JP2011216242A - Method of manufacturing nonaqueous electrolytic secondary battery and positive electrode therefor - Google Patents

Method of manufacturing nonaqueous electrolytic secondary battery and positive electrode therefor Download PDF

Info

Publication number
JP2011216242A
JP2011216242A JP2010081375A JP2010081375A JP2011216242A JP 2011216242 A JP2011216242 A JP 2011216242A JP 2010081375 A JP2010081375 A JP 2010081375A JP 2010081375 A JP2010081375 A JP 2010081375A JP 2011216242 A JP2011216242 A JP 2011216242A
Authority
JP
Japan
Prior art keywords
positive electrode
coating layer
conductive agent
positive
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010081375A
Other languages
Japanese (ja)
Inventor
Hideki Morishima
秀樹 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010081375A priority Critical patent/JP2011216242A/en
Publication of JP2011216242A publication Critical patent/JP2011216242A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a nonaqueous electrolytic secondary battery excellent in cycling characteristic.SOLUTION: The method of manufacturing the positive electrode for the nonaqueous electrolytic secondary battery includes: a step of forming a positive-electrode combining-agent layer 2 with a positive-electrode active material, an active-material conductive agent, and an active-material binding agent on a positive-electrode electric collector 1; and a step of removing a dispersion medium to form the covered layer after a covered-layer conductive agent and a covered-layer binding agent are deposited on the positive-electrode combining-agent layer 2, by soaking an counter electrode 3 and the positive-electrode electric collector 1 with the positive-electrode combining-agent layer 2 formed thereon, in dispersion liquid 5 in which the covered-layer conductive agent and the covered-layer binding agent are dispersed in the dispersion medium, and by applying a DC voltage in between the positive-electrode electric collector 1 and the counter electrode 3. Both the covered-layer conductive agent and the covered-layer binding agent are charged to the same polarity in the dispersion medium.

Description

本発明は、非水電解質二次電池の正極の改良に関する。   The present invention relates to an improvement in the positive electrode of a nonaqueous electrolyte secondary battery.

非水電解質二次電池は、高いエネルギー密度を有し、高容量であるため、携帯機器の駆動電源として広く利用されている。また、非水電解質二次電池は、電動工具、電動アシスト自転車、電気自動車(EV、HEV)等の高出力を必要とする用途に使用されるようになっている。   Nonaqueous electrolyte secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources for portable devices. In addition, non-aqueous electrolyte secondary batteries are used for applications that require high output, such as electric tools, electric assist bicycles, and electric vehicles (EV, HEV).

非水電解質二次電池の正極活物質には、リチウムコバルト複合酸化物等のリチウム遷移金属複合酸化物が用いられているが、リチウムコバルト複合酸化物は導電性が低いため、炭素材料等からなる導電剤を混合させたり、正極表面に導電性の被覆層を形成したりして、正極としての導電性を高めることが行われている。   Lithium transition metal composite oxides such as lithium cobalt composite oxide are used for the positive electrode active material of the non-aqueous electrolyte secondary battery. However, since lithium cobalt composite oxide has low conductivity, it is made of a carbon material or the like. Conductivity is increased as a positive electrode by mixing a conductive agent or forming a conductive coating layer on the positive electrode surface.

このような被覆層に関する技術としては、下記特許文献1〜5が挙げられる。   The following patent documents 1-5 are mentioned as a technique regarding such a coating layer.

特開2007-176070号公報JP 2007-176070 A 特開2006-179320号公報JP 2006-179320 A 特開2002-121697号公報JP 2002-121697 特開2000-331686号公報Japanese Unexamined Patent Publication No. 2000-331686 特開2000-208135号公報JP 2000-208135 A

特許文献1は、樹脂粒子と、当該樹脂粒子の表面に付着した導電性粒子とを有する複合粒子が、当該複合粒子の表面の樹脂同士が溶融接着されて、積層構造を形成してある導電性複合膜を開示している。この技術によると、燃料電池に適した高い導電性を有する導電性複合膜を得られるとされる。   Patent Document 1 discloses a conductive material in which a composite particle having resin particles and conductive particles attached to the surface of the resin particles is formed by laminating and bonding the resins on the surface of the composite particles to each other. A composite membrane is disclosed. According to this technique, a conductive composite film having high conductivity suitable for a fuel cell can be obtained.

特許文献2は、少なくとも活物質を含有する活物質層中間体の空隙内に、導電性付与材料を追加することにより電極活物質層を形成することを開示している。この技術によると、電極活物質層内の導電性を向上できるとされる。   Patent Document 2 discloses that an electrode active material layer is formed by adding a conductivity-imparting material in the voids of an active material layer intermediate containing at least an active material. According to this technique, the electrical conductivity in the electrode active material layer can be improved.

特許文献3は、電気泳動によって、分散液中に含まれるフッ素樹脂微粒子を主体とするガス拡散電極材料を、導電性基材の表面に析出させたフッ素樹脂含有多孔質体を開示している。この技術によると、燃料電池等に用いられるガス拡散電極に適したフッ素樹脂含有多孔質体を得られるとされる。   Patent Document 3 discloses a fluororesin-containing porous body in which a gas diffusion electrode material mainly composed of fluororesin fine particles contained in a dispersion liquid is deposited on the surface of a conductive substrate by electrophoresis. According to this technique, a fluororesin-containing porous body suitable for a gas diffusion electrode used in a fuel cell or the like can be obtained.

特許文献4は、正極活物質層や負極活物質層の表面に炭素材料、金属粉末又は導電性セラミックなどからなる導電性材料の層を設けることを開示している。この技術によると、サイクル寿命特性を向上できるとされる。   Patent Document 4 discloses that a conductive material layer made of a carbon material, metal powder, conductive ceramic, or the like is provided on the surface of a positive electrode active material layer or a negative electrode active material layer. According to this technique, the cycle life characteristics can be improved.

特許文献5は、リチウムイオンを可逆的に吸蔵放出するリチウム遷移金属複合酸化物、導電剤および結着剤を含む合剤を備えた多孔構造中に炭素材料からなる層を設けた非水電解質電池用正極を開示している。この技術によると、正極活物質の充電深度が不均一であることによって負極板表面に金属リチウムが析出することを防止できるとされる。   Patent Document 5 discloses a nonaqueous electrolyte battery in which a layer made of a carbon material is provided in a porous structure including a lithium transition metal composite oxide that reversibly absorbs and releases lithium ions, a mixture containing a conductive agent and a binder. A positive electrode for use is disclosed. According to this technique, it is said that lithium metal can be prevented from being deposited on the surface of the negative electrode plate due to the uneven charging depth of the positive electrode active material.

しかしながら、上記特許文献1,3にかかる技術は、燃料及び酸化剤を供給しながら発電する燃料電池に用いる電極に適用する技術であり、電位差を利用して発電する非水電解質二次電池用電極にそのまま適用することはできない。また、上記特許文献2,4,5にかかる技術では、正極表面に均一で且つ厚みの薄い導電性被覆層を形成することが困難であるという問題があった。導電性被覆層が不均一な場合には、導電性の高い正極集電体からの距離が遠い正極表面付近の電子伝導性が不均一となるため、正極集電体と水平方向に対して正極内の電気化学反応にばらつきが生じ、局所的に正極活物質が劣化した部分が生じてしまう。そして、劣化した正極活物質により正極の均一な電気化学反応がさらに阻害され、正極活物質の劣化が促進されるので、サイクル劣化が生じやすいという問題がある。また、導電性被覆層が不均一であると、導電性被覆層の非水電解質保持能力が不十分となりやすく、正極の非水電解質不足に起因するサイクル劣化も起き易くなる。さらに、導電性被覆層の厚みが厚いと、正極表面での電気化学反応が阻害されて放電特性を低下させるおそれがある。   However, the techniques according to Patent Documents 1 and 3 are applied to an electrode used in a fuel cell that generates power while supplying a fuel and an oxidant, and an electrode for a non-aqueous electrolyte secondary battery that generates power using a potential difference. It cannot be applied as it is. Further, the techniques according to Patent Documents 2, 4, and 5 have a problem that it is difficult to form a uniform and thin conductive coating layer on the surface of the positive electrode. If the conductive coating layer is non-uniform, the electron conductivity near the positive electrode surface that is far from the highly conductive positive electrode current collector becomes non-uniform. Variations occur in the electrochemical reaction, and a portion in which the positive electrode active material is locally degraded is generated. And since the uniform electrochemical reaction of the positive electrode is further inhibited by the deteriorated positive electrode active material and the deterioration of the positive electrode active material is promoted, there is a problem that cycle deterioration is likely to occur. Further, if the conductive coating layer is non-uniform, the non-aqueous electrolyte holding ability of the conductive coating layer tends to be insufficient, and cycle deterioration due to the shortage of the non-aqueous electrolyte of the positive electrode tends to occur. Furthermore, if the thickness of the conductive coating layer is thick, the electrochemical reaction on the positive electrode surface may be hindered and the discharge characteristics may be deteriorated.

本発明は、上記に鑑みなされたものであって、均一な導電性被覆層を備える非水電解質二次電池用正極及びこれを用いてなる非水電解質二次電池を提供することを目的とする。   This invention is made in view of the above, Comprising: It aims at providing the positive electrode for nonaqueous electrolyte secondary batteries provided with a uniform electroconductive coating layer, and a nonaqueous electrolyte secondary battery using the same. .

上記課題を解決するための第1の本発明は、次のように構成されている。
正極集電体上に、正極活物質と活物質導電剤と活物質結着剤とを有する正極合剤層を形成する正極合剤層形成工程と、被覆層導電剤と被覆層結着剤とが分散媒中に分散された分散液に、正極合剤層が形成された正極集電体と、対極と、を浸漬し、前記正極集電体と前記対極との間に直流電圧を印加することにより、前記正極合剤層上に前記被覆層導電剤と前記被覆層結着剤とを堆積させた後、前記分散媒を除去して被覆層を形成する被覆層形成工程と、を備え、前記被覆層導電剤と前記被覆層結着剤とは、前記分散媒中において同一極性に帯電することを特徴とする非水電解質二次電池用正極の製造方法。
The first aspect of the present invention for solving the above problems is configured as follows.
A positive electrode mixture layer forming step of forming a positive electrode mixture layer having a positive electrode active material, an active material conductive agent, and an active material binder on the positive electrode current collector; and a coating layer conductive agent and a coating layer binder; Is immersed in a dispersion liquid in which a positive electrode mixture layer is formed and a counter electrode, and a DC voltage is applied between the positive electrode current collector and the counter electrode. A coating layer forming step of forming the coating layer by removing the dispersion medium after depositing the coating layer conductive agent and the coating layer binder on the positive electrode mixture layer, The method for producing a positive electrode for a non-aqueous electrolyte secondary battery, wherein the coating layer conductive agent and the coating layer binder are charged to the same polarity in the dispersion medium.

この構成では、分散媒中で同一極性の電荷を帯びた被覆層導電剤と被覆層結着剤とを、直流電圧の印加により正極合剤層表面に移動(電気泳動)させて堆積させ、その後分散媒を除去することにより、導電性を有する被覆層を形成している。この方法では、印加電圧や印加時間を制御することにより、形成される被覆層の厚みを制御でき、且つ被覆層を均一に形成することができる。均一で厚みの薄い導電性の被覆層を有する正極は、正極合剤層の表面付近、つまり正極集電体からの距離が遠い部分において、正極集電体と水平方向における電子伝導性が均一化するので、正極合剤層表面付近の正極活物質の充電・放電深度にバラツキが生じなくなる。これにより、局所的な正極活物質の劣化が生じることがなくなる。   In this configuration, the coating layer conductive agent having a charge of the same polarity in the dispersion medium and the coating layer binder are deposited by moving (electrophoresis) to the surface of the positive electrode mixture layer by applying a DC voltage, and thereafter By removing the dispersion medium, a conductive coating layer is formed. In this method, the thickness of the coating layer to be formed can be controlled by controlling the applied voltage and the application time, and the coating layer can be formed uniformly. A positive electrode with a uniform and thin conductive coating layer has uniform electron conductivity in the horizontal direction with the positive electrode current collector near the surface of the positive electrode mixture layer, that is, at a distance from the positive electrode current collector. Therefore, there is no variation in the charge / discharge depth of the positive electrode active material near the surface of the positive electrode mixture layer. Thereby, local deterioration of the positive electrode active material does not occur.

また、均一で厚みの薄い導電性被覆層を有する正極は保液性に優れ、内部に十分に非水電解質を保持することができる。上記構成では、正極活物質表面に十分な量の非水電解質が存在し、正極においてスムーズな電気化学反応が進行するので、正極反応がより均一となる。上記第1の本発明の構成では、正極表面付近の電子伝導性の均一化と、優れた保液性と、が相乗的に作用して、サイクル特性を飛躍的に向上させることができる。また、被覆層の厚みを薄くできるので、正極表面での電気化学反応が阻害されるおそれがない。   In addition, a positive electrode having a uniform and thin conductive coating layer is excellent in liquid retention and can sufficiently hold a nonaqueous electrolyte therein. In the above configuration, a sufficient amount of nonaqueous electrolyte is present on the surface of the positive electrode active material, and a smooth electrochemical reaction proceeds at the positive electrode, so that the positive electrode reaction becomes more uniform. In the configuration of the first aspect of the present invention, the uniformity of electron conductivity near the surface of the positive electrode and the excellent liquid retention function act synergistically, and the cycle characteristics can be drastically improved. Moreover, since the thickness of the coating layer can be reduced, there is no possibility that the electrochemical reaction on the positive electrode surface is hindered.

ここで、電気泳動に伴う電圧や電流によって分散媒が分解すると、均一で厚みの薄い被覆層を形成することが難しくなる。これを防止するため、分散媒として非プロトン系有機溶媒を用いることが好ましい。中でも、アセトン及び/又はN−メチルピロリドンを用いることがより好ましい。   Here, when the dispersion medium is decomposed by a voltage or current accompanying electrophoresis, it becomes difficult to form a uniform and thin coating layer. In order to prevent this, it is preferable to use an aprotic organic solvent as the dispersion medium. Among these, it is more preferable to use acetone and / or N-methylpyrrolidone.

また、被覆層導電剤としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス、ガラス状炭素、炭素繊維、カーボンブラック、アセチレンブラック、ケッチェンブラック、またはこれらの焼成体の一種あるいは複数種混合した炭素材料などが使用できる。中でも、アセチレンブラックを用いることがより好ましい。また、活物質導電剤として、被覆層導電剤で例示したものを用いることができる。   In addition, as the coating layer conductive agent, non-graphitizable carbon, artificial graphite, natural graphite, coke, glassy carbon, carbon fiber, carbon black, acetylene black, ketjen black, or one or more of these fired bodies Mixed carbon materials can be used. Among these, acetylene black is more preferably used. Moreover, what was illustrated by the coating layer electrically conductive agent can be used as an active material electrically conductive agent.

また、被覆層導電剤のみでも被覆層の形成自体は可能であるが、被覆層と正極合剤層との密着性が十分ではなく、被覆層の崩落が生じてしまう。このため、被覆層導電剤に加えて被覆層結着剤を用いる必要がある。被覆層結着剤は、ポリフッ化ビニリデン(PVDF)、ポリテトラフロオロエチレン(PTFE)、エチレン−テトラフルオロエチレン共重合体(ETFE)、またはこれらの共重合体等のフッ素系樹脂を単独又は複数種混合して使用できる。中でも、ポリフッ化ビニリデンを用いることがより好ましい。また、活物質結着剤として、被覆層結着剤で例示したものを用いることができる。   In addition, the coating layer itself can be formed with the coating layer conductive agent alone, but the adhesion between the coating layer and the positive electrode mixture layer is not sufficient, and the coating layer collapses. For this reason, it is necessary to use a coating layer binder in addition to the coating layer conductive agent. The coating layer binder is a single or plural fluorine resins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE), or a copolymer thereof. Can be used by mixing seeds. Among these, it is more preferable to use polyvinylidene fluoride. Moreover, what was illustrated by the coating layer binder can be used as an active material binder.

ポリフッ化ビニリデンは、分子量が小さすぎると極板との密着性が低下し、また分子量が大きすぎると溶媒との膨潤性が低下する。このため、重量平均分子量が12万から100万のものを用いることが好ましい。   When the molecular weight of the polyvinylidene fluoride is too small, the adhesion to the electrode plate is lowered, and when the molecular weight is too large, the swelling property with the solvent is lowered. For this reason, it is preferable to use those having a weight average molecular weight of 120,000 to 1,000,000.

また、電気泳動により、正極合剤層表面に均一に被覆層導電剤と被覆層結着剤とを堆積させるためには、被覆層導電剤と被覆層結着剤との分散性の高い分散液を用いることが好ましい。例えば、被覆層結着剤を膨潤させた分散媒に被覆層導電剤を加えて、高速で攪拌する手法や超音波照射を行う手法では、互いを均一に分散させることが難しい。これに対し、ビーズミルやボールミルのように、機械的に互いを衝突させ剪断応力を加える混合手法を用いると、被覆層導電剤と被覆層結着剤とがより均一に分散されたスラリー状の分散液を作製することが容易となる。この手法を用いる場合、分散媒に膨潤させた被覆層結着剤と被覆層導電剤とを混合(湿式混合)することが好ましく、湿式混合における固形分比率は高い方が好ましい。その後、電気泳動時には、正極合剤層に被覆層を形成するために最適な固形分比率となるように、適宜分散媒を追加して固形分比率を下げる。ここで、被覆層結着剤と被覆層導電剤とを混合、均一分散させる際には、分散液全体(分散媒+被覆層結着剤+被覆層導電剤)に対する固形分(被覆層結着剤+被覆層導電剤)の質量比率は、が8〜30質量%であることが好ましい。その後、電気泳動堆積時には、固形分比率が0.4〜2質量%になるように、分散媒を加えることが好ましい。   Further, in order to deposit the coating layer conductive agent and the coating layer binder uniformly on the surface of the positive electrode mixture layer by electrophoresis, a highly dispersible dispersion of the coating layer conductive agent and the coating layer binder Is preferably used. For example, it is difficult to uniformly disperse each other by a method of adding a coating layer conductive agent to a dispersion medium in which a coating layer binder is swollen and stirring at high speed or a method of performing ultrasonic irradiation. On the other hand, using a mixing method that mechanically collides each other and applies shear stress, such as a bead mill or ball mill, a slurry-like dispersion in which the coating layer conductive agent and the coating layer binder are more uniformly dispersed. It becomes easy to prepare the liquid. When this method is used, it is preferable to mix (wet mixing) the coating layer binder swollen in the dispersion medium and the coating layer conductive agent, and it is preferable that the solid content ratio in the wet mixing is high. Thereafter, at the time of electrophoresis, a dispersion medium is appropriately added to lower the solid content ratio so that the optimal solid content ratio for forming the coating layer on the positive electrode mixture layer is obtained. Here, when mixing and uniformly dispersing the coating layer binder and the coating layer conductive agent, the solid content (coating layer binding) with respect to the entire dispersion (dispersion medium + coating layer binder + coating layer conductive agent) The mass ratio of (agent + coating layer conductive agent) is preferably 8 to 30% by mass. Thereafter, at the time of electrophoretic deposition, it is preferable to add a dispersion medium so that the solid content ratio is 0.4 to 2% by mass.

また、被覆層結着剤と被覆層導電剤との質量混合比は、1:0.5〜1:2であることが好ましい。   The mass mixing ratio of the coating layer binder and the coating layer conductive agent is preferably 1: 0.5 to 1: 2.

また、電気泳動の際に用いる対極には、容易にイオン化しない金属、合金等を用いることが好ましく、たとえば白金や黒鉛を用いる。   In addition, it is preferable to use a metal, an alloy, or the like that is not easily ionized as the counter electrode used for electrophoresis, for example, platinum or graphite.

また、印加電圧は、分散媒の分解抑制の観点から、直流電圧で10〜200Vであることが好ましい。また、極板間距離が近すぎると接触のおそれがあり、遠すぎると電気泳動の効率が低下するため、極板間距離は5〜50mmであることが好ましい。電気泳動時の温度は、泳動を一定にするために、0〜30℃で均一に保つことが好ましい。   In addition, the applied voltage is preferably 10 to 200 V as a direct current voltage from the viewpoint of suppressing the decomposition of the dispersion medium. Further, if the distance between the electrode plates is too close, there is a fear of contact, and if it is too far, the efficiency of electrophoresis is lowered. Therefore, the distance between the electrode plates is preferably 5 to 50 mm. The temperature during electrophoresis is preferably kept uniform at 0 to 30 ° C. in order to keep the electrophoresis constant.

また、電気泳動の電圧印加時間は10秒から100分であることが好ましい。また、形成される被覆層の厚みが薄過ぎると、均一に正極合剤層表面を覆うことが出来ず、被覆層の効果が十分に得られない。また、被覆層が厚すぎると、正極表面での電気化学反応を阻害するおそれがある。よって、被覆層の厚みは、0.1〜10μmであることが好ましい。   The voltage application time for electrophoresis is preferably 10 seconds to 100 minutes. Moreover, when the thickness of the coating layer formed is too thin, the positive electrode mixture layer surface cannot be uniformly covered, and the effect of the coating layer cannot be sufficiently obtained. On the other hand, if the coating layer is too thick, the electrochemical reaction on the positive electrode surface may be hindered. Therefore, the thickness of the coating layer is preferably 0.1 to 10 μm.

ここで、正極合剤層が形成された正極集電体(非水電解質二次電池用正極)を、分散媒中の被覆層結着剤及び被覆層導電剤とは逆の極性となるように、対極との間に電圧を印加することにより、正極合剤層上に電気泳動堆積による被覆層を形成することができる。しかしながら、非水電解質二次電池用正極側がマイナスとなるように電圧をかけて電気泳動を行うと、正極材料にダメージを及ぼすおそれがある。このため、非水電解質二次電池用正極にはプラスの電圧を印加し、被覆層結着剤、被覆層導電剤及び分散媒は、被覆層結着剤及び被覆層導電剤が分散媒中においてマイナスに帯電するものを用いることが好ましい。具体的には、被覆層結着剤としてのフッ素系樹脂と、被覆層導電剤とを、剪断応力を加えながら非プロトン系有機溶媒からなる分散媒中に均一に分散させた分散溶液を使用すると、被覆層結着剤及び被覆層導電剤が分散媒中でマイナスに帯電することになる。このため、被覆層結着剤としてはフッ素系樹脂を使用することが特に好ましい。   Here, the positive electrode current collector (positive electrode for a non-aqueous electrolyte secondary battery) on which the positive electrode mixture layer is formed has a polarity opposite to that of the coating layer binder and the coating layer conductive agent in the dispersion medium. By applying a voltage between the counter electrode and the counter electrode, a coating layer by electrophoretic deposition can be formed on the positive electrode mixture layer. However, if electrophoresis is performed so that the positive electrode side for a nonaqueous electrolyte secondary battery is negative, the positive electrode material may be damaged. Therefore, a positive voltage is applied to the positive electrode for the non-aqueous electrolyte secondary battery, and the coating layer binder, the coating layer conductive agent, and the dispersion medium are the same in the dispersion medium. It is preferable to use a negatively charged one. Specifically, when a dispersion solution is used in which a fluorine resin as a coating layer binder and a coating layer conductive agent are uniformly dispersed in a dispersion medium composed of an aprotic organic solvent while applying a shear stress. The coating layer binder and the coating layer conductive agent are negatively charged in the dispersion medium. For this reason, it is particularly preferable to use a fluororesin as the coating layer binder.

上記課題を解決するための第2の本発明は、上記第1の本発明にかかる非水電解質二次電池用正極の製造方法を備える非水電解質二次電池の製造方法である。   The second aspect of the present invention for solving the above problems is a method of manufacturing a non-aqueous electrolyte secondary battery comprising the method of manufacturing a positive electrode for a non-aqueous electrolyte secondary battery according to the first aspect of the present invention.

上記で説明したように、本発明によると、サイクル特性に優れた非水電解質二次電池を得ることができる。   As explained above, according to the present invention, a non-aqueous electrolyte secondary battery having excellent cycle characteristics can be obtained.

図1は、電気泳動堆積方法を説明する図面である。FIG. 1 is a diagram illustrating an electrophoretic deposition method. 図2は、実施例1にかかる非水電解質二次電池の概略図であって、図2(a)は電極体の極板構成を示し、図2(b)非水電解質二次電池の外観を示す。FIG. 2 is a schematic diagram of the nonaqueous electrolyte secondary battery according to Example 1. FIG. 2A shows the electrode plate configuration of the electrode body, and FIG. 2B shows the appearance of the nonaqueous electrolyte secondary battery. Indicates.

本発明を実施するための形態を、以下の実施例を通じて、詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。   EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated in detail through a following example. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施例)
[実施例1]
〔正極の作製〕
正極活物質としてのリチウムニッケルコバルトマンガン複合酸化物(LiNi0.5Co0.25Mn0.25)90質量部と、活物質導電剤としての炭素粉末5質量部と、活物質結着剤としてのポリテトラフルオロエチレン5質量部と、N−メチル−2−ピロリドンとを混合して、正極活物質スラリーとした。この正極活物質スラリーをドクターブレード法により厚み15μmのアルミニウム製集電体の両面に塗布し、乾燥させた後、ローラプレス機により圧延し、10×50mmのサイズに裁断して、正極集電体1と正極合剤層2とを有する正極板を得た。
(Example)
[Example 1]
[Production of positive electrode]
90 parts by mass of lithium nickel cobalt manganese composite oxide (LiNi 0.5 Co 0.25 Mn 0.25 O 2 ) as a positive electrode active material, 5 parts by mass of carbon powder as an active material conductive agent, and active material binding 5 parts by mass of polytetrafluoroethylene as an agent and N-methyl-2-pyrrolidone were mixed to obtain a positive electrode active material slurry. The positive electrode active material slurry was applied to both sides of an aluminum current collector having a thickness of 15 μm by the doctor blade method, dried, rolled by a roller press, and cut into a size of 10 × 50 mm. The positive electrode plate which has 1 and the positive mix layer 2 was obtained.

(被覆層形成工程)
被覆層結着剤としての重量平均分子量が30万のポリフッ化ビニリデン(PVDF)が分散媒としてのアセトン中に分散された分散溶液(ポリフッ化ビニリデン濃度が7質量%)を、400rpmの回転速度で攪拌しながら、被覆層導電剤としての比表面積が80m/gのアセチレンブラックを徐々に加えて混合した。このとき、PVDFとアセチレンブラックとの質量比が1:1となるようにした。その後、上記混合液を、ビーズミルを用いて剪断応力を加えながら混合することにより、PVDFとアセチレンブラックが均一に分散された電気泳動堆積用のプレ溶液を得た。プレ溶液の固形分比率(プレ溶液全体に対するPVDFとアセチレンブラックとの合計比率)は11質量%とした。
(Coating layer forming process)
A dispersion solution (polyvinylidene fluoride concentration of 7% by mass) in which polyvinylidene fluoride (PVDF) having a weight average molecular weight of 300,000 as a coating layer binder is dispersed in acetone as a dispersion medium is rotated at a rotational speed of 400 rpm. While stirring, acetylene black having a specific surface area of 80 m 2 / g as a coating layer conductive agent was gradually added and mixed. At this time, the mass ratio of PVDF to acetylene black was set to 1: 1. Then, the premixed solution for electrophoretic deposition in which PVDF and acetylene black were uniformly dispersed was obtained by mixing the above mixed solution while applying shear stress using a bead mill. The solid content ratio of the pre-solution (the total ratio of PVDF and acetylene black to the entire pre-solution) was 11% by mass.

その後、固形分比率が0.8質量%になるようにアセトンを加えて薄めて、電気泳動堆積用分散液5を調製した。そして、図1に示すように、上記分散液5を浴槽4内に入れ、正極と対極3とを分散液に浸漬した。このとき、正極板の正極合剤層2が形成されている部分のみが分散液5に漬かるようにした。この後、正極集電体1及び対極(白金電極)3と、直流電源6とを接続し、直流電圧を印加して電気泳動堆積を行った。電気泳動堆積条件は、正極集電体1がプラス、対極3がマイナスとなるように電圧を印加し、印加電圧を100V、印加時間を120秒、正極合剤層2と対極3との距離を10mmとした。アセトン中では、PVDF及びアセチレンブラックはともにマイナスに帯電するので、プラスに帯電した正極合剤層2表面にPVDF及びアセチレンブラックが堆積する。この後、分散液から正極板を引き上げ、110℃で2分間処理して分散媒としてのアセトンを除き、表面に被覆層が形成された正極11を得た。なお、被覆層の厚みは、4μmであった。   Thereafter, acetone was added and diluted so that the solid content ratio was 0.8% by mass to prepare a dispersion 5 for electrophoretic deposition. And as shown in FIG. 1, the said dispersion liquid 5 was put in the bathtub 4, and the positive electrode and the counter electrode 3 were immersed in the dispersion liquid. At this time, only the portion of the positive electrode plate where the positive electrode mixture layer 2 was formed was immersed in the dispersion 5. Thereafter, the positive electrode current collector 1 and the counter electrode (platinum electrode) 3 were connected to a DC power source 6 and applied with a DC voltage to perform electrophoretic deposition. Electrophoretic deposition conditions are as follows: a voltage is applied so that the positive electrode current collector 1 is positive and the counter electrode 3 is negative; the applied voltage is 100 V; the application time is 120 seconds; and the distance between the positive electrode mixture layer 2 and the counter electrode 3 is It was 10 mm. Since both PVDF and acetylene black are negatively charged in acetone, PVDF and acetylene black are deposited on the positively charged positive electrode mixture layer 2 surface. Thereafter, the positive electrode plate was pulled up from the dispersion and treated at 110 ° C. for 2 minutes to remove acetone as a dispersion medium, whereby a positive electrode 11 having a coating layer formed on the surface was obtained. In addition, the thickness of the coating layer was 4 μm.

〔負極の作製〕
天然黒鉛粉末95質量部と、ポリフッ化ビニリデン5質量部と、N−メチル−2−ピロリドンと、を混合して、負極活物質スラリーとした。この負極活物質スラリーをドクターブレード法により厚み15μmの銅製集電体の両面に塗布し、乾燥させた後、ローラプレス機により圧延し、20×60mmのサイズに裁断して負極12を得た。なお、この負極は、1つの電池あたり2枚用いる。
(Production of negative electrode)
95 parts by mass of natural graphite powder, 5 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone were mixed to obtain a negative electrode active material slurry. This negative electrode active material slurry was applied to both surfaces of a 15 μm thick copper current collector by the doctor blade method, dried, rolled with a roller press, and cut into a size of 20 × 60 mm to obtain the negative electrode 12. Two negative electrodes are used per battery.

なお、充電時の黒鉛の電位はLi基準で0.1Vである。また、正極及び負極の活物質充填量は、設計基準となる正極活物質の電位において、正極と負極の充電容量比(負極充電容量/正極充電容量)が1.20となるように調製した。   Note that the potential of graphite during charging is 0.1 V on the basis of Li. In addition, the active material filling amount of the positive electrode and the negative electrode was adjusted so that the charge capacity ratio (negative electrode charge capacity / positive electrode charge capacity) of the positive electrode and the negative electrode was 1.20 at the potential of the positive electrode active material as a design standard.

〔電極体の作製〕
上記正極11及び負極12に、それぞれ集電タブ11a、12aを取り付けた。図2(a)に示すように、正極11と、2枚の負極12と、2枚のポリプロピレン製微多孔膜からなるセパレータ13と、2枚のガラス板14とを、ガラス板14/負極12/セパレータ13/正極11/セパレータ13/負極12/ガラス板14の順で重ね合わせて電極体を作製した。
(Production of electrode body)
Current collecting tabs 11a and 12a were attached to the positive electrode 11 and the negative electrode 12, respectively. As shown in FIG. 2A, the positive electrode 11, the two negative electrodes 12, the separator 13 made of two polypropylene microporous films, and the two glass plates 14 are connected to the glass plate 14 / the negative electrode 12. The electrode body was manufactured by superimposing / separator 13 / positive electrode 11 / separator 13 / negative electrode 12 / glass plate 14 in this order.

〔非水電解質の調整〕
エチレンカーボネートとジメチルカーボネートを質量比3:7で混合し、電解質塩としてのLiPFを1.0M(モル/リットル)となるように溶解して、非水電解質となした。
[Nonaqueous electrolyte adjustment]
Ethylene carbonate and dimethyl carbonate were mixed at a mass ratio of 3: 7, and LiPF 6 as an electrolyte salt was dissolved to 1.0 M (mol / liter) to obtain a nonaqueous electrolyte.

〔電池の組み立て〕
上記電極体16を、ラミネート樹脂フィルムからなる外装体15に挿入し、上記の電解液を注液し、外装缶の開口部分を超音波溶着により封止して封止部15aを形成して、実施例1に係る電池を作製した(図2(b)参照)。なお、実施例1に係る非水電解質二次電池の設計容量は40mAhである。
[Assembling the battery]
The electrode body 16 is inserted into an exterior body 15 made of a laminate resin film, the electrolyte is injected, and the opening portion of the exterior can is sealed by ultrasonic welding to form a sealed portion 15a. A battery according to Example 1 was manufactured (see FIG. 2B). The design capacity of the nonaqueous electrolyte secondary battery according to Example 1 is 40 mAh.

[実施例2]
被覆層形成工程を次のように行ったこと以外は、上記実施例1と同様にして、実施例2にかかる非水電解質二次電池を作製した。
[Example 2]
A nonaqueous electrolyte secondary battery according to Example 2 was fabricated in the same manner as in Example 1 except that the coating layer forming step was performed as follows.

(被覆層形成工程)
被覆層結着剤としての重量平均分子量が30万のポリフッ化ビニリデン(PVDF)が分散媒としてのN−メチルピロリドン(NMP)中に分散された分散液(ポリフッ化ビニリデン濃度が10質量%)を400rpmの回転速度で攪拌しながら、被覆層導電剤としての比表面積が80m/gのアセチレンブラックを徐々に加えて混合した。このとき、PVDFとアセチレンブラックとの質量比が1:1となるようにした。その後、上記混合液を、ビーズミルを用いて剪断応力を加えながら混合することにより、PVDFとアセチレンブラックが均一に分散された電気泳動堆積用のプレ溶液を得た。その際、固形分比(プレ溶液全体に対するPVDFとアセチレンブラックとの合計比率)は17質量%とした。
(Coating layer forming process)
A dispersion (polyvinylidene fluoride concentration of 10% by mass) in which polyvinylidene fluoride (PVDF) having a weight average molecular weight of 300,000 as a coating layer binder is dispersed in N-methylpyrrolidone (NMP) as a dispersion medium While stirring at a rotational speed of 400 rpm, acetylene black having a specific surface area of 80 m 2 / g as a coating layer conductive agent was gradually added and mixed. At this time, the mass ratio of PVDF to acetylene black was set to 1: 1. Then, the premixed solution for electrophoretic deposition in which PVDF and acetylene black were uniformly dispersed was obtained by mixing the above mixed solution while applying shear stress using a bead mill. In that case, solid content ratio (total ratio of PVDF and acetylene black with respect to the whole pre-solution) was 17 mass%.

その後、固形分比率が0.8質量%になるようにNMPを加えて薄めて、電気泳動堆積用分散液5を調製した。そして、図1に示すように、上記分散液5を浴槽4内に入れ、正極と対極3とを分散液に浸漬した。このとき、正極板の正極合剤層2が形成されている部分のみが分散液5に漬かるようにした。この後、正極集電体1及び対極(白金電極)3と、直流電源6とを接続し、直流電圧を印加して電気泳動堆積を行った。電気泳動堆積条件は、正極集電体1がプラス、対極3がマイナスとなるように電圧を印加し、印加電圧を110V、印加時間を100秒、正極合剤層2と対極3との距離を10mmとした。NMP中では、PVDF及びアセチレンブラックはともにマイナスに帯電するので、プラスに帯電した正極合剤層2表面にPVDF及びアセチレンブラックが堆積する。この後、分散液から正極板を引き上げ、110℃で2分間処理して分散媒としてのNMPを除き、表面に被覆層が形成された正極11を得た。なお、被覆層の厚みは、4μmであった。   Thereafter, NMP was added and diluted so that the solid content ratio was 0.8% by mass to prepare a dispersion 5 for electrophoretic deposition. And as shown in FIG. 1, the said dispersion liquid 5 was put in the bathtub 4, and the positive electrode and the counter electrode 3 were immersed in the dispersion liquid. At this time, only the portion of the positive electrode plate where the positive electrode mixture layer 2 was formed was immersed in the dispersion 5. Thereafter, the positive electrode current collector 1 and the counter electrode (platinum electrode) 3 were connected to a DC power source 6 and applied with a DC voltage to perform electrophoretic deposition. The electrophoretic deposition conditions are as follows: a voltage is applied so that the positive electrode current collector 1 is positive and the counter electrode 3 is negative; the applied voltage is 110 V; the application time is 100 seconds; and the distance between the positive electrode mixture layer 2 and the counter electrode 3 is It was 10 mm. In NMP, both PVDF and acetylene black are negatively charged. Therefore, PVDF and acetylene black are deposited on the positively charged positive electrode mixture layer 2 surface. Thereafter, the positive electrode plate was pulled up from the dispersion and treated at 110 ° C. for 2 minutes to remove NMP as a dispersion medium, whereby a positive electrode 11 having a coating layer formed on the surface was obtained. In addition, the thickness of the coating layer was 4 μm.

[比較例1]
電気泳動堆積用のプレ溶液を、ドクターブレードを用いて正極合剤層表面に塗布し、アセトンを揮発除去して被覆層を形成したこと以外は、上記実施例1と同様にして、比較例1にかかる非水電解質二次電池を作製した。なお、被覆層の厚みは、4μmとした。
[Comparative Example 1]
Comparative Example 1 was carried out in the same manner as in Example 1 except that the pre-solution for electrophoretic deposition was applied to the surface of the positive electrode mixture layer using a doctor blade, and acetone was volatilized and removed to form a coating layer. A non-aqueous electrolyte secondary battery was produced. The thickness of the coating layer was 4 μm.

[比較例2]
電気泳動堆積用のプレ溶液を、ドクターブレードを用いて正極合剤層表面に塗布し、NMPを揮発除去して被覆層を形成したこと以外は、上記実施例2と同様にして、比較例2にかかる非水電解質二次電池を作製した。なお、被覆層の厚みは、4μmとした。
[Comparative Example 2]
Comparative Example 2 was carried out in the same manner as in Example 2 except that the pre-solution for electrophoretic deposition was applied to the surface of the positive electrode mixture layer using a doctor blade, and NMP was volatilized and removed to form a coating layer. A non-aqueous electrolyte secondary battery was produced. The thickness of the coating layer was 4 μm.

[比較例3]
被覆層を形成していない正極板を正極として用いたこと以外は、上記実施例1と同様にして、比較例3にかかる非水電解質二次電池を作製した。
[Comparative Example 3]
A non-aqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that a positive electrode plate without a coating layer was used as the positive electrode.

[表面粗さ測定]
上記実施例1,2、比較例1,2と同一の条件でそれぞれ正極を作製し、キーエンス製レーザー顕微鏡(VK−9700)を用いて、被覆層表面の表面粗さを測定した。この結果を下記表1に示す。表面粗さのパラメータとしては、算術平均粗さRa(基準面から測定曲面までの偏差の絶対値を合計し平均した値)を用いた。
[Surface roughness measurement]
Positive electrodes were produced under the same conditions as in Examples 1 and 2 and Comparative Examples 1 and 2, respectively, and the surface roughness of the coating layer surface was measured using a Keyence laser microscope (VK-9700). The results are shown in Table 1 below. As the surface roughness parameter, arithmetic average roughness Ra (a value obtained by summing and averaging the absolute values of deviations from the reference surface to the measurement curved surface) was used.

[保液性の測定]
上記実施例1,2、比較例1〜3と同一の条件で正極を作製した。この正極を、ジエチルカーボネートを用いて洗浄し、その後乾燥させた。この後、それぞれの正極の質量を一定にそろえ、上記非水電解質に完全に液を吸うまで浸漬させ、このときの質量を測定した。その後、5kN/cmの一定圧力で30秒加圧して液を染み出させ、このときの質量を測定した。そして、以下の式により保液性を算出した。この結果を下記表1に示す。
[Measurement of liquid retention]
A positive electrode was produced under the same conditions as in Examples 1 and 2 and Comparative Examples 1 to 3. The positive electrode was washed with diethyl carbonate and then dried. Then, the mass of each positive electrode was made constant, it was immersed in the said nonaqueous electrolyte until the liquid was completely absorbed, and the mass at this time was measured. Then, the liquid was exuded by pressurizing at a constant pressure of 5 kN / cm 2 for 30 seconds, and the mass at this time was measured. And the liquid retention property was computed with the following formula | equation. The results are shown in Table 1 below.

保液性(%)=加圧後に残存している液量÷完全に液を吸わせた時の液量×100 Liquid retention (%) = the amount of liquid remaining after pressurization ÷ the amount of liquid when the liquid is completely sucked × 100

[高負荷サイクル特性試験]
上記実施例1,2、比較例1〜3と同一の条件で電池を作製した。その後、各電池を、25℃の温度環境で、定電流充電(電流40mA、終止電圧4.2V)−定電圧充電(電圧4.2V、終止電流0.8mA)した後、電流値400mAで2.50Vまで放電した。この充放電サイクルを500サイクル行った。そして、以下の式により高負荷サイクル特性を算出した。この結果を下記表1に示す。
[High duty cycle characteristics test]
Batteries were produced under the same conditions as in Examples 1 and 2 and Comparative Examples 1 to 3. After that, each battery was subjected to constant current charging (current 40 mA, final voltage 4.2 V) -constant voltage charging (voltage 4.2 V, final current 0.8 mA) in a temperature environment of 25 ° C., and then 2 at a current value of 400 mA. Discharged to 50V. This charge / discharge cycle was performed 500 times. And the high duty cycle characteristic was computed with the following formula | equation. The results are shown in Table 1 below.

高負荷サイクル特性(%)=1サイクル目放電容量÷500サイクル目放電容量×100 High duty cycle characteristics (%) = 1st cycle discharge capacity / 500th cycle discharge capacity x 100

表1に示すように、電気泳動堆積により被覆層を形成した実施例1,2は、保液性が71%、68%、高負荷サイクル特性が75%、70%と、ドクターブレードを用いて被覆層を塗布形成した比較例1,2の保液性53%、55%、高負荷サイクル特性59%、61%よりも高いことがわかる。また、被覆層を設けない正極を用いた比較例3は、保液性が49%、高負荷サイクル特性が51%と、比較例1,2よりもさらに劣っていることがわかる。   As shown in Table 1, Examples 1 and 2 in which the coating layer was formed by electrophoretic deposition had a liquid retention of 71% and 68%, a high duty cycle characteristic of 75% and 70%, and a doctor blade. It can be seen that the liquid retaining properties 53% and 55% of Comparative Examples 1 and 2 in which the coating layer was applied and formed were higher than the high duty cycle characteristics 59% and 61%. Moreover, it turns out that the comparative example 3 using the positive electrode which does not provide a coating layer is inferior to the comparative examples 1 and 2 with a liquid retention property of 49% and a high duty cycle characteristic of 51%.

このことは、次のように考えられる。被覆層を形成していない比較例3は、被覆層による保液性向上効果が得られないため、保液性が顕著に低くなる。また、被覆層導電剤を有する被覆層を形成していないため、正極合剤層の表面付近(正極集電体からの距離が遠い部分)の導電性が低いため、正極合剤層の表面付近において、正極集電体と水平方向の電子伝導性がばらつき、充電・放電深度にバラツキが生じ易くなる。このため、局所的に正極活物質が劣化した部分が生じてしまう。劣化した正極活物質により正極の均一な充放電反応が阻害され、正極の劣化がさらに促進される。高負荷放電を行う場合には、このような正極の劣化が生じやすいため、高負荷サイクル特性が顕著に低下する。   This is considered as follows. In Comparative Example 3 in which the coating layer is not formed, the liquid retention property improvement effect by the coating layer cannot be obtained, and thus the liquid retention property is significantly lowered. Moreover, since the coating layer having the coating layer conductive agent is not formed, the conductivity in the vicinity of the surface of the positive electrode mixture layer (the portion far from the positive electrode current collector) is low, so the vicinity of the surface of the positive electrode mixture layer In this case, the electron conductivity in the horizontal direction is different from that of the positive electrode current collector, and the charge / discharge depth is likely to vary. For this reason, the part which the positive electrode active material deteriorated locally will arise. The deteriorated positive electrode active material inhibits the uniform charge / discharge reaction of the positive electrode, and further promotes the deterioration of the positive electrode. In the case of performing high-load discharge, such a deterioration of the positive electrode is likely to occur, so that the high-duty cycle characteristics are remarkably deteriorated.

また、電気泳動堆積法を用いて正極表面に被覆層を形成した実施例1,2は、被覆層の算術平均粗さ(Ra)が0.7,0.6と、ドクターブレード法を用いて被覆層を塗布した比較例1,2の1.3,1.4よりも小さい。算術平均粗さ(Ra)が小さいことは、表面が平滑で均一であることを意味する。表面が平滑で均一な被覆層は、被覆層導電剤と被覆層結着剤との間の隙間空隙が均一に存在するため、正極の保液性が向上する。また、表面が平滑で均一な被覆層により正極合剤層の表面付近の導電性が向上するため、正極合剤層の表面付近において、正極集電体と水平方向の電子伝導性がばらつくことがない。このため、上記比較例3のような問題が生じることがなく、且つ正極内部に十分に保持された非水電解質により、スムーズな充放電反応が行われる。これらの相乗作用により、高負荷サイクル特性が飛躍的に向上する。   In Examples 1 and 2 in which the coating layer was formed on the positive electrode surface using the electrophoretic deposition method, the arithmetic average roughness (Ra) of the coating layer was 0.7 and 0.6, and the doctor blade method was used. It is smaller than 1.3 and 1.4 of the comparative examples 1 and 2 which apply | coated the coating layer. A small arithmetic average roughness (Ra) means that the surface is smooth and uniform. Since the coating layer having a smooth surface and a uniform surface has gaps between the coating layer conductive agent and the coating layer binder, the liquid retention of the positive electrode is improved. In addition, since the conductivity near the surface of the positive electrode mixture layer is improved by the coating layer having a smooth surface, the positive electrode current collector and the horizontal electron conductivity may vary near the surface of the positive electrode mixture layer. Absent. For this reason, the problem as in Comparative Example 3 does not occur, and a smooth charge / discharge reaction is performed by the nonaqueous electrolyte that is sufficiently held inside the positive electrode. These synergistic actions dramatically improve the high duty cycle characteristics.

これに対し、比較例1,2では、被覆層の表面が実施例1,2よりも粗いために、保液性及び正極合剤層の表面付近の導電性向上効果が実施例1,2よりも小さくなる。このため、高負荷サイクル特性は、比較例3よりは優れるものの、実施例1,2よりも劣ったものとなる。   On the other hand, in Comparative Examples 1 and 2, since the surface of the coating layer is rougher than in Examples 1 and 2, the liquid retention property and the conductivity improving effect near the surface of the positive electrode mixture layer are higher than those in Examples 1 and 2. Becomes smaller. For this reason, the high duty cycle characteristics are inferior to those of Examples 1 and 2 although they are superior to those of Comparative Example 3.

(追加事項)
正極活物質としては、リチウム遷移金属複合酸化物やオリビン構造を有するリチウム遷移金属リン酸化合物等を用いることが好ましい。リチウム遷移金属複合酸化物としては、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、スピネル型リチウムマンガン複合酸化物や、これらの化合物に含まれる遷移金属元素の一部を他の金属元素に置換した化合物が好ましい。また、オリビン構造を有するリチウム遷移金属リン酸化合物としては、リン酸鉄リチウムが好ましい。これらを単独で用いることができ、又は複数種混合して用いることもできる。また、正極に炭酸リチウム等の公知の添加剤を添加してもよい。
(extra content)
As the positive electrode active material, it is preferable to use a lithium transition metal composite oxide, a lithium transition metal phosphate compound having an olivine structure, or the like. Examples of lithium transition metal composite oxides include lithium cobalt composite oxide, lithium nickel composite oxide, spinel-type lithium manganese composite oxide, and some transition metal elements contained in these compounds substituted with other metal elements. Compounds are preferred. The lithium transition metal phosphate compound having an olivine structure is preferably lithium iron phosphate. These can be used alone, or can be used in combination of two or more. Moreover, you may add well-known additives, such as lithium carbonate, to a positive electrode.

負極活物質としては、炭素材料、チタン酸化物、半金属元素、合金等を用いることが好ましい。炭素材料としては、天然黒鉛、人造黒鉛、難黒鉛化性炭素等が好ましい。チタン酸化物としては、LiTiO、TiO等が好ましい。半金属元素としては、ケイ素・スズ等が好ましい。合金としては、Sn−Co合金等が好ましい。これらを単独で用いることができ、又は複数種混合して用いることもできる。 As the negative electrode active material, it is preferable to use a carbon material, a titanium oxide, a metalloid element, an alloy, or the like. As the carbon material, natural graphite, artificial graphite, non-graphitizable carbon and the like are preferable. As the titanium oxide, LiTiO 2 , TiO 2 or the like is preferable. As the metalloid element, silicon, tin and the like are preferable. As the alloy, a Sn—Co alloy or the like is preferable. These can be used alone, or can be used in combination of two or more.

更に、非水電解質の溶媒としては、プロピレンカーボネート・エチレンカーボネート・ブチレンカーボネート・ビニレンカーボネートに代表される環状カーボネート、γ−ブチロラクトン・γ−バレロラクトンに代表されるラクトン、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートに代表される鎖状カーボネート、テトラヒドロフラン・1,2−ジメトキシエタン・ジエチレングリコールジメチルエーテル・1,3−ジオキソラン・2−メトキシテトラヒドロフラン・ジエチルエーテルに代表されるエーテル等を単独で、あるいは二種以上混合して用いることができる。また、非水電解質の電解質塩としては、LiPF、LiAsF、LiClO、LiBF、LiCFSO、LiN(CFSO等を用いることができる。 Further, as nonaqueous electrolyte solvents, cyclic carbonates typified by propylene carbonate / ethylene carbonate / butylene carbonate / vinylene carbonate, lactones typified by γ-butyrolactone / γ-valerolactone, diethyl carbonate, dimethyl carbonate, methyl ethyl Chain carbonate typified by carbonate, tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, 1,3-dioxolane, 2-methoxytetrahydrofuran, ether typified by diethyl ether, etc. alone or in combination of two or more. Can be used. As the electrolyte salt in the nonaqueous electrolyte, it is possible to use LiPF 6, LiAsF 6, LiClO 4 , LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2 and the like.

以上に説明したように、本発明によれば、正極表面に良好な導電性と非水電解質保持機能とを有する被覆層を形成でき、これにより電池のサイクル特性を飛躍的に高めることができる。よって、産業上の利用可能性は大きい。   As described above, according to the present invention, a coating layer having good conductivity and a nonaqueous electrolyte retention function can be formed on the surface of the positive electrode, and thereby the cycle characteristics of the battery can be dramatically improved. Therefore, industrial applicability is great.

1:正極集電体
2:正極合剤層
3:対極(白金電極)
4:浴槽
5:分散液
6:直流電源
11:正極
11a:正極タブ
12:負極
12a:負極タブ
13:セパレータ
14:ガラス板
15:ラミネート外装体
15a:封止部
16:電極体
1: Positive electrode current collector 2: Positive electrode mixture layer 3: Counter electrode (platinum electrode)
4: Bath 5: Dispersion 6: DC power source 11: Positive electrode 11a: Positive electrode tab 12: Negative electrode 12a: Negative electrode tab 13: Separator 14: Glass plate 15: Laminate outer package 15a: Sealing portion 16: Electrode body

Claims (4)

正極集電体上に、正極活物質と活物質導電剤と活物質結着剤とを有する正極合剤層を形成する正極合剤層形成工程と、
被覆層導電剤と被覆層結着剤とが分散媒中に分散された分散液に、正極合剤層が形成された正極集電体と、対極と、を浸漬し、前記正極集電体と前記対極との間に直流電圧を印加することにより、前記正極合剤層上に前記被覆層導電剤と前記被覆層結着剤とを堆積させた後、前記分散媒を除去して被覆層を形成する被覆層形成工程と、
を備え、
前記被覆層導電剤と前記被覆層結着剤とは、前記分散媒中において同一極性に帯電する、
ことを特徴とする非水電解質二次電池用正極の製造方法。
A positive electrode mixture layer forming step of forming a positive electrode mixture layer having a positive electrode active material, an active material conductive agent, and an active material binder on the positive electrode current collector;
A positive electrode current collector on which a positive electrode mixture layer is formed and a counter electrode are immersed in a dispersion liquid in which a coating layer conductive agent and a coating layer binder are dispersed in a dispersion medium. By applying a direct current voltage between the counter electrode and the coating layer conductive agent and the coating layer binder are deposited on the positive electrode mixture layer, the dispersion medium is removed to form a coating layer. A coating layer forming step to be formed;
With
The coating layer conductive agent and the coating layer binder are charged to the same polarity in the dispersion medium,
The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries characterized by the above-mentioned.
請求項1に記載の非水電解質二次電池用正極の製造方法において、
前記分散媒が非プロトン性有機溶媒であり、
前記被覆層導電剤が炭素材料であり、
前記被覆層結着剤がフッ素系樹脂である
ことを特徴とする非水電解質二次電池用正極の製造方法。
In the manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries of Claim 1,
The dispersion medium is an aprotic organic solvent,
The coating layer conductive agent is a carbon material,
The said coating layer binder is a fluorine resin. The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries characterized by the above-mentioned.
請求項2に記載の非水電解質二次電池用正極の製造方法において、
前記非プロトン性有機溶媒は、アセトン及び/又はN−メチルピロリドンであり、
前記炭素材料がアセチレンブラックであり、
前記フッ素系樹脂がポリフッ化ビニリデンである、
ことを特徴とする非水電解質二次電池用正極の製造方法。
In the manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries of Claim 2,
The aprotic organic solvent is acetone and / or N-methylpyrrolidone;
The carbon material is acetylene black;
The fluororesin is polyvinylidene fluoride,
The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries characterized by the above-mentioned.
請求項1、2又は3に記載の非水電解質二次電池用正極の製造方法を備える非水電解質二次電池の製造方法。   The manufacturing method of a nonaqueous electrolyte secondary battery provided with the manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries of Claim 1, 2, or 3.
JP2010081375A 2010-03-31 2010-03-31 Method of manufacturing nonaqueous electrolytic secondary battery and positive electrode therefor Pending JP2011216242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081375A JP2011216242A (en) 2010-03-31 2010-03-31 Method of manufacturing nonaqueous electrolytic secondary battery and positive electrode therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081375A JP2011216242A (en) 2010-03-31 2010-03-31 Method of manufacturing nonaqueous electrolytic secondary battery and positive electrode therefor

Publications (1)

Publication Number Publication Date
JP2011216242A true JP2011216242A (en) 2011-10-27

Family

ID=44945794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081375A Pending JP2011216242A (en) 2010-03-31 2010-03-31 Method of manufacturing nonaqueous electrolytic secondary battery and positive electrode therefor

Country Status (1)

Country Link
JP (1) JP2011216242A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125305A1 (en) * 2012-02-23 2013-08-29 トヨタ自動車株式会社 Sealed nonaqueous electrolyte secondary battery
JP2014150013A (en) * 2013-02-04 2014-08-21 Hyogo Prefecture Positive electrode for lithium ion secondary battery and manufacturing method therefor
WO2016059861A1 (en) * 2014-10-14 2016-04-21 ソニー株式会社 Secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic apparatus
WO2018097455A1 (en) * 2016-11-24 2018-05-31 주식회사 엘지화학 Electrode for secondary battery including electrode protection layer
CN109792036A (en) * 2016-09-26 2019-05-21 日产自动车株式会社 Positive electrode for nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125305A1 (en) * 2012-02-23 2013-08-29 トヨタ自動車株式会社 Sealed nonaqueous electrolyte secondary battery
CN104137306A (en) * 2012-02-23 2014-11-05 丰田自动车株式会社 Sealed nonaqueous electrolyte secondary battery
JP2014150013A (en) * 2013-02-04 2014-08-21 Hyogo Prefecture Positive electrode for lithium ion secondary battery and manufacturing method therefor
WO2016059861A1 (en) * 2014-10-14 2016-04-21 ソニー株式会社 Secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic apparatus
JP2016081646A (en) * 2014-10-14 2016-05-16 ソニー株式会社 Secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device
CN106716704A (en) * 2014-10-14 2017-05-24 索尼公司 Secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic apparatus
US10290899B2 (en) 2014-10-14 2019-05-14 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN106716704B (en) * 2014-10-14 2019-10-15 株式会社村田制作所 Secondary cell, battery pack, electric vehicle, accumulating system, electric tool and electronic device
CN109792036A (en) * 2016-09-26 2019-05-21 日产自动车株式会社 Positive electrode for nonaqueous electrolyte secondary battery
WO2018097455A1 (en) * 2016-11-24 2018-05-31 주식회사 엘지화학 Electrode for secondary battery including electrode protection layer
US11296325B2 (en) 2016-11-24 2022-04-05 Lg Energy Solution, Ltd. Electrode for secondary battery including electrode protecting layer

Similar Documents

Publication Publication Date Title
JP5313761B2 (en) Lithium ion battery
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5817754B2 (en) Negative electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP2009193940A (en) Electrode and method of manufacturing the same, and lithium ion secondary battery
Kang et al. Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries
JP2010225291A (en) Lithium-ion secondary battery and method of manufacturing the same
KR20090066019A (en) Anode comprising surface treated anode active material and lithium battery using the same
US10199689B2 (en) Nonaqueous electrolyte secondary battery
KR20190115706A (en) Negative electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same
JP2008097879A (en) Lithium ion secondary battery
JP2014127235A (en) Lithium ion secondary battery cathode and manufacturing method thereof, and lithium ion secondary battery
KR102554229B1 (en) Method for preparing negative electrode for lithium secondary battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP5664943B2 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE
JP2011159639A (en) Electrode body, method for manufacturing the same, and lithium ion secondary battery
CN109428048B (en) Method for producing negative electrode for aqueous lithium ion secondary battery and method for producing aqueous lithium ion secondary battery
JP2020095931A (en) Lithium secondary battery
JP2011216242A (en) Method of manufacturing nonaqueous electrolytic secondary battery and positive electrode therefor
CN105449274B (en) lithium ion battery and electrolyte thereof
CN106654168B (en) Nonaqueous electrolyte secondary battery and method for producing same, and conductive assistant for nonaqueous electrolyte secondary battery and method for producing same
WO2016038644A1 (en) Positive electrode for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JP2023508273A (en) Positive electrode for secondary battery, method for producing the same, and lithium secondary battery including the same
KR102227802B1 (en) Electrode active material slurry composition and secondary battery comprising electrode using the same
WO2013146454A1 (en) Electrode material, all-solid-state lithium secondary battery, and manufacturing method