JP2011215506A - Method of manufacturing wavelength dispersion compensator - Google Patents

Method of manufacturing wavelength dispersion compensator Download PDF

Info

Publication number
JP2011215506A
JP2011215506A JP2010085684A JP2010085684A JP2011215506A JP 2011215506 A JP2011215506 A JP 2011215506A JP 2010085684 A JP2010085684 A JP 2010085684A JP 2010085684 A JP2010085684 A JP 2010085684A JP 2011215506 A JP2011215506 A JP 2011215506A
Authority
JP
Japan
Prior art keywords
winding
coil
resin
coil bobbin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010085684A
Other languages
Japanese (ja)
Inventor
Iwao Okazaki
巌 岡崎
Kazuya Kuwabara
一也 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010085684A priority Critical patent/JP2011215506A/en
Publication of JP2011215506A publication Critical patent/JP2011215506A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a wavelength dispersion compensator which prevents winding disorder even when a dispersion compensating optical fiber (DCF) is rewound with low tension to be formed in a coil, reduces an increase in transmission loss, is easy to manufacture, and has shock resistance.SOLUTION: The wavelength dispersion compensator is manufactured by rewinding the dispersion compensating optical fiber having been wound around a supply bobbin, onto a coil bobbin. In the method of manufacturing the wavelength dispersion compensator, after the dispersion compensating optical fiber 1 is rewound with rewiring tension controlled to be less than 10 g wt. when wound around the coil bobbin 8, a resin 12 is applied over the entire circumference of an upper surface of the coil wound around the coil bobbin to bond and fix a collar portion of the coil bobbin and the entire circumference of the upper surface of the coil. The resin is applied while the resin supply means (11a, 11b) and coil bobbin 8 are relatively rotated and moved. The resin supply means and coil bobbin have a relative rotating speed difference of ≤10 rpm.

Description

本発明は、分散補償光ファイバをコイルボビンに巻取って製造する波長分散補償器の製造方法に関する。   The present invention relates to a method for manufacturing a chromatic dispersion compensator for manufacturing a dispersion compensating optical fiber by winding it around a coil bobbin.

光伝送システムでは、1300nm付近にゼロ分散波長を有するシングルモード光ファイバが使用されるが、この光ファイバは伝送損失が1550nm付近で最も小さくなる。このため、この波長帯を用いて長距離光伝送を行うために、1550nm付近の波長分散を相殺してゼロにする波長分散補償器が開発されている。この波長分散補償器は、1550nmで負の分散を有する分散補償光ファイバ(DCF:Dispersion Compensating Fiber、以下DCFと表記)を、光伝送距離の長さに応じて、所定の長さをコイル状に巻いて伝送路中に接続して用いられる。   In an optical transmission system, a single mode optical fiber having a zero dispersion wavelength near 1300 nm is used, but this optical fiber has the smallest transmission loss near 1550 nm. For this reason, in order to perform long-distance optical transmission using this wavelength band, a chromatic dispersion compensator has been developed that cancels the chromatic dispersion near 1550 nm to zero. This chromatic dispersion compensator has a dispersion compensation optical fiber (DCF: Dispersion Compensating Fiber, hereinafter referred to as DCF) having negative dispersion at 1550 nm, and a predetermined length is coiled in accordance with the length of the optical transmission distance. Used by winding and connecting in a transmission line.

波長分散補償器としては、種々のものが提案されている。例えば、特許文献1には、DCFをそのファイバ直径より大きい巻ピッチで巻取ることで偏波モード分散(PMD:Polarization Mode Dispersion)の増加を抑え、光ファイバの巻取り中または巻取り後に、巻き歪み除去処理を行うことで伝送損失を低減することが開示されている。また、DCFを巻取る際の張力を25g重〜50g重で巻取ることで、伝送損失の増加を低減できるとしている。   Various chromatic dispersion compensators have been proposed. For example, Patent Document 1 discloses that DCF is wound at a winding pitch larger than the fiber diameter to suppress an increase in polarization mode dispersion (PMD), and the winding is performed during or after winding of the optical fiber. It is disclosed that transmission loss is reduced by performing distortion removal processing. Further, it is said that an increase in transmission loss can be reduced by winding the DCF with a tension of 25 g to 50 g.

特許文献2には、コイル胴(コイルボビン)にDCFを巻取ってコイルとした後、コイルの巻き歪みを実質的に解放した状態でケース内に収納することが開示されている。なお、コイルの巻き歪みを解放する形態としては、コイル胴にDCFを巻付けた後、胴部の径を縮小したり、コイル胴を外して束状にし、且つコイルの巻き崩れを防ぐために数箇所を樹脂で固定するようにしている。   Patent Document 2 discloses that after a DCF is wound around a coil body (coil bobbin) to form a coil, it is housed in a case in a state in which the winding distortion of the coil is substantially released. In order to relieve the winding distortion of the coil, after winding the DCF around the coil body, the diameter of the body part is reduced, or the coil body is removed to form a bundle, and several coils are used to prevent the coil from collapsing. The part is fixed with resin.

特許文献3には、DCFをそのファイバ直径の1.2倍以上の巻ピッチで巻取ることで、隣接し合うファイバ同士の接触を軽減して温度変動による損失増加を防止し、また、巻き張力を20g重〜70g重とすることが開示されている。
特許文献4には、DCFをコイル化し、その表面の一部または全面に接着剤を塗布した被覆層を形成し、コイル内部に柱状部品を嵌入し、側面にシートを配して筐体に収納し、耐衝撃性を確保しつつ軽量化とコスト低減することが開示されている。
Patent Document 3 discloses that DCF is wound at a winding pitch of 1.2 times or more of the fiber diameter, thereby reducing the contact between adjacent fibers and preventing an increase in loss due to temperature fluctuations. Is disclosed to be 20 to 70 g weight.
In Patent Document 4, a DCF is coiled, a coating layer in which an adhesive is applied to a part or the entire surface of the DCF is formed, a columnar part is fitted inside the coil, and a sheet is arranged on the side surface and stored in a housing. However, it is disclosed that weight reduction and cost reduction are achieved while ensuring impact resistance.

