JP2011214750A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2011214750A
JP2011214750A JP2010081398A JP2010081398A JP2011214750A JP 2011214750 A JP2011214750 A JP 2011214750A JP 2010081398 A JP2010081398 A JP 2010081398A JP 2010081398 A JP2010081398 A JP 2010081398A JP 2011214750 A JP2011214750 A JP 2011214750A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
heat exchanger
valve
refrigeration circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081398A
Other languages
Japanese (ja)
Other versions
JP5447968B2 (en
Inventor
Keiko Shiromoto
恵子 城本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010081398A priority Critical patent/JP5447968B2/en
Publication of JP2011214750A publication Critical patent/JP2011214750A/en
Application granted granted Critical
Publication of JP5447968B2 publication Critical patent/JP5447968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a first refrigerating circuit generating hot water for hot water supply and/or floor heating and a second refrigerating circuit for indoor air conditioning, and enable switching between a single stage cycle and an injection cycle in accordance with outside air temperature.SOLUTION: A portion of refrigerant piping within a refrigerant circulation system of the second refrigerating circuit 20 for indoor air conditioning is used for a heat source, and is inserted to inside of a heat exchanger 17 between refrigerants of the first refrigerating circuit 10 generating hot water for hot water supply and floor heating. When outside air temperature is high, heat source supply from the second refrigerating circuit 20 to the heat exchanger 17 between refrigerants is stopped, and each refrigerating circuit 10, 20 is operated independently. When outside air temperature is low, the heat source is supplied from the second refrigerating circuit 20 to the heat exchanger 17 between refrigerants, and the injection cycle operation of the first refrigerating circuit 10 is performed.

Description

本発明は、ヒートポンプ装置に関し、さらに詳しく言えば、給湯および/または床暖房用の温水を生成する第1冷凍回路と、室内空調用の第2冷凍回路とを有する低外気対応型のヒートポンプ装置に関するものである。   The present invention relates to a heat pump device, and more specifically, relates to a heat pump device for low outside air having a first refrigeration circuit that generates hot water for hot water supply and / or floor heating and a second refrigeration circuit for indoor air conditioning. Is.

例えば、特許文献1には、冷媒を用いたヒートポンプシステム式の暖房装置において、水−冷媒熱交換器通過後の冷媒と、圧縮機の中間圧縮段にインジェクションされる冷媒とを冷媒間熱交換器(内部熱交換器)で熱交換することにより、圧縮機の吐出温度の上昇を防ぎながら、高温の湯が得られるようにした発明が記載されている。   For example, Patent Document 1 discloses an inter-refrigerant heat exchanger in a heat pump system-type heating device using a refrigerant, wherein the refrigerant after passing through the water-refrigerant heat exchanger and the refrigerant injected into the intermediate compression stage of the compressor. There is described an invention in which high-temperature hot water can be obtained while preventing an increase in the discharge temperature of the compressor by exchanging heat with the (internal heat exchanger).

上記発明は、暖房運転を目的とした装置であることから、水−冷媒熱交換器に流入する水の温度、すなわち暖房の戻り温度は比較的高温となる。そのため、低外気温時に、蒸発圧力Peと凝縮圧力Pcの相乗平均圧力√(Pe・Pc)(以下、「中間圧」という)に冷媒をインジェクションすれば、水の戻り温度が高いために、冷媒間熱交換器の冷媒入口温度>インジェクション冷媒温度となり熱回収することができる。   Since the above invention is an apparatus intended for heating operation, the temperature of the water flowing into the water-refrigerant heat exchanger, that is, the return temperature of the heating is relatively high. Therefore, when the refrigerant is injected at a geometric mean pressure √ (Pe · Pc) (hereinafter referred to as “intermediate pressure”) of the evaporation pressure Pe and the condensation pressure Pc at a low outside air temperature, the return temperature of water is high. The refrigerant inlet temperature of the intermediate heat exchanger is greater than the injection refrigerant temperature, and heat can be recovered.

しかしながら、貯湯タイプの給湯・床暖房のように、タンク底部に貯まっている低温の水を使用する場合には、何らかの対策を講じないかぎり、凝縮器通過後の冷媒温度とインジェクション冷媒温度とが近い温度になってしまうことから、冷媒間熱交換器を設置しても、インジェクション冷媒側への熱回収をすることができない、という問題がある。   However, when using low-temperature water stored at the bottom of the tank, such as hot water storage hot water and floor heating, the refrigerant temperature after passing through the condenser is close to the injection refrigerant temperature unless some measures are taken. Since it becomes temperature, even if it installs the heat exchanger between refrigerant | coolants, there exists a problem that the heat recovery to the injection refrigerant | coolant side cannot be performed.

特開2006−112708号公報JP 2006-112708 A

したがって、本発明の課題は、給湯および/または床暖房用の温水を生成する第1冷凍回路と、室内空調用の第2冷凍回路とを有し、外気温度に応じて単段サイクルとインジェクションサイクルの切り替えが可能であり、貯湯タンクを用いる給湯方式のように、水−冷媒熱交換器の水入口温度が低い場合であっても、冷媒間熱交換器でのインジェクション冷媒側への熱回収を行うことができるようにしたヒートポンプ装置を提供することにある。   Accordingly, an object of the present invention is to provide a first refrigeration circuit that generates hot water for hot water supply and / or floor heating and a second refrigeration circuit for indoor air conditioning, and a single-stage cycle and an injection cycle according to the outside air temperature. Even if the water inlet temperature of the water-refrigerant heat exchanger is low, as in the hot water supply system using a hot water storage tank, heat recovery to the injection refrigerant side in the inter-refrigerant heat exchanger is possible. An object of the present invention is to provide a heat pump device that can be used.

上記課題を解決するため、本発明は、温水を生成する第1冷凍回路と、室内空調用の第2冷凍回路とを有するヒートポンプ装置において、上記第1冷凍回路は、インジェクションポートを有する第1圧縮機と、上記第1圧縮機の冷媒吐出側に接続された温水生成用の水−冷媒熱交換器と、上記水−冷媒熱交換器の冷媒流出側から分岐され上記インジェクションポート至る分岐配管内に設けられた冷媒間熱交換器と、上記水−冷媒熱交換器と上記冷媒間熱交換器との間に接続された第1膨張弁と、上記水−冷媒熱交換器の冷媒流出側と上記第1圧縮機の冷媒吸入側との間に接続された第1室外熱交換器と、上記分岐管の分岐点と上記第1室外熱交換器との間に設けられた第2膨張弁とを備え、上記第2冷凍回路は、第2圧縮機と、室内熱交換器と、第2室外熱交換器と、上記室内熱交換器と上記第2室外熱交換器との間に接続された第3膨張弁とを含む冷媒循環系を有し、上記第2冷凍回路の上記冷媒循環系内の冷媒配管の一部分が上記冷媒間熱交換器内に挿通され、上記第1圧縮機にインジェクションされる冷媒と上記第2冷凍回路の冷媒との間で熱交換が行われることを特徴としている。   In order to solve the above-described problem, the present invention provides a heat pump apparatus having a first refrigeration circuit for generating hot water and a second refrigeration circuit for indoor air conditioning, wherein the first refrigeration circuit has a first compression having an injection port. A hot water generating water-refrigerant heat exchanger connected to the refrigerant discharge side of the first compressor, and a branch pipe branched from the refrigerant outflow side of the water-refrigerant heat exchanger to the injection port A refrigerant heat exchanger provided; a first expansion valve connected between the water-refrigerant heat exchanger and the refrigerant heat exchanger; a refrigerant outflow side of the water-refrigerant heat exchanger; A first outdoor heat exchanger connected to the refrigerant suction side of the first compressor, and a second expansion valve provided between the branch point of the branch pipe and the first outdoor heat exchanger. The second refrigeration circuit includes a second compressor and an indoor heat exchanger A refrigerant circulation system including a second outdoor heat exchanger and a third expansion valve connected between the indoor heat exchanger and the second outdoor heat exchanger, and the second refrigeration circuit A part of the refrigerant pipe in the refrigerant circulation system is inserted into the inter-refrigerant heat exchanger, and heat exchange is performed between the refrigerant injected into the first compressor and the refrigerant in the second refrigeration circuit. It is a feature.

外気温度に応じて単段サイクルからインジェクションサイクルへの切り替え、もしくはその逆の切り替え可能とするため、上記冷媒循環系内の冷媒の流れ方向が暖房空調時であるとして、上記冷媒循環系には、上記第2圧縮機の冷媒吐出側から上記冷媒間熱交換器に至り、上流側に第1開閉弁、下流側に第2開閉弁を有する第1配管と、上記冷媒間熱交換器から引き出され上記第3膨張弁を介して上記第2室外熱交換器に至る第2配管と、上記室内熱交換器および第3開閉弁を含み上記第1配管に対してバイパス的に接続される第3配管とが含まれ、上記第1,第2膨張弁および上記第1ないし第3開閉弁が運転モードに応じて所定に制御される。   In order to enable switching from a single-stage cycle to an injection cycle according to the outside air temperature, or vice versa, assuming that the flow direction of the refrigerant in the refrigerant circulation system is during heating air conditioning, the refrigerant circulation system includes: From the refrigerant discharge side of the second compressor to the inter-refrigerant heat exchanger, drawn from the inter-refrigerant heat exchanger, a first pipe having a first on-off valve on the upstream side and a second on-off valve on the downstream side. A second pipe that reaches the second outdoor heat exchanger via the third expansion valve; and a third pipe that is bypassed to the first pipe and includes the indoor heat exchanger and a third on-off valve. The first and second expansion valves and the first to third on-off valves are controlled in accordance with the operation mode.

本発明の好ましい態様によれば、上記第1配管における上記第3配管の合流点と上記第2開閉弁との間の配管部分を上記第2配管に接続する第4開閉弁を有する第4配管と、上記運転モードを制御する制御手段とをさらに備え、上記制御手段により、上記流量調整弁および上記第1,2開閉弁がともに閉、上記第3,4開閉弁が開とされ、上記第1ないし第3膨張弁が所定の開度に制御されることにより、上記第1,第2の各冷凍回路がそれぞれ独立に運転される。   According to a preferred aspect of the present invention, a fourth pipe having a fourth on-off valve for connecting a pipe portion between the confluence of the third pipe and the second on-off valve in the first pipe to the second pipe. And a control means for controlling the operation mode. The control means closes both the flow rate adjustment valve and the first and second on-off valves, and opens the third and fourth on-off valves. By controlling the first to third expansion valves to a predetermined opening degree, the first and second refrigeration circuits are independently operated.

これに対して、上記制御手段により、上記第1,2開閉弁が開、上記第3,4開閉弁が閉とされ、上記流量調整弁および上記第1ないし第3膨張弁が所定の開度に制御されることにより、上記第2冷凍回路による室内空調が行われることなく、上記冷媒間熱交換器での熱交換が行われて、上記第1冷凍回路がインジェクションサイクルによる運転モードで動作することになる。   On the other hand, the first and second on-off valves are opened and the third and fourth on-off valves are closed by the control means, and the flow rate adjusting valve and the first to third expansion valves are opened to a predetermined degree. With this control, heat exchange is performed in the inter-refrigerant heat exchanger without performing indoor air conditioning by the second refrigeration circuit, and the first refrigeration circuit operates in an operation mode based on an injection cycle. It will be.

また、上記制御手段により、上記第2,3開閉弁が開、上記第1,4開閉弁が閉とされ、上記流量調整弁および上記第1ないし第3膨張弁が所定の開度に制御されることにより、上記第2冷凍回路による室内空調が行われるとともに、上記冷媒間熱交換器での熱交換が行われて、上記第1冷凍回路がインジェクションサイクルによる運転モードで動作する。   The control means opens the second and third on-off valves, closes the first and fourth on-off valves, and controls the flow rate adjusting valve and the first to third expansion valves to a predetermined opening degree. Thus, indoor air conditioning is performed by the second refrigeration circuit, heat exchange is performed by the inter-refrigerant heat exchanger, and the first refrigeration circuit operates in an operation mode based on an injection cycle.

本発明によれば、室内空調用の第2冷凍回路の冷媒循環系内の冷媒配管の一部分が、給湯や床暖房用の温水を生成する第1冷凍回路の冷媒間熱交換器内に挿通され、第1冷凍回路の第1圧縮機にインジェクションされる冷媒と第2冷凍回路の冷媒との間で熱交換が可能であることにより、低外気温時には、2つの冷凍回路を用いて第1冷凍回路をインジェクションサイクルによる運転モードで動作させ、高外気温時には、第1冷凍回路と第2冷凍回路とを切り離して個別に運転可能であり、常に2つの冷凍回路を同時に運転する必要がなく、全体として効率のよいヒートポンプ装置が提供される。   According to the present invention, a part of the refrigerant pipe in the refrigerant circulation system of the second refrigeration circuit for indoor air conditioning is inserted into the inter-refrigerant heat exchanger of the first refrigeration circuit that generates hot water for hot water supply or floor heating. Since the heat exchange between the refrigerant injected into the first compressor of the first refrigeration circuit and the refrigerant of the second refrigeration circuit is possible, the first refrigeration is performed using two refrigeration circuits at a low outside temperature. The circuit is operated in the operation mode by the injection cycle, and at the time of high outside air temperature, the first refrigeration circuit and the second refrigeration circuit can be separated and operated individually, and it is not necessary to always operate the two refrigeration circuits simultaneously, An efficient heat pump device is provided.

本発明の実施形態に係るヒートポンプ装置を示す冷媒回路図。The refrigerant circuit figure which shows the heat pump apparatus which concerns on embodiment of this invention.

次に、図1により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。   Next, an embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.

図1を参照して、この実施形態に係るヒートポンプ装置は、基本的な構成として、温水生成用の第1冷凍回路10と、室内空調用の第2冷凍回路20と、給湯および床暖房用の貯湯タンク30とを備えている。   Referring to FIG. 1, the heat pump device according to this embodiment has, as a basic configuration, a first refrigeration circuit 10 for generating hot water, a second refrigeration circuit 20 for indoor air conditioning, and hot water supply and floor heating. And a hot water storage tank 30.

第1冷凍回路10は、インジェクションポート11aを有する例えば2段圧縮型の第1圧縮機11と、第1圧縮機11の冷媒吐出側に接続された水−冷媒熱交換器12と、水−冷媒熱交換器12の冷媒流出側に直列に接続された第1膨張弁13および第2膨張弁14と、第2膨張弁14の冷媒流出側と第1圧縮機11の冷媒吸入側との間に接続された第1室外熱交換器15とを備える。   The first refrigeration circuit 10 includes, for example, a two-stage compression type first compressor 11 having an injection port 11a, a water-refrigerant heat exchanger 12 connected to the refrigerant discharge side of the first compressor 11, and a water-refrigerant. The first expansion valve 13 and the second expansion valve 14 connected in series to the refrigerant outflow side of the heat exchanger 12, and between the refrigerant outflow side of the second expansion valve 14 and the refrigerant intake side of the first compressor 11. And a first outdoor heat exchanger 15 connected thereto.

この第1冷凍回路10の冷媒主配管系において、第1膨張弁13と第2膨張弁14との間からインジェクションポート11aに至る枝管18が分岐され、この枝管18内に流量調整弁16と冷媒間熱交換器17が設けられる。なお、枝管18は逆止弁19を介してインジェクションポート11aに接続される。   In the refrigerant main piping system of the first refrigeration circuit 10, a branch pipe 18 is branched from between the first expansion valve 13 and the second expansion valve 14 to the injection port 11 a, and the flow rate adjusting valve 16 is placed in the branch pipe 18. And an inter-refrigerant heat exchanger 17 are provided. The branch pipe 18 is connected to the injection port 11a via a check valve 19.

第2冷凍回路20は、第2圧縮機21と、四方弁22と、室内熱交換器23と、第2室外熱交換器24と、室内熱交換器23と第2室外熱交換器24との間に接続された第3膨張弁25とを含む冷媒循環系を備える。   The second refrigeration circuit 20 includes a second compressor 21, a four-way valve 22, an indoor heat exchanger 23, a second outdoor heat exchanger 24, an indoor heat exchanger 23, and a second outdoor heat exchanger 24. A refrigerant circulation system including a third expansion valve 25 connected therebetween is provided.

四方弁22が図示実線状態にある時、冷媒循環系内の冷媒の流れ方向が暖房空調時であるとして、第2冷凍回路20の冷媒循環系には、第2圧縮機21の冷媒吐出側から冷媒間熱交換器17に至る第1配管26と、冷媒間熱交換器17から引き出され第3膨張弁25を介して第2室外熱交換器24に至る第2配管27と、室内熱交換器23を含み第1配管26に対してバイパス的に接続される第3配管28と、冷媒間熱交換器17に対する冷媒流入側の第1配管26と冷媒流出側の第2配管27との間に接続される第4配管29とが含まれている。   When the four-way valve 22 is in the illustrated solid line state, the refrigerant flow direction in the refrigerant circulation system is during heating air conditioning, and the refrigerant circulation system of the second refrigeration circuit 20 is connected to the refrigerant discharge side of the second compressor 21. A first pipe 26 leading to the inter-refrigerant heat exchanger 17, a second pipe 27 drawn from the inter-refrigerant heat exchanger 17 and reaching the second outdoor heat exchanger 24 via the third expansion valve 25, and an indoor heat exchanger Between the first pipe 26 on the refrigerant inflow side and the second pipe 27 on the refrigerant outflow side with respect to the inter-refrigerant heat exchanger 17. A fourth pipe 29 to be connected is included.

第1配管26には、上流側(第2圧縮機21側)に第1開閉弁26aが設けられ、下流側(冷媒間熱交換器17側)に第2開閉弁26bが設けられる。   The first pipe 26 is provided with a first on-off valve 26a on the upstream side (second compressor 21 side), and a second on-off valve 26b on the downstream side (inter-refrigerant heat exchanger 17 side).

第3配管28には、第3開閉弁28aが設けられ、第3配管28は、第1配管26のうちの第1開閉弁26aの上流側と下流側との間に接続される。第1配管26と第3配管28の合流点を28bとして、第1配管26の第2開閉弁26bは、その合流点28bと冷媒間熱交換器17との間に配置される。   The third pipe 28 is provided with a third on-off valve 28 a, and the third pipe 28 is connected between the upstream side and the downstream side of the first on-off valve 26 a in the first pipe 26. The joining point of the first pipe 26 and the third pipe 28 is 28b, and the second on-off valve 26b of the first pipe 26 is disposed between the joining point 28b and the inter-refrigerant heat exchanger 17.

また、第4配管29は、第1配管26における第3配管28の合流点28bと第2開閉弁26bとの間の配管部分を第2配管27に接続し、この第4配管29には、第4開閉弁29aが設けられる。   The fourth pipe 29 connects a pipe portion between the junction 28b of the third pipe 28 and the second on-off valve 26b in the first pipe 26 to the second pipe 27. A fourth on-off valve 29a is provided.

貯湯タンク30は、タンク底部の水をタンク上部に循環させ、その一部分が水−冷媒熱交換器12内に通される第1ポンプ31aを含む水循環回路31を有する。   The hot water storage tank 30 has a water circulation circuit 31 including a first pump 31 a that circulates water at the bottom of the tank to the upper part of the tank and a part of which is passed through the water-refrigerant heat exchanger 12.

また、貯湯タンク30には、タンク内に挿入され、室内の床暖房パネル32に温水を循環させる第2ポンプ33aを含む温水循環回路33が設けられている。   The hot water storage tank 30 is provided with a hot water circulation circuit 33 including a second pump 33a that is inserted into the tank and circulates hot water through the indoor floor heating panel 32.

また、貯湯タンク30の下部には、水補給管34aが接続され、貯湯タンク30の上部には、給湯栓35が接続されている。給湯栓35からのお湯は、水道管34bから水栓36にて流量調整された水と混合され、第3ポンプ37から給湯に供される。   A water supply pipe 34 a is connected to the lower part of the hot water storage tank 30, and a hot water tap 35 is connected to the upper part of the hot water storage tank 30. Hot water from the hot water tap 35 is mixed with water whose flow rate is adjusted by the water tap 36 from the water pipe 34 b and supplied to the hot water from the third pump 37.

このヒートポンプ装置は、運転モード等を制御する制御手段40を備える。制御手段40は、CPU(中央演算処理ユニット)やマイクロコンピーュータ等からなり、外気温度や第1圧縮機11の吐出温度に応じて、第1冷凍回路10内の流量調整弁16、第1,第2膨張弁13,14、第2冷凍回路20内の第3膨張弁25や第1ないし第4開閉弁26a,26b,28a,29a等を制御する。   The heat pump device includes a control unit 40 that controls an operation mode and the like. The control means 40 is composed of a CPU (Central Processing Unit), a micro computer, etc., and according to the outside air temperature or the discharge temperature of the first compressor 11, the flow rate adjusting valve 16 in the first refrigeration circuit 10, the first one. 1, the second expansion valves 13 and 14, the third expansion valve 25 in the second refrigeration circuit 20, the first to fourth on-off valves 26a, 26b, 28a, 29a and the like are controlled.

次に、各運転モードについて説明する。制御手段40は、基本的に外気温(Td)が高外気温度(例えば、Td>−2℃)のときと、低外気温度(例えば、Td≦−2℃)のときとで、第1冷凍回路10と第2冷凍回路20をそれぞれ独立運転とするか、併用運転とするかを選択する。   Next, each operation mode will be described. The control means 40 basically performs the first refrigeration when the outside air temperature (Td) is a high outside air temperature (for example, Td> −2 ° C.) and when the outside air temperature (for example, Td ≦ −2 ° C.). It is selected whether the circuit 10 and the second refrigeration circuit 20 are independently operated or combined operation.

[高外気温時]
まず、高外気温時には、冷媒間熱交換器17の流量調整弁16を「全閉」、第1開閉弁26aおよび第2開閉弁26bをともに「閉」、第3開閉弁28aおよび第4開閉弁29aをともに「開」とする。
[At high outside temperature]
First, at a high outside air temperature, the flow rate adjustment valve 16 of the inter-refrigerant heat exchanger 17 is “fully closed”, the first on-off valve 26a and the second on-off valve 26b are both “closed”, the third on-off valve 28a and the fourth on-off valve. Both valves 29a are set to “open”.

第1冷凍回路10において、低温低圧のガス冷媒は第1圧縮機11にて所定の圧力にまで圧縮された後、水−冷媒熱交換器12で貯留タンク30の下部に貯められた水と熱交換して凝縮する。その後、冷媒は第1膨張弁13,第2膨張弁14を通過して蒸発圧力にまで膨張し、第1室外熱交換器15にて外気と熱交換して蒸発したうえで、第1圧縮機11に戻される。これにより、貯湯タンク30内に温水が貯められ、その温水が給湯や床暖房に使用される。   In the first refrigeration circuit 10, the low-temperature and low-pressure gas refrigerant is compressed to a predetermined pressure by the first compressor 11, and then stored in the lower part of the storage tank 30 by the water-refrigerant heat exchanger 12. Exchange and condense. Thereafter, the refrigerant passes through the first expansion valve 13 and the second expansion valve 14, expands to the evaporation pressure, evaporates by exchanging heat with the outside air in the first outdoor heat exchanger 15, and then the first compressor. 11 is returned. Thereby, warm water is stored in the hot water storage tank 30, and the warm water is used for hot water supply or floor heating.

