JP2011215120A - Method for measurement of floating particle position - Google Patents

Method for measurement of floating particle position Download PDF

Info

Publication number
JP2011215120A
JP2011215120A JP2010095444A JP2010095444A JP2011215120A JP 2011215120 A JP2011215120 A JP 2011215120A JP 2010095444 A JP2010095444 A JP 2010095444A JP 2010095444 A JP2010095444 A JP 2010095444A JP 2011215120 A JP2011215120 A JP 2011215120A
Authority
JP
Japan
Prior art keywords
particle
particles
blue
green
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010095444A
Other languages
Japanese (ja)
Inventor
Tomomasa Uemura
知正 植村
Manabu Iguchi
學 井口
Makoto Tonozuka
信 外塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexco Engineering Hokkaido Co Ltd
Original Assignee
Nexco Engineering Hokkaido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexco Engineering Hokkaido Co Ltd filed Critical Nexco Engineering Hokkaido Co Ltd
Priority to JP2010095444A priority Critical patent/JP2011215120A/en
Publication of JP2011215120A publication Critical patent/JP2011215120A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of identifying particles, even when the number of particles is large or particles exist near a focusing point, in a defocus method of measuring three-dimensional quantitative information of the particles with one camera using blurring of a particle image.SOLUTION: Holes are disposed in three places (vertices of regular triangle) of a mask mounted to a lens of a camera, color filters of red, green, and blue are attached to respective holes, and photographing is performed. When floating particles are at the focusing position, the particle image is concentrated on one point and observed as one white bright spot. When the floating particles are out of the focusing position, a triangle formed by three bright spots of red, green and blue is observed. An outer peripheral circle contact with the outside of the triangle formed by interconnecting the centers of respective bright spots is assumed, the radius is determined, the orientation of the triangle is expressed by positive or negative, it is applied to a previously prepared calibration curve, and the shift amount of the position from focusing position of the particles to the optical axis direction is calculated.

Description

液体等の中で起こっている目に見えない流体運動を観測するために、液体に小粒子を浮遊させ、その粒子の三次元的位置あるいは運動に関する情報を光学的な手段を使用して計測する方法に関する。    In order to observe invisible fluid motion occurring in a liquid, etc., a small particle is suspended in the liquid, and information on the three-dimensional position or motion of the particle is measured using optical means. Regarding the method.

浮遊する粒子の三次元定量的情報を計測する手法は、2台のカメラを用いて計測領域をステレオ撮影する三次元粒子画像速度計測法や1台のカメラで粒子像のボケを利用して粒子の三次元定量的情報を計測するデフォーカス法などがある。  Methods for measuring three-dimensional quantitative information of floating particles include three-dimensional particle image velocimetry that uses two cameras to take a stereo image of the measurement area and one camera that uses particle image blurring. There is a defocus method that measures three-dimensional quantitative information.

デフォーカス法の原理は複数の孔を持つマスクをカメラレンズの直前または直後に装着して像面上に得られた粒子の像から粒子の位置に関する情報を得る方法である。  The principle of the defocus method is a method of obtaining information on the position of particles from a particle image obtained on the image plane by mounting a mask having a plurality of holes immediately before or after the camera lens.

粒子がレンズの合焦点位置にあるときはピントが合い、粒子の像は像面上の1点に集約するが、合焦点位置からずれた位置にある場合の像はボケ、マスクに空けた孔の数だけ像面上に輝点が現れる。このとき合焦点位置からの距離に応じてその輝点同士の広がりかたが変化する。合焦点より遠い位置にある輝点の分布は、合焦点より近い位置にある輝点の場合の分布と位置関係が逆転する。デフォーカス法はこの現象を利用して、粒子の合焦点位置からの光軸方向の相対距離を計測する手法である。  When the particle is at the focal point of the lens, it is in focus and the image of the particle is concentrated at one point on the image plane. The number of bright spots appears on the image plane. At this time, the manner in which the bright spots spread varies depending on the distance from the in-focus position. The distribution of the bright spots located farther from the focal point is reversed in the positional relationship with the distribution of bright spots located closer to the focal point. The defocus method is a method of measuring the relative distance in the optical axis direction from the focal point position of the particle using this phenomenon.

1台のカメラで粒子の位置に関する情報が得られるのは他の方法に比べて利点であるが、従来のデフォーカス法では、輝点数が見かけ上3倍に増えるため、粒子密度が高くなると、個々の粒子像を分離するのが難しくなり、特に合焦点近くにある粒子は像が重なってしまって、粒子の識別が困難であった。  It is an advantage over other methods that information about the position of the particles can be obtained with one camera, but with the conventional defocus method, the number of bright spots apparently increases three times, so when the particle density increases, It becomes difficult to separate individual particle images, and particularly, particles near the focal point are overlapped with each other, making it difficult to identify the particles.

粒子像のボケを利用して1台のカメラで粒子の三次元定量的情報を計測するデフォーカス法において、粒子数が多い場合や粒子が合焦点に近いところに位置する場合でも、粒子の識別ができる手法が望まれている。  In the defocus method that measures the three-dimensional quantitative information of particles with a single camera using the blur of the particle image, even when the number of particles is large or when the particles are close to the focal point, the particles are identified. There is a need for a technique that can do this.

本発明は上記問題に鑑みてなされたものであり、カメラのレンズに装着するマスクの3箇所(正三角形の各頂点)に孔を設け、それぞれの孔に赤、緑、青の色フィルタを取り付け、撮影するとフィルタなしの場合に比べて、それぞれの粒子に対応する輝点に色が付くため輝点の組の識別を容易にすることができる。  The present invention has been made in view of the above problems, and holes are provided in three locations (each vertex of an equilateral triangle) of a mask to be attached to a camera lens, and red, green, and blue color filters are attached to the respective holes. When a photograph is taken, a bright spot corresponding to each particle is colored as compared with the case without a filter, so that a set of bright spots can be easily identified.

赤、緑、青の色フィルタを装着したマスクをレンズに取り付けて撮影すると、浮遊粒子が合焦点位置にあるときには像面上の粒子像は1点に集中して1つの白色輝点として観察されるが、合焦点位置から外れると赤、緑、青3輝点で形成される三角形が観測される。その赤、緑、青3輝点の広がりは像のボケに対応する。それぞれの輝点の中心をつないで、できる三角形に外接する外周円の半径を求め、その三角形の向きを正負で表し、予め作成しておいた較正曲線に当てはめると粒子の合焦点位置からの光軸方向への位置のずれ量を算出することができる。  When shooting with a mask equipped with red, green, and blue color filters attached to the lens, the particle image on the image plane is concentrated on one point and observed as one white bright spot when the suspended particles are at the in-focus position. However, a triangle formed by three bright spots of red, green, and blue is observed when the focal point is deviated. The spread of the three bright spots of red, green, and blue corresponds to blurring of the image. Connect the center of each bright spot, find the radius of the outer circle that circumscribes the resulting triangle, express the direction of the triangle with positive and negative, and apply it to the calibration curve created in advance, the light from the focal point position of the particle The amount of positional deviation in the axial direction can be calculated.

本発明の色分離フィルタを使用したデフォーカス法によれば粒子密度の高い場合や粒子が合焦点近傍にある場合でも粒子の三次元定量的情報を容易に得ることができる。  According to the defocus method using the color separation filter of the present invention, three-dimensional quantitative information of particles can be easily obtained even when the particle density is high or the particles are in the vicinity of the focal point.

カメラのレンズの直前または直後に3個の孔(アパーチャー)の開いたマスクを装着する。その3個の孔は正三角形の各頂点に対応させてあり、それぞれの孔に赤、緑、青の色フィルタを取り付けておく。  Wear a mask with three apertures just before or after the camera lens. The three holes correspond to the vertices of the equilateral triangle, and red, green, and blue color filters are attached to the respective holes.

そのアパーチャーマスクを装着したカメラで白色に光る粒子を写すと、粒子が合焦点位置にある場合は像面上には白色の1つの輝点になって結像する。When a particle that shines in white is photographed by a camera equipped with the aperture mask, when the particle is at the in-focus position, an image is formed as one white bright spot on the image plane.

これに対し合焦点位置より離れた位置にある粒子は像面上に赤、緑、青の3つの輝点の作る三角形となって現れる。  On the other hand, particles at a position away from the in-focus position appear as triangles formed by three bright spots of red, green, and blue on the image plane.

この赤、緑、青の輝点の作る三角形の像面上の広がりは、対象粒子の合焦点位置からの距離と相関関係があり、又粒子が、合焦点に対し光軸方向手前にあるか、奥にあるかにより赤、緑、青の輝点の作る三角形の向きは逆転するので、これら現象を利用して粒子の合焦点からの位置及び距離を計測する事ができる。The spread on the image plane of the triangle formed by the red, green, and blue bright spots correlates with the distance from the focal point of the target particle, and is the particle in front of the focal point in the optical axis direction? The direction of the triangle formed by the red, green, and blue luminescent spots is reversed depending on whether it is in the back, so the position and distance from the focal point of the particle can be measured using these phenomena.

粒子密度が高い場合は3色の重なった輝点像をそれぞれの色別の輝点像に分けることにより、赤色画面上で数個の輝点をクラスターパターンとして捕らえると、同じパターンが緑色画面上でも青色画面上でも存在するので1粒子に対応する赤、緑、青の点で構成される三角形を容易に抽出できる。  When the particle density is high, by dividing the luminescent spot image of the three colors into separate luminescent spot images, if the several bright spots are captured as a cluster pattern on the red screen, the same pattern is displayed on the green screen. However, since it exists on a blue screen, a triangle composed of red, green, and blue points corresponding to one particle can be easily extracted.

図1はアパーチャーマスクの一例を示しており、それぞれに赤、緑、青のフィルタを付けた直径5mmの孔がマスクの中心より7.5mm離れた位置に、それぞれの孔が正三角形の頂点になるように120°の角度を持って配置してある。FIG. 1 shows an example of an aperture mask. A hole with a diameter of 5 mm with red, green, and blue filters attached to each is located at a position 7.5 mm away from the center of the mask, and each hole is at the apex of an equilateral triangle. It is arranged with an angle of 120 °.

異なった位置にある粒子からの光がレンズ1とアパーチャーマスク2を通過して、像面3にどのように結像するかを模式的に図2に示してある。理解しやすくするためにアパーチャーは上下2つのみ開けてある。粒子が合焦点のAの位置にあるとすると、Aにある粒子の像は像面3のA’に1点となって結像する。  FIG. 2 schematically shows how light from particles at different positions passes through the lens 1 and the aperture mask 2 and forms an image on the image plane 3. To make it easier to understand, only two apertures are opened at the top and bottom. Assuming that the particle is at the position of the focal point A, the image of the particle at A is formed as one point on A ′ of the image plane 3.

他方合焦点位置から離れた位置Bにある粒子は像面3にB’,B’の2点となって現れる。Bの位置にあった粒子がレンズ1より遠ざかり焦点Aの位置に達し、さらに焦点Aより外に離れて行くと、B’,B’の距離は近づき、粒子がAの位置に来たときに1点となり、それを過ぎるとB’,B’は上下逆転してまた距離は離れていく。このことから注目している粒子が合焦点位置に対しどの位置にあるかを決定することができる。On the other hand, particles at a position B away from the in-focus position appear on the image plane 3 as two points B ′ 1 and B ′ 2 . When the particle at the position of B is far from the lens 1 and reaches the position of the focal point A, and further away from the focal point A, the distance between B ′ 1 and B ′ 2 approaches and the particle comes to the position of A. Sometimes it becomes one point, and after that, B ′ 1 and B ′ 2 are turned upside down and the distance is increased. From this, it is possible to determine where the focused particle is located with respect to the in-focus position.

B1’,B2’の距離はレンズで作る像のボケと考えてよく、本例の最初に取り上げた正三角形の頂点に孔を持つマスクの場合は像面上に現れる粒子の像は赤、緑、青の色の3輝点からなる三角形になる。  The distance between B1 ′ and B2 ′ may be considered as blurring of the image created by the lens. In the case of a mask having a hole at the apex of the equilateral triangle taken at the beginning of this example, the image of particles appearing on the image plane is red, green. A triangle consisting of three bright spots of blue color.

この広がりを数値的に表す方法は、赤、緑、青それぞれの輝点の中心をつないでできた三角形の外接円を想定して、その半径rをボケ量と定義し、光軸上(Z軸)で粒子を移動させてそのときに変化していく外接円の半径rをZ軸上の距離zに対してプロットしたのが図3である。粒子が合焦点に来たときボケは0になり、その前後でボケの方向は逆転する。この曲線がボケ量から粒子のZ軸上の位置を決める較正曲線となる。  A method for numerically expressing this spread is that a circumscribed circle of a triangle formed by connecting the centers of the bright spots of red, green, and blue is assumed, and its radius r is defined as a blur amount, and on the optical axis (Z FIG. 3 is a plot of the radius r of the circumscribed circle that is changed at that time by moving the particles on the axis) against the distance z on the Z axis. When the particle comes to the focal point, the blur becomes 0, and the direction of the blur is reversed before and after that. This curve is a calibration curve that determines the position of the particle on the Z-axis from the amount of blur.

実際に水の中に浮遊粒子をいれ、水を動かしたときのある瞬間の粒子像の一部拡大図が例として図4に示してある。点線で囲んだC,D領域がそれぞれの粒子に対応している。  FIG. 4 shows an example of a partially enlarged view of a particle image at a certain moment when floating particles are actually put in water and the water is moved. C and D regions surrounded by dotted lines correspond to the respective particles.

時間経過と共にそれぞれの粒子の位置を追跡し、ある面に投影したそれぞれの粒子の動く方向と速度をプロットした例が図5に示してある。もちろん各面への投影図を元に三次元的なデータも得ることができる。  FIG. 5 shows an example in which the position of each particle is tracked over time and the moving direction and velocity of each particle projected on a certain surface are plotted. Of course, three-dimensional data can also be obtained based on the projection onto each surface.

複数の粒子群が作る3色の輝点からなる粒子像により、それぞれの粒子の三次元的位置に関する情報が得られたおり、それら輝点1個1個のボケ具合から、浮遊粒子の大きさに関する情報も合わせて得ることもできる。たとえば外接円の半径が同じであって、距離は同等であると判定されても輝点の大きさが異なっていれば、大きく現れた輝点に対応する粒子は大きい粒子であるということになる。  Information on the three-dimensional position of each particle is obtained from a particle image consisting of three colors of bright spots created by multiple particle groups, and the size of the suspended particles is determined from the degree of blur of each bright spot. You can also get information about. For example, if the radius of the circumscribed circle is the same and the distances are determined to be equal, but the size of the bright spot is different, the particle corresponding to the bright spot that appears large is a large particle. .

実施例1では白い粒子を白色光で照らし赤、緑、青のフィルタを持ったアパーチャーマスクのカメラを使用した場合を示したが、光源にアルゴンイオンレーザ(青緑色発光)を使用し、アルゴンイオンレーザ照明を行った折、オレンジ色に発光する蛍光粒子を浮遊粒子として使用し、マスクに開けた3箇所の孔それぞれに、オレンジ色、緑色、青色が透過するフィルタを装着し、浮遊粒子を撮影した画像をオレンジ色、緑色、青色、それぞれの画像に分解することで、その折の3色の広がりと色の配列から粒子の三次元的位置に関する情報を得る方法もある。  In Example 1, the case where an aperture mask camera having white, red, green, and blue filters with white particles illuminated is used, but an argon ion laser (blue green light emission) is used as a light source. When laser illumination is performed, fluorescent particles that emit orange light are used as floating particles. Filters that transmit orange, green, and blue are attached to each of the three holes in the mask to capture the floating particles. There is also a method of obtaining information on the three-dimensional position of the particle from the spread of the three colors and the arrangement of the colors by decomposing the image into orange, green and blue images.

レーザー光を使用することにより、照射時間を正確に制御でき、かつ通常の光よりも強度を増せるので、粒子像の検出精度を向上させることができ、より精度の高い測定が可能になる。また青緑色発光をするレーザーならばアルゴンイオンレーザのみならず、YAGレーザー、銅イオンレーザー等を使用することも可能である。  By using laser light, the irradiation time can be accurately controlled and the intensity can be increased as compared with normal light, so that the detection accuracy of the particle image can be improved and measurement with higher accuracy is possible. In addition, as long as the laser emits blue-green light, not only an argon ion laser but also a YAG laser, a copper ion laser, or the like can be used.

産業上の利用の可能性Industrial applicability

以上述べたように、本発明の方法を使用すれば局所的な計測が困難であった流体の動力学的なデータを容易に得ることができるので、この分野の研究開発に有効である。  As described above, if the method of the present invention is used, it is possible to easily obtain dynamic data of a fluid that has been difficult to measure locally, which is effective for research and development in this field.

アパーチャーマスクの一例An example of an aperture mask レンズ、アパーチャーマスクを通過する光の経路Path of light passing through lens and aperture mask 光軸上(Z軸上)の粒子の位置zと外接円の半径r(像のボケに対応)の関係Relationship between the position z of the particle on the optical axis (on the Z axis) and the radius r of the circumscribed circle (corresponding to image blur) 粒子像の一部拡大図Partial enlarged view of particle image 粒子の動く方向と速度をプロットしたある平面(x−z面)への投影例Example of projection onto a plane (xz plane) in which the moving direction and velocity of particles are plotted

1 レンズ
2 アパーチャーマスク
3 像面
1 Lens 2 Aperture mask 3 Image plane

Claims (5)

カメラのレンズの前又は後ろに3個の小さな孔(アパーチャー)の開いたマスクを装着するに当たり3個の孔は正三角形の頂点に対応するようにし、それぞれの孔に赤、緑、青の色フィルタを取り付け、白色照明により白色に光る浮遊粒子の像を該レンズによりカメラの像面上に作らせたとき、その粒子像は浮遊粒子が合焦点位置にあるときは白色の1輝点になり、浮遊粒子が合焦点位置からずれるときは赤、緑、青の3色異なる3輝点の三角形の粒子像となるが、その折の3輝点の広がりと色の配列の向きから浮遊粒子の三次元的位置に関する情報を得ることを特徴とする浮遊粒子位置測定法。  When attaching a mask with three small apertures in front of or behind the camera lens, the three holes correspond to the vertices of an equilateral triangle, and each hole has red, green, and blue colors. When a filter is attached and an image of floating particles that shine white by white illumination is created on the image plane of the camera by the lens, the particle image becomes one bright spot when the floating particles are at the in-focus position. When the floating particles deviate from the focal point, the image is a triangular particle image of three bright spots of three different colors: red, green, and blue. A suspended particle position measurement method characterized by obtaining information about three-dimensional position. 同1粒子に対応する、像面上にできた赤、緑、青色の3輝点からなる粒子像において、赤、緑、青の輝点の中心をつないでできる三角形に外接する外周円を想定して、その半径を求め、その三角形の向きを正負で表し、予め作成しておいた較正曲線に当てはめ、粒子の合焦点位置からの光軸方向への位置のずれ量を算出することを特徴とする請求項1記載の浮遊粒子位置測定法。  In the particle image consisting of three bright spots of red, green, and blue on the image surface corresponding to the same particle, an outer circumference circle that circumscribes a triangle that connects the centers of the bright spots of red, green, and blue is assumed. Then, the radius is obtained, the direction of the triangle is represented by positive and negative, and is applied to a calibration curve prepared in advance, and the amount of deviation of the position in the optical axis direction from the focal position of the particle is calculated. The suspended particle position measuring method according to claim 1. 複数の粒子群を対象とするとき、得られた3色混じった画像をそれぞれ異なった色別の画像に分け、それら色別の画像間の相関関係から、それぞれの浮遊粒子に対応する赤、緑、青の3色からなる三角形の粒子像を見つけ出すことを特徴とする請求項2記載の浮遊粒子位置測定法。  When targeting multiple particle groups, the obtained three-color mixed image is divided into images of different colors, and the red and green corresponding to each suspended particle are determined from the correlation between the images of each color. The method for measuring the position of suspended particles according to claim 2, wherein a triangular particle image composed of three colors of blue and blue is found. 複数の粒子群が作る3色の輝点からなる粒子像により、それぞれの粒子の三次元的位置に関する情報が得られたおり、それら輝点1個1個のボケ具合から、浮遊粒子の大きさに関する情報も合わせて得ることを特徴とする請求項1記載の浮遊粒子位置測定法。  Information on the three-dimensional position of each particle is obtained from a particle image consisting of three colors of bright spots created by multiple particle groups, and the size of the suspended particles is determined from the degree of blur of each bright spot. The suspended particle position measuring method according to claim 1, wherein information on the particle size is also obtained. マスクに開けた3箇所の孔それぞれに、オレンジ色、緑色、青色を透過させるフィルタを装着し、光源には青緑色発光をするレーザーを使用し、青緑色照明を行った折、オレンジ色に発光する蛍光粒子を浮遊粒子として使用し、撮影した画像をオレンジ色、緑色、青色、それぞれの画像に分解することで、その折の3色の広がりと色の配列から粒子の三次元的位置に関する情報を得ることを特徴とする請求項1記載の浮遊粒子位置測定法。  A filter that transmits orange, green, and blue is attached to each of the three holes in the mask, and a laser that emits blue-green light is used as the light source. By using fluorescent particles that act as floating particles and separating the captured image into orange, green, and blue images, information on the three-dimensional position of the particles from the spread of the three colors and the arrangement of the colors The suspended particle position measuring method according to claim 1, wherein:
JP2010095444A 2010-03-31 2010-03-31 Method for measurement of floating particle position Pending JP2011215120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095444A JP2011215120A (en) 2010-03-31 2010-03-31 Method for measurement of floating particle position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095444A JP2011215120A (en) 2010-03-31 2010-03-31 Method for measurement of floating particle position

Publications (1)

Publication Number Publication Date
JP2011215120A true JP2011215120A (en) 2011-10-27

Family

ID=44944983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095444A Pending JP2011215120A (en) 2010-03-31 2010-03-31 Method for measurement of floating particle position

Country Status (1)

Country Link
JP (1) JP2011215120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403170A (en) * 2015-12-11 2016-03-16 华侨大学 Microscopic 3D morphology measurement method and apparatus
CN107052572A (en) * 2017-03-20 2017-08-18 湖南华曙高科技有限责任公司 The laser facula calibration method and calibration system manufactured for three-dimensional body
CN113624163A (en) * 2021-08-11 2021-11-09 西南交通大学 Three-dimensional laser scanning-based gravel particle surface edge angle measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403170A (en) * 2015-12-11 2016-03-16 华侨大学 Microscopic 3D morphology measurement method and apparatus
CN107052572A (en) * 2017-03-20 2017-08-18 湖南华曙高科技有限责任公司 The laser facula calibration method and calibration system manufactured for three-dimensional body
CN113624163A (en) * 2021-08-11 2021-11-09 西南交通大学 Three-dimensional laser scanning-based gravel particle surface edge angle measurement method
CN113624163B (en) * 2021-08-11 2022-04-15 西南交通大学 Three-dimensional laser scanning-based gravel particle surface edge angle measurement method

Similar Documents

Publication Publication Date Title
JP4496354B2 (en) Transmission type calibration equipment for camera calibration and its calibration method
US10891818B2 (en) Identification devices, identification methods, identification programs and computer readable media including identification programs
WO2015182065A1 (en) Imaging apparatus, imaging method and medical imaging system
US9961328B2 (en) Method of and apparatus for optically determining positions and orientations of mirrors
JP2010528499A (en) Single lens, single sensor 3D imaging device with central aperture opening to obtain camera position
CN102961120A (en) Ophthalmological analysis apparatus and method
CN108700472A (en) Phase-detection is carried out using opposite optical filter mask to focus automatically
CN107991838A (en) Self-adaptation three-dimensional stereo imaging system
CN107678041A (en) System and method for detection object
JP2006170910A (en) Device for measuring droplet status, and calibration method of camera in this device
CN110044294A (en) Image testing device and lighting device
JP2011215120A (en) Method for measurement of floating particle position
US20050206874A1 (en) Apparatus and method for determining the range of remote point light sources
JP5580121B2 (en) Board inspection equipment
JP6581293B2 (en) Measurement of rotational position of lenticular lens sheet
CN107111013A (en) Compact modulation transfer function assessment system
CN102865849A (en) Camera device for ranging and ranging method
JP2010181325A (en) Three-dimensional coordinate measuring device
JP6908373B2 (en) A method for inspecting the surface irregularities of an object to be inspected and its surface inspection device
CN105452847A (en) Method and device for determining the orientation of pigment particles over an extended region of an optically effect layer
JP5610137B2 (en) Photo measurement target and photo measurement method
JP6436349B2 (en) Object detection device
JP4674572B2 (en) Adjusted image creation device
JP2007057386A (en) In-line three-dimensional measuring device and measuring method using one camera
JP2019066186A (en) Imaging apparatus and method for calculating distance of imaging apparatus