特開平10−31120号公報JP-A-10-31120 特開平10−123342号公報JP-A-10-123342 特開2003−149483号公報Japanese Patent Laid-Open No. 2003-149483 特開2009−86512号公報JP 2009-86512 A

特許文献1,3に開示のように、DCFをコイルボビンに巻取る際に、低張力で巻取ることにより伝送損失を低下させることはできるが、張力を低くし過ぎると巻き崩れが生じ、逆に伝送損失が増加することもある。
また、低張力で巻き取らなくても、特許文献2に開示のように、DCFをコイルボビンに巻取った後に、ボビン胴径を縮小したり、コイルボビンを外して巻き歪みを解放し、巻き崩れを防止する樹脂を部分的に付与することで伝送損失を低下させることが可能である。しかし、この場合は、樹脂による固定箇所に負荷が集中するため、耐衝撃性に弱いという問題があり、また、工程が増えることによるコスト増の問題もある。
また、衝撃特性を改善するために、特許文献4に開示のように巻取ったコイル巻きファイバ一部または全面に接着剤を塗布し、ファイバ部分のみを、シートを配置した筐体内に収納することが可能である。しかし、製造工程が増えてコスト高になるという問題がある。
As disclosed in Patent Documents 1 and 3, when winding the DCF around the coil bobbin, the transmission loss can be reduced by winding the DCF with a low tension. However, if the tension is too low, the winding collapses. Transmission loss may increase.
Even if the coil is not wound at a low tension, as disclosed in Patent Document 2, after winding the DCF around the coil bobbin, the bobbin body diameter is reduced, or the coil bobbin is removed to release the winding distortion, thereby preventing the coil from collapsing. It is possible to reduce transmission loss by partially applying a resin to prevent. However, in this case, there is a problem that the load is concentrated at a fixed portion by the resin, so that the impact resistance is weak, and there is also a problem of cost increase due to an increase in the number of steps.
In addition, in order to improve the impact characteristics, an adhesive is applied to a part or the entire surface of the coiled fiber wound as disclosed in Patent Document 4, and only the fiber part is accommodated in a housing in which a sheet is disposed. Is possible. However, there is a problem that the manufacturing process increases and the cost increases.

本発明は、上述した実情に鑑みてなされたもので、DCFを低張力で巻取ってコイル化しても巻き崩れることがなく、また製造が容易で、耐衝撃性を備えた波長分散補償器の製造方法の提供を目的とする。   The present invention has been made in view of the above-described situation, and even if a DCF is wound with a low tension and coiled, it does not collapse, is easy to manufacture, and is a chromatic dispersion compensator having impact resistance. The purpose is to provide a manufacturing method.

本発明による波長分散補償器の製造方法は、サプライボビンに巻かれた分散補償光ファイバをコイルボビンに巻き替えて波長分散補償器を製造する方法であって、分散補償光ファイバをコイルボビンに巻き替える際の巻取張力を、10g重未満に制御して巻取った後、コイルボビンに巻取られたファイバ上表面の全周に樹脂を付与し、コイルボビンの鍔部とファイバ上表面の全周とを接着固定することを特徴とする。   A method of manufacturing a chromatic dispersion compensator according to the present invention is a method of manufacturing a chromatic dispersion compensator by winding a dispersion compensating optical fiber wound around a supply bobbin into a coil bobbin, and when the dispersion compensating optical fiber is wound around a coil bobbin. After the winding tension is controlled to be less than 10 g, the resin is applied to the entire circumference of the fiber upper surface wound around the coil bobbin, and the flange of the coil bobbin and the entire circumference of the fiber upper surface are bonded. It is fixed.

前記の樹脂は、樹脂供給手段とコイルボビンとを相対的回転移動させながら付与され、樹脂供給手段とコイルボビンとの相対回転速度差を10rpm以下とするのが好ましい。また、分散補償光ファイバの巻ピッチPは、前記分散補償光ファイバの外径をdとしたとき、「d<P≦2d」に設定され、コイルボビンに巻取られた分散補償光ファイバの巻歪み処理を実施する前に、樹脂を付与することが好ましい。   The resin is applied while relatively rotating the resin supply means and the coil bobbin, and the relative rotation speed difference between the resin supply means and the coil bobbin is preferably 10 rpm or less. The winding pitch P of the dispersion compensating optical fiber is set to “d <P ≦ 2d”, where d is the outer diameter of the dispersion compensating optical fiber, and the winding distortion of the dispersion compensating optical fiber wound around the coil bobbin. It is preferable to apply resin before carrying out the treatment.

本発明によれば、DCFを低張力で巻取っても、コイルボビンに巻取られたコイル上表面の全周に樹脂を付与してコイルボビンの鍔部とコイル上表面の全周とを接着固定するので、巻き崩れることがなく、しかも容易な製造方法で耐衝撃性をもたせることができる。   According to the present invention, even when the DCF is wound at a low tension, resin is applied to the entire circumference of the coil upper surface wound around the coil bobbin to bond and fix the flange portion of the coil bobbin and the entire circumference of the coil upper surface. Therefore, it is not collapsed and can be given impact resistance by an easy manufacturing method.

本発明による分散補償光ファイバの巻取りと樹脂付与の方法について説明する図である。It is a figure explaining the winding method of the dispersion compensation optical fiber by this invention, and the method of resin provision. 本発明の製造方法による波長分散補償コイルの概略を示す図である。It is a figure which shows the outline of the wavelength dispersion compensation coil by the manufacturing method of this invention. 本発明の波長分散補償器の製造方法の概略を示すフロー図である。It is a flowchart which shows the outline of the manufacturing method of the wavelength dispersion compensator of this invention. 波長分散補償器の概略を示す図である。It is a figure which shows the outline of a wavelength dispersion compensator. 常温(25℃)での分散補償光ファイバの設定巻取張力における、波長と伝送損失との関係を示す図である。It is a figure which shows the relationship between a wavelength and transmission loss in the setting winding tension | tensile_strength of the dispersion compensation optical fiber in normal temperature (25 degreeC). 常温(25℃)と低温(−10℃)での分散補償光ファイバの設定巻取張力における、波長と損失変化量との関係を示す図である。It is a figure which shows the relationship between the wavelength and loss variation in the setting winding tension | tensile_strength of the dispersion compensation optical fiber in normal temperature (25 degreeC) and low temperature (-10 degreeC). 樹脂の付与量による耐衝撃性と作業性を説明する図である。It is a figure explaining the impact resistance and workability | operativity by the application amount of resin. 巻き歪み除去処理と伝送損失の関係を説明する図である。It is a figure explaining the relationship between a winding distortion removal process and transmission loss.

図により本発明の実施の形態を説明する。図1において、1は分散補償光ファイバ(DCF)、2はサプライボビン、3はガイドローラ、4はダンサローラ、5はACサーボモータ、6は張力計、7は制御回路、8はコイルボビン、9は回転用モータ、9a,9bは駆動軸、10はコイル巻きファイバ、11a,11bは樹脂供給手段、12は樹脂、13はDCFコイルを示す。   Embodiments of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a dispersion compensating optical fiber (DCF), 2 is a supply bobbin, 3 is a guide roller, 4 is a dancer roller, 5 is an AC servo motor, 6 is a tension meter, 7 is a control circuit, 8 is a coil bobbin, 9 is Rotation motors, 9a and 9b are drive shafts, 10 is a coiled fiber, 11a and 11b are resin supply means, 12 is resin, and 13 is a DCF coil.

波長分散補償器のDCFコイルは、例えば、図1(A)示すようなコイル巻き装置を用いて形成される。このコイル巻き装置において、サプライボビン2から繰出されたDCF1は、複数のガイドローラ3とダンサローラ4を経てコイルボビン8に巻き取られる。ダンサローラ4は、ACサーボモータ5によりその回転トルクが制御され、コイルボビン8でのDCFの巻取張力を後述する所定値になるように制御する。なお、DCF1の巻取張力は、複数のガイドローラ3のうちの1つに設けられた張力計6により検出され、制御回路7にフィードバックされる。   The DCF coil of the chromatic dispersion compensator is formed using, for example, a coil winding device as shown in FIG. In this coil winding device, the DCF 1 fed from the supply bobbin 2 is wound around the coil bobbin 8 through a plurality of guide rollers 3 and dancer rollers 4. The dancer roller 4 is controlled so that its rotational torque is controlled by the AC servo motor 5 so that the winding tension of the DCF in the coil bobbin 8 becomes a predetermined value described later. The winding tension of the DCF 1 is detected by a tension meter 6 provided in one of the plurality of guide rollers 3 and fed back to the control circuit 7.

DCFコイル13は、DCF1がコイルボビン8上に巻取られたときにファイバ同士が互いに接触して、側圧やマイクロベンドに起因する損失が生じやすい。このため、本発明においては、コイルボビン8への巻取張力を通常(20g重以上)より低い張力で巻取るようにしている。例えば、10g重未満で巻取るのが好ましい。   In the DCF coil 13, when the DCF 1 is wound on the coil bobbin 8, the fibers come into contact with each other, and loss due to a lateral pressure or microbending is likely to occur. For this reason, in the present invention, the coil bobbin 8 is wound with a winding tension lower than usual (20 g weight or more). For example, it is preferable to take up less than 10 g weight.

図5は、常温(25℃)で測定したDCFコイルの設定巻取張力における波長と伝送損失(以下、単に損失という)との関係を示し、図6は低温(−10℃)で測定したDCFコイルの設定巻取張力における、波長と常温(25℃)での損失との差分(損失変化量)を示したものである。なお、設定巻取張力とは、ファイバをコイルボビンに巻き取る際に設定する巻取張力を示し、実際の巻取張力は、この設定巻取張力の値を中心に変動しながら、コイルボビンに巻き取られる。   FIG. 5 shows the relationship between the wavelength and the transmission loss (hereinafter simply referred to as loss) at the set winding tension of the DCF coil measured at room temperature (25 ° C.), and FIG. 6 shows the DCF measured at low temperature (−10 ° C.). The difference (loss change amount) between the wavelength and the loss at normal temperature (25 ° C.) in the coil winding tension is shown. The set winding tension indicates the winding tension that is set when the fiber is wound around the coil bobbin. The actual winding tension varies around the set winding tension value while winding around the coil bobbin. It is done.

図5(A)は、DCF用の光ファイバA(2重クラッドファイバ)をコイル巻きしたときの損失特性で、ファイバの巻ピッチが0.7mmで、ファイバの設定巻取張力が5g重、10g重、30g重で巻いたときの波長と損失の関係を測定したデータである。また、図5(B)は、DCF用の光ファイバB(3重クラッドファイバ)による損失特性で、光ファイバAと同様の条件で測定したデータである。   FIG. 5A shows loss characteristics when the optical fiber A for DCF (double clad fiber) is coiled. The winding pitch of the fiber is 0.7 mm, and the set winding tension of the fiber is 5 g weight, 10 g. It is the data which measured the relationship between the wavelength and loss when winding with a heavy weight and 30g weight. FIG. 5B shows loss characteristics of the DCF optical fiber B (triple clad fiber), which is data measured under the same conditions as the optical fiber A.

この図5によれば、光ファイバの種別の違いにより損失の程度の差はあるが、巻取張力を低張力とすることにより損失が少なくなることが分かる。なお、損失は、Cバンドの波長域での巻取張力による差はあまりないが、Lバンドの波長域から長波長側になるにしたがって巻取張力の違いによる損失の大きさに差が生じる。   According to FIG. 5, it can be seen that although there is a difference in the degree of loss depending on the type of optical fiber, the loss is reduced by making the winding tension low. Note that the loss is not much different due to the winding tension in the C-band wavelength region, but the difference in the magnitude of the loss due to the difference in winding tension becomes longer from the wavelength region of the L-band.

また、図6(A)は、上述した図5(A)の測定に用いたDCF用の光ファイバA(2重クラッドファイバ)をコイル巻きしたものを、低温(−10℃)状態に保持したときの波長と損失の関係を測定したデータである。同様に、図6(B)は、図5(B)の測定に用いたDCF用の光ファイバB(3重クラッドファイバ)をコイル巻きしたものを、低温(−10℃)状態に保持したときの波長と損失の関係を測定したデータである。なお、損失は常温(25℃)での損失との差分(損失変化量)で示してある。   In FIG. 6A, the DCF optical fiber A (double clad fiber) used for the measurement in FIG. 5A described above is coiled and held at a low temperature (−10 ° C.). It is data obtained by measuring the relationship between the wavelength and the loss. Similarly, FIG. 6 (B) shows a case where the DCF optical fiber B (triple clad fiber) used in the measurement of FIG. 5 (B) is coiled and held at a low temperature (−10 ° C.). It is the data which measured the relationship between the wavelength and loss. The loss is shown as a difference (loss change amount) from the loss at normal temperature (25 ° C.).

この図6によれば、低温状態では、Cバンド域から長波長側になるにしたがって、何れの巻取張力でも損失変化量は増加するが、設定巻取張力が5g重と10g重の低張力では、その損失増加の割合にそれほどの差異はなく、増加割合もあまり大きくはない。しかし、設定巻取張力が30g重と大きくなると、低張力で巻取るものと比べて長波長側での損失増加の割合が大きくなる。
したがって、上述した図5,6の測定データによれば、巻取張力は低いほど損失及び低温状態としたときの損失変化量が小さく、特に10g重以下で巻取られていることが好ましいと言える。
According to FIG. 6, in the low temperature state, the loss change increases at any winding tension from the C band region to the longer wavelength side, but the set winding tension is a low tension of 5 g weight and 10 g weight. Then, the loss increase rate is not so different, and the increase rate is not very large. However, when the set winding tension is as large as 30 g weight, the rate of increase in loss on the long wavelength side is larger than that of winding with a low tension.
Therefore, according to the measurement data of FIGS. 5 and 6 described above, it can be said that the lower the winding tension, the smaller the loss and the amount of change in loss when the temperature is changed, and it is preferable that the winding is preferably performed at a weight of 10 g or less. .

しかしながら、コイルボビンへの巻取張力を低くすると、巻取りコイルの巻き崩れが生じやすい。巻き崩れが生じると、ファイバ同士の接触等によりマイクロベンドに起因する損失が生じやすい。本発明においては、上記したようにDCFをコイルボビン上に低張力で巻取ると共に、巻取られたコイル巻きファイバの上表面全体に接着性を有する樹脂を付与して、コイルボビンに対してファイバのコイル形状を維持するように保持固定する。   However, when the winding tension on the coil bobbin is lowered, the winding coil tends to collapse. When unwinding occurs, loss due to microbending is likely to occur due to contact between fibers. In the present invention, as described above, the DCF is wound on the coil bobbin with a low tension, and a resin having adhesiveness is applied to the entire upper surface of the wound coiled fiber so that the coil of the fiber is applied to the coil bobbin. Hold and fix to maintain the shape.

すなわち、図1(B)または(C)に示すように、図1(A)のコイル巻き装置により、コイルボビン8にコイル巻きファイバ10が巻取られた後、そのコイル上表面に樹脂供給手段11a,11bにより接着性の樹脂12が付与される。樹脂の付与は、コイル上表面10aに刷毛、ロールやヘラ等による塗布、あるいは、スプレイ等による吹き付けにより行うことができる。この樹脂の付与は、後述するようにコイル上表面の全周に対して行われ、かつ、適正な樹脂量が付与されることが望ましい。   That is, as shown in FIG. 1 (B) or (C), after the coiled fiber 10 is wound around the coil bobbin 8 by the coil winding device of FIG. 1 (A), the resin supply means 11a is applied to the upper surface of the coil. , 11b gives adhesive resin 12. The resin can be applied to the coil upper surface 10a by application with a brush, a roll, a spatula or the like, or by spraying with a spray or the like. As will be described later, it is desirable that the resin be applied to the entire circumference of the upper surface of the coil and that an appropriate amount of resin be applied.

樹脂供給手段11aによる樹脂12の付与は、例えば、図1(B)に示すように、樹脂供給手段11a側を固定的に配置し、コイル巻きファイバ10が巻かれたコイルボビン8側を、軸9aと回転用モータ9とで回転させることにより行うことができる。
また、図1(C)に示すように、コイル巻きファイバ10が巻かれたコイルボビン8側を固定的に配置し、樹脂供給手段11b側を軸9bを用いて回転用モータ9により、コイルボビン8の周りを移動させるようにしてもよい。
For example, as shown in FIG. 1B, the resin supply unit 11a applies the resin 12 with the resin supply unit 11a fixedly disposed, and the coil bobbin 8 around which the coiled fiber 10 is wound is disposed on the shaft 9a. And rotating with the rotation motor 9.
Also, as shown in FIG. 1C, the coil bobbin 8 side around which the coiled fiber 10 is wound is fixedly arranged, and the resin supply means 11b side is rotated by the rotating motor 9 using the shaft 9b. You may make it move around.

図2は、DCFコイル13の一例を説明する図である。図中、8aは胴部、8bは鍔部、8cは巻始端ファイバ引出し孔、8dは軸支孔、10aはコイル上表面、10bは巻始端ファイバ部分、10cは巻終端ファイバ部分を示す。その他の符号は、図1の説明に用いた符号を用いることにより説明を省略する。   FIG. 2 is a diagram illustrating an example of the DCF coil 13. In the figure, 8a is a body portion, 8b is a flange portion, 8c is a winding start end fiber drawing hole, 8d is a shaft support hole, 10a is a coil upper surface, 10b is a winding start end fiber portion, and 10c is a winding end fiber portion. Description of other reference numerals is omitted by using the reference numerals used in the description of FIG.

図2(A)は、DCFがコイルボビン8上に巻付けられた状態を示す。コイルボビン8は、胴部8aの両側に鍔部8bを設けてなり、また、一方の鍔部8bの内径部に巻始端ファイバ部分10bを引出す巻始端ファイバ引出し孔8cが設けられ、胴部8aの中心には軸支孔8dが設けられている。胴部8aは、熱膨張係数の小さなプラスチックで形成されることが望ましい。鍔部8bはアルミニウムなどの軽量金属で形成される。コイルボビン8のサイズは、一例として、胴部8aの直径が120mm、鍔部8bの直径が200mm、胴幅(鍔部8b間の幅)が30mm程度である。なお、このコイルボビンには、長さ10km程度のDCFが巻付けられている。   FIG. 2A shows a state where the DCF is wound on the coil bobbin 8. The coil bobbin 8 is provided with flange portions 8b on both sides of the body portion 8a, and a winding start end fiber extraction hole 8c is provided in the inner diameter portion of one of the flange portions 8b to pull out the winding start end fiber portion 10b. A shaft support hole 8d is provided at the center. The body 8a is preferably formed of a plastic having a small thermal expansion coefficient. The flange portion 8b is formed of a lightweight metal such as aluminum. For example, the diameter of the coil bobbin 8 is about 120 mm in diameter of the body portion 8 a, 200 mm in diameter of the flange portion 8 b, and about 30 mm in width (width between the flange portions 8 b). The coil bobbin is wound with a DCF having a length of about 10 km.

図2(B),(C)は、コイルボビン8に巻取られたコイル巻きファイバ10のコイル上表面10aに樹脂12を付与したDCFコイル13を示している。樹脂12の材料には、熱膨張係数および塗布後の収縮率が小さい接着性を有するものが好ましい。例えば、紫外線硬化型または室温硬化型のシリコーン樹脂が用いられ、コイル上表面10aの全周を覆い、かつ、コイルボビン8の鍔部8bの内面に接着するように均一に付与されていることが望ましい。この樹脂12は、図1(B)あるいは(C)で説明した樹脂供給手段11a,11bで塗布あるいは吹付けで付与される。   FIGS. 2B and 2C show a DCF coil 13 in which a resin 12 is applied to the coil upper surface 10 a of the coiled fiber 10 wound around the coil bobbin 8. The material of the resin 12 preferably has an adhesiveness with a small thermal expansion coefficient and a small shrinkage ratio after application. For example, an ultraviolet curable or room temperature curable silicone resin is used, and it is desirable that it is uniformly applied so as to cover the entire circumference of the upper surface 10 a of the coil and to adhere to the inner surface of the flange 8 b of the coil bobbin 8. . The resin 12 is applied by coating or spraying with the resin supply means 11a and 11b described with reference to FIG.

樹脂12の付与量については、上述したサイズのDCFコイル13で試験した評価結果を、図7に示す。樹脂12にはシリコーン樹脂を用い、その塗布量を5g,10g,15gと変化させて試料1〜3を作製した。この時のシリコーン樹脂の塗布の方法は、上記量のシリコーン樹脂をコイル巻きファイバ10上に滴下し、ヘラで均一厚さになるように塗り伸ばすことにより形成した。このとき、コイルボビンの回転数は、10rpm未満とした。なお、回転数を10rpm以上とすると、巻胴が回転方向と反対にずれてしまい、ファイバが緩んだり引っ張られたりし、巻き崩れや断線などが発生した。   About the application amount of resin 12, the evaluation result tested with the DCF coil 13 of the size mentioned above is shown in FIG. Samples 1 to 3 were prepared by using a silicone resin as the resin 12 and changing the coating amount to 5 g, 10 g, and 15 g. At this time, the silicone resin was applied by dropping the above amount of the silicone resin onto the coiled fiber 10 and spreading it with a spatula so as to have a uniform thickness. At this time, the number of rotations of the coil bobbin was less than 10 rpm. When the rotation speed was 10 rpm or more, the winding drum was displaced in the direction opposite to the rotation direction, the fiber was loosened or pulled, and the winding collapse or disconnection occurred.

樹脂の塗布状態は、上記サイズのDCFコイル、樹脂で、試料1の塗布量が5gの場合は、シリコーン樹脂の塗布厚さは0.2mm以下程度の厚みとなり、鍔部際の数箇所で塗布されない箇所があり、塗布量不足という感じで作業性もよくなかった。試料2の塗布量が10gの場合では、シリコーン樹脂の塗布厚さは0.4mm〜0.5mm程度の厚みとなり、ボビンの鍔際も含めて塗布されない箇所はなく、塗布の作業性も問題なく、10〜12gとすると適当という感じであった。試料3の塗布量が15gの場合では、シリコーン樹脂の塗布厚さは0.7mm〜0.8mm程度の厚さとなり、試料2の場合と同様にボビンの鍔際も含めて塗布されない箇所はなく、塗布の作業性も問題なかったが、必要以上に塗布されているという感じであった。   The application state of the resin is the DCF coil and resin of the above size, and when the application amount of the sample 1 is 5 g, the application thickness of the silicone resin is about 0.2 mm or less, and it is applied at several places near the buttock. There was a part that was not done, and the workability was not good due to the feeling that the coating amount was insufficient. When the coating amount of the sample 2 is 10 g, the coating thickness of the silicone resin is about 0.4 mm to 0.5 mm, there is no portion that is not coated including the edge of the bobbin, and the coating workability is also satisfactory. 10 to 12 g was appropriate. When the coating amount of the sample 3 is 15 g, the silicone resin coating thickness is about 0.7 mm to 0.8 mm, and there is no portion that is not applied including the bobbin edge as in the case of the sample 2. Although there was no problem in the workability of the coating, it was felt that the coating was applied more than necessary.

また、上述の試料1〜3をダンボールに梱包した状態で、1mの高さから落下させる、耐衝撃試験を実施したところ、試料1は、コイルボビン8の鍔部8bの鍔際に存在したシリコーン樹脂の未塗布部分が起点となって、裂けるように隙間が生じた。そして、この隙間からファイバがはみ出し、耐衝撃試験を満足することができなかった。試料2と3については、コイル上表面に塗布されたシリコーン樹脂に全く変化は見られず、耐衝撃試験をクリアすることができた。   Moreover, when the impact resistance test which drops from the height of 1 m in the state which packed the samples 1-3 mentioned above in the corrugated cardboard was implemented, the sample 1 was the silicone resin which existed at the edge of the collar part 8b of the coil bobbin 8 An uncoated part of the film started as a starting point and a gap was formed so as to tear. The fiber protruded from the gap, and the impact resistance test could not be satisfied. For samples 2 and 3, no change was observed in the silicone resin applied to the upper surface of the coil, and the impact resistance test could be cleared.