第2冷凍回路20側では、暖房空調であれば、四方弁22が図示実線の状態に切り替えられ、低温低圧のガス冷媒は第2圧縮機21にて所定の圧力にまで圧縮された後、四方弁22および第3開閉弁28aを通過し、室内熱交換器23にて室内空気と熱交換して凝縮する。その後、冷媒は第3開閉弁29aを通って第3膨張弁25に至り、第3膨張弁25にて蒸発圧力まで膨張したうえで、第2室外熱交換器24にて外気と熱交換して蒸発し、四方弁22を通って第2圧縮機21に戻される。   On the second refrigeration circuit 20 side, if it is heating air conditioning, the four-way valve 22 is switched to the state shown in the figure, and the low-temperature and low-pressure gas refrigerant is compressed to a predetermined pressure by the second compressor 21, and then It passes through the valve 22 and the third on-off valve 28a, and is condensed by exchanging heat with indoor air in the indoor heat exchanger 23. Thereafter, the refrigerant passes through the third on-off valve 29a to reach the third expansion valve 25, expands to the evaporation pressure at the third expansion valve 25, and then exchanges heat with the outside air at the second outdoor heat exchanger 24. It evaporates and returns to the second compressor 21 through the four-way valve 22.

また、冷房空調であれば、四方弁22が図示鎖線の状態に切り替えられ、低温低圧のガス冷媒は第2圧縮機21にて所定の圧力にまで圧縮された後、四方弁22を通過し、第2室外熱交換器24にて外気と熱交換して凝縮する。その後、冷媒は第3膨張弁25で蒸発圧力にまで膨張したのち、第4開閉弁29aを通って室内熱交換器23に至り室内空気と熱交換して蒸発し、四方弁22を通って第2圧縮機21に戻される。   In the case of cooling air conditioning, the four-way valve 22 is switched to the state shown in the chain line, and the low-temperature and low-pressure gas refrigerant is compressed to a predetermined pressure by the second compressor 21, and then passes through the four-way valve 22. The second outdoor heat exchanger 24 condenses by exchanging heat with the outside air. Thereafter, the refrigerant expands to the evaporation pressure by the third expansion valve 25, then reaches the indoor heat exchanger 23 through the fourth on-off valve 29 a, evaporates by exchanging heat with the room air, and passes through the four-way valve 22 to evaporate. 2 Returned to the compressor 21.

このように、高外気温時には、第1冷凍回路10と第2冷凍回路20とが、それぞれ、独立して運転されることから、ユーザーは、給湯,床暖房,暖房空調,冷房空調のいずれか一つもしくはその組み合わせ(「給湯+暖房空調」,「給湯+冷房空調」,「床暖房+暖房空調」,「給湯+床暖房+暖房空調」,「給湯+床暖房」)を選択することができる。   Thus, since the first refrigeration circuit 10 and the second refrigeration circuit 20 are independently operated at a high outside air temperature, the user can select one of hot water supply, floor heating, heating air conditioning, and cooling air conditioning. One or a combination thereof (“hot water + heating air conditioning”, “hot water + cooling air conditioning”, “floor heating + heating air conditioning”, “hot water + floor heating + heating air conditioning”, “hot water + floor heating”) can be selected it can.

[低外気温時で、室内空調不要時]
低外気温時で、室内空調(暖房空調)が不要である場合には、第1開閉弁26aおよび第2開閉弁26bがともに「開」で、第3開閉弁28aおよび第4開閉弁29aがともに「閉」とされ、冷媒間熱交換器17の流量調整弁16および第1ないし第3膨張弁13,14,25の弁開度が所定の開度に制御され、冷媒間熱交換器17に第2冷凍回路20の冷媒が供給され、第1冷凍回路10がインジェクションサイクルにて運転される。
[When indoor air conditioning is not required at low outside temperatures]
When indoor air conditioning (heating air conditioning) is unnecessary at low outside air temperature, both the first on-off valve 26a and the second on-off valve 26b are “open”, and the third on-off valve 28a and the fourth on-off valve 29a are Both are closed and the valve opening degree of the flow rate adjustment valve 16 and the first to third expansion valves 13, 14, 25 of the inter-refrigerant heat exchanger 17 are controlled to a predetermined opening degree, and the inter-refrigerant heat exchanger 17 is controlled. The refrigerant of the second refrigeration circuit 20 is supplied to the first refrigeration circuit 10 in an injection cycle.

すなわち、第1膨張弁13で中間圧にまで膨張された冷媒の一部が第2冷凍回路20の高圧側の冷媒と冷媒熱交換器17で熱交換した後、第1圧縮機11で中間圧まで圧縮された冷媒と合流する。そして、合流した冷媒は、さらに所定の圧力にまで圧縮されて、水−冷媒熱交換器12で貯湯タンク30の下部に貯められた水と熱交換して凝縮する。   That is, a part of the refrigerant expanded to the intermediate pressure by the first expansion valve 13 exchanges heat with the refrigerant on the high-pressure side of the second refrigeration circuit 20 by the refrigerant heat exchanger 17, and then the intermediate pressure by the first compressor 11. It merges with the compressed refrigerant. The combined refrigerant is further compressed to a predetermined pressure, and is condensed by exchanging heat with water stored in the lower part of the hot water storage tank 30 by the water-refrigerant heat exchanger 12.

第1冷凍回路10の第1膨張弁13にて中間圧にまで膨張した冷媒は、第1圧縮機11の中間段にインジェクションされる冷媒と第2膨張弁14に流入する冷媒に分流される。第1圧縮機11の中間段にインジェクションされる冷媒は、上記したように、冷媒間熱交換器17で第2冷凍回路20の熱源冷媒と熱交換されるが、第2膨張弁14に流入する冷媒はさらに膨張して所定の蒸発圧力となり、第1室外熱交換器15で外気と熱交換して蒸発した後、第1圧縮機11に戻される。   The refrigerant expanded to the intermediate pressure by the first expansion valve 13 of the first refrigeration circuit 10 is divided into the refrigerant injected into the intermediate stage of the first compressor 11 and the refrigerant flowing into the second expansion valve 14. As described above, the refrigerant injected into the intermediate stage of the first compressor 11 is heat-exchanged with the heat source refrigerant of the second refrigeration circuit 20 in the inter-refrigerant heat exchanger 17, but flows into the second expansion valve 14. The refrigerant further expands to a predetermined evaporation pressure, evaporates by exchanging heat with the outside air in the first outdoor heat exchanger 15, and then returned to the first compressor 11.

他方の第2冷凍回路20においては、低温低圧のガス冷媒は第2圧縮機21にて所定の圧力にまで圧縮された後、四方弁22,第1開閉弁26aおよび第2開閉弁26bを通って冷媒間熱交換器17に至り、第1冷凍回路10のインジェクション冷媒と熱交換し、その後、第3膨張弁25で蒸発圧力にまで膨張し、第2室外熱交換器24で外気と熱交換して蒸発し、四方弁22を経て第2圧縮機21に戻される。   In the other second refrigeration circuit 20, the low-temperature and low-pressure gas refrigerant is compressed to a predetermined pressure by the second compressor 21, and then passes through the four-way valve 22, the first on-off valve 26a, and the second on-off valve 26b. Then, the refrigerant reaches the inter-refrigerant heat exchanger 17 and exchanges heat with the injection refrigerant of the first refrigeration circuit 10, and then expands to the evaporation pressure by the third expansion valve 25, and exchanges heat with the outside air by the second outdoor heat exchanger 24. Then, it evaporates and returns to the second compressor 21 through the four-way valve 22.

[低外気温時で、室内空調必要時]
低外気温時で、室内空調(暖房空調)が必要である場合には、第2開閉弁26bおよび第3開閉弁28aがともに「開」で、第1開閉弁26aおよび第4開閉弁29aがともに「閉」とされ、冷媒間熱交換器17の流量調整弁16および第1ないし第3膨張弁13,14,25の弁開度が所定の開度に制御され、冷媒間熱交換器17に第2冷凍回路20の冷媒が供給され、第1冷凍回路10がインジェクションサイクルにて運転される。
[When indoor air conditioning is required at low outside temperatures]
When indoor air conditioning (heating air conditioning) is required at low outside air temperature, both the second on-off valve 26b and the third on-off valve 28a are “open”, and the first on-off valve 26a and the fourth on-off valve 29a are Both are closed and the valve opening degree of the flow rate adjustment valve 16 and the first to third expansion valves 13, 14, 25 of the inter-refrigerant heat exchanger 17 are controlled to a predetermined opening degree, and the inter-refrigerant heat exchanger 17 is controlled. The refrigerant of the second refrigeration circuit 20 is supplied to the first refrigeration circuit 10 in an injection cycle.

この場合には、第1冷凍回路10は、上記と同じく、インジェクションサイクルにて運転され、第2冷凍回路20においては、低温低圧のガス冷媒は第2圧縮機21にて所定の圧力にまで圧縮された後、四方弁22および第3開閉弁28aを経て室内熱交換器23に至り、室内空気と熱交換して凝縮する。その後、冷媒は第2開閉弁26bより冷媒間熱交換器17に入り、第1冷凍回路10のインジェクション冷媒と熱交換し、第3膨張弁25にて蒸発圧力にまで膨張する。その後、第2室外熱交換器24で外気と熱交換して蒸発し、四方弁22を経て第2圧縮機21に戻される。   In this case, the first refrigeration circuit 10 is operated in the injection cycle as described above, and in the second refrigeration circuit 20, the low-temperature and low-pressure gas refrigerant is compressed to a predetermined pressure by the second compressor 21. After that, it passes through the four-way valve 22 and the third on-off valve 28a, reaches the indoor heat exchanger 23, and exchanges heat with the indoor air to condense. Thereafter, the refrigerant enters the inter-refrigerant heat exchanger 17 through the second on-off valve 26b, exchanges heat with the injection refrigerant of the first refrigeration circuit 10, and expands to the evaporation pressure at the third expansion valve 25. Thereafter, the second outdoor heat exchanger 24 evaporates by exchanging heat with the outside air, and returns to the second compressor 21 through the four-way valve 22.

なお、低外気温時、ユーザーは、給湯,床暖房,暖房空調のいずれか一つもしくはその組み合わせ(「給湯+暖房空調」,「床暖房+暖房空調」,「給湯+床暖房+暖房空調」)を選択することができる。   At low outside temperatures, the user can select one or a combination of hot water supply, floor heating, and heating air conditioning ("hot water + heating air conditioning", "floor heating + heating air conditioning", "hot water + floor heating + heating air conditioning"). ) Can be selected.

この低外気温時の運転において、貯湯タンク30から水−冷媒熱交換器12に流れる水の温度が低いと、水−冷媒熱交換器12の出口側冷媒と冷媒間熱交換器17の入口側冷媒の温度が同程度となり、インジェクションポート11aの冷媒に熱を与えることができないが、本発明によれば、冷媒間熱交換器17で第2冷凍回路20の冷媒と熱交換させることで、インジェクションポート11aの冷媒に熱を与えることができるため、インジェクション冷媒量を増大させられる。これにより、第1圧縮機11の低圧側への冷媒量が低下するため、圧縮機の運転効率の向上、ひいてはサイクル効率が向上する。   In the operation at the low outside air temperature, when the temperature of the water flowing from the hot water storage tank 30 to the water-refrigerant heat exchanger 12 is low, the outlet side refrigerant of the water-refrigerant heat exchanger 12 and the inlet side of the inter-refrigerant heat exchanger 17 Although the temperature of the refrigerant becomes comparable and heat cannot be given to the refrigerant of the injection port 11a, according to the present invention, the heat is exchanged with the refrigerant of the second refrigeration circuit 20 by the inter-refrigerant heat exchanger 17, thereby Since heat can be applied to the refrigerant in the port 11a, the amount of injection refrigerant can be increased. Thereby, since the refrigerant | coolant amount to the low pressure side of the 1st compressor 11 falls, the improvement of the operating efficiency of a compressor and by extension, cycle efficiency improve.

10 第1冷凍回路
11 第1圧縮機
12 水−冷媒熱交換器
13 第1膨張弁
14 第2膨張弁
15 第1室外熱交換器
16 流量調整弁
17 冷媒間熱交換器
18 枝管
20 第2冷凍回路
21 第2圧縮機
22 四方弁
23 室内熱交換器
24 第2室外熱交換器
25 第3膨張弁
26 第1配管
26a 第1開閉弁
26b 第2開閉弁
27 第2配管
28 第3配管
28a 第3開閉弁
29 第4配管
29a 第4開閉弁
30 貯湯タンク
31 水循環回路
32 床暖房パネル
33 温水循環回路
35 給湯栓
DESCRIPTION OF SYMBOLS 10 1st freezing circuit 11 1st compressor 12 Water-refrigerant heat exchanger 13 1st expansion valve 14 2nd expansion valve 15 1st outdoor heat exchanger 16 Flow control valve 17 Heat exchanger between refrigerants 18 Branch pipe 20 2nd Refrigeration circuit 21 Second compressor 22 Four-way valve 23 Indoor heat exchanger 24 Second outdoor heat exchanger 25 Third expansion valve 26 First pipe 26a First on-off valve 26b Second on-off valve 27 Second pipe 28 Third pipe 28a 3rd on-off valve 29 4th piping 29a 4th on-off valve 30 Hot water storage tank 31 Water circulation circuit 32 Floor heating panel 33 Hot water circulation circuit 35 Hot-water tap

Claims (5)

温水を生成する第1冷凍回路と、室内空調用の第2冷凍回路とを有するヒートポンプ装置において、
上記第1冷凍回路は、インジェクションポートを有する第1圧縮機と、上記第1圧縮機の冷媒吐出側に接続された温水生成用の水−冷媒熱交換器と、上記水−冷媒熱交換器の冷媒流出側から分岐され上記インジェクションポート至る分岐配管内に設けられた冷媒間熱交換器と、上記水−冷媒熱交換器と上記冷媒間熱交換器との間に接続された第1膨張弁と、上記水−冷媒熱交換器の冷媒流出側と上記第1圧縮機の冷媒吸入側との間に接続された第1室外熱交換器と、上記分岐管の分岐点と上記第1室外熱交換器との間に設けられた第2膨張弁とを備え、
上記第2冷凍回路は、第2圧縮機と、室内熱交換器と、第2室外熱交換器と、上記室内熱交換器と上記第2室外熱交換器との間に接続された第3膨張弁とを含む冷媒循環系を有し、
上記第2冷凍回路の上記冷媒循環系内の冷媒配管の一部分が上記冷媒間熱交換器内に挿通され、上記第1圧縮機にインジェクションされる冷媒と上記第2冷凍回路の冷媒との間で熱交換が行われることを特徴とするヒートポンプ装置。
In a heat pump device having a first refrigeration circuit for generating hot water and a second refrigeration circuit for indoor air conditioning,
The first refrigeration circuit includes: a first compressor having an injection port; a water-refrigerant heat exchanger for generating hot water connected to a refrigerant discharge side of the first compressor; and the water-refrigerant heat exchanger. A refrigerant-to-refrigerant heat exchanger that is branched from the refrigerant outflow side and that is provided in a branch pipe leading to the injection port; and a first expansion valve that is connected between the water-refrigerant heat exchanger and the refrigerant-to-refrigerant heat exchanger. A first outdoor heat exchanger connected between a refrigerant outflow side of the water-refrigerant heat exchanger and a refrigerant suction side of the first compressor, a branch point of the branch pipe, and the first outdoor heat exchange. A second expansion valve provided between the container and
The second refrigeration circuit includes a second compressor, an indoor heat exchanger, a second outdoor heat exchanger, and a third expansion connected between the indoor heat exchanger and the second outdoor heat exchanger. A refrigerant circulation system including a valve,
A part of the refrigerant pipe in the refrigerant circulation system of the second refrigeration circuit is inserted into the inter-refrigerant heat exchanger, and between the refrigerant injected into the first compressor and the refrigerant of the second refrigeration circuit. A heat pump device characterized in that heat exchange is performed.
上記冷媒循環系内の冷媒の流れ方向が暖房空調時であるとして、上記冷媒循環系には、上記第2圧縮機の冷媒吐出側から上記冷媒間熱交換器に至り、上流側に第1開閉弁、下流側に第2開閉弁を有する第1配管と、上記冷媒間熱交換器から引き出され上記第3膨張弁を介して上記第2室外熱交換器に至る第2配管と、上記室内熱交換器および第3開閉弁を含み上記第1配管に対してバイパス的に接続される第3配管とが含まれ、
上記第1,第2膨張弁および上記第1ないし第3開閉弁が運転モードに応じて所定に制御されることを特徴とする請求項1に記載のヒートポンプ装置。
Assuming that the flow direction of the refrigerant in the refrigerant circulation system is during heating and air conditioning, the refrigerant circulation system reaches the inter-refrigerant heat exchanger from the refrigerant discharge side of the second compressor, and the first opening and closing on the upstream side. A valve, a first pipe having a second on-off valve on the downstream side, a second pipe drawn from the inter-refrigerant heat exchanger and reaching the second outdoor heat exchanger via the third expansion valve, and the indoor heat A third pipe including a exchanger and a third on-off valve and connected to the first pipe in a bypass manner,
2. The heat pump device according to claim 1, wherein the first and second expansion valves and the first to third on-off valves are controlled in accordance with an operation mode.
上記第1配管における上記第3配管の合流点と上記第2開閉弁との間の配管部分を上記第2配管に接続する第4開閉弁を有する第4配管と、上記運転モードを制御する制御手段とをさらに備え、上記制御手段により、上記流量調整弁および上記第1,2開閉弁がともに閉、上記第3,4開閉弁が開とされ、上記第1ないし第3膨張弁が所定の開度に制御されることにより、上記第1,第2の各冷凍回路がそれぞれ独立に運転されることを特徴とする請求項2に記載のヒートポンプ装置。   A fourth pipe having a fourth on-off valve for connecting a pipe portion between the confluence of the third pipe and the second on-off valve in the first pipe to the second pipe, and a control for controlling the operation mode; And the flow control valve and the first and second on-off valves are both closed, the third and fourth on-off valves are opened, and the first to third expansion valves are predetermined. The heat pump apparatus according to claim 2, wherein the first and second refrigeration circuits are independently operated by being controlled by the opening degree. 上記第1配管における上記第3配管の合流点と上記第2開閉弁との間の配管部分を上記第2配管に接続する第4開閉弁を有する第4配管と、上記運転モードを制御する制御手段とをさらに備え、上記制御手段により、上記第1,2開閉弁が開、上記第3,4開閉弁が閉とされ、上記流量調整弁および上記第1ないし第3膨張弁が所定の開度に制御されることにより、上記第1冷凍回路がインジェクションサイクルによる運転モードで動作することを特徴とする請求項2に記載のヒートポンプ装置。   A fourth pipe having a fourth on-off valve for connecting a pipe portion between the confluence of the third pipe and the second on-off valve in the first pipe to the second pipe, and a control for controlling the operation mode; And the control means closes the first and second on-off valves, closes the third and fourth on-off valves, and opens the flow rate adjusting valve and the first to third expansion valves to a predetermined degree. The heat pump device according to claim 2, wherein the first refrigeration circuit operates in an operation mode based on an injection cycle by being controlled each time. 上記第1配管における上記第3配管の合流点と上記第2開閉弁との間の配管部分を上記第2配管に接続する第4開閉弁を有する第4配管と、上記運転モードを制御する制御手段とをさらに備え、上記制御手段により、上記第2,3開閉弁が開、上記第1,4開閉弁が閉とされ、上記流量調整弁および上記第1ないし第3膨張弁が所定の開度に制御されることにより、上記第1冷凍回路がインジェクションサイクルによる運転モードで動作することを特徴とする請求項2に記載のヒートポンプ装置。   A fourth pipe having a fourth on-off valve for connecting a pipe portion between the confluence of the third pipe and the second on-off valve in the first pipe to the second pipe, and a control for controlling the operation mode; And the control means closes the second and third on-off valves, closes the first and fourth on-off valves, and opens the flow rate adjusting valve and the first to third expansion valves to a predetermined degree. The heat pump device according to claim 2, wherein the first refrigeration circuit operates in an operation mode based on an injection cycle by being controlled each time.
JP2010081398A 2010-03-31 2010-03-31 Heat pump equipment Expired - Fee Related JP5447968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081398A JP5447968B2 (en) 2010-03-31 2010-03-31 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081398A JP5447968B2 (en) 2010-03-31 2010-03-31 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2011214750A true JP2011214750A (en) 2011-10-27
JP5447968B2 JP5447968B2 (en) 2014-03-19

Family

ID=44944680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081398A Expired - Fee Related JP5447968B2 (en) 2010-03-31 2010-03-31 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP5447968B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589195A (en) * 2012-03-19 2012-07-18 黄如瑾 Heat supply and refrigeration system combining spatial energy with ground source energy
JP2020056536A (en) * 2018-10-02 2020-04-09 ダイキン工業株式会社 Refrigeration cycle device
JP2023023475A (en) * 2021-08-05 2023-02-16 ダイキン工業株式会社 Refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589195A (en) * 2012-03-19 2012-07-18 黄如瑾 Heat supply and refrigeration system combining spatial energy with ground source energy
JP2020056536A (en) * 2018-10-02 2020-04-09 ダイキン工業株式会社 Refrigeration cycle device
JP7189423B2 (en) 2018-10-02 2022-12-14 ダイキン工業株式会社 refrigeration cycle equipment
JP2023023475A (en) * 2021-08-05 2023-02-16 ダイキン工業株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP5447968B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5197576B2 (en) Heat pump equipment
US9593872B2 (en) Heat pump
JP5383816B2 (en) Air conditioner
US9885504B2 (en) Heat pump with water heating
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
US20150308700A1 (en) Combined air-conditioning and hot-water supply system
CN107178833B (en) Heat recovery external machine system and air conditioning system
KR20110056061A (en) Heat pump type cooling/heating apparatus
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
WO2009122512A1 (en) Air conditioning apparatus
US20130061622A1 (en) Refrigerating and air-conditioning apparatus
TWI588424B (en) Heat pump air condition system and control method thereof
JP5447968B2 (en) Heat pump equipment
JP2010084975A (en) Heating device
EP2339267B1 (en) Refrigerating cycle apparatus, heat pump type hot water supply air conditioner and outdoor unit thereof
JP5582294B2 (en) Hot water / hot water heating system with dual refrigeration cycle
JP2013108690A (en) Air conditioning and hot water supply combined system
JP2012127648A (en) Heat pump apparatus
KR100849613B1 (en) High effectiveness heat pump system that available water heating and floor heating
CN108007010B (en) Heat pump system
JP5441949B2 (en) Heat pump equipment
CN203964446U (en) Hot water generator
KR100643689B1 (en) Heat pump air-conditioner
CN207585139U (en) Refrigerating circulatory device
KR101211739B1 (en) Heat pump heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R151 Written notification of patent or utility model registration

Ref document number: 5447968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees