたテルミット剤。  A thermite agent characterized in that iron oxide powder and aluminum dross powder are mixed and adhered with water glass, and the mixture is pelletized. 酸化鉄粉末とアルミドロス粉末とコンニャク飛粉を主剤として他の粘着剤若しくはポリマーを混合密着させる行程と、該混合物をペレット化する事を特徴としたテルミット剤。  A thermite agent characterized in that iron oxide powder, aluminum dross powder and konjac flying powder are used as the main ingredients, and a process of mixing and adhering another adhesive or polymer and pelletizing the mixture. 酸化鉄粉末とアルミドロス粉末の混合比率が重量比で、100:(2〜30)であることを特徴とする請求項1並びに請求項2に記載のテルミット剤。  The mixing ratio of iron oxide powder and aluminum dross powder is 100: (2-30) by weight ratio, The thermite agent of Claim 1 and Claim 2 characterized by the above-mentioned. 酸化鉄粉末とアルミドロス粉末とコンニャク飛粉、いずれも廃材である事を特徴とするテルミット剤。  A thermite agent characterized in that iron oxide powder, aluminum dross powder and konjac flying powder are all waste materials. 酸化鉄粉末とアルミドロス粉末とコンニャク飛粉粉末、若しくは水ガラスの3品それぞれが、界面接触している形状がすくなくともテルミット剤全体の1%以上占める事を特徴とする請求項1に記載のテルミット剤。  The thermite according to claim 1, wherein each of the three products of the iron oxide powder, the aluminum dross powder, the konjac flying powder, or the water glass occupies 1% or more of the total thermite agent at least at the interface contact shape. Agent.
JP2010099253A 2010-04-06 2010-04-06 Method for preparing thermit agent Pending JP2011218339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099253A JP2011218339A (en) 2010-04-06 2010-04-06 Method for preparing thermit agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099253A JP2011218339A (en) 2010-04-06 2010-04-06 Method for preparing thermit agent

Publications (1)

Publication Number Publication Date
JP2011218339A true JP2011218339A (en) 2011-11-04

Family

ID=45035992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099253A Pending JP2011218339A (en) 2010-04-06 2010-04-06 Method for preparing thermit agent

Country Status (1)

Country Link
JP (1) JP2011218339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048080A (en) * 2015-09-01 2017-03-09 カヤク・ジャパン株式会社 Fracturing agent composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048080A (en) * 2015-09-01 2017-03-09 カヤク・ジャパン株式会社 Fracturing agent composition

Similar Documents

Publication Publication Date Title
CN104404246B (en) The method improving metallurgical slag pelletizing degree of metalization
ES2877505T3 (en) Improved slag from non-ferrous metal production
CN101921072B (en) Method for removing ring formation of rotary kiln for active lime calcination
JP2006009151A (en) Batchwise treatment for recycle material in rotary reactor
Butnariu et al. Research on the Recycling of Pulverulent Waste from the Ferous and Non-Ferrous Industry in Order tu Reduced the Pollution
JP2011218339A (en) Method for preparing thermit agent
JP2012031499A (en) Method for recovering gold, silver, platinum or rare metal from waste by use of thermite melting method
AU2006335814B2 (en) Method for manufacturing metallic iron
JP2012020272A (en) Asbestos-based waste, and detoxifying treatment method and dedicated melting furnace for pcb
Hycnar et al. Conditions for the preparation of stable ferrosilicon dust briquettes
JP2011136320A (en) Method of detoxifying asbestos
TWI559329B (en) A method for removing radioactive cesium, and a method for producing a calcined product
CN103667688B (en) Method for performing boron and iron separation on paigeite
RU2010133425A (en) METHOD FOR DISPOSAL OF ELECTRICALLY MELTING FURNACES
RU2321647C1 (en) Iron-containing waste material such as scale briquetting method for melting
CN103305703A (en) Using method of granulation binder for chloride-leaching incineration residue
CZ297694B6 (en) Ingredient scrap briquette and process for producing thereof
JP5973966B2 (en) Method for producing reduced iron
JPS61194125A (en) Simultaneous treatment of sludge and steel making slag
CN104674001B (en) Efficient environment-friendly cheap adhesion agent of pellet and preparation method thereof
JP5910542B2 (en) Hot metal manufacturing method using vertical melting furnace
CN108034809A (en) A kind of sintering method of lateritic nickel ore
JP2003027127A (en) Low fuming aluminum-containing article
Du Preez et al. Sodium Silicate Cold-Bonded Chromite Pellets for the Ferrochromium Industry–Identifying a Suitable Process
JPS6115759B2 (en)