上記の結果から、樹脂12は、コイル上表面10aから0.4mm以上の厚みとなるように塗布されていることが望ましいことが分かる。なお、この塗布量は、上記サイズのコイルボビンにDCFを10km巻いた場合の目安であり、コイル巻きファイバ10の巻量またはコイルボビン8のサイズによっても変化する。また、粘度の異なる樹脂を使用した場合は、これより塗布量が少なくても、耐衝撃性試験を満足する結果が得られる可能性がある。
樹脂の塗布量が少なすぎると、コイル上表面の固定が不十分となって樹脂が塗布されない部分が生じ、応力集中により樹脂が裂けて巻き崩れが生じる可能性がある。したがって、コイル上表面からある程度以上の厚みとなるような塗布量が好ましい。ただ、あまり塗布量が多すぎるとコスト高となり、さらに樹脂の熱膨張係数によっては、コイル巻きファイバ10に応力がかかる可能性がある。
From the above results, it can be seen that the resin 12 is preferably applied so as to have a thickness of 0.4 mm or more from the coil upper surface 10a. This coating amount is a guideline when DCF is wound on a coil bobbin of the above size by 10 km, and varies depending on the winding amount of the coiled fiber 10 or the size of the coil bobbin 8. Further, when resins having different viscosities are used, there is a possibility that results satisfying the impact resistance test may be obtained even if the coating amount is smaller than this.
If the amount of the resin applied is too small, the surface on the coil is not sufficiently fixed, and a portion where the resin is not applied is generated, and the resin may tear due to stress concentration and may be unrolled. Therefore, a coating amount that provides a certain thickness from the upper surface of the coil is preferable. However, if the amount of application is too large, the cost is high, and depending on the thermal expansion coefficient of the resin, the coiled fiber 10 may be stressed.

コイルボビン8でDCFを巻取るに際し、従来は、低張力で巻取ると巻き崩れが生じるため、巻ピッチを広げることにより損失の増加を抑えていた。特許文献3には、巻ピッチを大きくすることで、コイル巻きファイバの隣接するファイバ間での接触による側圧が低減するので、損失を軽減することが開示されている。しかしながら、あまり巻ピッチを大きくすると、コイルボビン8で巻取れるDCFの長さが短くなり、所定長さを巻くにはコイルボビン8のサイズを大きくする必要がある。例えば、巻取りの張力を5g重とし、巻ピッチを0.7mmとした場合の占積率は63%であるのに対し、巻ピッチ0.3mmと小さくすると占積率は67%に上がる。つまり,巻ピッチを大きくすると、同じボビンに対し、巻き取れるファイバが短くなる。また、巻ピッチを大きくすると、巻き崩れも起こしやすくなるという問題も生じる。   When winding the DCF with the coil bobbin 8, conventionally, since winding collapse occurs when the coil bobbin 8 is wound with low tension, an increase in loss is suppressed by widening the winding pitch. Japanese Patent Application Laid-Open No. H10-228667 discloses that the side pressure due to contact between adjacent fibers of the coil-wound fiber is reduced by increasing the winding pitch, thereby reducing the loss. However, if the winding pitch is increased too much, the length of the DCF that can be wound around the coil bobbin 8 is shortened, and it is necessary to increase the size of the coil bobbin 8 in order to wind a predetermined length. For example, when the winding tension is 5 g and the winding pitch is 0.7 mm, the space factor is 63%, but when the winding pitch is reduced to 0.3 mm, the space factor increases to 67%. That is, when the winding pitch is increased, the fiber that can be wound on the same bobbin is shortened. Further, when the winding pitch is increased, there is a problem that winding collapse is likely to occur.

本発明においては、上述したようにコイル上表面の全周に樹脂を付与することで巻き崩れを防止しているので、低張力で巻くことが可能であり、巻ピッチをあまり大きくする必要も無い。DCFの線径をdとしたときの巻ピッチPは、占積率も考慮し、「d<P≦2d」程度の値とするのが好ましい。これにより、DCFコイルの占積率を向上させ、波長分散補償器を小形化することができる。なお、DCFのファイバ径は、ここでは0.25mmとしている。
また、特許文献1に開示されるように、DCFをコイルボビンに巻取った後、巻き歪み除去処理を施すことにより損失を低減することができる。巻き歪み除去処理は、例えば、−40℃〜+80℃のヒートサイクル処理、振動印加処理などの方法で実施される。
In the present invention, as described above, the resin is applied to the entire circumference of the upper surface of the coil to prevent the coil from collapsing, so that it is possible to wind with a low tension and it is not necessary to increase the winding pitch too much. . The winding pitch P when the wire diameter of the DCF is d is preferably set to a value of “d <P ≦ 2d” in consideration of the space factor. Thereby, the space factor of a DCF coil can be improved and a chromatic dispersion compensator can be reduced in size. The fiber diameter of the DCF is 0.25 mm here.
Further, as disclosed in Patent Document 1, after the DCF is wound around the coil bobbin, the loss can be reduced by performing a winding distortion removing process. The winding distortion removal process is performed by a method such as a heat cycle process at −40 ° C. to + 80 ° C. or a vibration application process, for example.

図8は、各巻ピッチにおける巻き歪み除去処理回数と損失の関係を示す試験結果である。この図から、巻ピッチ0.3mmと巻ピッチ0.7mmとで初期の損失は異なるが、巻き歪み除去処理を行うことにより、巻ピッチの違いによる損失の差はなくなる。また、巻き歪み除去処理は、処理回数を多くしてもあまり損失の改善効果はなく、少なくとも1回行うことで十分であることも判明した。   FIG. 8 shows test results showing the relationship between the number of winding distortion removal processes and the loss at each winding pitch. From this figure, although the initial loss differs between the winding pitch of 0.3 mm and the winding pitch of 0.7 mm, the difference in loss due to the difference in the winding pitch is eliminated by performing the winding distortion removal process. Further, it has also been found that the winding distortion removal process has no effect of improving the loss even if the number of processes is increased, and it is sufficient to perform the process at least once.

なお、低張力で巻き取ったコイルは占積率が低いため、巻き歪み除去処理を行った後、ボビン鍔際に隙間が発生しやすく、これにより巻き崩れしやすくなる。このため、巻き歪み除去処理前にコイル上表面に樹脂を付与することにより、巻き崩れを生じにくくさせられるものと推測できる。しかしながら、巻ピッチ0.7mm(P>2d)では、巻き歪み除去処理をコイル上表面に樹脂を付与する前に行っても、後に行っても、巻き崩れが生じた。これに対し、巻ピッチ0.3mm(P<2d)及び0.5mm(P=2d)では、巻き歪み除去処理を樹脂を付与する前に行うと巻き崩れを起こしたが、樹脂の付与後に行う場合は、巻き崩れは生じなかった。
したがって、本発明においては、分散補償光ファイバの巻取りピッチPは、分散補償光ファイバの外径をdとしたとき「d<P≦2d」とし、コイルボビンに巻取られた分散補償光ファイバの巻歪み処理を実施する前に、樹脂を付与するのが好ましい。
In addition, since the coil wound by low tension has a low space factor, after performing the winding distortion removal process, a gap is likely to be generated at the bobbin heel, thereby being easily broken. For this reason, it can be presumed that winding collapse is less likely to occur by applying a resin to the coil upper surface before the winding distortion removing process. However, at a winding pitch of 0.7 mm (P> 2d), the winding distortion removal treatment occurred both before and after applying the resin to the coil upper surface. On the other hand, when the winding pitch was 0.3 mm (P <2d) and 0.5 mm (P = 2d), the winding distortion was removed when the resin was applied before the resin was applied. In that case, no roll-up occurred.
Therefore, in the present invention, the winding pitch P of the dispersion compensating optical fiber is “d <P ≦ 2d” where d is the outer diameter of the dispersion compensating optical fiber, and the dispersion compensating optical fiber wound around the coil bobbin It is preferable to apply resin before carrying out the winding distortion treatment.

図3は上述した波長分散補償器の製造フローの概略を示す。ステップ(1)では、図1(A)で説明した巻取り装置で、コイルボビンにコイル巻きファイバが巻取られる。このコイル巻きファイバの巻取りでは、予め設定された長さより若干余裕をもたせてDCFが巻取られる。次いで、ステップ(2)で、図2(A)の状態で、コイル巻きファイバの分散値の測定が行われる。予め所定の分散値を越えるように長めに巻取られているので、次のステップ(3)で、コイルボビンを巻取りと反対方向に回転させて、コイル巻きファイバを繰り出し、分散値が所定値になるように調整する。分散値が所定の値にならなければ、ステップ(3)の巻取り長調整を再度行い、ステップ(2)と(3)を繰り返す。   FIG. 3 shows an outline of the manufacturing flow of the chromatic dispersion compensator described above. In step (1), the coiled fiber is wound around the coil bobbin by the winding device described with reference to FIG. In winding the coiled fiber, the DCF is wound with a margin slightly longer than a preset length. Next, in step (2), the dispersion value of the coiled fiber is measured in the state of FIG. Since the coil is wound long so as to exceed a predetermined dispersion value in advance, in the next step (3), the coil bobbin is rotated in the opposite direction to the winding, and the coil-wound fiber is fed out so that the dispersion value becomes a predetermined value. Adjust so that If the dispersion value does not become a predetermined value, the winding length adjustment in step (3) is performed again, and steps (2) and (3) are repeated.

次いで、ステップ(4)に進んで、図1(B),(C)で説明した樹脂供給手段等を用いて、コイル巻きファイバの上表面の全周に樹脂を塗布して巻き崩れを防止する。この後、ステップ(5)により、ヒートサイクルや振動による巻き歪み除去処理を行う。そして、最後に、上述のようにして製造されたDCFコイルを筐体内に収納し、ファイバリードや光コネクタを接続することで波長分散補償器とされる。   Next, proceeding to step (4), using the resin supply means described with reference to FIGS. 1B and 1C, the resin is applied to the entire circumference of the upper surface of the coiled fiber to prevent collapse. . Thereafter, in step (5), a winding distortion removal process due to a heat cycle or vibration is performed. Finally, the DCF coil manufactured as described above is housed in a housing, and a fiber lead or an optical connector is connected to obtain a chromatic dispersion compensator.

図4は、本発明の製造方法により製造された波長分散補償器を示し、図中、14は筐体、15はファイバリード、16は光コネクタ、17は波長分散補償器を示す。
本発明の製造方法により製造されたDCFコイル13は、図2(B),(C)の形態で巻始端ファイバ部分および巻終端ファイバ部分にファイバリード15を介するか、または、直接に光コネクタ16を接続し、筐体14内に収納されて波長分散補償器17とされる。
FIG. 4 shows a chromatic dispersion compensator manufactured by the manufacturing method of the present invention, in which 14 denotes a housing, 15 denotes a fiber lead, 16 denotes an optical connector, and 17 denotes a chromatic dispersion compensator.
The DCF coil 13 manufactured by the manufacturing method of the present invention has a configuration shown in FIGS. 2B and 2C via a fiber lead 15 in the winding start fiber portion and the winding end fiber portion, or directly to the optical connector 16. Are connected to each other and housed in the housing 14 to form a chromatic dispersion compensator 17.

1…分散補償光ファイバ(DCF)、2…サプライボビン、3…ガイドローラ、4…ダンサローラ、5…ACサーボモータ、6…張力計、7…制御回路、8…コイルボビン、8a…胴部、8b…鍔部、8c…巻始端ファイバ引出し孔、8d…軸支孔、9…回転用モータ、9a,9b…駆動軸、10…コイル巻きファイバ、10a…コイル上表面、10b…巻始端ファイバ部分、10c…巻終端ファイバ部分、11a,11b…樹脂供給手段、12…樹脂、13…DCFコイル、14…筐体、15…ファイバリード、16…光コネクタ、17…波長分散補償器。 DESCRIPTION OF SYMBOLS 1 ... Dispersion compensation optical fiber (DCF), 2 ... Supply bobbin, 3 ... Guide roller, 4 ... Dancer roller, 5 ... AC servo motor, 6 ... Tension meter, 7 ... Control circuit, 8 ... Coil bobbin, 8a ... trunk | drum, 8b DESCRIPTION OF REFERENCE SYMBOLS, 8c ... Winding start fiber drawing hole, 8d ... Shaft support hole, 9 ... Motor for rotation, 9a, 9b ... Drive shaft, 10 ... Coiled fiber, 10a ... Coil upper surface, 10b ... Winding start fiber part, DESCRIPTION OF SYMBOLS 10c ... Winding | ending terminal fiber part, 11a, 11b ... Resin supply means, 12 ... Resin, 13 ... DCF coil, 14 ... Housing | casing, 15 ... Fiber lead, 16 ... Optical connector, 17 ... Wavelength dispersion compensator.

Claims (4)

サプライボビンに巻かれた分散補償光ファイバをコイルボビンに巻き替えて波長分散補償器を製造する方法であって、
前記分散補償光ファイバを前記コイルボビンに巻き替える際の巻取張力を、10g重未満に制御して巻取った後、前記コイルボビンに巻取られたファイバ表面の全周に樹脂を付与し、前記コイルボビンの鍔部と前記ファイバ上表面の全周とを接着固定することを特徴とする波長分散補償器の製造方法。
A method of manufacturing a chromatic dispersion compensator by winding a dispersion compensating optical fiber wound around a supply bobbin into a coil bobbin,
After winding the dispersion compensating optical fiber around the coil bobbin while controlling the winding tension to be less than 10 g, a resin is applied to the entire circumference of the fiber surface wound around the coil bobbin. A method of manufacturing a chromatic dispersion compensator, characterized in that the flange portion of the fiber and the entire circumference of the upper surface of the fiber are bonded and fixed.
前記樹脂は、樹脂供給手段と前記コイルボビンとを相対的回転移動させながら付与されることを特徴とする請求項1に記載の波長分散補償器の製造方法。   2. The method of manufacturing a chromatic dispersion compensator according to claim 1, wherein the resin is applied while relatively rotating and moving the resin supply means and the coil bobbin. 前記樹脂供給手段と前記コイルボビンとの相対回転速度差を10rpm以下とすることを特徴とする請求項2に記載の波長分散補償器の製造方法。   The method for manufacturing a chromatic dispersion compensator according to claim 2, wherein a relative rotational speed difference between the resin supply means and the coil bobbin is 10 rpm or less. 分散補償光ファイバの巻ピッチPは、前記分散補償光ファイバの外径をdとしたとき、「d<P≦2d」に設定され、前記コイルボビンに巻取られた分散補償光ファイバの巻歪み処理を実施する前に、前記樹脂を付与することを特徴とする請求項1〜3のいずれか1項に記載の波長分散補償器の製造方法。   The winding pitch P of the dispersion compensating optical fiber is set to “d <P ≦ 2d”, where d is the outer diameter of the dispersion compensating optical fiber, and the winding distortion processing of the dispersion compensating optical fiber wound around the coil bobbin. The method for manufacturing a chromatic dispersion compensator according to any one of claims 1 to 3, wherein the resin is applied before performing the step.
JP2010085684A 2010-04-02 2010-04-02 Method of manufacturing wavelength dispersion compensator Pending JP2011215506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085684A JP2011215506A (en) 2010-04-02 2010-04-02 Method of manufacturing wavelength dispersion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085684A JP2011215506A (en) 2010-04-02 2010-04-02 Method of manufacturing wavelength dispersion compensator

Publications (1)

Publication Number Publication Date
JP2011215506A true JP2011215506A (en) 2011-10-27

Family

ID=44945259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085684A Pending JP2011215506A (en) 2010-04-02 2010-04-02 Method of manufacturing wavelength dispersion compensator

Country Status (1)

Country Link
JP (1) JP2011215506A (en)

Similar Documents

Publication Publication Date Title
EP2341377B1 (en) Method for producing optical fiber
JP5778939B2 (en) Manufacturing method of optical fiber
JP3031522B2 (en) Manufacturing method of optical fiber cable
AU768392B2 (en) Dispersion compensating optical fiber
CN109384383A (en) The manufacturing method and optical fiber wire of optical fiber wire
WO2002005980A1 (en) Method of winding up copper foil on core
CN102686529B (en) Method and device for manufacturing fiber-optic strands
JP2011215506A (en) Method of manufacturing wavelength dispersion compensator
JP6593001B2 (en) Optical fiber winding method and optical fiber
US11261130B2 (en) Spool-free fiber optic cable configuration for cable installation onto a powerline conductor
WO2014021392A1 (en) Reel member, film container, and method for manufacturing film container
US7035525B2 (en) Methods and apparatuses for correcting mechanical twist in optical fiber
JP3952949B2 (en) Optical fiber and manufacturing method thereof
JP2011215507A (en) Method of manufacturing wavelength dispersion compensator
JP6523383B2 (en) Method of manufacturing optical fiber and optical fiber
JP2010122666A (en) Method and apparatus for producing optical fiber
JP5948094B2 (en) Optical fiber and optical fiber manufacturing method
JP5242245B2 (en) Wavelength conversion optical device and method of manufacturing optical fiber used for wavelength conversion optical device
WO2022254557A1 (en) Optical fiber test method and optical fiber winding device
JPWO2005063640A1 (en) Optical fiber twisting device, optical fiber strand manufacturing method, and optical fiber strand
CN117208670B (en) Low-stress optical cable winding and unwinding device
WO2002059659A1 (en) Dispersion compensation unit and method of producing the same
JP2002022972A (en) Optical part
JP3570539B2 (en) Optical fiber cable manufacturing method and optical fiber cable
WO2022254556A1 (en) Fiber-optic cable and fiber-optic cable manufacturing device