JP2011214627A - Valve structure and method for manufacturing the same - Google Patents

Valve structure and method for manufacturing the same Download PDF

Info

Publication number
JP2011214627A
JP2011214627A JP2010082006A JP2010082006A JP2011214627A JP 2011214627 A JP2011214627 A JP 2011214627A JP 2010082006 A JP2010082006 A JP 2010082006A JP 2010082006 A JP2010082006 A JP 2010082006A JP 2011214627 A JP2011214627 A JP 2011214627A
Authority
JP
Japan
Prior art keywords
valve
valve chamber
valve body
plate
lower wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010082006A
Other languages
Japanese (ja)
Inventor
Yasushi Takeda
安史 武田
Kosuke Narita
幸輔 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010082006A priority Critical patent/JP2011214627A/en
Publication of JP2011214627A publication Critical patent/JP2011214627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a valve structure preventing impairment of a valve function caused by the minute warpage of a valve element, and a method for manufacturing the valve structure.SOLUTION: This piezoelectric valve structure 1 includes a valve chamber top plate 2, an upper wall surface plate 3, a valve element plate 5, a lower wall surface plate 6, and a valve chamber bottom plate 7. The valve chamber top plate 2 composes the top surface of a valve chamber, and is formed with a flow passage port 16. The upper wall surface plate 3 and lower wall surface plate 6 compose valve chamber wall surfaces disposed upright from the top surface of the valve chamber. The valve element plate 5 is provided with a beam-like portion 11, and the beam-like portion 11 is supported by the upper wall surface plate 3 and lower wall surface plate 6. The valve element plate 5 closes the flow passage port 16 through a valve seat 4 when deformation force is not applied, and opens the flow passage port 16 when the deformation force is applied. Force in a direction where the beam-like portion 11 of the valve element plate 5 is deflected on the side of the top surface of the valve chamber is applied to the valve element plate 5 by the upper wall surface plate 3 and lower wall surface plate 6.

Description

この発明は、逆止弁や圧電弁などの弁構造、および弁構造の製造方法に関する。   The present invention relates to a valve structure such as a check valve and a piezoelectric valve, and a method for manufacturing the valve structure.

ノートパソコンのような小型の電子機器において、流体制御を必要とする燃料電池や水冷装置などを設けることがある。このような装置で、流路の一部に弁構造が設けられる(例えば、特許文献1参照)。   In a small electronic device such as a notebook personal computer, a fuel cell or a water cooling device that requires fluid control may be provided. With such an apparatus, a valve structure is provided in a part of the flow path (see, for example, Patent Document 1).

図1は、従来の弁構造の構成例を説明する図である。圧電弁構造101は、弁体102と弁室103と弁座104とを備える。弁体102は、圧電体を用いて屈曲変形可能に構成している。弁室103は、導入流路105および吐出流路106が形成されている。弁座104は、導入流路105に連通する開口が形成されている。弁体102は平坦な状態で、弁座104に当接して導入流路105を閉鎖し、駆動電圧が印加されて変形した状態で、弁座104から離間して導入流路105を開放する。このように、弁体に駆動電圧を印加していない状態で流路を遮断する構造はノーマリークローズとも呼ばれる。   FIG. 1 is a diagram illustrating a configuration example of a conventional valve structure. The piezoelectric valve structure 101 includes a valve body 102, a valve chamber 103, and a valve seat 104. The valve body 102 is configured to be able to bend and deform using a piezoelectric body. In the valve chamber 103, an introduction channel 105 and a discharge channel 106 are formed. The valve seat 104 has an opening communicating with the introduction flow path 105. In a flat state, the valve body 102 abuts on the valve seat 104 to close the introduction flow path 105, and in a state where the drive voltage is applied and deformed, the valve body 102 is separated from the valve seat 104 and opens the introduction flow path 105. As described above, a structure that blocks the flow path in a state where a driving voltage is not applied to the valve body is also referred to as normally closed.

また上記構造において、圧電弁構造101は逆止弁としても機能する。導入流路104から吐出流路105への順方向の流体圧がある程度以上かかれば、弁体102が撓んで導入流路104が開放される。一方、導入流路104から吐出流路105への順方向の流体圧がある程度未満でかかったり逆方向の流体圧がかかったりすれば、弁体102は導入流路104を閉鎖する。   In the above structure, the piezoelectric valve structure 101 also functions as a check valve. If the forward fluid pressure from the introduction flow path 104 to the discharge flow path 105 is more than a certain level, the valve body 102 is bent and the introduction flow path 104 is opened. On the other hand, if the forward fluid pressure from the introduction flow path 104 to the discharge flow path 105 is less than a certain level or the reverse fluid pressure is applied, the valve body 102 closes the introduction flow path 104.

特開昭62−28585号公報JP-A-62-285585

上述のようなノーマリークローズの圧電弁構造を備える装置において、弁構造を小型化しようとすれば、構成部材の経時変形によって弁機能が損なわれることがある。例えば、弁体に微小な反りが生じ、ノーマリークローズの状態でも弁構造にわずかな隙間ができてしまう問題が発生する。   In an apparatus having a normally closed piezoelectric valve structure as described above, if the valve structure is to be miniaturized, the valve function may be impaired due to temporal deformation of the constituent members. For example, there is a problem that a slight warp occurs in the valve body and a slight gap is formed in the valve structure even in a normally closed state.

そこで本発明は、弁体の微小な反りによって弁機能が損なわれることを防止した弁構造、および、弁構造の製造方法の提供を目的とする。   Then, an object of this invention is to provide the valve structure which prevented the valve function being impaired by the micro curvature of a valve body, and the manufacturing method of a valve structure.

この発明の弁構造は、弁室天面部と弁室底面部と弁室上壁部と弁室下壁部と弁座と弁体とを備える。弁室天面部は、弁室の天面を構成し、少なくともひとつの流路口が形成される。弁室底面部は弁室の底面を構成する。弁室上壁部は、弁室の壁面を構成し、弁室天面部に接合される。弁室下壁部は、弁室の壁面を構成し、弁室底面部に接合される。弁体は、弁室上壁部と弁室下壁部とに支持される弁体両端部と、弁体両端部間の弁体央部とを備える。弁座は、流路口と弁体央部との間に位置する。弁体は、変形力の非作用時に弁座を介して流路口を閉鎖し、変形力の作用時に流路口を開放する。このような弁構造において、弁室下壁部に加圧構造を設けたことを特徴とする。加圧構造は、弁室の天面側に弁体央部が撓む方向の力を弁体両端部に加える構造である。
このように弁体下壁部から弁体両端部に力をかけることで、流体や圧電体から弁体に作用する変形力や、弁座から弁体に作用する力が無負荷である状態において、弁体央部が弁体両端部よりも弁室の天面側に位置して撓む。すると、このような力をかけずに弁体壁部が弁体を支持する場合に比べて、弁体央部と弁室天面部との間を加圧できる。これにより、経時変化により弁体と弁座との間に隙間が生じることを防ぐことができる。
The valve structure of the present invention includes a valve chamber top surface portion, a valve chamber bottom surface portion, a valve chamber upper wall portion, a valve chamber lower wall portion, a valve seat, and a valve body. The valve chamber top surface portion constitutes the top surface of the valve chamber, and at least one flow path opening is formed. The valve chamber bottom portion constitutes the bottom surface of the valve chamber. The upper wall portion of the valve chamber constitutes the wall surface of the valve chamber and is joined to the top surface portion of the valve chamber. The valve chamber lower wall portion constitutes the wall surface of the valve chamber and is joined to the valve chamber bottom surface portion. A valve body is provided with the valve body both ends supported by the valve chamber upper wall part and the valve chamber lower wall part, and the valve body center part between valve body both ends. The valve seat is located between the flow path port and the central part of the valve body. The valve body closes the flow path port via the valve seat when the deformation force is not applied, and opens the flow path port when the deformation force is applied. Such a valve structure is characterized in that a pressure structure is provided on the lower wall portion of the valve chamber. The pressurizing structure is a structure in which a force in a direction in which the central part of the valve body bends to the top surface side of the valve chamber is applied to both end parts of the valve body.
By applying a force from the valve body lower wall portion to both ends of the valve body in this way, in a state where the deformation force acting on the valve body from the fluid or piezoelectric body and the force acting on the valve body from the valve seat are unloaded The central part of the valve body is bent at a position closer to the top surface of the valve chamber than both end parts of the valve body. Then, compared with the case where a valve body wall part supports a valve body, without applying such a force, between a valve body center part and a valve chamber top surface part can be pressurized. Thereby, it can prevent that a clearance gap produces between a valve body and a valve seat by a time-dependent change.

この発明の弁室下壁部は、弁体との接合面において、弁室近傍の内側領域が外側領域よりも弁室の天面側に位置する。このように構成することで、弁体央部が弁体両端部よりも弁室の天面側に撓むような力を弁室壁部から弁体に作用させられる。なお、弁室下壁部は、弁室上壁部よりも弁室内に突出して弁体に接合する壁面拡張部位を備えてもよい。また、弁体との接合面が弁室の天面に対して傾斜してもよい。   In the valve chamber lower wall portion of the present invention, the inner region in the vicinity of the valve chamber is located closer to the top surface side of the valve chamber than the outer region on the joint surface with the valve body. By comprising in this way, the force which a valve body center part bends to the top | upper surface side of a valve chamber rather than a valve body both ends can be made to act on a valve body from a valve chamber wall part. The valve chamber lower wall portion may include a wall surface expansion portion that protrudes into the valve chamber from the valve chamber upper wall portion and joins the valve body. Further, the joint surface with the valve body may be inclined with respect to the top surface of the valve chamber.

この発明の弁構造の製造方法は、弁体に弁室天面部と弁室上壁部とを積層し接合する上壁接合工程、および、弁体に弁室下壁部と弁室底面部とを積層し接合する下壁接合工程を実施し、下壁接合工程で弁体と弁室下壁部との接合面における弁室上壁部に重なる領域を加圧しながら加熱接合すると好適である。このような方法により、従来の製造方法から特別な工程の追加を招かずに、上述の構成とすることができる。   The valve structure manufacturing method of the present invention includes an upper wall joining step of laminating and joining a valve chamber top surface portion and a valve chamber upper wall portion to the valve body, and a valve chamber lower wall portion and a valve chamber bottom surface portion on the valve body. It is preferable to perform a lower wall joining step of laminating and joining, and in the lower wall joining step, heat joining while pressurizing a region overlapping the valve chamber upper wall portion in the joint surface between the valve body and the valve chamber lower wall portion. According to such a method, the above-described configuration can be obtained without adding a special process from the conventional manufacturing method.

この発明によれば、弁体央部が弁体両端部よりも弁室の天面側で撓むような力を弁体壁部から弁体に作用させるので、弁体央部が平坦となるように弁室壁部で弁体を支持する場合に比べて、弁座を介して弁体央部と弁室天面部との間を大きく加圧できる。これにより、経時変化により、弁体と弁座との間に隙間が生じることを防ぐことができる。   According to the present invention, a force that the central part of the valve body bends on the top surface side of the valve chamber from the both end parts of the valve body is applied to the valve body from the valve body wall part, so that the central part of the valve body becomes flat. Compared to the case where the valve body is supported by the valve chamber wall, the space between the valve body central portion and the valve chamber top surface portion can be greatly pressurized via the valve seat. Thereby, it can prevent that a clearance gap produces between a valve body and a valve seat by a time-dependent change.

従来の圧電弁構造の構成例を説明する図である。It is a figure explaining the structural example of the conventional piezoelectric valve structure. 本発明の第1の実施形態に係る弁構造の構成例を説明する分解斜視図である。It is a disassembled perspective view explaining the structural example of the valve structure which concerns on the 1st Embodiment of this invention. 図2の弁構造の動作を説明する断面模式図である。It is a cross-sectional schematic diagram explaining operation | movement of the valve structure of FIG. 図2の弁構造の弁体にかかる力を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the force concerning the valve body of the valve structure of FIG. 図2の弁構造の製造方法を説明する図である。It is a figure explaining the manufacturing method of the valve structure of FIG. 図2の弁構造の他の製造方法を説明する図である。It is a figure explaining the other manufacturing method of the valve structure of FIG. 本発明の第2の実施形態に係る弁構造を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the valve structure which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る弁構造を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the valve structure which concerns on the 3rd Embodiment of this invention.

《第1の実施形態》
以下、本願発明の第1の実施形態に係る弁構造を、圧電弁構造を例に説明する。なお、ここでは、弁体として圧電体の駆動により屈曲変形するものを用いるが、圧電体を用いずに単なる逆止弁構造としてもよい。また、流体としては、気体や、液体、気液混合流、固液混合流、固気混合流などのいずれを用いてもよい。
<< First Embodiment >>
Hereinafter, the valve structure according to the first embodiment of the present invention will be described using a piezoelectric valve structure as an example. Here, a valve body that is bent and deformed by driving a piezoelectric body is used, but a simple check valve structure may be used without using a piezoelectric body. As the fluid, any of gas, liquid, gas-liquid mixed flow, solid-liquid mixed flow, solid-gas mixed flow, and the like may be used.

図2は、第1の実施形態に係る圧電弁構造1の分解斜視図である。
圧電弁構造1は、図2(A)に分解斜視するように、弁室天板2、弁室上壁板3、弁座4、弁体板5、弁室下壁板6、および弁室底板7を備え、それらを天面側から底面側にかけて順に積層し接合した構成である。
FIG. 2 is an exploded perspective view of the piezoelectric valve structure 1 according to the first embodiment.
The piezoelectric valve structure 1 includes a valve chamber top plate 2, a valve chamber upper wall plate 3, a valve seat 4, a valve body plate 5, a valve chamber lower wall plate 6, and a valve chamber as shown in an exploded perspective view in FIG. A bottom plate 7 is provided, which are sequentially laminated and joined from the top side to the bottom side.

弁体板5は天面視して概略長方外形であり、長尺方向に並行する2本の溝が形成されている。溝の内側は本発明の弁室の一部を構成する側方弁室13である。溝と溝との間に挟まれた部位は本発明の弁体の一部を構成する梁状部11である。梁状部11を囲む枠状の部位は枠状部12であり、枠状部12における梁状部11からの延長上の部位も本発明の弁体の一部を構成する。弁体における弁室上壁板3または弁室下壁板6に接触しない部位が本発明の弁体央部であり、接触する部位が本発明の弁体両端部である。   The valve body plate 5 has a substantially rectangular outer shape when viewed from the top, and is formed with two grooves parallel to the longitudinal direction. The inside of the groove is a side valve chamber 13 constituting a part of the valve chamber of the present invention. A portion sandwiched between the grooves is a beam-like portion 11 constituting a part of the valve body of the present invention. The frame-shaped part surrounding the beam-shaped part 11 is the frame-shaped part 12, and the part of the frame-shaped part 12 on the extension from the beam-shaped part 11 also constitutes a part of the valve body of the present invention. The portion of the valve body that does not contact the valve chamber upper wall plate 3 or the valve chamber lower wall plate 6 is the central portion of the valve body of the present invention, and the contact portions are both end portions of the valve body of the present invention.

弁室上壁板3は天面視して概略長方外形、長方内形の枠体であり、弁体板5における枠状部12と天面視形状が一致し、本発明の弁室上壁部を構成する。枠体の内側は本発明の弁室の一部を構成する上方弁室14である。   The valve chamber upper wall plate 3 is a frame body having a substantially rectangular outer shape and a rectangular inner shape when viewed from the top, and the shape of the frame portion 12 of the valve plate 5 coincides with the shape of the top surface, and the valve chamber of the present invention. Configure the upper wall. The inner side of the frame is an upper valve chamber 14 constituting a part of the valve chamber of the present invention.

弁室下壁板6は天面視して概略長方外形、長方内形の枠体であり、本発明の弁室下壁部を構成する。枠体の内側は本発明の弁室の一部を構成する下方弁室15である。この弁室下壁板6は詳細を後述するが本実施形態の特徴的な構成であり、枠状部12および弁室上壁板3と天面視した外形状が一致するが、内形状が相違し、下方弁室15の長尺方向の両端が、上方弁室14における長尺方向の両端よりも内側に位置する。   The valve chamber lower wall plate 6 is a frame body having a generally rectangular outer shape and a rectangular inner shape when viewed from the top, and constitutes the valve chamber lower wall portion of the present invention. The inner side of the frame is a lower valve chamber 15 constituting a part of the valve chamber of the present invention. Although the valve chamber lower wall plate 6 will be described in detail later, it is a characteristic configuration of the present embodiment, and the outer shape in the top view matches the frame-shaped portion 12 and the valve chamber upper wall plate 3, but the inner shape is the same. Unlikely, both ends of the lower valve chamber 15 in the longitudinal direction are located inside of both ends of the upper valve chamber 14 in the longitudinal direction.

弁座4は円環状であり、上方弁室14に収められる大径部と、流路口16に隙間をもって勘合される小径部を備えている。弁座4の高さは、梁状部11の最大変位時の上方弁室高さよりも高くなるように設計されている。   The valve seat 4 has an annular shape, and includes a large-diameter portion that is accommodated in the upper valve chamber 14 and a small-diameter portion that is fitted into the flow path port 16 with a gap. The height of the valve seat 4 is designed to be higher than the height of the upper valve chamber when the beam-like portion 11 is displaced maximum.

弁室天板2は天面視して概略長方形であり、本発明の弁室天面部を構成する。弁室天板2の四隅それぞれには外部固定用のねじ穴を形成している。また、中央に流体流入用(または流体流出用)の流路口16を形成している。また、前述の側方弁室13に対面し、弁室の隅部分となる位置に流体流出用(または流体流入用)の流路口17を形成している。弁室底板7は、天面視して概略長方形であり、弁室の底面を構成する。   The valve chamber top plate 2 is substantially rectangular when viewed from the top, and constitutes the valve chamber top surface portion of the present invention. Screw holes for external fixation are formed in the four corners of the valve chamber top plate 2. In addition, a flow path port 16 for fluid inflow (or fluid outflow) is formed in the center. Further, a flow passage port 17 for fluid outflow (or fluid inflow) is formed at a position that faces the aforementioned side valve chamber 13 and becomes a corner portion of the valve chamber. The valve chamber bottom plate 7 is substantially rectangular when viewed from the top, and constitutes the bottom surface of the valve chamber.

また弁体板5は、図2(B)に分解斜視するように、上面板5A、圧電体5B、側板5C、下面板5D、およびコネクタ部5Eを備え、上面板5A、側板5C、下面板5Dを天面側から底面側にかけて順に積層した構成である。圧電体5Bは天面視して長方形であり、側板5Cは天面視して切り欠きが設けられたコの字状であり、側板5Cの切り欠き内に圧電体5Bが収められる。また、圧電体5Bの一端は切り欠き内から突出し、そこにコネクタ部5Eが設けられる。圧電体5Bの両面それぞれには電極が設けられ、コネクタ部5Eにそれぞれ電気的に接続される。また、圧電体5Bの表面はコーティング材によりコーティングし、これにより撥水性を付与している。コネクタ部5Eを介して圧電体5Bに駆動電圧を印加することにより、この弁体板5は底面側に凸に屈曲する。   Further, the valve body plate 5 includes an upper surface plate 5A, a piezoelectric body 5B, a side plate 5C, a lower surface plate 5D, and a connector portion 5E, as shown in an exploded perspective view in FIG. 2B. The upper surface plate 5A, the side plate 5C, and the lower surface plate 5D is laminated in order from the top surface side to the bottom surface side. The piezoelectric body 5B is rectangular when viewed from the top, and the side plate 5C is U-shaped with a notch when viewed from the top, and the piezoelectric body 5B is housed in the notch of the side plate 5C. One end of the piezoelectric body 5B protrudes from the notch, and a connector portion 5E is provided there. Electrodes are provided on both surfaces of the piezoelectric body 5B and are electrically connected to the connector portion 5E. The surface of the piezoelectric body 5B is coated with a coating material, thereby imparting water repellency. By applying a driving voltage to the piezoelectric body 5B via the connector portion 5E, the valve body plate 5 is bent convexly toward the bottom surface side.

また弁室底板7は、図2(C)に分解斜視するように、上面板7A、中間板7B、およびコネクタ固定板7Cを備え、それらを天面側から底面側にかけて順に積層した構成である。コネクタ固定板7Cにはコネクタ部5Eを固定するねじ穴を設けている。   Further, the valve chamber bottom plate 7 includes a top plate 7A, an intermediate plate 7B, and a connector fixing plate 7C, as shown in an exploded perspective view of FIG. . The connector fixing plate 7C is provided with a screw hole for fixing the connector portion 5E.

次に、圧電弁装置1への駆動電圧の印加状態の変化による動作について説明する。図3は、圧電弁構造1における長尺方向に平行な断面の模式図である。なお、ここでは流路口16を流入用、流路口17を流出用として説明する。
駆動電圧の非印加時には、図3(A)に示すように、梁状部11は略平坦であり、弁座4に中央部分が接触し、流路口16を閉鎖する。駆動電圧の印加時には、図3(B)に示すように、梁状部11は弁室の天面と逆側に屈曲し、中央部分が弁座4から離間して流路口16を開放する。したがって、駆動電圧の印加時には、順流、逆流を問わずに、流路口16と流路口17との間で流体が流れることになる。一方、駆動電圧の非印加時には、流路口17から流路口16への逆流、および、流路口16から流路口17への所定の流体圧未満の順流を遮断することになる。なお、流路口16から流路口17への順流が所定の流体圧以上であれば流体圧によって梁状部11は撓み、その際、順流が流れることになる。順流の流体圧の閾値は主に梁状部11の剛性によって定まる。
Next, the operation by changing the application state of the drive voltage to the piezoelectric valve device 1 will be described. FIG. 3 is a schematic view of a cross section parallel to the longitudinal direction in the piezoelectric valve structure 1. Here, the flow path port 16 will be described as inflow, and the flow path port 17 will be described as outflow.
When the drive voltage is not applied, the beam-like portion 11 is substantially flat as shown in FIG. 3A, the central portion contacts the valve seat 4, and the flow passage port 16 is closed. When the drive voltage is applied, as shown in FIG. 3B, the beam-like portion 11 bends to the opposite side to the top surface of the valve chamber, and the central portion is separated from the valve seat 4 to open the flow path port 16. Therefore, when the drive voltage is applied, fluid flows between the flow path port 16 and the flow path port 17 regardless of forward flow or reverse flow. On the other hand, when the drive voltage is not applied, the reverse flow from the flow path port 17 to the flow path port 16 and the forward flow from the flow path port 16 to the flow path port 17 below a predetermined fluid pressure are blocked. If the forward flow from the flow path port 16 to the flow path port 17 is equal to or higher than a predetermined fluid pressure, the beam-like portion 11 is bent by the fluid pressure, and the forward flow flows at that time. The threshold value of the forward fluid pressure is mainly determined by the rigidity of the beam-like portion 11.

次に、本実施形態に特徴的な構成である下壁面板6の構造と、下壁面板6から梁状部11に作用する力について説明する。図4は、弁座4を除いた状態の駆動電圧の非印加時、すなわち弁体板5に対して上壁面板3および下壁面板6からのみ力が作用する状態の模式図である。   Next, the structure of the lower wall surface plate 6 and the force acting on the beam-shaped portion 11 from the lower wall surface plate 6 will be described. FIG. 4 is a schematic diagram of a state in which a force is applied only to the valve body plate 5 from the upper wall surface plate 3 and the lower wall surface plate 6 when no driving voltage is applied in a state where the valve seat 4 is removed.

前述したように、下壁面板6は、下方弁室15の長尺方向両端が上方弁室14の長尺方向両端よりも内側に位置する形状である。ここで、下壁面板6における上壁面板3よりも弁室内側に突出する部位を、便宜的に壁面拡張部位8と称する。壁面拡張部位8(内側領域)は梁状部11に接合し、壁面拡張部位8を除く領域(外側領域)は枠状部12に接合する。壁面拡張部位8における弁室天面側の端部9は、枠状部12に接合する外側領域よりも弁室の天面側に突出する。この構成により、壁面拡張部位8に接触する梁状部11の両端部が、端部9から弁室の天面側に加圧されることになる。梁状部11の両端部が枠状部12に固定されているので、端部9からの加圧により梁状部11は天面側に凸に撓み、中央部分が弁室の天面側に位置することになる。   As described above, the lower wall plate 6 has a shape in which both ends in the longitudinal direction of the lower valve chamber 15 are positioned on the inner side than both ends in the longitudinal direction of the upper valve chamber 14. Here, a portion of the lower wall surface plate 6 that protrudes further toward the valve chamber than the upper wall surface plate 3 is referred to as a wall surface expansion portion 8 for convenience. The wall surface extension portion 8 (inner region) is joined to the beam-like portion 11, and the region (outer region) excluding the wall surface extension portion 8 is joined to the frame-like portion 12. The end portion 9 on the valve chamber top surface side in the wall surface expansion portion 8 protrudes toward the top surface side of the valve chamber from the outer region joined to the frame-shaped portion 12. With this configuration, both end portions of the beam-shaped portion 11 that contacts the wall surface expansion portion 8 are pressurized from the end portion 9 to the top surface side of the valve chamber. Since both end portions of the beam-shaped portion 11 are fixed to the frame-shaped portion 12, the beam-shaped portion 11 is bent convexly toward the top surface by the pressure from the end portion 9, and the central portion is directed to the top surface side of the valve chamber. Will be located.

この構成に図3(A)のような弁座4を適用した場合、弁座4は梁状部11と弁室天板2との間で圧縮方向に加圧されることになり、弁座4と弁室天板2との境界部分の距離を小さくすることができる。したがって、弁構造の繰り返しの使用により、構成部材の変形や経時劣化が生じたとしても、弁を閉じる状態を維持することができる。   When the valve seat 4 as shown in FIG. 3 (A) is applied to this configuration, the valve seat 4 is pressurized in the compression direction between the beam-shaped portion 11 and the valve chamber top plate 2. 4 and the valve chamber top plate 2 can be reduced in distance. Therefore, even if the structural member is deformed or deteriorates with time due to repeated use of the valve structure, the valve can be kept closed.

図5は、圧電弁構造1の製造方法を説明する図である。   FIG. 5 is a diagram for explaining a method of manufacturing the piezoelectric valve structure 1.

圧電弁構造1の製造フローでは、予め、積層構造の弁体板5と弁室底板7とがそれぞれ形成される。そして、配置ステージ52上に弁体板5、上壁面板3、弁室天板2の順に重ねた状態で、抑えガラス51で弁室天板2を抑えこむ。上壁面板3の上下面には、レーザ光を吸収する材料でコーディング膜を形成しておき、抑えガラス51を介してレーザ光53を上壁面板3に照射する。これにより、コーディング材を発熱させて弁体板5と上壁面板3と弁室天板2とを溶着して接合体を構成する(S11)。この工程が本発明の上壁接合工程である。   In the manufacturing flow of the piezoelectric valve structure 1, the laminated valve body plate 5 and the valve chamber bottom plate 7 are formed in advance. Then, the valve chamber top plate 2 is held by the holding glass 51 in a state where the valve body plate 5, the upper wall surface plate 3, and the valve chamber top plate 2 are stacked in this order on the arrangement stage 52. A coding film is formed on the upper and lower surfaces of the upper wall surface plate 3 with a material that absorbs laser light, and the upper wall surface plate 3 is irradiated with the laser light 53 through the holding glass 51. Thus, the coding material is heated to weld the valve body plate 5, the upper wall surface plate 3, and the valve chamber top plate 2 to form a joined body (S11). This process is the upper wall joining process of the present invention.

次に、抑えガラス51を外して、弁体板5、上壁面板3、弁室天板2の順番が逆になるように接合体を裏返し、弁体板5の上に下壁面板6、弁室底板7の順に重ねた状態とする(S12)。   Next, the holding glass 51 is removed, and the joined body is turned over so that the order of the valve body plate 5, the upper wall surface plate 3, and the valve chamber top plate 2 is reversed, and the lower wall surface plate 6 is placed on the valve body plate 5. The valve chamber bottom plate 7 is stacked in this order (S12).

次に、抑えガラス51で今度は弁室底板7を押さえ込む。下壁面板6の上下面には、レーザ光を吸収する材料でコーディング膜を形成しておき、抑えガラス51を介してレーザ光53を下壁面板6に照射することにより、局所加熱、局所加圧した状態でコーディング材を発熱させて弁体板5と下壁面板6と弁室底板7とを溶着して接合体を構成する(S13)。この工程が本発明の下壁接合工程である。   Next, the valve chamber bottom plate 7 is pressed down with the holding glass 51. A coating film is formed on the upper and lower surfaces of the lower wall surface plate 6 with a material that absorbs laser light, and the lower wall surface plate 6 is irradiated with the laser light 53 through the holding glass 51 to thereby perform local heating and local heating. In a pressed state, the coding material is heated to weld the valve body plate 5, the lower wall surface plate 6, and the valve chamber bottom plate 7 to form a joined body (S13). This process is the lower wall joining process of the present invention.

この製造方法によれば、上壁面板3の平面面積が下壁面板6の平面面積よりも小さいので、下壁面板6の加熱溶着時に部分的に下壁面板6を支える部材が存在せず、このため、熱により下壁面板6が弁体板5側に変形する。これにより、前述の図4に示したように、壁面拡張部位8における弁室の天面側の端部9が、下壁面板6における他の領域よりも弁室の天面側に突出する形状となる。
このような製造方法によって、本実施形態の圧電弁構造1の構成を、特別な工程の追加をせずに、製造することができる。
According to this manufacturing method, since the planar area of the upper wall surface plate 3 is smaller than the planar area of the lower wall surface plate 6, there is no member that partially supports the lower wall surface plate 6 when the lower wall surface plate 6 is heated and welded. For this reason, the lower wall surface plate 6 is deformed to the valve body plate 5 side by heat. As a result, as shown in FIG. 4 described above, the shape of the end portion 9 on the top surface side of the valve chamber in the wall surface expansion portion 8 protrudes toward the top surface side of the valve chamber from the other regions in the lower wall surface plate 6. It becomes.
With such a manufacturing method, the configuration of the piezoelectric valve structure 1 of the present embodiment can be manufactured without adding a special process.

図6は、圧電弁構造1の他の製造方法の一例を説明する図である。   FIG. 6 is a diagram for explaining an example of another manufacturing method of the piezoelectric valve structure 1.

圧電弁構造1の製造フローでは、予め、積層構造の弁体板5と弁室底板7とがそれぞれ形成される。そして、上壁面板3の枠状部と天面視形状が一致する加圧部55Aを備える配置ステージ55上に弁体板5、下壁面板6、弁室底板7の順に重ねた状態で、抑えガラス51で弁室底板7を抑えこむ。下壁面板6の上下面には、レーザ光を吸収する材料でコーディング膜を形成しておき、抑えガラス51を介してレーザ光53を下壁面板6に照射する。これにより、局所加熱、局所加圧した状態でコーディング材を発熱させて弁体板5と下壁面板6と弁室底板7とを溶着して接合体を構成する(S21)。この工程が本発明の下壁接合工程である。   In the manufacturing flow of the piezoelectric valve structure 1, the laminated valve body plate 5 and the valve chamber bottom plate 7 are formed in advance. And in the state where the valve plate 5, the lower wall plate 6, and the valve chamber bottom plate 7 are stacked in this order on the arrangement stage 55 including the pressurizing unit 55 </ b> A whose top surface shape matches the frame shape portion of the upper wall plate 3. The valve chamber bottom plate 7 is held by the holding glass 51. On the upper and lower surfaces of the lower wall surface plate 6, a coding film is formed with a material that absorbs laser light, and the lower wall surface plate 6 is irradiated with the laser light 53 through the holding glass 51. As a result, the coding material is heated in a state of being locally heated and locally pressurized, and the valve body plate 5, the lower wall surface plate 6 and the valve chamber bottom plate 7 are welded to form a joined body (S21). This process is the lower wall joining process of the present invention.

この工程によれば、配置ステージ55の加圧部55Aの平面面積が下壁面板6の平面面積よりも小さいので、下壁面板6の加熱溶着時に部分的に下壁面板6を支える部材が存在せず、このため、熱により下壁面部6が弁体板5側に変形する。これにより、壁面拡張部位8における弁室の天面側の端部9が、下壁面板6における他の領域よりも弁室の天面側に突出する形状となる。   According to this process, since the planar area of the pressurizing portion 55A of the arrangement stage 55 is smaller than the planar area of the lower wall surface plate 6, there is a member that partially supports the lower wall surface plate 6 when the lower wall surface plate 6 is heated and welded. Therefore, the lower wall surface portion 6 is deformed to the valve body plate 5 side by heat. As a result, the end portion 9 on the top surface side of the valve chamber in the wall surface expansion portion 8 has a shape protruding toward the top surface side of the valve chamber from other regions in the lower wall surface plate 6.

次に、抑えガラス51を外して、弁体板5、下壁面板6、弁室底板7の順番が逆になるように接合体を裏返し、弁体板5の上に上壁面板3、弁室天板2の順に重ねた状態とする(S22)。   Next, the holding glass 51 is removed, and the joined body is turned over so that the order of the valve plate 5, the lower wall plate 6, and the valve chamber bottom plate 7 is reversed, and the upper wall plate 3, the valve is placed on the valve plate 5. It is set as the state piled up in order of the room top plate 2 (S22).

次に、抑えガラス51で今度は弁室天板2を押さえ込む。上壁面板3の上下面には、レーザ光を吸収する材料でコーディング膜を形成しておき、抑えガラス51を介してレーザ光53を上壁面板3に照射することにより、局所加熱、局所加圧した状態でコーディング材を発熱させて弁体板5と上壁面板3と弁室天板2とを溶着して接合体を構成する(S23)。この工程が本発明の上壁接合工程である。
このような製造方法によって、本実施形態の圧電弁構造1の構成を、加圧部55Aを設けたステージ55を用意するのみで、特別な工程の追加をせずに、製造することができる。
Next, the valve chamber top plate 2 is pressed down with the holding glass 51. A coding film is formed on the upper and lower surfaces of the upper wall surface plate 3 with a material that absorbs laser light, and the upper wall surface plate 3 is irradiated with the laser light 53 through the holding glass 51 to thereby perform local heating and local heating. In a pressed state, the coding material is heated to weld the valve body plate 5, the upper wall surface plate 3, and the valve chamber top plate 2 to form a joined body (S23). This process is the upper wall joining process of the present invention.
By such a manufacturing method, the configuration of the piezoelectric valve structure 1 of the present embodiment can be manufactured by merely preparing the stage 55 provided with the pressurizing unit 55A without adding a special process.

《第2の実施形態》
次に、第2の実施形態に係る圧電弁構造について説明する。図7(A)は、弁座7を設けた状態での、駆動電圧の非印加時の模式断面図である。図7(B)は、弁座4を除いた状態での、駆動電圧の非印加時の模式断面図である。
<< Second Embodiment >>
Next, a piezoelectric valve structure according to the second embodiment will be described. FIG. 7A is a schematic cross-sectional view when the drive voltage is not applied in a state where the valve seat 7 is provided. FIG. 7B is a schematic cross-sectional view when the drive voltage is not applied, with the valve seat 4 removed.

本実施形態の下壁面板26は、天面視形状が上壁面板23および弁体板5の枠状部12と一致する。一方、下壁面板26および上壁面板23の断面形状が前述の第1の実施形態と相違し、両者の弁体板5との接合面が傾斜し、弁体板5との接合面における外側領域に比べて弁室近傍の内側領域が弁室の天面側に位置する構成である。このような構成でも、図7(B)に示す無負荷時の状態では、梁状部11の中央部分が両端部よりも弁室の天面側に位置して天面側に凸に撓むことになる。これにより、図7(A)のような弁座4を適用した場合に、弁座4は梁状部11と弁室天板2との間で圧縮方向に加圧されることになり、弁座4と弁室天板2との境界部分の距離を小さくすることができる。したがって、弁構造の繰り返しの使用により、構成部材の変形や経時劣化が生じたとしても、弁を閉じる状態を維持することができる。   The lower wall surface plate 26 of the present embodiment has a top view shape that matches the upper wall surface plate 23 and the frame-shaped portion 12 of the valve body plate 5. On the other hand, the cross-sectional shapes of the lower wall surface plate 26 and the upper wall surface plate 23 are different from those of the first embodiment described above, and the joint surfaces with both the valve body plates 5 are inclined, so The inner region near the valve chamber is located on the top side of the valve chamber as compared to the region. Even in such a configuration, in the no-load state shown in FIG. 7B, the central portion of the beam-shaped portion 11 is located closer to the top surface side of the valve chamber than the both end portions and bends to the top surface side. It will be. Accordingly, when the valve seat 4 as shown in FIG. 7A is applied, the valve seat 4 is pressurized in the compression direction between the beam-shaped portion 11 and the valve chamber top plate 2. The distance at the boundary between the seat 4 and the valve chamber top plate 2 can be reduced. Therefore, even if the structural member is deformed or deteriorates with time due to repeated use of the valve structure, the valve can be kept closed.

《第3の実施形態》
次に、第3の実施形態に係る圧電弁構造について説明する。図8(A)は、弁座4を設けた状態での、駆動電圧の非印加時の模式断面図である。図8(B)は、弁座4を除いた状態での、駆動電圧の非印加時の模式断面図である。
<< Third Embodiment >>
Next, a piezoelectric valve structure according to the third embodiment will be described. FIG. 8A is a schematic cross-sectional view when the drive voltage is not applied in a state where the valve seat 4 is provided. FIG. 8B is a schematic cross-sectional view when the drive voltage is not applied, with the valve seat 4 removed.

本実施形態の下壁面板36は、下方弁室15の長尺方向両端が上方弁室14の長尺方向両端よりも内側に位置するように壁面拡張部位8を設けた形状である。また、下壁面板36および上壁面板23の断面形状が前述の第2の実施形態と同様に、弁体板5との接合面が傾斜する構成である。なお、壁面拡張部位8の弁体板5との接合面は、外側領域に比べて急峻に突出する形状である。このような構成でも、上壁面板23および下壁面板36の弁体板5との接合面における外側領域に比べて弁室近傍の内側領域が弁室の天面側に位置し、図8(B)に示す無負荷時の状態では、梁状部11の中央部分が両端部よりも弁室の天面側に位置して天面側に凸に撓むことになる。   The lower wall surface plate 36 of the present embodiment has a shape in which the wall surface expanding portions 8 are provided such that both ends in the longitudinal direction of the lower valve chamber 15 are located inside the both ends in the longitudinal direction of the upper valve chamber 14. Moreover, the cross-sectional shape of the lower wall surface plate 36 and the upper wall surface plate 23 is a structure where the joint surface with the valve body plate 5 inclines like the above-mentioned 2nd Embodiment. In addition, the joint surface with the valve body board 5 of the wall surface expansion site | part 8 is a shape which protrudes sharply compared with an outer side area | region. Even in such a configuration, the inner region in the vicinity of the valve chamber is located on the top surface side of the valve chamber as compared with the outer region in the joint surface between the upper wall plate 23 and the lower wall plate 36 with the valve body plate 5. In the no-load state shown in B), the central portion of the beam-like portion 11 is located closer to the top surface side of the valve chamber than the both end portions and bends to the top surface side.

これにより、弁座4を設けた図8(A)の状態では、梁状部11の中央部分は弁座4に接触し、弁座4から作用する力と梁弾性とが釣り合うように梁状部11が変形する。このため、梁状部11は図8(B)に示す無負荷時の状態から平坦化することになる。また、弁座4は梁状部11と弁室天板2との間で圧縮方向に加圧され、弁座4と弁室天板2との境界部分や、弁座4と梁状部11との境界部分に隙間ができ難くなる。   Thus, in the state of FIG. 8A in which the valve seat 4 is provided, the central portion of the beam-shaped portion 11 is in contact with the valve seat 4 so that the force acting from the valve seat 4 is balanced with the beam elasticity. The part 11 is deformed. For this reason, the beam-shaped part 11 will be planarized from the state at the time of no load shown to FIG. 8 (B). Further, the valve seat 4 is pressurized in the compression direction between the beam-shaped portion 11 and the valve chamber top plate 2, and a boundary portion between the valve seat 4 and the valve chamber top plate 2, or the valve seat 4 and the beam-shaped portion 11. It becomes difficult to make a gap at the boundary part.

以上の各実施形態に示したように、本発明は、前記弁室の天面側で弁体が撓む方向の力をかけて弁体を支持することにより、ノーマリ−クローズの弁構造に隙間ができることを防ぐことが可能になる。   As shown in each of the above embodiments, the present invention provides a clearance between the normally-closed valve structure by supporting the valve body by applying a force in the direction in which the valve body bends on the top surface side of the valve chamber. Can be prevented.

1,21,31…圧電弁構造
2…弁室天板
3,23…弁室上壁板
4…弁座
5…弁体板
5A…上面板
5B…圧電体
5C…側板
5D…下面板
5E…コネクタ部
6,26,36…弁室下壁板
7…弁室底板
7A…上面板
7B…中間板
7C…コネクタ固定板
11…梁状部
12…枠状部
13…側方弁室
14…上方弁室
15…下方弁室
16,17…流路口
DESCRIPTION OF SYMBOLS 1, 21, 31 ... Piezoelectric valve structure 2 ... Valve chamber top plate 3,23 ... Valve chamber upper wall plate 4 ... Valve seat 5 ... Valve body plate 5A ... Upper surface plate 5B ... Piezoelectric material 5C ... Side plate 5D ... Lower surface plate 5E ... Connector portion 6, 26, 36 ... Valve chamber lower wall plate 7 ... Valve chamber bottom plate 7A ... Top plate 7B ... Intermediate plate 7C ... Connector fixing plate 11 ... Beam-shaped portion 12 ... Frame-shaped portion 13 ... Side valve chamber 14 ... Upper Valve chamber 15 ... Lower valve chamber 16, 17 ... Flow path port

Claims (6)

弁室の天面を構成し、少なくともひとつの流路口が形成される弁室天面部と、
前記弁室の底面を構成する弁室底面部と、
前記弁室の壁面を構成し、前記弁室天面部に接合される弁室上壁部と、
前記弁室の壁面を構成し、前記弁体底面部に接合される弁室下壁部と、
前記弁室上壁部と前記弁室下壁部とに支持される弁体両端部、および、前記弁体両端部間の弁体央部を備える弁体と、
前記流路口と前記弁体央部との間に位置する弁座と、を備え、
前記弁体への変形力の非作用時に前記弁座を介して前記弁体が流路口を閉鎖し、前記弁体への変形力の作用時に前記弁体が前記流路口を開放する、弁構造であって、
前記弁室の天面側に前記弁体央部が撓む方向の力を前記弁体両端部に加える加圧構造を、前記弁室下壁部に設けたことを特徴とする、弁構造。
Constituting the top surface of the valve chamber, and at least one flow passage port is formed;
A valve chamber bottom surface portion constituting the bottom surface of the valve chamber;
Constituting the wall surface of the valve chamber, and an upper wall portion of the valve chamber joined to the top surface of the valve chamber;
Constituting the wall surface of the valve chamber, and a valve chamber lower wall portion joined to the bottom surface portion of the valve body;
A valve body having both ends of the valve body supported by the valve chamber upper wall part and the valve chamber lower wall part, and a valve body central part between the valve body both ends,
A valve seat located between the flow passage opening and the central part of the valve body,
A valve structure in which the valve body closes the flow path port via the valve seat when the deformation force does not act on the valve body, and the valve body opens the flow path port when the deformation force acts on the valve body Because
The valve structure according to claim 1, wherein a pressure structure for applying a force in a direction in which the central part of the valve body is deflected to both ends of the valve body is provided on the top surface side of the valve chamber.
前記弁室下壁部は、前記弁体との接合面において、前記弁室近傍の内側領域が外側領域よりも前記弁室の天面側に位置する、請求項1に記載の弁構造。   2. The valve structure according to claim 1, wherein an inner region in the vicinity of the valve chamber is located closer to a top surface side of the valve chamber than an outer region in a joint surface with the valve body. 前記弁室下壁部は、前記弁室上壁部よりも前記弁室内に突出して前記弁体に接合する壁面拡張部位を備える請求項2に記載の弁構造。   The valve structure according to claim 2, wherein the valve chamber lower wall portion includes a wall surface expansion portion that protrudes into the valve chamber from the valve chamber upper wall portion and joins the valve body. 前記弁室下壁部は、前記弁体との接合面が前記弁室の天面に対して傾斜する、請求項2または3に記載の弁構造。   The valve structure according to claim 2 or 3, wherein the valve chamber lower wall portion has a joint surface with the valve body that is inclined with respect to a top surface of the valve chamber. 請求項3に記載の弁構造の製造方法であって、
前記弁室天面部と前記弁室上壁部と前記弁体とを順次積層し、接合する上壁接合工程、および、
前記上壁接合工程で得られた接合体の前記弁体に前記弁室下壁部と前記弁室底面部とを順次積層し、接合する下壁接合工程、を順に実施し、
前記下壁接合工程では、前記弁体と前記弁室下壁部との接合面を加圧しながら加熱接合する、弁構造の製造方法。
It is a manufacturing method of the valve structure according to claim 3,
An upper wall joining step of sequentially laminating and joining the valve chamber top surface portion, the valve chamber upper wall portion, and the valve body, and
The valve chamber lower wall portion and the valve chamber bottom surface portion are sequentially laminated on the valve body of the joined body obtained in the upper wall joining step, and the lower wall joining step of joining is sequentially performed.
In the lower wall joining step, a method for manufacturing a valve structure, in which the joint surface between the valve body and the valve chamber lower wall portion is heated and joined while being pressurized.
請求項3に記載の弁構造の製造方法であって、
前記弁室底面部と前記弁室下壁部と前記弁体とを順次積層し、接合する下壁接合工程、および、
前記上壁接合工程で得られた接合体の前記弁体に前記弁室上壁部と前記弁室天面部とを順次積層し、接合する上壁接合工程、を順に実施し、
前記下壁接合工程では、前記弁体と前記弁室下壁部との接合面における前記弁室上壁部に重なる領域を、局所的に加圧する加圧治具を用いて加熱接合する、弁構造の製造方法。
It is a manufacturing method of the valve structure according to claim 3,
A lower wall joining step of sequentially laminating and joining the valve chamber bottom surface portion, the valve chamber lower wall portion, and the valve body, and
The valve chamber upper wall portion and the valve chamber top surface portion are sequentially laminated on the valve body of the joined body obtained in the upper wall joining step, and the upper wall joining step for joining is sequentially performed.
In the lower wall joining step, a valve that is joined by heating using a pressurizing jig that locally pressurizes a region of the joint surface between the valve body and the valve chamber lower wall portion that overlaps the valve chamber upper wall portion. Structure manufacturing method.
JP2010082006A 2010-03-31 2010-03-31 Valve structure and method for manufacturing the same Pending JP2011214627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082006A JP2011214627A (en) 2010-03-31 2010-03-31 Valve structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082006A JP2011214627A (en) 2010-03-31 2010-03-31 Valve structure and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011214627A true JP2011214627A (en) 2011-10-27

Family

ID=44944580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082006A Pending JP2011214627A (en) 2010-03-31 2010-03-31 Valve structure and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011214627A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134227A (en) * 2013-01-08 2014-07-24 Tokai Rubber Ind Ltd Valve
CN107076137A (en) * 2014-10-23 2017-08-18 株式会社村田制作所 valve and fluid control device
CN108061024A (en) * 2016-11-09 2018-05-22 英业达(重庆)有限公司 Air flow-producing device and airflow generating method
CN108061025A (en) * 2016-11-09 2018-05-22 英业达(重庆)有限公司 Air flow-producing device and airflow generating method
JP7146204B1 (en) * 2022-03-31 2022-10-04 コフロック株式会社 flow control valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134227A (en) * 2013-01-08 2014-07-24 Tokai Rubber Ind Ltd Valve
CN107076137A (en) * 2014-10-23 2017-08-18 株式会社村田制作所 valve and fluid control device
CN108061024A (en) * 2016-11-09 2018-05-22 英业达(重庆)有限公司 Air flow-producing device and airflow generating method
CN108061025A (en) * 2016-11-09 2018-05-22 英业达(重庆)有限公司 Air flow-producing device and airflow generating method
JP7146204B1 (en) * 2022-03-31 2022-10-04 コフロック株式会社 flow control valve
CN116097027A (en) * 2022-03-31 2023-05-09 科赋乐株式会社 Flow control valve
WO2023188394A1 (en) * 2022-03-31 2023-10-05 コフロック株式会社 Flow rate control valve
CN116097027B (en) * 2022-03-31 2024-02-27 科赋乐株式会社 Flow control valve

Similar Documents

Publication Publication Date Title
JP2011214627A (en) Valve structure and method for manufacturing the same
JPWO2012140967A1 (en) Pump device
JP6460219B2 (en) Valve, fluid control device, and blood pressure measurement device
JP5062327B2 (en) Micro valve and valve seat member
JP5904554B2 (en) Single valve
CN101573548B (en) Piezoelectric valve
JPWO2013157304A1 (en) Valve, fluid control device
WO2020026908A1 (en) Vapor chamber
CN109638313B (en) Method for manufacturing single cell of fuel cell
JPWO2007111049A1 (en) Micro pump
JP5593907B2 (en) Piezoelectric pump and manufacturing method thereof
US20210229214A1 (en) Refrigerator and apparatus for fabricating the same
JP2021099928A (en) Manufacturing method of separator
JP2015191802A (en) fuel cell stack
JP6150040B2 (en) Fuel cell and fuel cell stack
JP2002106470A (en) Diaphragm pump
JP6574464B2 (en) Small fluid control device
JP5402673B2 (en) Conjugate and fluid equipment
JP6229874B2 (en) Membrane electrode assembly with frame, single fuel cell and fuel cell stack
JP7300117B2 (en) Piezoelectric valve and manufacturing method of the piezoelectric valve
JP2008180179A (en) Diaphragm pump
JP2004340097A (en) Small pump
JP5506511B2 (en) Film laminating device
JP2004046254A (en) Method for manufacturing liquid crystal display
TW201440292A (en) Fuel cell stack assembly and method of assembly