JP2011214708A - Torsional damper - Google Patents

Torsional damper Download PDF

Info

Publication number
JP2011214708A
JP2011214708A JP2010085885A JP2010085885A JP2011214708A JP 2011214708 A JP2011214708 A JP 2011214708A JP 2010085885 A JP2010085885 A JP 2010085885A JP 2010085885 A JP2010085885 A JP 2010085885A JP 2011214708 A JP2011214708 A JP 2011214708A
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
vibration
inner peripheral
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010085885A
Other languages
Japanese (ja)
Other versions
JP5569679B2 (en
Inventor
Hiroyuki Uekusa
裕之 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2010085885A priority Critical patent/JP5569679B2/en
Publication of JP2011214708A publication Critical patent/JP2011214708A/en
Application granted granted Critical
Publication of JP5569679B2 publication Critical patent/JP5569679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pulleys (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a torsional damper improving a vibration damping function in a high rotation area.SOLUTION: This torsional damper includes a hub 1 attached to a rotating shaft, a bearing 2 concentrically mounted on the hub 1, a plurality of circumferential mass bodies 3 arranged to be brought into contact with the inner peripheral surface of the bearing 2, and an elastic body 4 connecting the mass bodies 3 to the hub 1 so that the mass bodies are moved in the radial direction and the circumferential direction. The mass bodies 3 and elastic body 4 compose a spring-mass system resonating in a torsional vibration direction within a predetermined vibration frequency range, and exhibit a dynamic vibration absorbing effect. The mass bodies 3 cause friction damping with respect to input vibration by sliding on the inner peripheral surface of the bearing 2 due to vibration displacement in a torsional direction. The contact loads of the mass bodies 3 with respect to the inner peripheral surface of the bearing 2 increase due to an increase in rotational speed. Therefore, the friction damping increases in a higher rotation area.

Description

本発明は、例えば自動車のエンジンのクランクシャフト等、回転軸に発生する捩り振動を吸収するトーショナルダンパに関する。   The present invention relates to a torsional damper that absorbs torsional vibration generated in a rotating shaft such as a crankshaft of an automobile engine.

自動車等のエンジンのクランクシャフトに、回転に伴って生じる捩り振動(回転方向の振動)の振幅増大による不具合の発生を防止するため、このクランクシャフトにはトーショナルダンパが取り付けられる。   A torsional damper is attached to the crankshaft of an engine such as an automobile in order to prevent occurrence of problems due to an increase in amplitude of torsional vibration (vibration in the rotational direction) that occurs with rotation.

図4に示されるように、この種のトーショナルダンパ100は、内径ボス部101aが不図示のクランクシャフトの軸端に取り付けられるハブ101と、そのリム部101bの外周側に同心的に配置された質量体102と、これらハブ101と環状の質量体102とを弾性的に連結するゴム材料又はゴム状弾性を有する合成樹脂材料からなる弾性体103とを備える。   As shown in FIG. 4, this type of torsional damper 100 is arranged concentrically on the outer peripheral side of a rim 101b and a hub 101 having an inner diameter boss 101a attached to a shaft end of a crankshaft (not shown). And an elastic body 103 made of a rubber material or a synthetic resin material having rubber-like elasticity that elastically connects the hub 101 and the annular mass body 102.

弾性体103及び質量体102からなるばね−質量系(副振動系)には、所定の捩り方向固有振動数が設定されている。すなわちトーショナルダンパ100は、クランクシャフトの捩り振幅が最大となる所定の振動周波数域において、捩り方向に加振されることによって弾性体103及び質量体102からなるばね−質量系が共振し、その振動変位によるトルクが入力振動によるトルクと逆方向へ生じることによって、動的吸振効果を発揮するものである(例えば下記の特許文献1参照)。   A predetermined torsional direction natural frequency is set in the spring-mass system (sub vibration system) including the elastic body 103 and the mass body 102. That is, in the torsional damper 100, the spring-mass system composed of the elastic body 103 and the mass body 102 is resonated by being vibrated in the torsional direction in a predetermined vibration frequency range where the torsional amplitude of the crankshaft is maximum. The torque due to the vibration displacement is generated in the opposite direction to the torque due to the input vibration, thereby exhibiting a dynamic vibration absorption effect (see, for example, Patent Document 1 below).

特開2003−56645号公報JP 2003-56645 A

しかしながら、従来のトーショナルダンパ100は、振動のエネルギを熱として消費させる振動減衰作用が、弾性体103の変形に伴って生じる内部摩擦にのみ依存されているため、エンジンの回転によって一定の減衰しか与えることができず、したがって高回転域で捩れ角(円周方向の振幅)が大きくなる捩り振動を効率よく低減させることが困難であるといった問題があった。   However, in the conventional torsional damper 100, the vibration damping action that consumes the vibration energy as heat depends only on the internal friction caused by the deformation of the elastic body 103. Therefore, there is a problem that it is difficult to efficiently reduce the torsional vibration in which the torsion angle (amplitude in the circumferential direction) increases in a high rotation range.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、高回転域での振動減衰機能を向上させたトーショナルダンパを提供することにある。   The present invention has been made in view of the above points, and a technical problem thereof is to provide a torsional damper having an improved vibration damping function in a high rotation range.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係るトーショナルダンパは、回転軸に取り付けられるハブと、前記ハブに同心的に装着されたベアリングと、前記ベアリングの内周面と接触可能に配置された円周方向複数の質量体と、前記各質量体を前記ハブに径方向及び円周方向移動可能に連結する弾性体とを備えるものである。   As means for effectively solving the above technical problem, a torsional damper according to the invention of claim 1 includes a hub attached to a rotary shaft, a bearing concentrically mounted on the hub, A plurality of mass bodies in the circumferential direction disposed so as to be in contact with the inner peripheral surface, and an elastic body that couples the mass bodies to the hub so as to be movable in the radial direction and the circumferential direction.

上記構成において、各質量体とこれをハブに円周方向移動可能に連結している弾性体は、所定の振動周波数域で捩り振動方向へ共振するばね−質量系を構成し、動的吸振効果を発揮するものである。また、前記各質量体は、捩り方向への振動変位に伴いベアリングの内周面と摺動することによって入力振動に対する摩擦減衰を生じ、前記各質量体は前記弾性体によって径方向へ移動可能に連結されていることから、回転数の上昇に伴ってベアリングの内周面に対する前記各質量体の接触荷重が増大し、したがって前記摩擦減衰は高回転域ほど大きくなる。   In the above configuration, each mass body and the elastic body that is connected to the hub so as to be movable in the circumferential direction constitute a spring-mass system that resonates in the torsional vibration direction in a predetermined vibration frequency range, and has a dynamic vibration absorption effect. To demonstrate. Further, each mass body slides with the inner peripheral surface of the bearing in accordance with the vibration displacement in the torsional direction, thereby generating frictional damping against input vibration, and each mass body is movable in the radial direction by the elastic body. Since they are connected, the contact load of each mass body with respect to the inner peripheral surface of the bearing increases as the rotational speed increases, and therefore the frictional damping increases as the rotational speed increases.

請求項2の発明に係るトーショナルダンパは、請求項1に記載の構成において、非回転状態では各質量体とベアリングとの対向面間に隙間が存在し、所定の回転数以上では遠心力によって前記各質量体が前記ベアリングの内周面に密接されるものである。   The torsional damper according to a second aspect of the present invention is the torsional damper according to the first aspect, wherein there is a gap between the opposing surfaces of each mass body and the bearing in a non-rotating state, and due to centrifugal force at a predetermined rotational speed or higher. Each said mass body is closely_contact | adhered to the internal peripheral surface of the said bearing.

請求項3の発明に係るトーショナルダンパは、請求項1に記載の構成において、ベアリングに対する各質量体の対向面の円周方向両端の角部が面取りされたものである。   A torsional damper according to a third aspect of the present invention is the torsional damper according to the first aspect, wherein the corners at both ends in the circumferential direction of the opposing surface of each mass body with respect to the bearing are chamfered.

請求項1の発明に係るトーショナルダンパによれば、ベアリングの内周面に対する質量体の接触荷重が遠心力によって変化するので、ベアリングと質量体の摺動により生じる摩擦減衰が回転数と共に変化し、高回転域で捩れ角が大きくなる振動に対する減衰性を向上することができる。   In the torsional damper according to the first aspect of the present invention, the contact load of the mass body with respect to the inner peripheral surface of the bearing changes due to the centrifugal force, so that the frictional damping caused by the sliding between the bearing and the mass body changes with the rotational speed. In addition, it is possible to improve the damping property against vibration in which the torsion angle increases in a high rotation range.

請求項2の発明に係るトーショナルダンパによれば、請求項1による効果に加え、所定の回転数未満では各質量体と弾性体からなるばね−質量系の共振の振幅が損なわれず、良好な動的吸振効果を得ることができる。   According to the torsional damper according to the invention of claim 2, in addition to the effect of claim 1, the resonance amplitude of the spring-mass system composed of each mass body and the elastic body is not impaired at less than a predetermined number of revolutions. A dynamic vibration absorption effect can be obtained.

請求項3の発明に係るトーショナルダンパによれば、請求項1による効果に加え、質量体とベアリングの摺動による摩耗や損傷を抑制することができる。   According to the torsional damper of the invention of claim 3, in addition to the effect of claim 1, wear and damage due to sliding of the mass body and the bearing can be suppressed.

本発明に係るトーショナルダンパの好ましい実施の形態を、軸心を通る平面で切断して示す断面斜視図である。1 is a cross-sectional perspective view showing a preferred embodiment of a torsional damper according to the present invention by cutting along a plane passing through an axis. 図1のトーショナルダンパを正面側から見た図である。It is the figure which looked at the torsional damper of FIG. 1 from the front side. エンジンの回転数によるクランクシャフトの捩れ角の変化を、従来のトーショナルダンパを用いた場合と本発明のトーショナルダンパを用いた場合とで比較して示す線図である。It is a diagram which shows the change of the twist angle of the crankshaft by the rotation speed of an engine by comparing with the case where the conventional torsional damper is used, and the case where the torsional damper of the present invention is used. 従来のトーショナルダンパの一例を、軸心を通る平面で切断して示す断面斜視図である。It is a cross-sectional perspective view which cuts and shows an example of the conventional torsional damper by the plane which passes along an axial center.

以下、本発明に係るトーショナルダンパの好ましい実施の形態を、図面を参照しながら説明する。図1は、この実施の形態を、軸心を通る平面で切断して示す断面斜視図、図2は、図1のトーショナルダンパを正面側から見た図である。なお、以下の説明において、「正面」とは図1における左側であって車両のフロント側、「背面」とは図1における右側すなわちエンジン側のことである。   Hereinafter, preferred embodiments of a torsional damper according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional perspective view showing this embodiment cut along a plane passing through an axis, and FIG. 2 is a view of the torsional damper of FIG. 1 as viewed from the front side. In the following description, “front” means the left side in FIG. 1 and the front side of the vehicle, and “back” means the right side in FIG.

この実施の形態のトーショナルダンパは、不図示のエンジンのクランクシャフトに固定される金属製のハブ1と、このハブ1に同心的に装着されたドライベアリング2と、このドライベアリング2の内周面と接触可能に配置された円周方向複数の質量体3と、各質量体3を前記ハブ1に径方向及び円周方向移動可能に連結する弾性体4とを備えるものである。なお、ドライベアリング2は請求項1に記載されたベアリングに相当する。   The torsional damper of this embodiment includes a metal hub 1 fixed to a crankshaft of an engine (not shown), a dry bearing 2 concentrically mounted on the hub 1, and an inner periphery of the dry bearing 2. A plurality of circumferential mass bodies 3 arranged so as to be in contact with the surface, and an elastic body 4 that connects each mass body 3 to the hub 1 so as to be movable in the radial direction and the circumferential direction. The dry bearing 2 corresponds to the bearing described in claim 1.

詳しくは、ハブ1は、鉄系又はアルミニウム系等の金属の鋳物からなるものであって、クランクシャフトの軸端への固定部である軸孔11a及びキー溝11bが形成されたボス部11と、その正面側の端部から外径方向へ延在された円盤部12と、その内径寄りの位置から正面側へ延在された内周筒部13と、円盤部12の外径端部から正面側へ延在された外周筒部14とを有する。外周筒部14の外周面には、ポリV溝14aが形成され、補機へ動力を伝達するための不図示の無端ベルトが巻き掛けられるようになっている。   Specifically, the hub 1 is made of a cast metal such as iron or aluminum, and has a boss 11 formed with a shaft hole 11a and a key groove 11b that are fixed to the shaft end of the crankshaft. From the front end portion of the disk portion 12 extending in the outer diameter direction, the inner peripheral cylinder portion 13 extending from the position closer to the inner diameter to the front side, and the outer diameter end portion of the disk portion 12 And an outer peripheral cylindrical portion 14 extending to the front side. A poly V groove 14a is formed on the outer peripheral surface of the outer peripheral cylindrical portion 14, and an endless belt (not shown) for transmitting power to the auxiliary machine is wound around the outer peripheral surface.

ドライベアリング2は、PTFE(四フッ化エチレン)やカーボンなど、自己潤滑性を有する材料からなり、潤滑油などによる液体潤滑が全くない乾燥状態で使用されるすべり軸受で、円筒状に形成されており、ハブ1における外周筒部14の内周面に挿入状態に保持されている。   The dry bearing 2 is a sliding bearing made of a material having self-lubricating properties such as PTFE (tetrafluoroethylene) and carbon, and is used in a dry state without any liquid lubrication by a lubricating oil, and is formed in a cylindrical shape. The hub 1 is held in an inserted state on the inner peripheral surface of the outer peripheral cylindrical portion 14.

質量体3は鉄系等の金属で製作されたものであって、円環を後加工によって円周方向3箇所(120°間隔)で切断した円弧状の湾曲形状に形成され、外周面3aがドライベアリング2の内周面と同等の曲率半径の円筒面をなしている。そしてこれら各質量体3は、円周方向両端がスリットSを介して互いに近接対向した状態で、ドライベアリング2の内周側に配置されている。また、ドライベアリング2と対向する各質量体3の外周面3aの円周方向両端には、R面の面取り3bが施されている。   The mass body 3 is made of a metal such as an iron-based material, and is formed into an arcuate curved shape obtained by cutting the ring at three locations in the circumferential direction (at intervals of 120 °) by post-processing. A cylindrical surface having a radius of curvature equivalent to the inner peripheral surface of the dry bearing 2 is formed. Each mass body 3 is arranged on the inner peripheral side of the dry bearing 2 with both ends in the circumferential direction facing each other through the slits S. Moreover, chamfering 3b of R surface is given to the circumferential direction both ends of the outer peripheral surface 3a of each mass body 3 facing the dry bearing 2.

弾性体4は、例えば耐熱性、耐寒性及び機械的強度に優れたゴム状弾性材料(ゴム又はゴム状弾性を有する合成樹脂材料)からなるものであって、ハブ1の内周筒部13の外周面に圧入嵌着された金属製のスリーブ5の外周面と、これに径方向に対向する各質量体3の内周面との間に、一体的に加硫接着されている。   The elastic body 4 is made of, for example, a rubber-like elastic material (rubber or a synthetic resin material having rubber-like elasticity) having excellent heat resistance, cold resistance, and mechanical strength. Between the outer peripheral surface of the metal sleeve 5 press-fitted to the outer peripheral surface and the inner peripheral surface of each mass body 3 facing the radial sleeve, the vulcanization is integrally performed.

弾性体4と質量体3からなるばね−質量系の捩り方向の共振周波数は、弾性体4の円周方向剪断ばね定数と、質量体3の円周方向慣性質量によって、クランクシャフトの捩れ角が最大となる所定の振動数域、言い換えればクランクシャフトの捩り方向共振周波数と同調されている。   The resonance frequency in the torsional direction of the spring-mass system comprising the elastic body 4 and the mass body 3 is determined by the crankshaft torsion angle depending on the circumferential shear spring constant of the elastic body 4 and the circumferential inertia mass of the mass body 3. It is tuned to the maximum predetermined frequency range, in other words, the torsional direction resonance frequency of the crankshaft.

また、上述のように質量体3は環状をなすものではなく円周方向へ分割されているため、回転による遠心力を受けると、弾性体4の引張弾性に抗して外径方向へ変位することができる。このため非回転状態では、質量体3は弾性体4の拘束力によってドライベアリング2の内周面との間に微小な隙間が形成された状態に保持されるが、所定の回転数以上では、外周面3aが前記ドライベアリング2の内周面と密接されるようになっている。   Further, as described above, the mass body 3 is not formed in an annular shape but is divided in the circumferential direction. Therefore, when it receives a centrifugal force due to rotation, it is displaced in the outer diameter direction against the tensile elasticity of the elastic body 4. be able to. For this reason, in the non-rotating state, the mass body 3 is held in a state in which a minute gap is formed between the inner peripheral surface of the dry bearing 2 by the restraining force of the elastic body 4, but at a predetermined rotational speed or higher, The outer peripheral surface 3 a is in close contact with the inner peripheral surface of the dry bearing 2.

なお、弾性体4は、各質量体3の間の部分に外周側からえぐられた溝4aが形成されており、この溝4aによって、質量体3毎に独立したばねを構成している。   In addition, the elastic body 4 has a groove 4a formed from the outer peripheral side in a portion between the mass bodies 3, and the groove 4a constitutes an independent spring for each mass body 3.

上述の構成を備えるトーショナルダンパは、ドライベアリング2をハブ1における外周筒部14の内周に挿入して装着し、質量体3と弾性体4とスリーブ5の一体成形物をハブ1の内周筒部13と外周筒部14の間の環状空間へ挿入すると共に、前記スリーブ5を、ハブ1の内周筒部13の外周面に圧入嵌着することによって組み立てられる。   In the torsional damper having the above-described configuration, the dry bearing 2 is inserted and attached to the inner periphery of the outer peripheral cylindrical portion 14 of the hub 1, and the integrally formed product of the mass body 3, the elastic body 4, and the sleeve 5 is placed inside the hub 1. The sleeve 5 is assembled by being inserted into the annular space between the peripheral cylinder part 13 and the outer peripheral cylinder part 14 and press-fitted to the outer peripheral surface of the inner peripheral cylinder part 13 of the hub 1.

このとき、質量体3の外周面3aはドライベアリング2の内周面に対して隙間嵌めとなるので、スリーブ5をハブ1の内周筒部13の外周面に圧入嵌着する過程で、質量体3の外周面3aとドライベアリング2の内周面との間で摩擦抵抗を生じることはなく、したがって組立作業を容易に行うことができる。   At this time, since the outer peripheral surface 3a of the mass body 3 is a clearance fit with respect to the inner peripheral surface of the dry bearing 2, in the process of press-fitting the sleeve 5 to the outer peripheral surface of the inner peripheral cylindrical portion 13 of the hub 1, Friction resistance does not occur between the outer peripheral surface 3a of the body 3 and the inner peripheral surface of the dry bearing 2, so that the assembling work can be easily performed.

このトーショナルダンパは、ハブ1のボス部11の軸孔11aにおいて、不図示のボルト及びキーによってクランクシャフトの軸端に固定され、エンジンの駆動によって、このクランクシャフトと共に回転されるものである。そして、クランクシャフトの回転時に、ハブ1を介して入力される捩り振動の周波数が、クランクシャフトの振幅が極大となる帯域付近になると、質量体3と弾性体4によって構成されるばね−質量系が、入力振動と異なる位相角をもって共振し、また、各質量体3は同形同大で質量が互いに等しいため、各質量体3はあたかも互いに連続しているかのように併進的に振動変位し、その共振によるトルクが入力振動のトルクと逆方向に生じることによる動的吸振効果を発揮する。一方、このような入力振動や共振によって、ハブ1の内周筒部13の外周面に嵌着されたスリーブ5と各質量体3が捩り方向へ相対変位すると、その間で弾性体4が繰り返し剪断変形を受けることによって内部摩擦を生じ、すなわち振動エネルギを熱として消費させる振動減衰作用を生じる。このため、クランクシャフトの捩り振動のピークを有効に低減することができる。   The torsional damper is fixed to the shaft end of the crankshaft by a bolt and a key (not shown) in the shaft hole 11a of the boss portion 11 of the hub 1, and is rotated together with the crankshaft by driving the engine. When the crankshaft rotates, the torsional vibration frequency input via the hub 1 is in the vicinity of the band where the crankshaft amplitude is maximized. The spring-mass system configured by the mass body 3 and the elastic body 4 is used. However, since each mass body 3 has the same shape and the same size and the same mass, the mass bodies 3 vibrate in a translational manner as if they are continuous with each other. In addition, a dynamic vibration absorption effect is exhibited by the torque generated by the resonance being generated in the opposite direction to the torque of the input vibration. On the other hand, when the sleeve 5 fitted to the outer peripheral surface of the inner peripheral cylindrical portion 13 of the hub 1 and each mass body 3 are relatively displaced in the torsional direction due to such input vibration and resonance, the elastic body 4 is repeatedly sheared between them. Due to the deformation, an internal friction is generated, that is, a vibration damping action that consumes vibration energy as heat is generated. For this reason, the peak of the torsional vibration of the crankshaft can be effectively reduced.

ここで、質量体3には回転による遠心力が作用するが、クランクシャフトの低回転時にはこの遠心力が小さいので、弾性体4の弾性によってドライベアリング2の内周面との間に微小な隙間が存在する状態に保たれる。したがって各質量体3と弾性体4からなるばね−質量系の共振の振幅が損なわれず、良好な動的吸振効果を得ることができる。   Here, centrifugal force due to rotation acts on the mass body 3, but since the centrifugal force is small when the crankshaft rotates at a low speed, a minute gap is formed between the elastic body 4 and the inner peripheral surface of the dry bearing 2. Is kept in a state that exists. Therefore, the resonance amplitude of the spring-mass system composed of each mass body 3 and the elastic body 4 is not impaired, and a good dynamic vibration absorption effect can be obtained.

そして、クランクシャフトの回転数が上昇していくと、これに伴って、質量体3に作用する遠心力が増大するので、質量体3を拘束している弾性体4の弾性に抗して各質量体3が外径方向へ変位し、やがて各質量体3の外周面3aがドライベアリング2の内周面と密接される。このため、捩り振動方向への質量体3の振動変位に伴ってドライベアリング2の内周面と摺動するようになり、振動エネルギを摩擦熱として消費させる摩擦減衰作用を生じる。また、さらなる回転数の上昇(遠心力の増大)に伴って、各質量体3の外周面3aとドライベアリング2の内周面との接触荷重が増大するので、上述の摩擦減衰作用も増大する。   As the number of rotations of the crankshaft increases, the centrifugal force acting on the mass body 3 increases accordingly, so that each of the resistance against the elasticity of the elastic body 4 that restrains the mass body 3. The mass body 3 is displaced in the outer diameter direction, and the outer peripheral surface 3a of each mass body 3 is brought into close contact with the inner peripheral surface of the dry bearing 2 in due course. For this reason, the mass body 3 slides with the inner peripheral surface of the dry bearing 2 in accordance with the vibration displacement of the mass body 3 in the torsional vibration direction, and a friction damping action is generated that consumes vibration energy as frictional heat. Moreover, since the contact load between the outer peripheral surface 3a of each mass body 3 and the inner peripheral surface of the dry bearing 2 increases with a further increase in the rotational speed (an increase in centrifugal force), the above-described friction damping action also increases. .

したがって、図3に、エンジンの回転数によるクランクシャフトの捩れ角の変化を、従来のトーショナルダンパを用いた場合と本発明のトーショナルダンパを用いた場合とで比較して示すように、ある回転数域より高回転になると、本発明のトーショナルダンパでは、弾性体4の剪断変形に伴い生じる内部摩擦による減衰作用のほか、ドライベアリング2と質量体3の密接摺動による摩擦減衰が加わるので、弾性体のもつ減衰力にのみ依存した従来のトーショナルダンパよりも、クランクシャフトの捩れ角を大きく低減することができる。   Therefore, FIG. 3 shows the change in the twist angle of the crankshaft according to the engine speed as compared with the case of using the conventional torsional damper and the case of using the torsional damper of the present invention. When the rotational speed is higher than the rotational speed range, the torsional damper according to the present invention applies a damping effect due to the close sliding of the dry bearing 2 and the mass body 3 in addition to the damping action due to the internal friction caused by the shear deformation of the elastic body 4. Therefore, the twist angle of the crankshaft can be greatly reduced as compared with the conventional torsional damper that depends only on the damping force of the elastic body.

また、各質量体3の外周面3aの円周方向両端には、R面の面取り3bが施されているので、ドライベアリング2の内周面との摺動過程で質量体3が「かじり」を起こすことがなく、このため各質量体3の捩り方向の振動変位が妨げられず、しかもドライベアリング2の内周面の摩耗や損傷を抑制することができる。   In addition, since the chamfering 3b of the R surface is provided at both ends in the circumferential direction of the outer circumferential surface 3a of each mass body 3, the mass body 3 is "galled" during the sliding process with the inner circumferential surface of the dry bearing 2. Therefore, vibration displacement in the torsional direction of each mass body 3 is not hindered, and wear and damage to the inner peripheral surface of the dry bearing 2 can be suppressed.

なお、上述の形態では、非回転状態では各質量体3の外周面3aとドライベアリング2の内周面との間に隙間が存在し、所定の回転数以上において各質量体3の外周面3aがドライベアリング2の内周面に密接されるものとしたが、各質量体3の外周面3aとドライベアリング2の内周面は、初期状態で互いに密接されていても良い。   In the above-described embodiment, there is a gap between the outer peripheral surface 3a of each mass body 3 and the inner peripheral surface of the dry bearing 2 in the non-rotating state, and the outer peripheral surface 3a of each mass body 3 at a predetermined rotational speed or more. However, the outer peripheral surface 3a of each mass body 3 and the inner peripheral surface of the dry bearing 2 may be in close contact with each other in the initial state.

また、質量体3は図示のような3分割形状に限らず、4分割以上であっても良く、円環を後加工により切断するほかにも、成形により製作することもできる。   Further, the mass body 3 is not limited to the three-divided shape as shown in the figure, and may be divided into four or more, and can be manufactured by molding in addition to cutting the ring by post-processing.

1 ハブ
13 内周筒部
14 外周筒部
2 ドライベアリング
3 質量体
3b 面取り
4 弾性体
5 スリーブ
S スリット
DESCRIPTION OF SYMBOLS 1 Hub 13 Inner peripheral cylinder part 14 Outer peripheral cylinder part 2 Dry bearing 3 Mass body 3b Chamfer 4 Elastic body 5 Sleeve S Slit

Claims (3)

回転軸に取り付けられるハブと、前記ハブに同心的に装着されたベアリングと、前記ベアリングの内周面と接触可能に配置された円周方向複数の質量体と、前記各質量体を前記ハブに径方向及び円周方向移動可能に連結する弾性体とを備えることを特徴とするトーショナルダンパ。   A hub attached to the rotary shaft; a bearing concentrically mounted on the hub; a plurality of circumferential mass bodies arranged so as to be in contact with an inner peripheral surface of the bearing; A torsional damper comprising: an elastic body that is connected so as to be movable in a radial direction and a circumferential direction. 非回転状態では各質量体とベアリングとの対向面間に隙間が存在し、所定の回転数以上では遠心力によって前記各質量体が前記ベアリングの内周面に密接されることを特徴とする請求項1に記載のトーショナルダンパ。   A gap exists between the opposing surfaces of each mass body and the bearing in a non-rotating state, and each mass body is brought into close contact with the inner peripheral surface of the bearing by centrifugal force at a predetermined rotational speed or more. Item 2. The torsional damper according to Item 1. ベアリングに対する各質量体の対向面の円周方向両端の角部が面取りされたことを特徴とする請求項1に記載のトーショナルダンパ。   The torsional damper according to claim 1, wherein corner portions at both ends in a circumferential direction of a facing surface of each mass body with respect to the bearing are chamfered.
JP2010085885A 2010-04-02 2010-04-02 Torsional damper Expired - Fee Related JP5569679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085885A JP5569679B2 (en) 2010-04-02 2010-04-02 Torsional damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085885A JP5569679B2 (en) 2010-04-02 2010-04-02 Torsional damper

Publications (2)

Publication Number Publication Date
JP2011214708A true JP2011214708A (en) 2011-10-27
JP5569679B2 JP5569679B2 (en) 2014-08-13

Family

ID=44944645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085885A Expired - Fee Related JP5569679B2 (en) 2010-04-02 2010-04-02 Torsional damper

Country Status (1)

Country Link
JP (1) JP5569679B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103544U (en) * 1989-02-07 1990-08-17
JP2006017234A (en) * 2004-07-02 2006-01-19 Nok Corp Torque fluctuation absorbing damper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103544U (en) * 1989-02-07 1990-08-17
JP2006017234A (en) * 2004-07-02 2006-01-19 Nok Corp Torque fluctuation absorbing damper

Also Published As

Publication number Publication date
JP5569679B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5556355B2 (en) damper
JP5791875B2 (en) damper
JP6254788B2 (en) Torsional damper
JP6511525B2 (en) Damper isolator with magnetic spring
AU2018202673B2 (en) Torsional vibration damper
JP2007315416A (en) Viscous rubber damper
JP2012177469A (en) Torsional damper
JP5800131B2 (en) Torque fluctuation absorbing damper
JP5569679B2 (en) Torsional damper
JP6009905B2 (en) Rotation fluctuation absorbing damper pulley
JP2007100852A (en) Torque fluctuation absorption damper
JP4883284B2 (en) Torsional damper
JP2004108528A (en) Torque fluctuation absorption damper
JP5831702B2 (en) Rotation fluctuation absorbing damper pulley
JP5257617B2 (en) Torque fluctuation absorbing damper
JP3994278B2 (en) Torque fluctuation absorbing damper
JP4006582B2 (en) Torque fluctuation absorbing damper
JP6605936B2 (en) Pulley noise reduction device
JP2002005234A (en) Torque fluctuation absorbing damper
JP2001355678A (en) Torque fluctuation absorbing damper
JP2012127451A (en) Dynamic damper
JP5910859B2 (en) Torque fluctuation absorbing damper
JP7075316B2 (en) Tortional damper
JP2003343652A (en) Torque variation absorbing damper
JP2002295588A (en) Torsional damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5569679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees