JP2011215125A - Device and method of battery capacity calculation - Google Patents

Device and method of battery capacity calculation Download PDF

Info

Publication number
JP2011215125A
JP2011215125A JP2010200418A JP2010200418A JP2011215125A JP 2011215125 A JP2011215125 A JP 2011215125A JP 2010200418 A JP2010200418 A JP 2010200418A JP 2010200418 A JP2010200418 A JP 2010200418A JP 2011215125 A JP2011215125 A JP 2011215125A
Authority
JP
Japan
Prior art keywords
charging
circuit voltage
open
current
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010200418A
Other languages
Japanese (ja)
Other versions
JP5393624B2 (en
Inventor
Nozomi Teranishi
望 寺西
Kinnosuke Itabashi
欣之介 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2010200418A priority Critical patent/JP5393624B2/en
Publication of JP2011215125A publication Critical patent/JP2011215125A/en
Application granted granted Critical
Publication of JP5393624B2 publication Critical patent/JP5393624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a device and method of battery capacity calculation which can calculate battery capacity with a high degree of accuracy.SOLUTION: In the method, variation in current integration charging rate ΔSOC-i is computed based on integrated values of sensor current I during a specific current integration period in charging time period of a battery 6 charged by a charger; open circuit voltage OCV at the starting and ending of the specific current integration period is estimated based on state quantity of the battery 6; charging rates SOC-v1/SOC-v2 at the starting and ending of the specific current integration period are obtained from the estimated circuit voltage OCV; variation in open circuit voltage charging rate ΔSOC-v is computed from difference between both of the SOC-v1/SOC-v2, capacity maintenance ratio SOH, that is, ratio of the variation in current integration charging rate ΔSOC-i to the variation in open circuit voltage charging rate ΔSOC-v is computed, and then initial battery capacity Ah of the battery 6 is multiplied by the capacity maintenance ratio SOH to calculate battery capacity Ch of the battery 6.

Description

本発明は、電池容量算出装置および電池容量算出方法に関する。   The present invention relates to a battery capacity calculation device and a battery capacity calculation method.

特許文献1の電池容量算出方法では、二次電池の放電時に複数の時点で電流と端子電圧を計測し、電流−電圧特性の傾きから電池の内部抵抗を推定し、あらかじめ実験で求めた内部抵抗−電池容量維持率特性を参照して電池容量を求めている。   In the battery capacity calculation method of Patent Document 1, the current and terminal voltage are measured at a plurality of points in time when the secondary battery is discharged, the internal resistance of the battery is estimated from the slope of the current-voltage characteristics, and the internal resistance obtained through experiments in advance is measured. -The battery capacity is obtained with reference to the battery capacity retention rate characteristic.

特公平01−39068号公報Japanese Patent Publication No. 01-39068

二次電池の内部抵抗には二次電池の劣化により特性が変化する時間応答遅れ成分が存在するのに対し、電流−電圧特性の傾きから求めた内部抵抗は応答遅れ成分が考慮されていないため、推定誤差が大きく、電池容量の算出精度が低いという問題があった。
本発明の目的は、電池容量を高精度に算出できる電池容量算出装置および電池容量算出方法を提供することにある。
The internal resistance of a secondary battery has a time response delay component whose characteristics change due to deterioration of the secondary battery, whereas the internal resistance obtained from the slope of the current-voltage characteristic does not take into account the response delay component There is a problem that the estimation error is large and the calculation accuracy of the battery capacity is low.
An object of the present invention is to provide a battery capacity calculation device and a battery capacity calculation method that can calculate the battery capacity with high accuracy.

上記課題を解決するため、本発明では、充電器による二次電池の充電期間内における所定電流積算期間の二次電池の充放電電流の積算値に基づいて電流積算に基づく充電率変化量を算出し、二次電池の状態量に基づいて所定電流積算期間の開始時および終了時の開放電圧を推定し、推定した開放電圧から所定電流積算期間の開始時および終了時の充電率を求め、両者の差分から開放電圧に基づく充電率変化量を算出し、開放電圧に基づく充電率変化量に対する電流積算に基づく充電率変化量の比である容量維持率を算出し、二次電池の初期電池容量に容量維持率を乗算して二次電池の電池容量を算出する。   In order to solve the above problem, in the present invention, the charging rate change amount based on the current integration is calculated based on the integrated value of the charge / discharge current of the secondary battery in the predetermined current integration period within the charging period of the secondary battery by the charger. The open circuit voltage at the start and end of the predetermined current integration period is estimated based on the state quantity of the secondary battery, and the charging rate at the start and end of the predetermined current integration period is obtained from the estimated open circuit voltage. The amount of change in charging rate based on the open-circuit voltage is calculated from the difference between the two, the capacity maintenance rate that is the ratio of the amount of charging rate change based on the current integration to the amount of charging rate change based on the open-circuit voltage is calculated, and the initial battery capacity of the secondary battery Is multiplied by the capacity maintenance rate to calculate the battery capacity of the secondary battery.

充電器による二次電池の充電時は使用時と比較して充放電電流が高く、かつ安定しているため、電流積算誤差による影響を少なくでき、電流積算に基づく充電率変化量を精度良く算出できる。よって、電流積算に基づく充電率変化量と開放電圧に基づく充電率変化量とから求まる容量維持率の算出精度を高めることができ、この結果、容量維持率と初期電池容量から求まる電池容量を高精度に算出できる。   When charging a secondary battery with a charger, the charge / discharge current is higher and more stable than when used, so the effect of current integration error can be reduced, and the amount of change in charging rate based on current integration can be calculated accurately. it can. Therefore, the calculation accuracy of the capacity maintenance rate obtained from the charge rate change amount based on the current integration and the charge rate change amount based on the open circuit voltage can be increased, and as a result, the battery capacity obtained from the capacity maintenance rate and the initial battery capacity can be increased. It can be calculated accurately.

実施例1のバッテリシステム1の構成図である。1 is a configuration diagram of a battery system 1 of Example 1. FIG. コントローラ2の制御ブロック図である。2 is a control block diagram of a controller 2. FIG. バッテリ6の内部抵抗等価回路を示すバッテリモデルである。3 is a battery model showing an internal resistance equivalent circuit of a battery 6. 逐次パラメータ推定の制御ブロック図である。It is a control block diagram of sequential parameter estimation. バッテリ6のバッテリ6のOCV-SOC特性図である。6 is an OCV-SOC characteristic diagram of the battery 6 of the battery 6. FIG. M系列信号発生回路21および信号調整部22の構成図である。3 is a configuration diagram of an M-sequence signal generation circuit 21 and a signal adjustment unit 22. FIG. M系列信号発生回路21のシフトレジスタ数である。This is the number of shift registers of the M-sequence signal generation circuit 21. M系列の一例である。It is an example of M series. M系列信号の波形図である。It is a wave form diagram of an M series signal. M系列信号波形の一部拡大図である。It is a partially enlarged view of an M-sequence signal waveform. 実施例1のコントローラ2で実行されるバッテリ容量算出処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of a battery capacity calculation process executed by a controller 2 according to the first embodiment. 実施例1のバッテリ容量算出処理作用を示すタイムチャートである。6 is a time chart showing the battery capacity calculation processing operation of the first embodiment. 実施例2のコントローラ2で実行されるバッテリ容量算出処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of a battery capacity calculation process executed by a controller 2 according to the second embodiment. 実施例2のバッテリ容量算出処理作用を示すタイムチャートである。6 is a time chart showing the battery capacity calculation processing operation of the second embodiment. 実施例3のコントローラ2で実行されるバッテリ容量算出処理の流れを示すフローチャートである。12 is a flowchart illustrating a flow of a battery capacity calculation process executed by a controller 2 according to the third embodiment.

以下、本発明の電池容量算出装置および電池容量算出方法を実施するための形態を、実施例に基づいて説明する。
〔実施例1〕
まず、実施例1の構成を説明する。
図1は、実施例1のバッテリシステム1の構成図であり、実施例1のバッテリシステム1は、電気自動車に搭載されている。
バッテリシステム1は、コントローラ2、バッテリ6の端子電圧を検出する電圧センサ3、バッテリ6の充放電電流を検出する電流センサ4、バッテリ6の温度Tを検出する温度センサ5、二次電池としての強電バッテリ(以下、バッテリ)6、負荷7、充電器8および充電停止スイッチ9を備える。ここで、充電器は車載に限らず、充電スタンド等の急速充電器としてもよい。負荷7は、駆動輪を駆動するモータジェネレータに電力を供給するインバータである。
コントローラ2は、電圧センサ3で検出されたセンサ電圧Vと、電流センサ4で検出されたセンサ電流Iと、温度センサ5で検出されたセンサ温度Tとに基づいてバッテリ6の充電率SOC(State of charge)等を演算し、バッテリ6の充放電を制御する。また、コントローラ2は、各センサ値に基づいて現在のバッテリ6のバッテリ容量(電池容量)Chを算出し、バッテリ容量Chから予測される走行可能距離をドライバに提示する。
充電停止スイッチ9は、ドライバが充電を停止する場合に操作されるスイッチであり、車室内や、車と家庭用AC電源を接続するケーブルやコネクタ・プラグ、及び急速充電器(ケーブルやコネクタ・プラグも含む)に配置されている。
Hereinafter, the form for implementing the battery capacity calculation apparatus and battery capacity calculation method of this invention is demonstrated based on an Example.
[Example 1]
First, the configuration of the first embodiment will be described.
FIG. 1 is a configuration diagram of a battery system 1 according to a first embodiment. The battery system 1 according to the first embodiment is mounted on an electric vehicle.
The battery system 1 includes a controller 2, a voltage sensor 3 that detects a terminal voltage of the battery 6, a current sensor 4 that detects a charge / discharge current of the battery 6, a temperature sensor 5 that detects a temperature T of the battery 6, and a secondary battery. A high-power battery (hereinafter referred to as a battery) 6, a load 7, a charger 8, and a charge stop switch 9 are provided. Here, the charger is not limited to being mounted on the vehicle, but may be a quick charger such as a charging stand. The load 7 is an inverter that supplies electric power to a motor generator that drives the drive wheels.
Based on the sensor voltage V detected by the voltage sensor 3, the sensor current I detected by the current sensor 4, and the sensor temperature T detected by the temperature sensor 5, the controller 2 determines the state of charge SOC (State of charge) and the like, and the charging / discharging of the battery 6 is controlled. Further, the controller 2 calculates the current battery capacity (battery capacity) Ch of the battery 6 based on each sensor value, and presents the possible travel distance predicted from the battery capacity Ch to the driver.
The charge stop switch 9 is a switch that is operated when the driver stops charging, and includes a cable, a connector plug, and a quick charger (cable, connector plug, etc.) for connecting a vehicle interior and a vehicle to a household AC power source. Are also included).

図2は、コントローラ2の制御ブロック図である。
開放電圧推定部(電池モデルパラメータ推定手段、開放電圧推定手段)11は、充電器8によるバッテリ6の充電期間内における所定電流積算期間の開始時および終了時、電圧センサ3および電流センサ4により検出されたバッテリ6の状態量(センサ電圧V、センサ電流I)に基づいてバッテリモデル(電池モデル)の各パラメータを逐次推定すると共に、推定した各パラメータに基づいて開放電圧OCV(Open Circuit Voltage)を推定する。所定電流積算期間については後述する。
図3は、バッテリ6の内部抵抗等価回路を示すバッテリモデル18であり、バッテリモデル18は、電解液抵抗とオーム抵抗等の直流成分を設定する抵抗R0と、電荷移動過程における動的な振る舞いを表す反応抵抗として設定する抵抗R1と、電気二重層として設定するC1と、拡散過程における動的な振る舞いを表すものとして設定するR2,C2とにより構成される。ここでは、電荷移動過程で一次の並列回路、拡散過程で二次の並列回路の等価回路モデルで表しているが、状況に応じてそれぞれの次数は変化する。
FIG. 2 is a control block diagram of the controller 2.
An open-circuit voltage estimation unit (battery model parameter estimation means, open-circuit voltage estimation means) 11 is detected by the voltage sensor 3 and the current sensor 4 at the start and end of a predetermined current integration period within the charging period of the battery 6 by the charger 8. Each parameter of the battery model (battery model) is estimated sequentially based on the measured state quantities of the battery 6 (sensor voltage V, sensor current I), and the open circuit voltage OCV (Open Circuit Voltage) is calculated based on the estimated parameters. presume. The predetermined current integration period will be described later.
FIG. 3 shows a battery model 18 showing an internal resistance equivalent circuit of the battery 6. The battery model 18 shows a resistance R0 for setting a direct current component such as an electrolyte resistance and an ohmic resistance, and a dynamic behavior in a charge transfer process. The resistor R1 is set as a reaction resistance to be expressed, C1 is set as an electric double layer, and R2 and C2 are set as those representing dynamic behavior in the diffusion process. Here, an equivalent circuit model of a primary parallel circuit in the charge transfer process and a secondary parallel circuit in the diffusion process is shown, but the respective orders change depending on the situation.

図4は、逐次パラメータ推定の制御ブロック図であり、センサ電流Iをバッテリ6とバッテリモデル18に入力したとき、バッテリ6の端子電圧とバッテリモデル18の端子電圧推定値V^との差分がなくなるように適応機構10によってバッテリモデル18の各パラメータR0,R1,R2,C1,C2を逐次修正することで、現在のバッテリ6の状態に合致したバッテリモデルを得ることができる。
開放電圧推定部11は、推定した各パラメータR0,R1,R2,C1,C2とセンサ電流Iから過電圧VRを算出し、センサ電圧(端子電圧)Vから過電圧VRを減算して開放電圧OCVを計算する。
FIG. 4 is a control block diagram of sequential parameter estimation. When the sensor current I is input to the battery 6 and the battery model 18, there is no difference between the terminal voltage of the battery 6 and the estimated terminal voltage V ^ of the battery model 18. As described above, by sequentially correcting the parameters R0, R1, R2, C1, and C2 of the battery model 18 by the adaptive mechanism 10, a battery model that matches the current state of the battery 6 can be obtained.
The open-circuit voltage estimation unit 11 calculates the overvoltage VR from the estimated parameters R0, R1, R2, C1, and C2 and the sensor current I, and subtracts the overvoltage VR from the sensor voltage (terminal voltage) V to calculate the open-circuit voltage OCV. To do.

OCV-SOC変換部(開放電圧充電率算出手段)12は、あらかじめ設定されたOCV-SOC変換テーブルを用いて開放電圧OCVを開放電圧に基づく充電率(以下、開放電圧充電率)SOC-vに変換する。図5は、バッテリ6のOCV-SOC特性図であり、開放電圧OCVと充電率SOCとの関係は、温度や劣化に依らず常に一定に保たれるため、あらかじめ実験によりバッテリ6のOCV-SOC特性を測定し、OCV-SOC変換テーブルを作成しておく。
電流積算SOC算出部(電流積算充電率算出手段)13は、所定電流積算期間のセンサ電流Iの積算値から電流積算に基づく充電率(以下、電流積算充電率)SOC-iを算出する。
ΔSOC-v算出部(開放電圧充電率変化量算出手段)14は、所定電流積算期間の終了時に推定された開放電圧充電率SOC-v2と、所定電流積算期間の開始時に推定された開放電圧充電率SOC-v1との差分から開放電圧に基づく充電率変化量(以下、開放電圧充電率変化量)ΔSOC-vを算出する。
The OCV-SOC converter (open-circuit voltage charge rate calculation means) 12 converts the open-circuit voltage OCV into a charge rate based on open-circuit voltage (hereinafter referred to as open-circuit voltage charge rate) SOC-v using a preset OCV-SOC conversion table. Convert. FIG. 5 is an OCV-SOC characteristic diagram of the battery 6. Since the relationship between the open circuit voltage OCV and the charging rate SOC is always kept constant regardless of temperature and deterioration, the OCV-SOC of the battery 6 is experimentally determined beforehand. Measure the characteristics and create an OCV-SOC conversion table.
The current integration SOC calculation unit (current integration charge rate calculation means) 13 calculates a charge rate (hereinafter referred to as current integration charge rate) SOC-i based on the current integration from the integrated value of the sensor current I in a predetermined current integration period.
The ΔSOC-v calculation unit (open-circuit voltage charge rate change amount calculation means) 14 includes an open-circuit voltage charge rate SOC-v2 estimated at the end of the predetermined current integration period and an open-circuit voltage charge estimated at the start of the predetermined current integration period. The charge rate change amount based on the open circuit voltage (hereinafter referred to as open circuit voltage charge rate change amount) ΔSOC-v is calculated from the difference from the rate SOC-v1.

ΔSOC-i算出部(電流積算充電率変化量算出手段)15は、所定電流積算期間の電流積算に基づく充電率変化量(以下、電流積算充電率変化量)ΔSOC-iを算出する。
劣化推定部(電池容量算出手段)16は、開放電圧充電率変化量ΔSOC-vと電流積算充電率変化量ΔSOC-iとに基づいて、初期バッテリ容量(初期電池容量)Ahに対する現在のバッテリ容量Chの比である容量維持率SOH(State of health)を算出し、算出した容量維持率SOHから現在のバッテリ容量Chを求める。容量維持率SOHは、電流積算充電率変化量ΔSOC-iを開放電圧充電率変化量ΔSOC-vで除算することで得られる。また、現在のバッテリ容量Chは、初期バッテリ容量Ahに対し、容量維持率SOHを乗算することで求まる。初期バッテリ容量Ahは、あらかじめ実験により測定した値を用いる。
The ΔSOC-i calculation unit (current integrated charging rate change amount calculation means) 15 calculates a charging rate change amount (hereinafter referred to as current integrated charging rate change amount) ΔSOC-i based on current integration in a predetermined current integration period.
The degradation estimation unit (battery capacity calculation means) 16 calculates the current battery capacity relative to the initial battery capacity (initial battery capacity) Ah based on the open circuit voltage charge rate change amount ΔSOC-v and the current integrated charge rate change amount ΔSOC-i. A capacity maintenance rate SOH (State of health) which is a ratio of Ch is calculated, and the current battery capacity Ch is obtained from the calculated capacity maintenance rate SOH. The capacity maintenance rate SOH is obtained by dividing the current integrated charging rate change amount ΔSOC-i by the open-circuit voltage charging rate change amount ΔSOC-v. Also, the current battery capacity Ch is obtained by multiplying the initial battery capacity Ah by the capacity maintenance rate SOH. As the initial battery capacity Ah, a value measured in advance by experiment is used.

充電制御部(M系列信号入力手段)17は、充電器8が外部電源(不図示)に接続されたことを検出し、充電器8に対しCC-CV(Constant Current - Constant Voltage;定電流定電圧)充電方式に従って充電電流指令値の生成を開始し、充電器8へ出力する。ここで、CC-CV充電方式とは、一定の上限電流により充電を行い、電圧センサ3により検出されるセンサ電圧(端子電圧)Vが上限電圧(例えば、4.2V)に達すると、この電圧を維持するように、電流値を徐々に減少させる充電方式である。なお、充電制御部17は、充電中に充電停止スイッチ9が操作(OFF→ON)された場合、充電を停止する。
また、充電制御部17は、充電開始時および充電期間中であってセンサ電流Iが閾値Ith以下になったとき、または充電停止スイッチ9がONされたとき、M系列信号を電流入力としてバッテリ6に入力する充電電流指令値を生成する。ここで、閾値Ithは、充電時の上限電流よりも小さな電流値であって、かつ、電流センサ4の検出誤差に対して十分に大きな電流値とする。なお、M系列信号に応じた充電電流指令値の生成および出力時には、CC-CV方式に従う充電電流指令値の生成および出力は中断される。
実施例1では、充電開始時のM系列信号入力の終了時を所定電流積算期間の開始時とし、充電中であってセンサ電流Iが閾値Ith以下になったとき、または充電停止スイッチ9がONされたときのM系列信号入力の終了時を所定電流積算期間の終了時とする。つまり、この間の期間が所定電流積算期間となる。
The charge control unit (M-sequence signal input means) 17 detects that the charger 8 is connected to an external power source (not shown), and detects the CC-CV (Constant Current-Constant Voltage) to the charger 8. The generation of the charging current command value is started according to the voltage) charging method, and is output to the charger 8. Here, the CC-CV charging method is to charge with a certain upper limit current, and when the sensor voltage (terminal voltage) V detected by the voltage sensor 3 reaches the upper limit voltage (for example, 4.2V), this voltage is This is a charging method in which the current value is gradually decreased so as to be maintained. The charging control unit 17 stops charging when the charging stop switch 9 is operated (OFF → ON) during charging.
In addition, the charging control unit 17 is configured to use the M series signal as a current input when the sensor current I is equal to or lower than the threshold value Ith at the start of charging and during the charging period, or when the charging stop switch 9 is turned ON. The charging current command value to be input to is generated. Here, the threshold value Ith is a current value smaller than the upper limit current at the time of charging, and is a sufficiently large current value with respect to the detection error of the current sensor 4. When generating and outputting the charging current command value according to the M-sequence signal, the generation and output of the charging current command value according to the CC-CV method is interrupted.
In the first embodiment, the end of the M-sequence signal input at the start of charging is set as the start of the predetermined current integration period, and when charging is in progress and the sensor current I is less than or equal to the threshold Ith, or the charging stop switch 9 is turned on The end of the input of the M-sequence signal at this time is defined as the end of the predetermined current integration period. That is, the period between these is the predetermined current integration period.

充電器8は、充電電流指令値に応じてバッテリ6に電流を供給する。充電器8は、M系列信号をバッテリ6に入力するため構成として、図6に示すM系列信号発生回路21と信号調整部22とを備える。また、図7はM系列信号発生回路21のシフトレジスタ数である。
図6に示すように、M系列信号発生回路21は、複数のDレジスタ21aおよび加算器21bを備える。各Dレジスタ21aは、直列に配置され、前段の出力を後段の入力とし、例えばD-FFによる演算を行い、演算結果を出力する。各加算器21bは、直列に配置され、それぞれのDレジスタ21aの出力と、そのDレジスタ21aの後段の出力との加算結果の加算を行い、後段へ出力する。
The charger 8 supplies current to the battery 6 according to the charging current command value. The charger 8 includes an M-sequence signal generation circuit 21 and a signal adjustment unit 22 shown in FIG. 6 as a configuration for inputting an M-sequence signal to the battery 6. FIG. 7 shows the number of shift registers in the M-sequence signal generation circuit 21.
As shown in FIG. 6, the M-sequence signal generation circuit 21 includes a plurality of D registers 21a and adders 21b. Each D register 21a is arranged in series, uses the output of the previous stage as the input of the subsequent stage, performs an operation by D-FF, for example, and outputs the operation result. Each adder 21b is arranged in series, adds the addition result of the output of each D register 21a and the output of the subsequent stage of the D register 21a, and outputs the result to the subsequent stage.

次に、M系列について説明する。
図8は、M系列の一例であり、M系列とは、下記の式(1)の線形漸化式で発生される1ビットの数例である。
Xn = Xn-p + Xn-q (p>q) …(1)
上記式(1)において、各項の値は0か1であり、+記号は排他的論理和を示す。そのため、n番目の項はn-p番目とn-q番目の項とをXOR演算することによって得られる。ただし、qは最終段に常にフィードバックされるため、q=1となる。一般式に表すと、M系列の周期Nは、N=2q-1で表される。
図8は、式(1)において、p=3,q=1の場合を説明するものである。図8において範囲Aの部分は、3ビットのパターンが全部で7種類あり、同じパターンのものはない。つまりM系列はpビットのパターンを全て1回ずつ発生させる。各パターンの要素は、0と1の2通りずつであるから、pビットで2p通りとなる。ただし、全てのビットが0となるパターンだけは、信号無発生となるので除く。つまり、M系列信号発生回路21では、図6において、Dレジスタ21aの上限流のビット値がX〜Xk-nに対応した値となる。そして、図7から、例えば127通りのパターンを選択し、Dレジスタ21aの数を7とする。
Next, the M series will be described.
FIG. 8 is an example of the M sequence, and the M sequence is an example of 1 bit generated by the linear recurrence formula of the following formula (1).
X n = X np + X nq (p> q)… (1)
In the above formula (1), the value of each term is 0 or 1, and the + symbol indicates exclusive OR. Therefore, the nth term is obtained by XORing the npth and nqth terms. However, q is always fed back to the final stage, so q = 1. Expressed in the general formula, the period N of the M sequence is expressed by N = 2q-1.
FIG. 8 illustrates the case where p = 3 and q = 1 in Equation (1). In FIG. 8, there are seven types of 3-bit patterns in the range A, and none of them has the same pattern. That is, the M sequence generates all p-bit patterns once. Since there are two elements of each pattern, 0 and 1, there are 2p patterns with p bits. However, only patterns in which all bits are 0 are excluded because no signal is generated. That is, in the M-sequence signal generator 21, in FIG. 6, the bit values of the upper limit flow D register 21a becomes a value corresponding to the X~X kn. Then, for example, 127 patterns are selected from FIG. 7, and the number of D registers 21a is set to seven.

次に、信号調整部22について説明する。図9はM系列信号の波形図、図10はその一部拡大図である。信号調整部22は、図10に示すように、M系列信号発生回路21で発生されるM系列信号の最小単位を、最小時間幅、つまり構成上定められるクロック周期とする。そして、M系列信号が図9のように、例えば+3Aと-3Aとの間でON/OFFを繰り返す矩形波となるように調整し、バッテリ6に出力する。このM系列信号は、擬似白色性二値信号であり、+側の面積の合計と-側の面積の合計とが同じとなる信号となる。そして、この信号のON幅は127通りの幅を持ったものが1組(1周期)となる。
また、充電器8が充電のみの機能を有する場合は、放電のM系列信号を0Aとし、3Aと0Aを繰り返す矩形波とすることも可能である。
Next, the signal adjustment unit 22 will be described. FIG. 9 is a waveform diagram of an M-sequence signal, and FIG. 10 is a partially enlarged view thereof. As shown in FIG. 10, the signal adjustment unit 22 sets the minimum unit of the M-sequence signal generated by the M-sequence signal generation circuit 21 as a minimum time width, that is, a clock cycle determined in configuration. Then, as shown in FIG. 9, the M-sequence signal is adjusted to be a rectangular wave that repeats ON / OFF between + 3A and −3A, for example, and is output to the battery 6. This M-sequence signal is a pseudo whiteness binary signal, and is a signal in which the sum of the areas on the + side and the sum of the areas on the − side are the same. The ON width of this signal is one set (one cycle) having 127 widths.
When the charger 8 has only a charging function, the discharge M-sequence signal can be set to 0A, and a rectangular wave that repeats 3A and 0A can be used.

[バッテリ容量算出処理]
図11は、実施例1のコントローラ2で実行されるバッテリ容量算出処理の流れを示すフローチャートであり、以下、各ステップについて説明する。この処理は、充電器8が外部電源に接続されたときに実施される。
ステップS1では、開放電圧推定部11において、電圧センサ3、電流センサ4からセンサ電圧V、センサ電流Iを読み込む。
ステップS2では、充電制御部17において、充電器8に対し充電電流指令値を出力し、バッテリ6の充電を開始する。
[Battery capacity calculation processing]
FIG. 11 is a flowchart showing the flow of the battery capacity calculation process executed by the controller 2 according to the first embodiment. Each step will be described below. This process is performed when the charger 8 is connected to an external power source.
In step S1, the open-circuit voltage estimation unit 11 reads the sensor voltage V and the sensor current I from the voltage sensor 3 and the current sensor 4.
In step S2, the charging control unit 17 outputs a charging current command value to the charger 8, and starts charging the battery 6.

ステップS3では、充電制御部17において、M系列信号をバッテリ6に入力する充電電流指令値を充電器8に出力する。
ステップS4では、開放電圧推定部11において、センサ電圧V、センサ電流Iに基づいてバッテリモデル18の各パラメータR0,R1,R2,C1,C2を推定する。パラメータ推定方法については後述する。
ステップS5では、開放電圧推定部11において、推定した各パラメータR0,R1,R2,C1,C2とセンサ電流I、センサ電圧Vから開放電圧OCVを推定し、開放電圧OCVと充電率SOCの関係(図5)から開放電圧充電率SOC-v1を算出する。
ステップS6では、電流積算SOC算出部13において、センサ電流Iに基づいて電流積算を開始する。
ステップS7では、充電制御部17において、センサ電流Iが閾値Ith以下であるか否かと、充電停止か否か(スイッチ9がONか否か)とをそれぞれ判定し、一方の判定結果がYESの場合にはステップS8へ進み、両方の判定結果が共にNOの場合にはステップS16へ進む。
In step S3, the charging control unit 17 outputs a charging current command value for inputting the M-sequence signal to the battery 6 to the charger 8.
In step S4, the open-circuit voltage estimation unit 11 estimates the parameters R0, R1, R2, C1, and C2 of the battery model 18 based on the sensor voltage V and the sensor current I. The parameter estimation method will be described later.
In step S5, the open-circuit voltage estimation unit 11 estimates the open-circuit voltage OCV from the estimated parameters R0, R1, R2, C1, and C2, the sensor current I, and the sensor voltage V, and the relationship between the open-circuit voltage OCV and the charge rate SOC ( The open-circuit voltage charging rate SOC-v1 is calculated from FIG.
In step S6, the current integration SOC calculation unit 13 starts current integration based on the sensor current I.
In step S7, the charge control unit 17 determines whether or not the sensor current I is equal to or less than the threshold value Ith and whether or not charging is stopped (whether or not the switch 9 is ON), and one of the determination results is YES. If so, the process proceeds to step S8. If both the determination results are NO, the process proceeds to step S16.

ステップS8では、充電制御部17において、M系列信号をバッテリ6に入力する充電電流指令値を充電器8に出力すると共に、開放電圧推定部11において、電圧センサ3、電流センサ4からセンサ電圧V、センサ電流Iを読み込む。
ステップS9では、開放電圧推定部11において、センサ電圧V、センサ電流Iに基づいてバッテリモデル18の各パラメータR0,R1,R2,C1,C2を推定する。
ステップS10では、開放電圧推定部11において、推定した各パラメータR0,R1,R2,C1,C2とセンサ電流I、センサ電圧Vから開放電圧OCVを推定し、開放電圧OCVと充電率SOCの関係から開放電圧充電率SOC-v2を算出する。
ステップS11では、ΔSOC-v算出部14において、開放電圧充電率SOC-v2から開放電圧充電率SOC-v1を減算してΔSOC-vを算出する。
ステップS12では、ΔSOC-i算出部15において、所定電流積算期間の電流積算充電率変化量ΔSOC-iを算出する。
In step S8, the charge control unit 17 outputs the charging current command value for inputting the M-sequence signal to the battery 6 to the charger 8, and the open-circuit voltage estimation unit 11 outputs the sensor voltage V from the voltage sensor 3 and the current sensor 4. , Read the sensor current I.
In step S9, the open-circuit voltage estimation unit 11 estimates the parameters R0, R1, R2, C1, and C2 of the battery model 18 based on the sensor voltage V and the sensor current I.
In step S10, the open-circuit voltage estimation unit 11 estimates the open-circuit voltage OCV from the estimated parameters R0, R1, R2, C1, and C2, the sensor current I, and the sensor voltage V. From the relationship between the open-circuit voltage OCV and the charge rate SOC, Calculate the open-circuit voltage charge rate SOC-v2.
In step S11, ΔSOC-v calculation unit 14 calculates ΔSOC-v by subtracting open-circuit voltage charge rate SOC-v1 from open-circuit voltage charge rate SOC-v2.
In step S12, the ΔSOC-i calculation unit 15 calculates a current integrated charging rate change amount ΔSOC-i in a predetermined current integration period.

ステップS13では、劣化推定部16において、容量維持率SOHをΔSOC-i/ΔSOC-vから計算する。
ステップS14では、劣化推定部16において、前回の充電時で算出した容量維持率SOH、または別の方法で算出した容量維持率SOHとの平均化処理を行い、最終的な容量維持率SOHとする。
ステップS15では、劣化推定部16において、初期バッテリ容量Ahに容量維持率SOHを乗算して現在のバッテリ容量Chを算出する。
ステップS16では、充電制御部17において、センサ電圧Vに応じて充電器8に対し充電電流指令値を出力する処理、すなわち、充電を継続する。
ステップS17では、ステップS7においてセンサ電流Iが閾値Ith以下と判定されたか否かを判定し、YESの場合にはステップS18へ進み、NOの場合には本制御を終了する。
ステップS18では、センサ電圧Vに応じて充電器8に対し充電電流指令値を出力する処理、すなわち、充電を再度行う。この再充電で電流Iが決められた値以下になると、充電が完了する。
In step S13, the deterioration estimating unit 16 calculates the capacity maintenance rate SOH from ΔSOC-i / ΔSOC-v.
In step S14, the deterioration estimation unit 16 performs an averaging process with the capacity maintenance rate SOH calculated at the time of the previous charging or the capacity maintenance rate SOH calculated by another method to obtain a final capacity maintenance rate SOH. .
In step S15, the deterioration estimation unit 16 calculates the current battery capacity Ch by multiplying the initial battery capacity Ah by the capacity maintenance rate SOH.
In step S16, the charging control unit 17 continues the process of outputting the charging current command value to the charger 8 according to the sensor voltage V, that is, charging.
In step S17, it is determined whether or not the sensor current I is determined to be equal to or less than the threshold value Ith in step S7. If YES, the process proceeds to step S18, and if NO, this control is terminated.
In step S18, a process of outputting a charging current command value to the charger 8 according to the sensor voltage V, that is, charging is performed again. Charging is completed when the current I falls below a predetermined value by this recharging.

[パラメータ推定処理]
次に等価回路パラメータ推定部S4,S9の詳細について説明する。
図4は実施例1の等価回路パラメータ推定部の制御ブロック図で、バッテリ6、バッテリモデル18、適応機構10を備えている。適応機構10の1つとして、カルマンフィルタがあり、内部のパラメータを自己修正するためのフィルタで、逐次パラメータ推定に用いられる。
バッテリ6は、この制御系への入力となる測定される電流を入力とし、測定されるバッテリ電圧Vを出力する。このバッテリ6は実際のバッテリを扱うものとして設定されたものである。
[Parameter estimation processing]
Next, details of the equivalent circuit parameter estimation units S4 and S9 will be described.
FIG. 4 is a control block diagram of the equivalent circuit parameter estimation unit of the first embodiment, which includes a battery 6, a battery model 18, and an adaptive mechanism 10. One of the adaptive mechanisms 10 is a Kalman filter, which is a filter for self-correcting internal parameters and is used for sequential parameter estimation.
The battery 6 receives a measured current as an input to the control system and outputs a measured battery voltage V. This battery 6 is set to handle an actual battery.

バッテリモデル18は、バッテリ6のモデルとなる等価回路であり、適応機構10による修正出力で等価回路のパラメータを調整し、電圧モデル推定値であるV^を出力する。さらに、等価回路のパラメータを等価回路パラメータ推定部S4,S9の出力として出力する。例えば抵抗値R0〜R2、コンデンサ容量C1,C2である。なお、抵抗値R1,R2は、説明上、抵抗を示す符号と、抵抗値を示す記号の両方で用いる。
適応機構10は、VとV^で演算される偏差に応じて、バッテリモデル18の演算内容を修正する出力を行う(V^は、Vの推定値を表し、実際はVの上に^がある表記になる)。
The battery model 18 is an equivalent circuit that is a model of the battery 6, adjusts the parameters of the equivalent circuit with the corrected output from the adaptive mechanism 10, and outputs V ^ that is a voltage model estimated value. Further, the parameters of the equivalent circuit are output as the outputs of the equivalent circuit parameter estimation units S4 and S9. For example, resistance values R0 to R2 and capacitor capacitances C1 and C2. Note that the resistance values R1 and R2 are used for both the symbol indicating resistance and the symbol indicating resistance value for the sake of explanation.
The adaptive mechanism 10 performs output to correct the calculation contents of the battery model 18 according to the deviation calculated by V and V ^ (V ^ represents an estimated value of V, and actually ^ is on V Notation).

[SOH算出ロジック]
バッテリ6を充電したとき、充電開始から終了までの充電容量は、∫idt(iはバッテリ6の充放電電流であり、放電の符号は負(-)、充電の符号は正(+)とする。)であるから、∫idtから求まる充電開始から終了までの充電率SOCの変化量ΔSOC-iは、下記の式(2)で表すことができる。
ΔSOC-i = ∫idt/Ah …(2)
一方、図5に示したバッテリ6の開放電圧OCVと充電率SOCとの関係を用い、充電終了時の開放電圧OCVから求まる充電率SOC-v2と、充電開始時の開放電圧OCVから求まる充電率SOC-v1とから求まる充電開始から終了までの充電率SOCの変化量ΔSOC-vは、下記の式(3)で表すことができる。
ΔSOC-v = SOC-v2 - SOC-v1 …(3)
[SOH calculation logic]
When the battery 6 is charged, the charge capacity from the start to the end of charge is ∫idt (i is the charge / discharge current of the battery 6, the discharge sign is negative (-), and the charge sign is positive (+) Therefore, the amount of change ΔSOC-i of the charging rate SOC from the start to the end of charging obtained from ∫idt can be expressed by the following equation (2).
ΔSOC-i = ∫idt / Ah… (2)
On the other hand, using the relationship between the open-circuit voltage OCV and the charge rate SOC of the battery 6 shown in FIG. 5, the charge rate SOC-v2 obtained from the open-circuit voltage OCV at the end of charge and the charge rate obtained from the open-circuit voltage OCV at the start of charge. A change amount ΔSOC-v of the charging rate SOC from the start to the end of charging obtained from SOC-v1 can be expressed by the following equation (3).
ΔSOC-v = SOC-v2-SOC-v1… (3)

ここで、
ΔSOC-v = ∫idt/(Ah×SOH) …(4)
であるから、容量維持率SOHは、
SOH = {∫idt/Ah×100}
/(充電終了時SOC - 充電開始時SOC) …(5)
となり、式(5)に式(2),(3)を代入することで、下記の式(6)を得る。
SOH = ΔSOC-i/ΔSOC-v …(6)
式(6)により、容量維持率SOHは、電流積算充電率変化量ΔSOC-iを開放電圧充電率変化量ΔSOC-vで除算することで求まることがわかる。
here,
ΔSOC-v = ∫idt / (Ah × SOH)… (4)
Therefore, the capacity maintenance rate SOH is
SOH = {∫idt / Ah × 100}
/ (SOC at end of charge-SOC at start of charge)… (5)
By substituting the equations (2) and (3) into the equation (5), the following equation (6) is obtained.
SOH = ΔSOC-i / ΔSOC-v (6)
From equation (6), it can be seen that the capacity retention rate SOH can be obtained by dividing the current integrated charging rate change amount ΔSOC-i by the open-circuit voltage charging rate change amount ΔSOC-v.

次に、実施例1の作用を説明する。
図12は、実施例1のバッテリ容量算出処理作用を示すタイムチャートである。
時点t1では、バッテリ6にM系列信号を入力する。
時点t2では、M系列信号入力中に得られた各センサ値から開放電圧OCVを推定すると共に、開放電圧OCVから開放電圧充電率SOC-v1を算出し、電流積算を開始する。
時点t3では、センサ電圧Vが上限電圧(4.2V)に達したため、時点t3以降では、充電電流の電流値を徐々に減少させる。
Next, the operation of the first embodiment will be described.
FIG. 12 is a time chart illustrating the battery capacity calculation processing operation of the first embodiment.
At time t1, an M-sequence signal is input to the battery 6.
At time t2, the open circuit voltage OCV is estimated from each sensor value obtained during M-sequence signal input, and the open circuit voltage charging rate SOC-v1 is calculated from the open circuit voltage OCV, and current integration is started.
Since the sensor voltage V has reached the upper limit voltage (4.2 V) at time t3, the current value of the charging current is gradually decreased after time t3.

時点t4では、センサ電流Iが閾値Ith以下となったため、バッテリ6にM系列信号を入力する。
時点t5では、直前のM系列信号入力中に得られた各センサ値I,Vおよび各パラメータR0,R1,R2,C1,C2から開放電圧OCVを推定すると共に、開放電圧OCVから開放電圧充電率SOC-v2を算出する。そして、SOC-v2とSOC-v1との差分から開放電圧充電率変化量ΔSOC-vを求め、所定電流積算期間(t2〜t5)の電流積算充電率変化量ΔSOC-iを算出する。
これにより、容量維持率SOHを算出でき、算出した容量維持率SOHから現在のバッテリ容量Chを求めることができる。
At time t4, the sensor current I becomes equal to or less than the threshold value Ith, and therefore an M-sequence signal is input to the battery 6.
At time t5, the open-circuit voltage OCV is estimated from each sensor value I, V and each parameter R0, R1, R2, C1, C2 obtained during the previous M-sequence signal input, and the open-circuit voltage charging rate is calculated from the open-circuit voltage OCV. Calculate SOC-v2. Then, an open circuit voltage charging rate change amount ΔSOC-v is obtained from a difference between SOC-v2 and SOC-v1, and a current integrated charging rate change amount ΔSOC-i in a predetermined current integration period (t2 to t5) is calculated.
Thereby, the capacity maintenance rate SOH can be calculated, and the current battery capacity Ch can be obtained from the calculated capacity maintenance rate SOH.

[電流積算充電率変化量算出作用]
実施例1では、充電開始時におけるM系列信号入力が終了した時点から、充電期間中であってセンサ電流Iが閾値Ith以下になった時点、または充電停止スイッチ9がONされた時点におけるM系列信号入力が終了した時点までを所定電流積算期間とし、この電流積算期間のセンサ電流Iの積算値から電流積算充電率変化量ΔSOC-iを算出している。図12において、充電を開始する時点t2からセンサ電圧Vが上限電圧に達する時点t3までの期間は上限電流により充電を行っている。また、時点t3から時点t4までの期間は、閾値Ithを超える充電電流である。このため、時点t2から時点t4までの電流積算期間では、電流センサ4の検出誤差に伴う電流積算誤差の影響を非常に小さくできる。なお、時点t4から時点t5までの期間は、M系列信号をバッテリ6への電流入力として入力しているが、この期間は時点t2から時点t4までの期間と比べて非常に短い期間であるため、電流積算誤差はほとんど生じない。
よって、実施例1では、電流積算誤差による影響の少ない電流積算充電率変化量ΔSOC-iを算出できるため、電流積算充電率変化量ΔSOC-iから求まる容量維持率SOH、および容量維持率SOHから求まるバッテリ容量Chを高精度に算出できる。
特に、充電スタンドでの急速充電時には、家庭用電源による通常充電時に対して充電電流が大きく、かつ、電流積算量、すなわち電流積算充電率変化量ΔSOC-iが大きくなるため、電流積算誤差による影響をより少なくでき、顕著な効果を奏する。
[Calculation of change in accumulated current charging rate]
In the first embodiment, the M sequence at the time when the sensor current I becomes equal to or less than the threshold value Ith during the charging period from when the M sequence signal input at the start of charging ends or when the charge stop switch 9 is turned on. The period until the signal input is completed is defined as a predetermined current integration period, and the current integrated charging rate change amount ΔSOC-i is calculated from the integrated value of the sensor current I in this current integration period. In FIG. 12, charging is performed with the upper limit current during a period from time t2 when charging starts to time t3 when the sensor voltage V reaches the upper limit voltage. Further, the period from time t3 to time t4 is a charging current exceeding the threshold value Ith. For this reason, in the current integration period from time t2 to time t4, the influence of the current integration error associated with the detection error of the current sensor 4 can be very small. Note that the period from time t4 to time t5 is an M-sequence signal input as a current input to the battery 6, but this period is very short compared to the period from time t2 to time t4. Almost no current integration error occurs.
Therefore, in Example 1, since the current integrated charging rate change amount ΔSOC-i that is less affected by the current integrated error can be calculated, the capacity maintenance rate SOH obtained from the current integrated charging rate change amount ΔSOC-i and the capacity maintenance rate SOH are calculated. The required battery capacity Ch can be calculated with high accuracy.
In particular, during quick charging at a charging station, the charging current is larger than that during normal charging with a household power supply, and the current integration amount, that is, the current integration charging rate change amount ΔSOC-i, increases. Can be reduced and a remarkable effect can be obtained.

[M系列信号入力によるパラメータ推定作用]
実施例1では、開放電圧充電率SOC-vを求めるにあたり、バッテリ6にM系列信号を電流入力として入力し、そのときに得られるセンサ電圧V、センサ電流Iからバッテリモデル18の各パラメータR0,R1,R2,C1,C2を逐次推定し、推定した各パラメータR0,R1,R2,C1,C2から開放電圧OCVを推定し、バッテリ6のOCV-SOC特性を参照して開放電圧充電率SOC-vを算出している。
ここで、M系列信号は、図9に例示したように、プラス側の面積とマイナス側の面積とが同一となる矩形状の擬似白色二値信号(PRBS:Pseudo Random Binary Signal)である。また、実施例1において、充電時に放電が出来ない場合は、二値信号をプラス側の電流と0の二値の入力としても構わない。この場合でも、逐次パラメータ推定により、バッテリの状態に応じてパラメータを逐次修正するため、SOCが変化しても精度の高い各パラメータR0,R1,R2,C1,C2の推定を行うことができる。
よって、現在のバッテリ6の状態に合致したバッテリモデル18の同定が可能となるため、開放電圧OCVの推定精度を高めることができ、精度の高い開放電圧充電率SOC-vの推定を行うことができる。この結果、開放電圧充電率変化量ΔSOC-vから求まる容量維持率SOHおよび容量維持率SOHから求まるバッテリ容量Chを高精度に算出できる。
[Parameter estimation effect by M-sequence signal input]
In the first embodiment, when obtaining the open-circuit voltage charging rate SOC-v, an M-sequence signal is input to the battery 6 as a current input, and each parameter R0, Rb of the battery model 18 is obtained from the sensor voltage V and the sensor current I obtained at that time. R1, R2, C1, C2 are estimated sequentially, the open circuit voltage OCV is estimated from the estimated parameters R0, R1, R2, C1, C2, and the open circuit voltage charge rate SOC- v is calculated.
Here, as illustrated in FIG. 9, the M-sequence signal is a rectangular pseudo white binary signal (PRBS) in which the area on the plus side and the area on the minus side are the same. Further, in the first embodiment, when discharging cannot be performed at the time of charging, a binary signal may be input as a positive current and a binary value of zero. Even in this case, the parameters are sequentially corrected according to the state of the battery by the sequential parameter estimation, so that it is possible to estimate the parameters R0, R1, R2, C1, and C2 with high accuracy even if the SOC changes.
Therefore, since the battery model 18 that matches the current state of the battery 6 can be identified, the estimation accuracy of the open-circuit voltage OCV can be improved, and the open-circuit voltage charging rate SOC-v can be estimated with high accuracy. it can. As a result, the capacity maintenance rate SOH obtained from the open circuit voltage charge rate change amount ΔSOC-v and the battery capacity Ch obtained from the capacity maintenance rate SOH can be calculated with high accuracy.

[従来技術との対比]
国際公開第2008/026476号には、ハイブリッド車両の走行中、バッテリの充放電状態が2回切り替わる間の期間を電流積算期間として電流積算充電率変化量を算出している。また、2つの切り替わりタイミングで推定したバッテリの開放電圧から開放電圧充電率を求め、両者の差分から開放電圧充電率変化量を算出している。この従来技術では、バッテリの端子電圧を開放電圧に換算するための補正値を求め、切り替わりタイミングでの端子電圧と補正値とから開放電圧を求めている。
[Contrast with conventional technology]
In International Publication No. 2008/026476, a current integrated charging rate change amount is calculated by setting a period during which the charge / discharge state of the battery is switched twice while the hybrid vehicle is running as a current integration period. Further, the open-circuit voltage charging rate is obtained from the open-circuit voltage of the battery estimated at two switching timings, and the open-circuit voltage charging rate change amount is calculated from the difference between the two. In this prior art, a correction value for converting the battery terminal voltage into an open circuit voltage is obtained, and the open circuit voltage is obtained from the terminal voltage and the correction value at the switching timing.

ところが、この従来技術には以下のような問題がある。
(a) 1つのデータ(充放電状態が切り替わった時点での端子電圧)のみから開放電圧を推定しているため、開放電圧の推定精度が低く、開放電圧充電率変化量の算出精度が低下する。
(b) バッテリ使用時は電流が安定しないため、特に電流が小さい場合には特に電流積算誤差が大きくなることから、電流積算充電率変化量の算出精度が低下する。
(c) 端子電圧から開放電圧を求めるための補正値は切り替わり直前までの充放電電流に左右されるため、実際のバッテリ使用時に算出するのは困難である。なお、従来技術では、一定電流から0Aでの実験結果から補正値を算出しているものの、バッテリ使用時の充放電状態切り換え時に電流がOAになる場合と、前記一定電流から0Aになる場合とは明らかにバッテリの内部状態が異なるため、補正値が同じになるとは言い難い。また、充放電状態が切り替わらない電流積算期間の平均電流を求めることで、上記一定電流から0Aになるときの補正値を用いてある程度推定はできるが、電流積算期間以前の期間も補正値に影響を与えるため、補正値の算出精度が低くなる可能性がある。よって、開放電圧の推定精度が低下する。
However, this conventional technique has the following problems.
(a) Since the open-circuit voltage is estimated from only one piece of data (terminal voltage at the time when the charge / discharge state is switched), the open-circuit voltage estimation accuracy is low and the open-circuit voltage charge rate change amount calculation accuracy decreases. .
(b) Since the current is not stable when the battery is used, particularly when the current is small, the current integration error becomes particularly large, so that the calculation accuracy of the current integration charging rate change amount decreases.
(c) Since the correction value for obtaining the open circuit voltage from the terminal voltage depends on the charge / discharge current until immediately before switching, it is difficult to calculate when the battery is actually used. In the prior art, although the correction value is calculated from the experimental result at 0 A from a constant current, the current becomes OA when the charge / discharge state is switched when the battery is used, and the case where the current becomes 0 A from the constant current. Since the internal state of the battery is obviously different, it is difficult to say that the correction value is the same. In addition, by calculating the average current during the current integration period when the charge / discharge state does not switch, it can be estimated to some extent using the correction value when the constant current becomes 0A, but the period before the current integration period also affects the correction value. Therefore, the calculation accuracy of the correction value may be lowered. Therefore, the estimation accuracy of the open circuit voltage decreases.

これに対し、実施例1では、充電期間内の所定期間を電流積算期間として電流積算充電率変化量ΔSOC-iを算出している。CC-CV充電方式の充電中、その大部分の期間は安定した(一定の)大きな電流をバッテリ6に入力しているため、電流積算誤差を小さくでき、電流積算充電率変化量ΔSOC-iを高精度に算出できる。よって、上記(b)の課題を解決できる。
また、実施例1では、バッテリ6にM系列信号入力を入力したときのセンサ電圧V、センサ電流Iから推定したバッテリモデル18の各パラメータR0,R1,R2,C1,C2に基づいて開放電圧を推定している。すなわち、バッテリ6に127通りの周波数の電流を入力したときの周波数応答データ(センサ電圧V、センサ電流I)を用いて開放電圧OCVを推定できるため、精度の高い開放電圧OCVの推定を行うことができ、開放電圧充電率変化量ΔSOC-vを高精度に算出できる。よって、上記(a),(c)を解決できる。
以上のように、実施例1では、従来技術に比して開放電圧充電率変化量ΔSOC-vと電流積算充電率変化量ΔSOC-iの算出精度を共に高めることができるため、バッテリ容量Chをより正確に算出できる。
On the other hand, in the first embodiment, the current integrated charging rate change amount ΔSOC-i is calculated with the predetermined period within the charging period as the current integrated period. During charging with the CC-CV charging method, a stable (constant) large current is input to the battery 6 for most of the period, so the current integration error can be reduced, and the current integration charging rate change amount ΔSOC-i can be reduced. It can be calculated with high accuracy. Therefore, the above problem (b) can be solved.
Further, in the first embodiment, the open circuit voltage is calculated based on the parameters R0, R1, R2, C1, and C2 of the battery model 18 estimated from the sensor voltage V and the sensor current I when the M-sequence signal input is input to the battery 6. Estimated. That is, the open-circuit voltage OCV can be estimated using the frequency response data (sensor voltage V, sensor current I) when 127 currents are input to the battery 6, so that the open-circuit voltage OCV can be estimated with high accuracy. And the open circuit voltage charging rate variation ΔSOC-v can be calculated with high accuracy. Therefore, the above (a) and (c) can be solved.
As described above, in the first embodiment, the calculation accuracy of the open-circuit voltage charging rate change amount ΔSOC-v and the current integrated charging rate change amount ΔSOC-i can be improved as compared with the conventional technique. It can be calculated more accurately.

実施例1では、以下に列挙する効果を奏する。
(1) コントローラ2は、充電器8によるバッテリ6の充電期間内における所定電流積算期間のセンサ電流Iを積算し、電流積算に基づくバッテリ6の充電率である電流積算充電率SOC-iを算出する電流積算SOC算出部13と、所定電流積算期間の電流積算充電率の変化量である電流積算充電率変化量ΔSOC-iを算出するΔSOC-i算出部15と、バッテリ6の状態量に基づいて所定電流積算期間の開始時および終了時の開放電圧OCVを推定する開放電圧推定部11と、所定電流積算期間の開始時および終了時の前記開放電圧に基づくバッテリ6の充電率である開放電圧充電率SOC-v1,SOC-v2を算出するOCV-SOC変換部12と、所定電流積算期間の終了時の開放電圧充電率SOC-v2と所定電流積算期間の開始時の開放電圧充電率SOC-v1との差分である開放電圧充電率変化量を算出するΔSOC-v算出部14と、開放電圧充電率変化量ΔSOC-vに対する電流積算充電率変化量ΔSOC-iの比である容量維持率SOHを算出し、算出した容量維持率SOHに基づきバッテリ6のバッテリ容量Chを算出する劣化推定部16と、を備える。
充電器8によるバッテリ6の充電時は使用時と比較してセンサ電流Iが高く、かつ安定しているため、電流積算誤差による影響を少なくでき、電流積算充電率変化量ΔSOC-iを精度良く算出できる。よって、電流積算充電率変化量ΔSOC-iと開放電圧充電率変化量ΔSOC-vとから求まる容量維持率SOHの算出精度を高めることができ、この結果、容量維持率SOHと初期電池容量Ahから求まる電池容量Chを高精度に算出できる。
Example 1 has the following effects.
(1) The controller 2 integrates the sensor current I during the predetermined current integration period within the charging period of the battery 6 by the charger 8, and calculates the current integration charging rate SOC-i that is the charging rate of the battery 6 based on the current integration. Based on the state quantity of the battery 6, the current integrated SOC calculator 13 that calculates the current integrated charge rate change amount ΔSOC-i that is the amount of change in the current integrated charge rate during the predetermined current integration period, and the state quantity of the battery 6 An open-circuit voltage estimator 11 for estimating an open-circuit voltage OCV at the start and end of a predetermined current integration period, and an open-circuit voltage that is a charging rate of the battery 6 based on the open-circuit voltage at the start and end of the predetermined current integration period OCV-SOC converter 12 for calculating the charging rate SOC-v1, SOC-v2, the open-circuit voltage charging rate SOC-v2 at the end of the predetermined current integration period, and the open-circuit voltage charging rate SOC- at the start of the predetermined current integration period ΔSOC-v calculation unit 14 that calculates the amount of change in open-circuit voltage charging rate that is the difference from v1, Deterioration estimation that calculates the capacity maintenance rate SOH, which is the ratio of the current integrated charging rate change amount ΔSOC-i to the open-circuit voltage charging rate change amount ΔSOC-v, and calculates the battery capacity Ch of the battery 6 based on the calculated capacity maintenance rate SOH Unit 16.
When the battery 6 is charged by the charger 8, the sensor current I is higher and more stable than when it is used, so the influence of the current integration error can be reduced, and the current integration charging rate change ΔSOC-i can be accurately calculated. It can be calculated. Therefore, the calculation accuracy of the capacity maintenance rate SOH obtained from the current integrated charge rate change amount ΔSOC-i and the open-circuit voltage charge rate change amount ΔSOC-v can be improved. As a result, from the capacity maintenance rate SOH and the initial battery capacity Ah, The required battery capacity Ch can be calculated with high accuracy.

(2) 所定電流積算期間を、センサ電流Iが閾値Ithを超える期間としたため、電流積算誤差による影響を少なくでき、電流積算充電率変化量ΔSOC-iを精度良く算出できる。
(3) バッテリ6の状態量(センサ電流I、センサ電圧V)に基づいてバッテリモデル18の各パラメータR0,R1,R2,C1,C2を逐次推定する開放電圧推定部11を備え、開放電圧推定部11は、各パラメータR0,R1,R2,C1,C2に基づいて所定電流積算期間の開始時および終了時の開放電圧OCVを推定する。
逐次更新される各パラメータR0,R1,R2,C1,C2によりバッテリモデル18の特性をバッテリ6の実際の特性に追従させることができる。よって、開放電圧OCVを精度良く算出でき、バッテリ容量Chの算出精度をより高めることができる。
(2) Since the predetermined current integration period is a period in which the sensor current I exceeds the threshold value Ith, the influence of the current integration error can be reduced, and the current integration charging rate change amount ΔSOC-i can be calculated with high accuracy.
(3) An open-circuit voltage estimation unit 11 that sequentially estimates each parameter R0, R1, R2, C1, and C2 of the battery model 18 based on the state quantities of the battery 6 (sensor current I, sensor voltage V) The unit 11 estimates the open circuit voltage OCV at the start and end of the predetermined current integration period based on the parameters R0, R1, R2, C1, and C2.
The characteristics of the battery model 18 can be made to follow the actual characteristics of the battery 6 by the parameters R0, R1, R2, C1, and C2 that are sequentially updated. Therefore, the open circuit voltage OCV can be calculated with high accuracy, and the calculation accuracy of the battery capacity Ch can be further increased.

(4) 充電開始時および充電期間中であってセンサ電流Iが閾値Ith以下となったとき、M系列信号を電流入力としてバッテリ6に入力する充電制御部17を備え、ΔSOC-i算出部15は、充電開始時におけるM系列信号入力が終了した時点を所定電流積算期間の開始時とし、センサ電流Iが閾値Ith以下となった後にM系列信号入力が終了した時点を所定電流積算期間の終了時とする。
充電器8によるバッテリ6の充電開始直前および充電中はセンサ電流Iがほとんど変化しないため、バッテリモデル18における各パラメータR0,R1,R2,C1,C2の推定精度は低下する。そこで、M系列信号をバッテリ6に入力することで、バッテリ6に127通りの周波数の電流を入力したときの周波数応答データが得られるため、各パラメータR0,R1,R2,C1,C2を高精度に推定できる。
(4) At the start of charging and during the charging period, when the sensor current I becomes equal to or less than the threshold Ith, the charging control unit 17 is provided to input the M-sequence signal to the battery 6 as a current input, and the ΔSOC-i calculation unit The time when the M-sequence signal input at the start of charging ends is the start of the predetermined current integration period, and the time when the M-sequence signal input ends after the sensor current I falls below the threshold Ith is the end of the predetermined current integration period It is time.
Since the sensor current I hardly changes immediately before the start of charging of the battery 6 by the charger 8 and during charging, the estimation accuracy of each parameter R0, R1, R2, C1, C2 in the battery model 18 decreases. Therefore, by inputting the M-sequence signal to the battery 6, the frequency response data when 127 currents are input to the battery 6 can be obtained, so each parameter R0, R1, R2, C1, C2 is highly accurate. Can be estimated.

(5) ドライバが充電を停止するための充電停止スイッチ9を備え、充電制御部17は、充電期間中であってセンサ電流Iが閾値Ith以下となる前に充電停止スイッチ9が操作されたとき、M系列信号を電流入力としてバッテリ6に入力する。
これにより、ドライバによる充電停止時においても各パラメータR0,R1,R2,C1,C2を高精度に推定できる。
(5) The driver is provided with a charge stop switch 9 for stopping the charge, and the charge control unit 17 is in the charge period and the charge stop switch 9 is operated before the sensor current I falls below the threshold Ith. The M-sequence signal is input to the battery 6 as a current input.
Thereby, each parameter R0, R1, R2, C1, and C2 can be estimated with high accuracy even when charging is stopped by the driver.

(6) 充電器8によるバッテリ6の充電期間内における所定電流積算期間のセンサ電流Iの積算値に基づいて電流積算充電率変化量ΔSOC-iを算出し、バッテリ6の状態量に基づいて所定電流積算期間の開始時および終了時の開放電圧OCVを推定し、推定した開放電圧OCVから所定電流積算期間の開始時および終了時の充電率SOC-v1,SOC-v2を求め、両者の差分から開放電圧充電率変化量ΔSOC-vを算出し、開放電圧充電率変化量ΔSOC-vに対する電流積算充電率変化量ΔSOC-iの比である容量維持率SOHを算出し、バッテリ6の初期バッテリ容量Ahに容量維持率SOHを乗算してバッテリ6の電池容量Chを算出する。
充電器8によるバッテリ6の充電時は使用時と比較してセンサ電流Iが高く、かつ安定しているため、電流積算誤差による影響を少なくでき、電流積算充電率変化量ΔSOC-iを精度良く算出できる。よって、電流積算充電率変化量ΔSOC-iと開放電圧充電率変化量ΔSOC-vとから求まる容量維持率SOHの算出精度を高めることができ、この結果、容量維持率SOHと初期電池容量Ahから求まる電池容量Chを高精度に算出できる。
(6) The current integrated charging rate change amount ΔSOC-i is calculated based on the integrated value of the sensor current I during the predetermined current integrating period within the charging period of the battery 6 by the charger 8, and is determined based on the state quantity of the battery 6. Estimate the open circuit voltage OCV at the start and end of the current integration period, obtain the charge rates SOC-v1 and SOC-v2 at the start and end of the specified current integration period from the estimated open circuit voltage OCV, and calculate the difference between the two The open-circuit voltage charging rate change amount ΔSOC-v is calculated, and the capacity maintenance rate SOH, which is the ratio of the current integrated charging rate change amount ΔSOC-i to the open-circuit voltage charging rate change amount ΔSOC-v, is calculated, and the initial battery capacity of the battery 6 is calculated. The battery capacity Ch of the battery 6 is calculated by multiplying Ah by the capacity maintenance rate SOH.
When the battery 6 is charged by the charger 8, the sensor current I is higher and more stable than when it is used, so the influence of the current integration error can be reduced, and the current integration charging rate change ΔSOC-i can be accurately calculated. It can be calculated. Therefore, the calculation accuracy of the capacity maintenance rate SOH obtained from the current integrated charge rate change amount ΔSOC-i and the open-circuit voltage charge rate change amount ΔSOC-v can be improved. As a result, from the capacity maintenance rate SOH and the initial battery capacity Ah, The required battery capacity Ch can be calculated with high accuracy.

〔実施例2〕
実施例2は、バッテリ6にM系列信号を入力できない場合、充電前後の走行に伴うセンサ電流Iの変化を利用して開放電圧OCVを推定するものである。以下、実施例1と異なる構成のみ説明する。
実施例2の充電制御部(M系列信号入力可否判定手段)17では、バッテリ6へのM系列信号入力が可能であるか否かを判定する。ここで、M系列信号入力が不可能である場合とは、充電器8が車載ではなく、M系列信号出力機能を備えていない場合や、ドライバが充電中に充電ケーブルを抜いた場合である。充電制御部17は、充電器8からの信号に基づいてM系列信号入力が可能であるか否かを判断する。
ΔSOC-i算出部15は、充電開始前にM系列信号入力が不可能であると判定された場合、充電開始時を所定電流積算期間の開始時とする。また、充電開始後にM系列信号入力が不可能であると判定された場合、充電終了後の走行時においてセンサ電流Iの絶対値の積算量が所定量に達した時点を所定電流積算期間の終了時とする。ここで、所定量は、カルマンフィルタが安定して各パラメータR0,R1,R2,C1,C2の自己修正を行うことができる程度に周波数応答データが得られるセンサ電流Iの絶対値の積算量、つまり、開放電圧推定部11による開放電圧OCVの推定に必要な精度が得られるセンサ電流Iの絶対値の積算量とする。
開放電圧推定部11は、車両が停車する都度、開放電圧OCVを推定しておき、充電開始前にM系列信号入力が不可能であると判定された場合、直前の車両停車時点で推定した開放電圧OCVを所定電流積算期間の開始時の開放電圧OCVとする。
[Example 2]
In the second embodiment, when an M-sequence signal cannot be input to the battery 6, the open circuit voltage OCV is estimated by using the change in the sensor current I accompanying the travel before and after charging. Only the configuration different from the first embodiment will be described below.
The charge control unit (M-sequence signal input availability determination means) 17 of the second embodiment determines whether or not the M-sequence signal input to the battery 6 is possible. Here, the case where the M-sequence signal input is impossible is a case where the charger 8 is not in-vehicle and does not have an M-sequence signal output function, or a case where the driver unplugs the charging cable during charging. Based on the signal from charger 8, charging control unit 17 determines whether or not an M-sequence signal can be input.
If it is determined that the M-sequence signal cannot be input before the charging is started, ΔSOC-i calculating unit 15 sets the charging start time as the start time of the predetermined current integration period. In addition, when it is determined that M-sequence signal input is impossible after the start of charging, the time when the integrated value of the absolute value of the sensor current I reaches a predetermined amount during traveling after the end of charging ends the predetermined current integration period. It is time. Here, the predetermined amount is an integrated amount of the absolute value of the sensor current I that can obtain frequency response data to such an extent that the Kalman filter can stably perform the self-correction of each parameter R0, R1, R2, C1, C2. The absolute value of the sensor current I that provides the accuracy necessary for the estimation of the open circuit voltage OCV by the open circuit voltage estimation unit 11 is used.
The open-circuit voltage estimation unit 11 estimates the open-circuit voltage OCV each time the vehicle stops, and if it is determined that M-sequence signal input is not possible before the start of charging, the open-circuit voltage estimation unit 11 estimates the open-circuit voltage estimated immediately before the vehicle stopped. The voltage OCV is the open circuit voltage OCV at the start of the predetermined current integration period.

[バッテリ容量算出処理]
図13は、実施例2のコントローラ2で実行されるバッテリ容量算出処理の流れを示すフローチャートであり、以下、各ステップについて説明する。なお、図11に示した実施例1と同じ処理を行うステップには、同一のステップ番号を付して説明を省略する。
ステップS21では、充電制御部17において、バッテリ6へのM系列信号入力が可能であるか否かを判定し、YESの場合はステップS1へ進み、NOの場合はステップS22へ進む。
ステップS22では、開放電圧推定部11において、車両停車時点、すなわち、充電開始直前にセンサ電流Iがゼロとなった時点で推定した開放電圧OCVを所定電流積算期間の開始時の開放電圧OCVとし、当該開放電圧OCVと充電率SOCの関係(図5)から所定電流積算期間の開始時の開放電圧充電率SOC-v1を算出する。
ステップS23では、充電制御部17において、充電器8に対し充電電流指令値を出力し、バッテリ6の充電を開始する。
ステップS24では、充電制御部17において、バッテリ6へのM系列信号入力が可能であるか否かを判定し、YESの場合はステップS8へ進み、NOの場合はステップS25へ進む。
[Battery capacity calculation processing]
FIG. 13 is a flowchart showing the flow of the battery capacity calculation process executed by the controller 2 of the second embodiment. Each step will be described below. In addition, the same step number is attached | subjected to the step which performs the same process as Example 1 shown in FIG. 11, and description is abbreviate | omitted.
In step S21, the charging control unit 17 determines whether or not an M-sequence signal can be input to the battery 6. If YES, the process proceeds to step S1, and if NO, the process proceeds to step S22.
In step S22, the open-circuit voltage estimation unit 11 sets the open-circuit voltage OCV estimated when the vehicle stops, that is, when the sensor current I becomes zero immediately before the start of charging, as the open-circuit voltage OCV at the start of the predetermined current integration period, From the relationship between the open circuit voltage OCV and the charge rate SOC (FIG. 5), the open circuit voltage charge rate SOC-v1 at the start of the predetermined current integration period is calculated.
In step S23, the charging control unit 17 outputs a charging current command value to the charger 8, and starts charging the battery 6.
In step S24, the charging control unit 17 determines whether or not an M-sequence signal can be input to the battery 6. If YES, the process proceeds to step S8, and if NO, the process proceeds to step S25.

ステップS25では、ΔSOC-i算出部15において、ステップS25でNOと判定されてからセンサ電流Iの絶対値の積算量が所定量に達したか否かを判定し、YESの場合はステップS27へ進み、NOの場合はステップS26を繰り返す。
ステップS26では、開放電圧推定部11において、センサ電圧V、センサ電流Iに基づいてバッテリモデル18の各パラメータR0,R1,R2,C1,C2を推定する。パラメータ推定方法はステップS4と同様である。
ステップS27では、開放電圧推定部11において、推定した各パラメータR0,R1,R2,C1,C2とセンサ電流I、センサ電圧Vから開放電圧OCVを推定し、開放電圧OCVと充電率SOCの関係(図5)から開放電圧充電率SOC-v2を算出する。
ステップS28では、ΔSOC-v算出部14において、開放電圧充電率SOC-v2から開放電圧充電率SOC-v1を減算してΔSOC-vを算出する。
ステップS29では、ΔSOC-i算出部15において、充電開始時からステップS26でYESと判定された時点までの電流積算充電率変化量ΔSOC-iを算出する。
ステップS17'では、S7で電流が閾値以下になり、S24でM系列信号入力があった場合のみYESとし、ステップS18で再充電を行う。
In step S25, the ΔSOC-i calculation unit 15 determines whether or not the integrated amount of the absolute value of the sensor current I has reached a predetermined amount after NO is determined in step S25. If YES, the process proceeds to step S27. Proceed, if NO, repeat step S26.
In step S26, the open-circuit voltage estimation unit 11 estimates the parameters R0, R1, R2, C1, and C2 of the battery model 18 based on the sensor voltage V and the sensor current I. The parameter estimation method is the same as in step S4.
In step S27, the open-circuit voltage estimation unit 11 estimates the open-circuit voltage OCV from the estimated parameters R0, R1, R2, C1, and C2, the sensor current I, and the sensor voltage V, and the relationship between the open-circuit voltage OCV and the charge rate SOC ( The open-circuit voltage charging rate SOC-v2 is calculated from FIG.
In step S28, ΔSOC-v calculation unit 14 calculates ΔSOC-v by subtracting open-circuit voltage charge rate SOC-v1 from open-circuit voltage charge rate SOC-v2.
In step S29, ΔSOC-i calculation unit 15 calculates current integrated charging rate change amount ΔSOC-i from the start of charging to the time point determined as YES in step S26.
In step S17 ′, YES is set only when the current is equal to or smaller than the threshold value in S7 and an M-sequence signal is input in S24, and recharging is performed in step S18.

次に、実施例2の作用を説明する。
図14は、実施例2のバッテリ容量算出処理作用を示すタイムチャートである。
時点t1では、ドライバがバッテリ6を充電するために車両を停止させる。このとき、走行中に得られた各センサ値I,Vおよび各パラメータR0,R1,R2,C1,C2から開放電圧OCVを推定する。
時点t2では、バッテリ6へのM系列信号入力が不可能であると判定し、時点t1で推定した開放電圧OCVを開放電圧充電率SOC-v1とし、電流積算を開始する。
時点t3では、M系列信号入力が不可能であると判定する。
時点t4では、車両が走行を開始する。
Next, the operation of the second embodiment will be described.
FIG. 14 is a time chart illustrating the battery capacity calculation processing operation of the second embodiment.
At time t1, the driver stops the vehicle to charge the battery 6. At this time, the open-circuit voltage OCV is estimated from the sensor values I and V and the parameters R0, R1, R2, C1, and C2 obtained during traveling.
At time t2, it is determined that the M-sequence signal cannot be input to the battery 6, and the open-circuit voltage OCV estimated at time t1 is set to the open-circuit voltage charging rate SOC-v1, and current integration is started.
At time t3, it is determined that M-sequence signal input is impossible.
At time t4, the vehicle starts to travel.

時点t5では、時点t3の充電終了時からのセンサ電流Iの絶対値の積算量が所定量に達したため、各センサ値I,Vおよび各パラメータR0,R1,R2,C1,C2から開放電圧OCVを推定し、推定した開放電圧OCVから開放電圧充電率SOC-v2を算出する。そして、SOC-v2とSOC-v1との差分から開放電圧充電率変化量ΔSOC-vを求めると共に、時点t2の充電開始時から時点t5までの電流積算充電率変化量ΔSOC-iを算出する。
これにより、バッテリ6へのM系列信号入力が不可能である場合であっても、容量維持率SOHを算出でき、算出した容量維持率SOHから現在のバッテリ容量Chを求めることができる。
At time t5, since the integrated amount of the absolute value of the sensor current I from the end of charging at time t3 has reached a predetermined amount, the open circuit voltage OCV from each sensor value I, V and each parameter R0, R1, R2, C1, C2 And the open-circuit voltage charging rate SOC-v2 is calculated from the estimated open-circuit voltage OCV. Then, an open circuit voltage charging rate change amount ΔSOC-v is obtained from the difference between SOC-v2 and SOC-v1, and a current integrated charging rate change amount ΔSOC-i from the start of charging at time t2 to time t5 is calculated.
Thereby, even when it is impossible to input the M-sequence signal to the battery 6, the capacity maintenance rate SOH can be calculated, and the current battery capacity Ch can be obtained from the calculated capacity maintenance rate SOH.

[走行中の電流変化を利用した開放電圧充電率算出作用]
充電開始前にバッテリ6へのM系列信号の入力が不可能であるとき、車両は停止しているため、センサ電流Iはゼロである。このとき、仮にセンサ電流Iが一定値の状態で開放電圧OCVを推定した場合、各パラメータR0,R1,R2,C1,C2の推定誤差が大きくなるため、開放電圧充電率変化量ΔSOC-vの推定精度が低下する。
そこで、実施例2では、充電開始前にM系列信号入力が不可能である場合、車両停車時点に推定した開放電圧OCVを開放電圧充電率SOC-v1とする。車両停車時点で推定されたバッテリモデル18の各パラメータR0,R1,R2,C1,C2は、走行中のセンサ電流Iの変化に応じて逐次修正されたものであるため、各パラメータR0,R1,R2,C1,C2の推定誤差が小さく、開放電圧OCVを精度良く推定できる。また、時点t1からt2の期間ではセンサ電流Iがゼロであり、バッテリ6の状態が変化していないため、時点t1の時点で推定した開放電圧OCVは時点t2の時点における開放電圧OCVと見なすことができる。
また、実施例2では、充電開始後にM系列信号入力が不可能である場合、充電終了時にセンサ電流Iの絶対値の積算量が所定量に達した時点で推定された開放電圧OCVを所定電流積算期間の終了時の開放電圧OCVとし、この開放電圧OCVに基づいて開放電圧充電率SOC-v2を算出する。センサ電流Iの絶対値の積算量が所定量に達した時点で推定される各パラメータR0,R1,R2,C1,C2は、走行中のセンサ電流Iの変化に応じて逐次修正されたものであるため、各パラメータR0,R1,R2,C1,C2の推定誤差が小さく、開放電圧充電率SOC-v2を精度良く算出できる。
[Calculation of open-circuit voltage charging rate using current change during driving]
When the input of the M series signal to the battery 6 is impossible before the charging is started, the sensor current I is zero because the vehicle is stopped. At this time, if the open-circuit voltage OCV is estimated with the sensor current I being a constant value, the estimation error of each parameter R0, R1, R2, C1, C2 becomes large, so the open-circuit voltage charge rate change amount ΔSOC-v Estimation accuracy decreases.
Therefore, in Example 2, when it is impossible to input an M-sequence signal before the start of charging, the open-circuit voltage OCV estimated at the time of stopping of the vehicle is set as the open-circuit voltage charging rate SOC-v1. Since each parameter R0, R1, R2, C1, C2 of the battery model 18 estimated at the time of the vehicle stop is sequentially corrected according to the change of the sensor current I during traveling, each parameter R0, R1, The estimation error of R2, C1, and C2 is small, and the open circuit voltage OCV can be estimated with high accuracy. In addition, since the sensor current I is zero and the state of the battery 6 has not changed in the period from the time point t1 to the time point t2, the open-circuit voltage OCV estimated at the time point t1 is regarded as the open-circuit voltage OCV at the time point t2. Can do.
Further, in the second embodiment, when it is impossible to input an M-sequence signal after the start of charging, the open circuit voltage OCV estimated when the integrated value of the absolute value of the sensor current I reaches a predetermined amount at the end of charging is determined as the predetermined current. The open circuit voltage OCV at the end of the integration period is used, and the open circuit voltage charging rate SOC-v2 is calculated based on the open circuit voltage OCV. The parameters R0, R1, R2, C1, and C2 estimated when the integrated value of the absolute value of the sensor current I reaches a predetermined amount are sequentially corrected according to changes in the sensor current I during travel. Therefore, the estimation error of each parameter R0, R1, R2, C1, and C2 is small, and the open-circuit voltage charging rate SOC-v2 can be calculated with high accuracy.

実施例2では、実施例1の効果(1)〜(6)に加え、以下に列挙する効果を奏する。
(7) 充電制御部17は、バッテリ6へのM系列信号入力が可能であるか否かを判定し、ΔSOC-i算出部15は、充電開始前にM系列信号入力が不可能であると判定された場合、充電開始時を所定電流積算期間の開始時とし、開放電圧推定部11は、充電開始前に前記M系列信号入力が不可能であると判定された場合、充電開始直前にセンサ電流Iがゼロとなった時点で開放電圧OCVを推定し、当該開放電圧OCVを所定電流積算期間の開始時の開放電圧OCVとする。
これにより、充電器8がM系列信号出力機能を備えていない場合には、充電前の走行時に逐次更新された各パラメータR0,R1,R2,C1,C2に基づいて開放電圧充電率SOC-v1を算出できるため、精度の高いバッテリ容量Chを求めることができる。
In Example 2, in addition to the effects (1) to (6) of Example 1, the following effects are exhibited.
(7) The charge control unit 17 determines whether or not the M-sequence signal can be input to the battery 6, and the ΔSOC-i calculation unit 15 determines that the M-sequence signal cannot be input before the start of charging. If determined, the charging start time is set to the start of the predetermined current integration period, and the open circuit voltage estimation unit 11 determines that the M-sequence signal input is impossible before the charging start, When the current I becomes zero, the open circuit voltage OCV is estimated, and the open circuit voltage OCV is set as the open circuit voltage OCV at the start of the predetermined current integration period.
Thus, when the charger 8 does not have an M-sequence signal output function, the open-circuit voltage charging rate SOC-v1 based on the parameters R0, R1, R2, C1, and C2 that are sequentially updated during traveling before charging. Therefore, the battery capacity Ch with high accuracy can be obtained.

(8) 充電制御部17は、バッテリ6へのM系列信号入力が可能であるか否かを判定し、ΔSOC-i算出部15は、充電開始後であってセンサ電流Iが閾値Ith以下となった後にM系列信号入力が不可能であると判定された場合、または、充電ケーブルを抜いてM系列信号入力が不可能であると判定された場合、充電終了後にセンサ電流Iの絶対値の積算量が所定量に達した時点を所定電流積算期間の終了時とする。
これにより、充電器8がM系列信号出力機能を備えていない場合、またはドライバが充電中に充電ケーブルを抜いて充電停止になった場合には、充電後の走行時に逐次更新された各パラメータR0,R1,R2,C1,C2に基づいて開放電圧充電率SOC-v2を算出できるため、精度の高いバッテリ容量Chを求めることができる。
(8) The charge control unit 17 determines whether or not an M-sequence signal can be input to the battery 6, and the ΔSOC-i calculation unit 15 determines that the sensor current I is less than or equal to the threshold Ith after the start of charging. If it is determined that M-sequence signal input is not possible after charging, or if it is determined that M-sequence signal input is not possible by disconnecting the charging cable, the absolute value of sensor current I will be The time when the integrated amount reaches the predetermined amount is defined as the end of the predetermined current integration period.
Thus, when the charger 8 does not have the M-sequence signal output function, or when the driver stops charging by pulling out the charging cable during charging, each parameter R0 updated sequentially during driving after charging , R1, R2, C1, and C2, the open-circuit voltage charging rate SOC-v2 can be calculated. Therefore, the battery capacity Ch with high accuracy can be obtained.

〔実施例3〕
実施例3は、バッテリ6にM系列信号を入力せず、充電前後の走行に伴うセンサ電流Iの変化を利用して開放電圧OCVを推定するものである。以下、実施例1または2と異なる構成のみ説明する。
ΔSOC-i算出部15は、充電開始時を所定電流積算期間の開始時として電流積算を開始する。そして、充電中であってセンサ電流Iが閾値Ith以下となる前に充電停止スイッチ9が操作されまたは充電ケーブルが抜かれたとき、その後の走行時においてセンサ電流Iの絶対値の積算量が所定量に達した時点を所定電流積算期間の終了時とする。ここで、所定量は、カルマンフィルタが安定して各パラメータR0,R1,R2,C1,C2の自己修正を行うことができる程度に周波数応答データが得られるセンサ電流Iの絶対値の積算量、つまり、開放電圧推定部11による開放電圧OCVの推定に必要な精度が得られるセンサ電流Iの絶対値の積算量とする。
つまり、実施例3では、充電が途中で中断した場合にのみバッテリ容量Chの算出を実施する。
開放電圧推定部11は、車両が停止する都度、開放電圧OCVを推定しておき、充電が途中で中断した場合、充電開始直前の車両停止時点で推定した開放電圧OCVを所定電流積算期間の開始時の開放電圧OCVとする。
なお、実施例3では、バッテリ6にM系列信号を入力しないため、M系列信号に関する機能は不要である。
Example 3
In the third embodiment, the open-circuit voltage OCV is estimated using the change in the sensor current I associated with traveling before and after charging without inputting the M-sequence signal to the battery 6. Only the configuration different from the first or second embodiment will be described below.
The ΔSOC-i calculation unit 15 starts current integration with the start of charging as the start of the predetermined current integration period. When the charge stop switch 9 is operated or the charging cable is disconnected before the sensor current I becomes equal to or lower than the threshold Ith during charging, the accumulated amount of the absolute value of the sensor current I is a predetermined amount during the subsequent travel. Is the end of the predetermined current integration period. Here, the predetermined amount is an integrated amount of the absolute value of the sensor current I that can obtain frequency response data to such an extent that the Kalman filter can stably perform the self-correction of each parameter R0, R1, R2, C1, C2. The absolute value of the sensor current I that provides the accuracy necessary for the estimation of the open circuit voltage OCV by the open circuit voltage estimation unit 11 is used.
That is, in Example 3, the battery capacity Ch is calculated only when charging is interrupted in the middle.
The open-circuit voltage estimation unit 11 estimates the open-circuit voltage OCV every time the vehicle stops, and when charging is interrupted in the middle, the open-circuit voltage OCV estimated at the time of vehicle stop immediately before the start of charging is used to start a predetermined current integration period. Open circuit voltage OCV at the time.
In the third embodiment, since no M-sequence signal is input to the battery 6, a function related to the M-sequence signal is unnecessary.

[バッテリ容量算出処理]
図15は、実施例3のコントローラ2で実行されるバッテリ容量算出処理の流れを示すフローチャートで、以下、各ステップについて説明する。この処理は、車両停車時に実施される。なお、図11に示した実施例1または図13に示した実施例2と同じ処理を行うステップには、同一のステップ番号を付して説明を省略する。
ステップS31では、充電制御部17において、充電器8が外部電源に接続されたか否かを判定し、YESの場合にはステップS32へ進み、NOの場合には本制御を終了する。
ステップS32では、充電制御部17において、充電器8に対し充電電流指令値を出力し、バッテリ6の充電を開始する。
ステップS33では、充電制御部17において、充電停止(スイッチ9がONまたは充電ケーブルが抜かれた)か否かを判定し、YESの場合にはステップS34へ進み、NOの場合にはステップS33を繰り返す。
ステップS34では、充電制御部17において、センサ電流Iが閾値Ithよりも大きいか否かを判定し、YESの場合にはステップS25へ進み、NOの場合には本制御を終了する。
[Battery capacity calculation processing]
FIG. 15 is a flowchart showing the flow of the battery capacity calculation process executed by the controller 2 of the third embodiment. Each step will be described below. This process is performed when the vehicle is stopped. In addition, the same step number is attached | subjected to the step which performs the same process as Example 1 shown in FIG. 11, or Example 2 shown in FIG. 13, and description is abbreviate | omitted.
In step S31, the charging control unit 17 determines whether or not the charger 8 is connected to an external power source. If YES, the process proceeds to step S32, and if NO, the present control is terminated.
In step S32, the charging control unit 17 outputs a charging current command value to the charger 8, and starts charging the battery 6.
In step S33, the charging control unit 17 determines whether or not charging is stopped (the switch 9 is turned on or the charging cable is disconnected). If YES, the process proceeds to step S34. If NO, step S33 is repeated. .
In step S34, the charging control unit 17 determines whether or not the sensor current I is larger than the threshold value Ith. If YES, the process proceeds to step S25, and if NO, this control is terminated.

次に、実施例3の作用を説明する。
実施例3のバッテリ容量算出作用を、図14を用いて説明する。
時点t1では、車両が停止したため、走行中に得られた各センサ値I,Vおよび各パラメータR0,R1,R2,C1,C2から開放電圧OCVを推定し、開放電圧OCVから開放電圧充電率SOC-v1を算出する。
時点t2では、電流積算を開始する。
時点t3では、ドライバが充電ケーブルを抜いて充電を中断する。
時点t4では、車両が走行を開始する。
時点t5では、時点t3の充電終了時からのセンサ電流Iの絶対値の積算量が所定量に達したため、各センサ値I,Vおよび各パラメータR0,R1,R2,C1,C2から開放電圧OCVを推定し、推定した開放電圧OCVから開放電圧充電率SOC-v2を算出する。そして、SOC-v2とSOC-v1との差分から開放電圧充電率変化量ΔSOC-vを求めると共に、時点t2の充電開始時から時点t5までの電流積算充電率変化量ΔSOC-iを算出する。
これにより、ドライバが充電を中断した場合には、容量維持率SOHを算出でき、算出した容量維持率SOHから現在のバッテリ容量Chを求めることができる。
Next, the operation of the third embodiment will be described.
The battery capacity calculation operation of the third embodiment will be described with reference to FIG.
At time t1, since the vehicle has stopped, the open circuit voltage OCV is estimated from the sensor values I and V and the parameters R0, R1, R2, C1, and C2 obtained during travel, and the open circuit voltage charging rate SOC is calculated from the open circuit voltage OCV. -v1 is calculated.
At time t2, current integration is started.
At time t3, the driver disconnects the charging cable and stops charging.
At time t4, the vehicle starts to travel.
At time t5, since the integrated amount of the absolute value of the sensor current I from the end of charging at time t3 has reached a predetermined amount, the open circuit voltage OCV from each sensor value I, V and each parameter R0, R1, R2, C1, C2 And the open-circuit voltage charging rate SOC-v2 is calculated from the estimated open-circuit voltage OCV. Then, an open circuit voltage charging rate change amount ΔSOC-v is obtained from the difference between SOC-v2 and SOC-v1, and a current integrated charging rate change amount ΔSOC-i from the start of charging at time t2 to time t5 is calculated.
Thus, when the driver interrupts charging, the capacity maintenance rate SOH can be calculated, and the current battery capacity Ch can be obtained from the calculated capacity maintenance rate SOH.

[走行中の電流変化を利用した開放電圧充電率算出作用]
実施例3では、車両停車時点に推定した開放電圧OCVを開放電圧充電率SOC-v1とする。車両停車時点で推定されたバッテリモデル18の各パラメータR0,R1,R2,C1,C2は、走行中のセンサ電流Iの変化に応じて逐次修正されたものであるため、各パラメータR0,R1,R2,C1,C2の推定誤差が小さく、開放電圧OCVを精度良く推定できる。また、時点t1からt2の期間ではセンサ電流Iがゼロであり、バッテリ6の状態が変化していないため、時点t1の時点で推定した開放電圧OCVは時点t2の時点における開放電圧OCVと見なすことができる。
また、実施例3では、充電終了時にセンサ電流Iの絶対値の積算量が所定量に達した時点で推定された開放電圧OCVを所定電流積算期間の終了時の開放電圧OCVとし、この開放電圧OCVに基づいて開放電圧充電率SOC-v2を算出する。センサ電流Iの絶対値の積算量が所定量に達した時点で推定される各パラメータR0,R1,R2,C1,C2は、走行中のセンサ電流Iの変化に応じて逐次修正されたものであるため、各パラメータR0,R1,R2,C1,C2の推定誤差が小さく、開放電圧充電率SOC-v2を精度良く算出できる。
[Calculation of open-circuit voltage charging rate using current change during driving]
In the third embodiment, the open circuit voltage OCV estimated at the time when the vehicle stops is the open circuit voltage charging rate SOC-v1. Since each parameter R0, R1, R2, C1, C2 of the battery model 18 estimated at the time of the vehicle stop is sequentially corrected according to the change of the sensor current I during traveling, each parameter R0, R1, The estimation error of R2, C1, and C2 is small, and the open circuit voltage OCV can be estimated with high accuracy. In addition, since the sensor current I is zero and the state of the battery 6 has not changed in the period from the time point t1 to the time point t2, the open-circuit voltage OCV estimated at the time point t1 is regarded as the open-circuit voltage OCV at the time point t2. Can do.
In the third embodiment, the open-circuit voltage OCV estimated when the integrated value of the absolute value of the sensor current I reaches a predetermined amount at the end of charging is set as the open-circuit voltage OCV at the end of the predetermined current integration period. Based on the OCV, the open circuit voltage charging rate SOC-v2 is calculated. The parameters R0, R1, R2, C1, and C2 estimated when the integrated value of the absolute value of the sensor current I reaches a predetermined amount are sequentially corrected according to changes in the sensor current I during travel. Therefore, the estimation error of each parameter R0, R1, R2, C1, and C2 is small, and the open-circuit voltage charging rate SOC-v2 can be calculated with high accuracy.

実施例3では、実施例1の効果(1)〜(3),(6)に加え、以下の効果を奏する。
(9) ΔSOC-i算出部15は、充電開始時を所定電流積算期間の開始時、充電終了後にセンサ電流Iの絶対値の積算量が所定量に達した時点を所定電流積算期間の終了時とし、開放電圧推定部11は、充電開始直前にセンサ電流Iがゼロとなった時点で推定した開放電圧OCVを所定電流積算期間の開始時の開放電圧OCVとする。
これにより、ドライバが充電を中断した場合、充電前後の走行時に逐次更新された各パラメータR0,R1,R2,C1,C2に基づいて開放電圧充電率SOC-v1,SOC-v2を算出できるため、精度の高いバッテリ容量Chを求めることができる。
In Example 3, in addition to the effects (1) to (3) and (6) of Example 1, the following effects are obtained.
(9) The ΔSOC-i calculation unit 15 sets the time when charging starts at the start of the predetermined current integration period and the time when the integrated value of the absolute value of the sensor current I reaches the predetermined amount after charging ends. The open-circuit voltage estimation unit 11 sets the open-circuit voltage OCV estimated when the sensor current I becomes zero immediately before the start of charging as the open-circuit voltage OCV at the start of the predetermined current integration period.
As a result, when the driver interrupts charging, the open-circuit voltage charging rate SOC-v1, SOC-v2 can be calculated based on the parameters R0, R1, R2, C1, C2 that are sequentially updated during driving before and after charging. Accurate battery capacity Ch can be obtained.

(他の実施例)
以上、本発明の電池容量算出装置および電池容量算出方法を実施例に基づいて説明したが、具体的な構成については、実施例に限られるものではなく、特許請求の範囲に記載の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加は許容される。
例えば、実施例では、逐次パラメータ推定にカルマンフィルタを用いたが、他の推定方法を用いてもよい。
実施例では、二次電池を電気自動車の強電バッテリとした例を示したが、ハイブリッド車両の強電バッテリにも適用できる。また、適用範囲は車載バッテリに限られるものではなく、充電可能な二次電池であれば実施例と同様の作用効果を得ることができる。
(Other examples)
The battery capacity calculation device and the battery capacity calculation method of the present invention have been described based on the embodiments. However, the specific configuration is not limited to the embodiments, and each claim described in the claims. Design changes and additions are allowed without departing from the spirit of the invention.
For example, in the embodiment, the Kalman filter is used for successive parameter estimation, but other estimation methods may be used.
In the embodiment, an example in which the secondary battery is a high-power battery of an electric vehicle is shown, but the present invention can also be applied to a high-power battery of a hybrid vehicle. Further, the application range is not limited to the in-vehicle battery, and the same effect as the embodiment can be obtained as long as it is a rechargeable secondary battery.

6 バッテリ(二次電池)
9 充電停止スイッチ
11 開放電圧推定部(電池モデルパラメータ推定手段、開放電圧充電率算出手段)
12 OCV-SOC変換部(開放電圧充電率算出手段)
13 電流積算SOC算出部(電流積算充電率算出手段)
14 ΔSOC-v算出部(開放電圧充電率変化量算出手段)
15 ΔSOC-i算出部(電流積算充電率変化量算出手段)
16 劣化推定部(電池容量算出手段)
17 充電制御部(M系列信号入力手段、M系列信号入力可否判定手段)
18 バッテリモデル(電池モデル)
6 Battery (secondary battery)
9 Charge stop switch
11 Open-circuit voltage estimation unit (battery model parameter estimation means, open-circuit voltage charge rate calculation means)
12 OCV-SOC converter (open voltage charging rate calculation means)
13 Current integration SOC calculation unit (Current integration charge rate calculation means)
14 ΔSOC-v calculation unit (open-circuit voltage charge rate change amount calculation means)
15 ΔSOC-i calculation part (current integrated charging rate change calculation means)
16 Degradation estimation part (battery capacity calculation means)
17 Charge control unit (M-sequence signal input means, M-sequence signal input availability determination means)
18 Battery model (battery model)

Claims (9)

充電器による前記二次電池の充電期間内における所定電流積算期間の二次電池の充放電電流を積算し、電流積算に基づく前記二次電池の充電率である電流積算充電率を算出する電流積算充電率算出手段と、
前記所定電流積算期間の前記電流積算充電率の変化量である電流積算充電率変化量を算出する電流積算充電率変化量算出手段と、
前記二次電池の状態量に基づいて前記所定電流積算期間の開始時および終了時の開放電圧を推定する開放電圧推定手段と、
前記所定電流積算期間の開始時および終了時の前記開放電圧に基づく前記二次電池の充電率である開放電圧充電率を算出する開放電圧充電率算出手段と、
前記所定電流積算期間終了時の開放電圧充電率と前記所定電流積算期間の開始時の開放電圧充電率との差分である開放電圧充電率変化量を算出する開放電圧充電率変化量算出手段と、
前記開放電圧充電率変化量に対する前記電流積算充電率変化量の比である容量維持率を算出し、算出した容量維持率に基づき前記二次電池の電池容量を算出する電池容量算出手段と、
を備えたことを特徴とする電池容量算出装置。
Current integration for integrating a charging / discharging current of the secondary battery in a predetermined current integration period within a charging period of the secondary battery by a charger and calculating a current integration charging rate that is a charging rate of the secondary battery based on the current integration Charging rate calculation means;
Current integrated charge rate change amount calculating means for calculating a current integrated charge rate change amount that is a change amount of the current integrated charge rate in the predetermined current integration period;
An open-circuit voltage estimating means for estimating an open-circuit voltage at the start and end of the predetermined current integration period based on a state quantity of the secondary battery;
An open-circuit voltage charge rate calculation means for calculating an open-circuit voltage charge rate that is a charge rate of the secondary battery based on the open-circuit voltage at the start and end of the predetermined current integration period;
An open-circuit voltage charge rate change amount calculating means for calculating an open-circuit voltage charge rate change amount that is a difference between an open-circuit voltage charge rate at the end of the predetermined current integration period and an open-circuit voltage charge rate at the start of the predetermined current integration period;
Battery capacity calculation means for calculating a capacity maintenance rate that is a ratio of the current integrated charging rate change amount to the open-circuit voltage charging rate change amount, and calculating a battery capacity of the secondary battery based on the calculated capacity maintenance rate;
A battery capacity calculation device comprising:
請求項1に記載の電池容量算出装置において、
前記所定電流積算期間を、前記二次電池の充電電流が所定の閾値を超える期間としたことを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 1,
The battery capacity calculation apparatus according to claim 1, wherein the predetermined current integration period is a period in which a charging current of the secondary battery exceeds a predetermined threshold.
請求項1または請求項2に記載の電池容量算出装置において、
前記二次電池の状態量に基づいて電池モデルの各パラメータを逐次推定する電池モデルパラメータ推定手段を備え、
前記開放電圧推定手段は、前記各パラメータに基づいて前記所定電流積算期間の開始時および終了時の開放電圧を推定することを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 1 or 2,
Battery model parameter estimating means for sequentially estimating each parameter of the battery model based on the state quantity of the secondary battery,
The open-circuit voltage estimation means estimates the open-circuit voltage at the start and end of the predetermined current integration period based on the parameters.
請求項3に記載の電池容量算出装置において、
充電開始時および充電期間中であって前記充放電電流が閾値以下となったとき、M系列信号を電流入力として前記二次電池に入力するM系列信号入力手段を備え、
前記電流積算充電率変化量算出手段は、充電開始時の前記M系列信号入力が終了した時点を前記所定電流積算期間の開始時とし、前記充放電電流が前記閾値以下となった後に前記M系列信号入力が終了した時点を前記所定電流積算期間の終了時とすることを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 3,
M sequence signal input means for inputting an M sequence signal as a current input to the secondary battery when the charge and discharge current is equal to or less than a threshold at the start of charging and during the charging period,
The current integrated charge rate change amount calculation means sets the time when the M-sequence signal input at the start of charging is ended as the start of the predetermined current integration period, and the M-sequence after the charge / discharge current becomes equal to or less than the threshold value. The battery capacity calculation device characterized in that the time when the signal input ends is set to the end of the predetermined current integration period.
請求項4に記載の電池容量算出装置において、
ドライバが充電を停止するための充電停止スイッチを備え、
前記M系列信号入力手段は、充電期間中であって前記充放電電流が閾値以下となる前に前記充電停止スイッチが操作されたとき、前記M系列信号を電流入力として前記二次電池に入力することを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 4,
The driver has a charge stop switch to stop charging,
The M-sequence signal input means inputs the M-sequence signal to the secondary battery as a current input when the charge stop switch is operated during a charging period and before the charge / discharge current becomes equal to or less than a threshold value. The battery capacity calculation apparatus characterized by the above-mentioned.
請求項4または請求項5に記載の電池容量算出装置において、
前記二次電池への前記M系列信号入力が可能であるか否かを判定するM系列信号入力可否判定手段を備え、
前記電流積算充電率変化量算出手段は、充電開始前に前記M系列信号入力が不可能であると判定された場合、充電開始時を前記所定電流積算期間の開始時とし、
前記開放電圧推定手段は、充電開始前に前記M系列信号入力が不可能であると判定された場合、充電開始直前に前記充放電電流がゼロとなった時点で開放電圧を推定し、当該開放電圧を前記所定電流積算期間の開始時の開放電圧とすることを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 4 or 5,
M sequence signal input availability determination means for determining whether the M sequence signal input to the secondary battery is possible,
When it is determined that the M-sequence signal input is not possible before starting charging, the current integrated charging rate change amount calculating means sets the charging start time as the start of the predetermined current integration period,
If it is determined that the M-sequence signal input is impossible before the start of charging, the open-circuit voltage estimating means estimates the open-circuit voltage when the charge / discharge current becomes zero immediately before the start of charging, and A battery capacity calculation apparatus characterized in that a voltage is an open circuit voltage at the start of the predetermined current integration period.
請求項4ないし請求項6のいずれか1項に記載の電池容量算出装置において、
前記二次電池への前記M系列信号入力が可能であるか否かを判定するM系列信号入力可否判定手段を備え、
前記電流積算充電率変化量算出手段は、充電開始後であって前記充放電電流が前記閾値以下となった後に前記M系列信号入力が不可能であると判定された場合、または、前記閾値以上であっても充電が中断し前記M系列信号入力が不可能であると判定された場合、充電終了後に前記充放電電流の絶対値の積算量が所定量に達した時点を前記所定電流積算期間の終了時とすることを特徴とする電池容量算出装置。
In the battery capacity calculation device according to any one of claims 4 to 6,
M sequence signal input availability determination means for determining whether the M sequence signal input to the secondary battery is possible,
The current integrated charging rate change amount calculation means is after the start of charging and when it is determined that the M-sequence signal input is impossible after the charging / discharging current becomes equal to or less than the threshold, or more than the threshold However, if it is determined that charging is interrupted and the M-sequence signal input is impossible, the predetermined current integration period is the time when the integrated amount of the absolute value of the charge / discharge current reaches a predetermined amount after the end of charging. A battery capacity calculation device characterized in that it is at the end of.
請求項3に記載の電池容量算出装置において、
前記電流積算充電率変化量算出手段は、充電開始時を前記所定電流積算期間の開始時、充電終了後に前記充放電電流の絶対値の積算量が所定量に達した時点を前記所定電流積算期間の終了時とし、
前記開放電圧推定手段は、充電開始直前に前記充放電電流がゼロとなった時点で推定した開放電圧を前記所定電流積算期間の開始時の開放電圧とすることを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 3,
The current integrated charging rate change amount calculating means is configured to determine the time when charging starts at the start of the predetermined current integrating period, and the time when the integrated amount of the absolute value of the charging / discharging current reaches a predetermined amount after the end of charging. And at the end of
The open-circuit voltage estimation means uses the open-circuit voltage estimated when the charge / discharge current becomes zero immediately before the start of charging as the open-circuit voltage at the start of the predetermined current integration period.
充電器による前記二次電池の充電期間内における所定電流積算期間の前記二次電池の充放電電流の積算値に基づいて電流積算に基づく充電率変化量を算出し、
前記二次電池の状態量に基づいて前記所定電流積算期間の開始時および終了時の開放電圧を推定し、推定した開放電圧から前記所定電流積算期間の開始時と前記所定電流積算期間の終了時の充電率を求め、両者の差分から開放電圧に基づく充電率変化量を算出し、
前記開放電圧に基づく充電率変化量に対する前記電流積算に基づく充電率変化量の比である容量維持率を算出し、
前記二次電池の初期電池容量に前記容量維持率を乗算して前記二次電池の電池容量を算出することを特徴とする電池容量算出方法。
Calculating a charge rate change amount based on current integration based on an integrated value of charge / discharge current of the secondary battery in a predetermined current integration period within a charging period of the secondary battery by a charger;
An open circuit voltage at the start and end of the predetermined current integration period is estimated based on the state quantity of the secondary battery, and at the start of the predetermined current integration period and at the end of the predetermined current integration period from the estimated open circuit voltage , And calculate the change in the charging rate based on the open circuit voltage from the difference between the two,
Calculating a capacity maintenance rate that is a ratio of a charging rate change amount based on the current integration to a charging rate change amount based on the open circuit voltage;
A battery capacity calculation method, wherein the battery capacity of the secondary battery is calculated by multiplying the initial battery capacity of the secondary battery by the capacity maintenance rate.
JP2010200418A 2010-03-15 2010-09-08 Battery capacity calculation device and battery capacity calculation method Expired - Fee Related JP5393624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200418A JP5393624B2 (en) 2010-03-15 2010-09-08 Battery capacity calculation device and battery capacity calculation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010057322 2010-03-15
JP2010057322 2010-03-15
JP2010200418A JP5393624B2 (en) 2010-03-15 2010-09-08 Battery capacity calculation device and battery capacity calculation method

Publications (2)

Publication Number Publication Date
JP2011215125A true JP2011215125A (en) 2011-10-27
JP5393624B2 JP5393624B2 (en) 2014-01-22

Family

ID=44944986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200418A Expired - Fee Related JP5393624B2 (en) 2010-03-15 2010-09-08 Battery capacity calculation device and battery capacity calculation method

Country Status (1)

Country Link
JP (1) JP5393624B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122450A (en) * 2011-11-25 2013-06-20 Honeywell Internatl Inc Method and apparatus for online determination of battery state of charge and state of health
JP2014174050A (en) * 2013-03-11 2014-09-22 Kayaba Ind Co Ltd Battery capacity estimation device
KR20150048439A (en) * 2013-10-28 2015-05-07 현대모비스 주식회사 Battery management system and its operating method
US20150340885A1 (en) * 2014-05-20 2015-11-26 Samsung Sdi Co., Ltd. Battery charging method and battery management system therefor
WO2016017018A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Home energy management system, home energy management method, and program
CN106324508A (en) * 2015-07-02 2017-01-11 华为技术有限公司 Battery health state detection device and method
JP2017026443A (en) * 2015-07-22 2017-02-02 スズキ株式会社 Charge state estimation device of secondary battery
WO2017085869A1 (en) 2015-11-20 2017-05-26 日産自動車株式会社 Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
KR20170058165A (en) * 2015-11-18 2017-05-26 현대일렉트릭앤에너지시스템(주) System and method for estimating state of health for battery
JP2018146372A (en) * 2017-03-06 2018-09-20 古河電気工業株式会社 Method and device for determining deterioration of battery
KR101937591B1 (en) 2017-09-27 2019-01-10 경북대학교 산학협력단 Apparatus and method for real-time battery life estimation
US10343544B2 (en) 2016-11-01 2019-07-09 Hyundai Motor Company Apparatus and method for controlling charging of battery for hybrid vehicle
JP2019152551A (en) * 2018-03-05 2019-09-12 株式会社デンソー Battery degradation determining device
CN110506216A (en) * 2017-03-31 2019-11-26 三菱电机株式会社 Accumulator status estimating device
CN110673040A (en) * 2018-07-03 2020-01-10 河南森源重工有限公司 SOC estimation method and device for power battery of electric vehicle
WO2020031899A1 (en) 2018-08-06 2020-02-13 ミネベアミツミ株式会社 Degradation determination system and degradation determination method for secondary battery
CN112105940A (en) * 2018-05-31 2020-12-18 住友电气工业株式会社 Parameter estimation device, parameter estimation method, and computer program
WO2021039355A1 (en) * 2019-08-27 2021-03-04 株式会社Gsユアサ Method for correcting state-of-charge estimation value of power storage element, management device of power storage element, and power storage element
CN113594561A (en) * 2020-04-30 2021-11-02 朴力美电动车辆活力株式会社 Method and device for determining state of secondary battery
CN113733980A (en) * 2020-05-29 2021-12-03 蜂巢能源科技有限公司 Method, apparatus, medium, and electronic device for determining capacity of power battery
CN114035049A (en) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 SOH precision calculation method and device and electronic equipment
CN116252682A (en) * 2023-05-16 2023-06-13 车百中汽科技(北京)有限公司 Method and system for determining health degree of power battery of new energy automobile
WO2023243421A1 (en) * 2022-06-17 2023-12-21 株式会社デンソー Capacity estimation device and capacity estimation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102179684B1 (en) * 2017-09-29 2020-11-17 주식회사 엘지화학 Apparatus and method for calculating battery pack SOH
CN108819747B (en) * 2018-06-13 2021-11-02 蔚来(安徽)控股有限公司 Multi-branch power distribution management for multi-branch energy storage system
CN109342961A (en) * 2018-10-09 2019-02-15 深圳前海云充科技有限公司 Industrial battery monitoring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170231A (en) * 2002-11-20 2004-06-17 Toshitaka Takei Battery equipment system indicating degradation of battery
JP2006105821A (en) * 2004-10-06 2006-04-20 Toyota Motor Corp Apparatus for estimating charge capacity of secondary cell and its method
JP2008041280A (en) * 2006-08-01 2008-02-21 Sony Corp Battery pack, and calculation method of deterioration degree

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170231A (en) * 2002-11-20 2004-06-17 Toshitaka Takei Battery equipment system indicating degradation of battery
JP2006105821A (en) * 2004-10-06 2006-04-20 Toyota Motor Corp Apparatus for estimating charge capacity of secondary cell and its method
JP2008041280A (en) * 2006-08-01 2008-02-21 Sony Corp Battery pack, and calculation method of deterioration degree

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122450A (en) * 2011-11-25 2013-06-20 Honeywell Internatl Inc Method and apparatus for online determination of battery state of charge and state of health
JP2014174050A (en) * 2013-03-11 2014-09-22 Kayaba Ind Co Ltd Battery capacity estimation device
KR20150048439A (en) * 2013-10-28 2015-05-07 현대모비스 주식회사 Battery management system and its operating method
KR102080632B1 (en) * 2013-10-28 2020-04-14 현대모비스 주식회사 Battery management system and its operating method
US9634497B2 (en) * 2014-05-20 2017-04-25 Samsung Sdi Co., Ltd. Battery charging method and battery management system therefor
US20150340885A1 (en) * 2014-05-20 2015-11-26 Samsung Sdi Co., Ltd. Battery charging method and battery management system therefor
WO2016017018A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Home energy management system, home energy management method, and program
US10712395B2 (en) 2015-07-02 2020-07-14 Huawei Technologies Co., Ltd. Apparatus and method for detecting battery state of health
CN106324508A (en) * 2015-07-02 2017-01-11 华为技术有限公司 Battery health state detection device and method
JP2017026443A (en) * 2015-07-22 2017-02-02 スズキ株式会社 Charge state estimation device of secondary battery
KR20170058165A (en) * 2015-11-18 2017-05-26 현대일렉트릭앤에너지시스템(주) System and method for estimating state of health for battery
KR102032229B1 (en) 2015-11-18 2019-10-16 현대일렉트릭앤에너지시스템(주) System and method for estimating state of health for battery
WO2017085869A1 (en) 2015-11-20 2017-05-26 日産自動車株式会社 Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
US10634724B2 (en) 2015-11-20 2020-04-28 Nissan Motor Co., Ltd. Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
RU2690724C1 (en) * 2015-11-20 2019-06-05 Ниссан Мотор Ко., Лтд. Capacitance coefficient estimation device or capacitance coefficient estimation method
US10343544B2 (en) 2016-11-01 2019-07-09 Hyundai Motor Company Apparatus and method for controlling charging of battery for hybrid vehicle
JP2018146372A (en) * 2017-03-06 2018-09-20 古河電気工業株式会社 Method and device for determining deterioration of battery
CN110506216A (en) * 2017-03-31 2019-11-26 三菱电机株式会社 Accumulator status estimating device
CN110506216B (en) * 2017-03-31 2022-03-08 三菱电机株式会社 Battery state estimating device
WO2019066457A1 (en) * 2017-09-27 2019-04-04 경북대학교 산학협력단 Battery lifespan prediction apparatus and method
KR101937591B1 (en) 2017-09-27 2019-01-10 경북대학교 산학협력단 Apparatus and method for real-time battery life estimation
JP2019152551A (en) * 2018-03-05 2019-09-12 株式会社デンソー Battery degradation determining device
CN112105940A (en) * 2018-05-31 2020-12-18 住友电气工业株式会社 Parameter estimation device, parameter estimation method, and computer program
CN110673040A (en) * 2018-07-03 2020-01-10 河南森源重工有限公司 SOC estimation method and device for power battery of electric vehicle
US11557908B2 (en) 2018-08-06 2023-01-17 Minebea Mitsumi Inc. Degradation-determination system and method for determining degradation of secondary battery
JP2021015800A (en) * 2018-08-06 2021-02-12 ミネベアミツミ株式会社 Degradation determination system and degradation determination method of secondary battery
WO2020031899A1 (en) 2018-08-06 2020-02-13 ミネベアミツミ株式会社 Degradation determination system and degradation determination method for secondary battery
JP7094341B2 (en) 2018-08-06 2022-07-01 ミネベアミツミ株式会社 Deterioration judgment system and deterioration judgment method for secondary batteries
WO2021039355A1 (en) * 2019-08-27 2021-03-04 株式会社Gsユアサ Method for correcting state-of-charge estimation value of power storage element, management device of power storage element, and power storage element
CN113594561A (en) * 2020-04-30 2021-11-02 朴力美电动车辆活力株式会社 Method and device for determining state of secondary battery
CN113594561B (en) * 2020-04-30 2024-02-02 朴力美电动车辆活力株式会社 Method and device for judging state of secondary battery
CN113733980A (en) * 2020-05-29 2021-12-03 蜂巢能源科技有限公司 Method, apparatus, medium, and electronic device for determining capacity of power battery
CN113733980B (en) * 2020-05-29 2022-12-20 蜂巢能源科技股份有限公司 Method, apparatus, medium, and electronic device for determining capacity of power battery
CN114035049A (en) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 SOH precision calculation method and device and electronic equipment
WO2023243421A1 (en) * 2022-06-17 2023-12-21 株式会社デンソー Capacity estimation device and capacity estimation method
CN116252682A (en) * 2023-05-16 2023-06-13 车百中汽科技(北京)有限公司 Method and system for determining health degree of power battery of new energy automobile
CN116252682B (en) * 2023-05-16 2023-07-21 车百中汽科技(北京)有限公司 Method and system for determining health degree of power battery of new energy automobile

Also Published As

Publication number Publication date
JP5393624B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5393624B2 (en) Battery capacity calculation device and battery capacity calculation method
JP5419832B2 (en) Battery capacity calculation device and battery capacity calculation method
JP5629760B2 (en) Battery capacity detection method for secondary battery
JP5393837B2 (en) Battery charge rate estimation device
KR101414890B1 (en) Capacity estimating apparatus for secondary battery
WO2015156360A1 (en) Battery monitoring device
JP2015224975A (en) Battery charge/discharge current detection device
JP2012057998A (en) Charge rate calculation apparatus for secondary battery and charge rate calculation method
JP7028781B2 (en) Secondary battery status detection device and secondary battery status detection method
JP2003303627A (en) Status detecting device and various devices using the same
JP6575308B2 (en) Internal resistance calculation device, computer program, and internal resistance calculation method
WO2017170621A1 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
JP2010230469A (en) Device and method for determining state of health of secondary battery
WO2010140235A1 (en) Grouped cells state of charge calculation device, grouped cells state of charge calculation method, program, and grouped cells soc display device
WO2011096354A1 (en) Secondary battery charging reception limit detecting method and device using same
JP2018096803A (en) Internal resistance calculation device, method for calculating internal resistance, and internal resistance calculation program
JP2000306613A (en) Battery state monitoring device
JP2011209086A (en) Error correction method of current sensor
TW201809714A (en) Full charge capacity (FCC) calibration method
US9618584B2 (en) Battery control device
JP2013255320A (en) Battery equalization device and method
JP2018151176A (en) Estimation device, estimation method, and estimation program
JP2017138127A (en) Soc management system of onboard battery
JP5657602B2 (en) In-vehicle charger
JP5487183B2 (en) Charge capacity parameter estimation device for power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees