JP2011214557A - Cylinder injection type spark ignition internal combustion engine - Google Patents

Cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2011214557A
JP2011214557A JP2010085997A JP2010085997A JP2011214557A JP 2011214557 A JP2011214557 A JP 2011214557A JP 2010085997 A JP2010085997 A JP 2010085997A JP 2010085997 A JP2010085997 A JP 2010085997A JP 2011214557 A JP2011214557 A JP 2011214557A
Authority
JP
Japan
Prior art keywords
valve side
peripheral edge
cylinder
edge portion
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010085997A
Other languages
Japanese (ja)
Other versions
JP4994473B2 (en
Inventor
Toshihiko Hashiba
敏彦 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010085997A priority Critical patent/JP4994473B2/en
Publication of JP2011214557A publication Critical patent/JP2011214557A/en
Application granted granted Critical
Publication of JP4994473B2 publication Critical patent/JP4994473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylinder injection type spark ignition internal combustion engine, capable of forming air-fuel mixture allowing stable stratified burning in the vicinity of a spark plug and suppressing discharge of smoke and unburnt hydrocarbon in stratified burning.SOLUTION: The cylinder injection type spark ignition internal combustion engine includes a concave spherical cavity provided at the center of the top face of a piston, the cavity having an opening formed substantially concentrically with the piston. The opening of the cavity is formed by an intake valve-side peripheral edge portion located on the intake valve side and an exhaust valve-side peripheral edge portion located on the exhaust valve side. One of the intake valve-side peripheral edge portion and the exhaust valve-side peripheral edge portion is formed by a curved surface having a large curvature radius, compared with the other.

Description

この発明は、筒内噴射式火花点火内燃機関に関するものである。   The present invention relates to a direct injection spark ignition internal combustion engine.

筒内噴射式火花点火内燃機関は、周知のように、内燃機関の筒内に直接燃料を噴射し、点火プラグによる火花放電により可燃混合気に点火して燃焼させるようにした内燃機関であるが、この筒内噴射式火花点火内燃機関に於いて、圧縮行程で筒内に燃料を噴射することにより、点火時点に於いて点火プラグ近傍だけに可燃混合気を形成し、筒内全体としては希薄な混合気の燃焼を可能とする成層燃焼を実施するようにしたものがある。   As is well known, an in-cylinder spark-ignition internal combustion engine is an internal combustion engine in which fuel is directly injected into a cylinder of the internal combustion engine, and a combustible mixture is ignited and burned by spark discharge by an ignition plug. In this in-cylinder spark ignition internal combustion engine, by injecting fuel into the cylinder in the compression stroke, a combustible air-fuel mixture is formed only near the spark plug at the time of ignition, and the entire in-cylinder is lean. There is a type in which stratified combustion that enables combustion of an air-fuel mixture is performed.

しかし成層燃焼の場合、可燃混合気の形成位置が点火プラグからずれると、着火不良や失火、並びに着火タイミングの遅れによる燃焼変動を生じるため、良好な成層燃焼を実施するためには、点火プラグ近傍に可燃混合気を安定的に形成することが重要となる。   However, in the case of stratified combustion, if the formation position of the combustible mixture deviates from the spark plug, ignition fluctuations, misfires, and combustion fluctuations due to ignition timing delays occur, so in order to perform good stratified combustion, in the vicinity of the spark plug It is important to stably form a combustible mixture.

これに対して、従来の筒内噴射式火花点火内燃機関の中には、燃焼室頂部のほぼ中央部に点火プラグを配置すると共に燃焼室頂部の周縁部に燃料噴射弁を配置し、燃料噴射弁の下方から点火プラグの下方まで延びる凹溝をピストン頂面に形成し、吸気弁下方のシリンダ内壁面に沿って下降した後ピストン頂面上において向きを変え、次いで排気弁下方において上昇する旋回流(タンブル流)を燃焼室内に発生させ、燃料噴射弁から凹溝内に向けて噴射された燃料を凹溝の底壁面により案内して点火プラグ近傍に向かわせることで、混合気を点火プラグ近傍に形成させて成層燃焼を実施する技術が提案されている(例えば、特許文献1参照)。   On the other hand, in a conventional in-cylinder spark ignition internal combustion engine, an ignition plug is arranged at the substantially central portion of the combustion chamber top portion and a fuel injection valve is arranged at the peripheral portion of the combustion chamber top portion. A concave groove extending from the lower side of the valve to the lower side of the spark plug is formed on the piston top surface, descends along the cylinder inner wall surface below the intake valve, changes direction on the piston top surface, and then turns up below the exhaust valve A flow (tumble flow) is generated in the combustion chamber, and the fuel injected from the fuel injection valve into the concave groove is guided by the bottom wall surface of the concave groove and directed toward the vicinity of the spark plug. A technique for forming stratified combustion in the vicinity has been proposed (see, for example, Patent Document 1).

又、従来、ピストンの冠面に凹状でかつ周縁部が隆起して稜線をなすキャビティを有し、かつ前記キャビティの中心をピストンの中心に対しオフセットさせると共に、最適に設定されたキャビティ内の隅部のアールにより、成層混合気をスムーズに点火プラグ近傍に輸送し、成層燃焼を実施するようにした技術が提案されている(例えば、特許文献2参照)。   Further, conventionally, there is a cavity that is concave on the crown surface of the piston and has a ridge that is raised at the periphery, and the center of the cavity is offset with respect to the center of the piston, and the corner within the cavity that is set optimally A technique has been proposed in which the stratified mixture is smoothly transported to the vicinity of the spark plug and the stratified combustion is performed by the R of the part (see, for example, Patent Document 2).

特開平10−54247号公報JP-A-10-54247 特開平11−182336号公報Japanese Patent Laid-Open No. 11-182336

図7は、従来の筒内噴射式火花点火内燃機関に於ける圧縮行程後期の混合気挙動を示す説明図である。従来の筒内噴射式火花点火内燃機関は、図7に示すように、凹溝(キャビティ)31がピストン36の中心32に対して吸気弁33側に偏った位置に形成されており、内燃機関の圧縮行程後期に於いて、排気弁34側のシリンダヘッド35とピストン36との間のスキッシュ部からキャビティ31方向に向かって発生するスキッシュ流37により、燃料噴射後にキャビティ31の底壁面や、キャビティ31内の隅部のアール部Rにより点火プラグ38近傍に案内された混合気39が点火プラグ38近傍から離れた場所へと押し流されてしまうため、点火位置での混合気濃度がリーン化して点火や火炎伝播が悪化するなど、安定的な成層燃焼の実現が困難となる問題がある。   FIG. 7 is an explanatory diagram showing the behavior of the air-fuel mixture in the latter half of the compression stroke in the conventional in-cylinder injection spark ignition internal combustion engine. As shown in FIG. 7, the conventional in-cylinder spark ignition internal combustion engine has a concave groove (cavity) 31 formed at a position offset toward the intake valve 33 side with respect to the center 32 of the piston 36. In the latter half of the compression stroke, a squish flow 37 generated from the squish portion between the cylinder head 35 and the piston 36 on the exhaust valve 34 side toward the cavity 31 causes the bottom wall surface of the cavity 31 and the cavity after the fuel injection. Since the air-fuel mixture 39 guided to the vicinity of the spark plug 38 by the rounded portion R in the corner portion 31 is swept away from the vicinity of the spark plug 38, the air-fuel mixture concentration at the ignition position becomes lean and ignition occurs. There is a problem that it becomes difficult to realize stable stratified combustion, such as deterioration of flame propagation.

特に筒内噴射式火花点火内燃機関を、熱効率・燃料消費率の向上を狙って高圧縮比に設定した場合には、前述のスキッシュ部はより狭くなって、圧縮行程後期にキャビティ31に押し出されるガス量が多くなりスキッシュ流37の強さが増大することから、点火プラグ38近傍の混合気39はより点火プラグ38から離れた場所へと押し流されて成層燃焼が不安定となる。   In particular, when the in-cylinder injection spark ignition internal combustion engine is set to a high compression ratio in order to improve the thermal efficiency and the fuel consumption rate, the aforementioned squish portion becomes narrower and is pushed out into the cavity 31 in the later stage of the compression stroke. Since the amount of gas increases and the strength of the squish flow 37 increases, the air-fuel mixture 39 in the vicinity of the spark plug 38 is pushed away to a place further away from the spark plug 38 and stratified combustion becomes unstable.

又、一方で、ピストン頂部のキャビティ31に向けて噴射され、キャビティ内壁面に付着した燃料は、ピストン壁面からの受熱、及び燃焼室の圧縮により高温化したガスからの受熱により気化が進行するが、圧縮行程後半では、ピストンの上昇により燃焼室が扁平化するのに伴い、吸気行程において燃焼室内に形成されたタンブル流は押しつぶされて急激に減衰することから、気化した燃料は点火プラグ方向へと十分に輸送されず、その結果、キャビティ壁面の近傍に燃料濃度の濃い混合気がたまってしまうため、成層燃焼時にスモークや未燃炭化水素が多く発生する要因となる。   On the other hand, the fuel injected to the cavity 31 at the top of the piston and adhering to the inner wall surface of the cavity is vaporized by receiving heat from the piston wall surface and receiving heat from the gas heated by compression of the combustion chamber. In the latter half of the compression stroke, as the combustion chamber is flattened due to the rise of the piston, the tumble flow formed in the combustion chamber in the intake stroke is crushed and abruptly attenuated. As a result, an air-fuel mixture with a high fuel concentration accumulates in the vicinity of the cavity wall surface, which causes a large amount of smoke and unburned hydrocarbons during stratified combustion.

この発明は、前述のような従来の筒内噴射式火花点火内燃機関に於ける課題を解決するためになされたものであり、高圧縮比の筒内噴射式火花点火内燃機関のようなスキッシュ流が強く混合気が安定し難い条件においても点火プラグ近傍に安定した混合気を形成すると共に、成層燃焼時のスモーク、未燃炭化水素の発生を抑制可能とする筒内噴射式火花点火内燃機関を提供することを目的とするものである。   The present invention has been made in order to solve the problems in the conventional in-cylinder injection spark-ignition internal combustion engine as described above. In-cylinder spark-ignition internal combustion engine that can form a stable air-fuel mixture in the vicinity of the spark plug even under conditions where the air-fuel mixture is strong and difficult to stabilize, and can suppress the generation of smoke and unburned hydrocarbons during stratified combustion It is intended to provide.

この発明による筒内噴射式火花点火内燃機関は、ピストンを収納したシリンダと、前記シリンダに固定されたシリンダヘッドと、前記ピストンの頂面と前記シリンダヘッドの内面との間に形成された燃焼室内に直接燃料を噴射する燃料噴射弁と、前記シリンダの吸気ポートに設けられた吸気弁と、前記シリンダの排気ポートに設けられた排気弁と、前記燃焼室の頂部の略中心部に位置して前記シリンダヘッドに固定された点火プラグとを有し、圧縮行程の間に前記燃料噴射弁から前記燃焼室内に噴射された燃料を、前記点火プラグにより点火して成層燃焼を行うようにした筒内噴射式火花点火内燃機関であって、前記ピストンは、その頂面の中央部に前記ピストンとほぼ同心円に形成された開口部を有する凹型球面状のキャビティを備え、前記キャビティの開口部は、前記吸気弁側に位置する吸気弁側周縁エッジ部と、前記排気弁側に位置する排気弁側周縁エッジ部とにより形成され、前記吸気弁側周縁エッジ部と前記排気弁側周縁エッジ部とのうちの一方は、他方に比して曲率半径の大きな曲面により形成されている、
ことを特徴とするものである。
A cylinder injection spark ignition internal combustion engine according to the present invention includes a cylinder housing a piston, a cylinder head fixed to the cylinder, and a combustion chamber formed between a top surface of the piston and an inner surface of the cylinder head. A fuel injection valve that directly injects fuel into the cylinder, an intake valve provided in the intake port of the cylinder, an exhaust valve provided in the exhaust port of the cylinder, and a substantially central portion of the top of the combustion chamber. An in-cylinder having an ignition plug fixed to the cylinder head and configured to perform stratified combustion by igniting the fuel injected from the fuel injection valve into the combustion chamber during the compression stroke by the ignition plug An injection-type spark ignition internal combustion engine, wherein the piston includes a concave spherical cavity having an opening formed substantially concentrically with the piston at a central portion of a top surface thereof. The opening of the cavity is formed by an intake valve side peripheral edge portion positioned on the intake valve side and an exhaust valve side peripheral edge portion positioned on the exhaust valve side, and the intake valve side peripheral edge portion and the exhaust valve One of the side peripheral edge portions is formed by a curved surface having a larger radius of curvature than the other.
It is characterized by this.

この発明による筒内噴射式火花点火内燃機関は、ピストンの上昇によりピストン頂面側へと偏流したスキッシュ流が、前記吸気弁側周縁エッジ部と前記排気弁側周縁エッジ部とのうちの一方を形成する曲面によりガイドされてキャビティの内壁面に沿う流動となる一方で、前記吸気弁側周縁エッジ部と前記排気弁側周縁エッジ部とのうちの他方側では、スキッシュ流は周縁エッジ部で剥離し、そのままキャビティ上部へと向かう流動となることから、これら一対の強さのほぼ等しいスキッシュ流れの相互作用によって、キャビティ内部にタンブル流動を形成する。   In the cylinder injection type spark ignition internal combustion engine according to the present invention, the squish flow that has drifted to the piston top surface side due to the piston ascending causes one of the intake valve side peripheral edge portion and the exhaust valve side peripheral edge portion to On the other side of the intake valve side peripheral edge portion and the exhaust valve side peripheral edge portion, the squish flow is separated at the peripheral edge portion while being guided by the curved surface to be formed and flowing along the inner wall surface of the cavity. Then, since it flows toward the upper part of the cavity as it is, a tumble flow is formed inside the cavity by the interaction of the pair of squish flows having almost the same strength.

その結果、圧縮行程後期に発生するスキッシュ流によって燃焼室外周部からキャビティ中心部へと集められる混合気は、その後上記キャビティ内のタンブル流動に乗ってキャビティ中心部にしっかりと保持されることになるため、キャビティ中心上部に設けられた点火プラグの近傍に安定した混合気を長期間にわたって形成する。   As a result, the air-fuel mixture collected from the outer periphery of the combustion chamber to the center of the cavity by the squish flow generated in the latter half of the compression stroke is then firmly held in the center of the cavity by riding on the tumble flow in the cavity. Therefore, a stable air-fuel mixture is formed over a long period in the vicinity of the spark plug provided at the upper center of the cavity.

又、キャビティ内部に形成された前記タンブル流動は、圧縮行程噴射時にキャビティ内壁面に付着した燃料と圧縮高温ガスとの熱伝達を向上させるため、付着燃料の気化を促進すると共に、気化した燃料を壁面近傍に滞留させることなく輸送・攪拌し、空気との混合を促進することで燃料濃度が均質化されるため、成層燃焼時においてスモークや未燃炭化水素の排出を抑制する。   Further, the tumble flow formed inside the cavity improves the heat transfer between the fuel adhering to the inner wall surface of the cavity and the compressed hot gas during the compression stroke injection. Since the fuel concentration is homogenized by transporting and stirring without allowing it to stay in the vicinity of the wall surface and promoting mixing with air, the emission of smoke and unburned hydrocarbons is suppressed during stratified combustion.

この発明による筒内噴射式火花点火内燃機関によれば、ピストンは、その頂面の中央部に前記ピストンとほぼ同心円に形成された開口部を有する凹型球面状のキャビティを備え、前記キャビティの開口部は、吸気弁側に位置する吸気弁側周縁エッジ部と、排気弁側に位置する排気弁側周縁エッジ部とにより形成され、前記吸気弁側周縁エッジ部と前記排気弁側周縁エッジ部とのうちの一方は、他方に比して曲率半径の大きな曲面により形成されているので、圧縮行程後期において発生するスキッシュ流は、燃焼室外周部からキャビティ中心部へと向かう流れとなると共に、キャビティ中心に対して対向するスキッシュ流の強さはほぼ等しくバランスすることから、圧縮行程噴射により燃焼室内に形成された混合気は、圧縮行程後期に於いて、スキッシュ流により確実にキャビティの中心部に向けて集められ、点火プラグ近傍に安定した混合気を形成すると共に、成層燃焼時のスモーク、未燃炭化水素の発生の抑制が可能となる。   According to the in-cylinder spark-ignition internal combustion engine according to the present invention, the piston includes a concave spherical cavity having an opening formed substantially concentrically with the piston at the center of the top surface of the piston. The portion is formed by an intake valve side peripheral edge portion positioned on the intake valve side and an exhaust valve side peripheral edge portion positioned on the exhaust valve side, and the intake valve side peripheral edge portion and the exhaust valve side peripheral edge portion Since one of these is formed by a curved surface having a larger radius of curvature than the other, the squish flow generated in the latter half of the compression stroke is a flow from the outer periphery of the combustion chamber toward the center of the cavity, and the cavity Since the strength of the squish flow facing the center balances almost equally, the air-fuel mixture formed in the combustion chamber by the compression stroke injection is in the latter half of the compression stroke. Reliably gathered toward the center of the cavity by quiche stream, thereby forming a stable mixture in the vicinity of the spark plug, the stratified combustion smoke, it is possible to suppress the generation of unburned hydrocarbons.

この発明の実施の形態1による筒内噴射式火花点火内燃機関の縦断面図である。1 is a longitudinal sectional view of a direct injection spark ignition internal combustion engine according to Embodiment 1 of the present invention. FIG. この発明の実施の形態1による筒内噴射式火花点火内燃機関に於けるピストンの上面図である。1 is a top view of a piston in a direct injection spark ignition internal combustion engine according to Embodiment 1 of the present invention. FIG. この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いて、圧縮行程噴射を行ったときの燃料噴霧挙動を示す説明図である。FIG. 6 is an explanatory diagram showing fuel spray behavior when a compression stroke injection is performed in the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention. この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いて、圧縮行程噴射終了後に形成される混合気挙動を示す説明図である。FIG. 3 is an explanatory view showing a mixture behavior formed after completion of compression stroke injection in a direct injection spark ignition internal combustion engine according to Embodiment 1 of the present invention; この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いて、圧縮行程後期に形成されるスキッシュ流、並びに混合気挙動を示す説明図である。FIG. 5 is an explanatory diagram showing a squish flow and an air-fuel mixture behavior formed in the latter half of the compression stroke in the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention. この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いて、圧縮行程後期に形成されるタンブル流動、並びに混合気挙動を示す説明図である。FIG. 5 is an explanatory diagram showing tumble flow and air-fuel mixture behavior formed in the latter half of the compression stroke in the direct injection spark ignition internal combustion engine according to Embodiment 1 of the present invention. 従来の筒内噴射式火花点火内燃機関に於ける圧縮行程後期の混合気挙動を示す説明図である。It is explanatory drawing which shows the air-fuel | gaseous mixture behavior in the latter half of the compression stroke in the conventional cylinder injection type spark ignition internal combustion engine.

実施の形態1.
以下、この発明の実施の形態1による筒内噴射式火花点火内燃機関について、図を参照して説明する。図1は、この発明の実施の形態1による筒内噴射式火花点火内燃機関の縦断面図である。図2は、この発明の実施の形態1による筒内噴射式火花点火内燃機関に於けるピストンの上面図である。図1及び図2に於いて、円筒形のシリンダ1内にはピストン2が嵌合されている。シリンダ1の上には、所謂、ペントルーフ型のシリンダヘッド3が固定されており、ピストン2の頂面とシリンダヘッド3の下面との間に燃焼室4が形成されている。
Embodiment 1 FIG.
Hereinafter, a direct injection spark ignition internal combustion engine according to Embodiment 1 of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of a direct injection spark ignition internal combustion engine according to Embodiment 1 of the present invention. FIG. 2 is a top view of the piston in the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention. 1 and 2, a piston 2 is fitted in a cylindrical cylinder 1. A so-called pent roof type cylinder head 3 is fixed on the cylinder 1, and a combustion chamber 4 is formed between the top surface of the piston 2 and the lower surface of the cylinder head 3.

シリンダヘッド3には、2つの吸気ポート5(図1には1つのみ表示されている)と、2つの排気ポート6(図1には1つのみ表示されている)が設けられている。吸気ポート5は吸気弁7を介して燃焼室4内に通じ、排気ポート6は排気弁8を介して燃焼室4内に通じている。又、シリンダヘッド3には燃焼室4内へ燃料を直接噴射する燃焼噴射弁9が、その中心軸が斜め下方を向くように設置されていると共に、シリンダヘッド3の中央部には点火プラグ10が設置されている。   The cylinder head 3 is provided with two intake ports 5 (only one is shown in FIG. 1) and two exhaust ports 6 (only one is shown in FIG. 1). The intake port 5 communicates with the combustion chamber 4 via the intake valve 7, and the exhaust port 6 communicates with the combustion chamber 4 via the exhaust valve 8. The cylinder head 3 is provided with a combustion injection valve 9 for directly injecting fuel into the combustion chamber 4 so that its central axis is directed obliquely downward, and a spark plug 10 is provided at the center of the cylinder head 3. Is installed.

ペントルーフ型のシリンダヘッド3は、図1に示すように吸気弁7側と排気弁8側に夫々形成された2つの傾斜面を備えている。ピストン2の頂面は、シリンダヘッド3の吸気弁7側の傾斜面に略平行に傾斜する吸気弁側傾斜面11と、シリンダヘッド3の排気弁8側の傾斜面に略平行に傾斜する排気弁側傾斜面12とを備えている。又、ピストン2の頂面中央部には、図1及び図2に示すように、開口部の形状がピストン外形円の中心13と同一の中心を有する円形凹型の球面状のキャビティ14が設けられている。   As shown in FIG. 1, the pent roof type cylinder head 3 includes two inclined surfaces formed on the intake valve 7 side and the exhaust valve 8 side, respectively. The top surface of the piston 2 has an intake valve side inclined surface 11 inclined substantially parallel to the inclined surface on the intake valve 7 side of the cylinder head 3 and an exhaust gas inclined substantially parallel to an inclined surface on the exhaust valve 8 side of the cylinder head 3. And a valve-side inclined surface 12. Further, as shown in FIGS. 1 and 2, a circular concave spherical cavity 14 having an opening having the same center as the center 13 of the piston outer circle is provided at the center of the top surface of the piston 2. ing.

又、ピストン2の頂面に於けるキャビティ14の開口部の周縁エッジ部のうち、排気弁側傾斜面12上に位置する排気弁側周縁エッジ部141は、排気弁側傾斜面12と球面状のキャビティ14の内壁面とをなめらかに接続する曲率半径の大きな曲面に形成されている。一方、キャビティ14の開口部の周縁エッジ部のうち、吸気弁側傾斜面11上に位置する吸気弁側周縁エッジ部142は、曲面には形成されていない。尚、吸気弁側周縁エッジ部142を曲面により形成した場合でも、その曲率半径は、排気弁側周縁エッジ部141を形成する曲面の曲率半径よりも小さな曲率半径とされる。排気弁側周縁エッジ部141と吸気弁側周縁エッジ部142との2か所の接続部16に於いて燃焼室流動の乱れ変動や付着燃料だまりの要因となる段差ができないように、排気弁側周縁エッジ部141の曲面の曲率半径は、吸気弁側周縁エッジ部142に向かって漸次小さくなるように形成されている。   Of the peripheral edge portions of the opening of the cavity 14 on the top surface of the piston 2, the exhaust valve side peripheral edge portion 141 located on the exhaust valve side inclined surface 12 is spherical with the exhaust valve side inclined surface 12. It is formed in a curved surface having a large curvature radius that smoothly connects the inner wall surface of the cavity 14. On the other hand, among the peripheral edge portions of the opening of the cavity 14, the intake valve side peripheral edge portion 142 located on the intake valve side inclined surface 11 is not formed on a curved surface. Even when the intake valve side peripheral edge portion 142 is formed of a curved surface, the radius of curvature thereof is smaller than the curvature radius of the curved surface forming the exhaust valve side peripheral edge portion 141. Exhaust valve side edge portion 141 and intake valve side peripheral edge portion 142 are connected to the exhaust valve side so that there is no step that causes fluctuations in combustion chamber flow fluctuations and accumulated fuel accumulation at two connection portions 16. The radius of curvature of the curved surface of the peripheral edge portion 141 is formed so as to gradually decrease toward the intake valve side peripheral edge portion 142.

次に、以上のように構成されたこの発明の実施の形態1による筒内噴射式火花点火内燃機関の動作について説明する。図3は、この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いて、圧縮行程噴射を行ったときの燃料噴霧挙動を示す説明図である。成層燃焼の実施に於いて、図3に示すように、燃料噴射弁9から内燃機関の負荷や回転数等の運転条件に対応した燃料噴射量(噴射期間)、及び燃料噴射タイミングにより、燃焼室4内に向けて燃料噴霧20が噴射される。   Next, the operation of the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention configured as described above will be described. FIG. 3 is an explanatory view showing the fuel spray behavior when the compression stroke injection is performed in the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention. In the execution of stratified combustion, as shown in FIG. 3, the combustion chamber has a fuel injection amount (injection period) corresponding to operating conditions such as the load and rotation speed of the internal combustion engine and the fuel injection timing. The fuel spray 20 is injected toward the inside 4.

噴射された燃料噴霧20は、燃焼室4内のガスからの受熱により気化され、燃焼室4内に混合気を形成する一方で、成層燃焼に於ける圧縮行程噴射では、図3に示すように、燃料噴射期間に於いても時々刻々と容積が減少する狭い燃焼室4内に燃料を噴射しなければならないこと、並びに一般的に燃料噴霧20を微粒化して燃料の気化を促進させることを目的として燃料が高圧噴射されるため、燃料は燃焼室4内のガス流動に比べて比較的強い勢いで噴射される。このため、燃料噴射量や燃料噴射タイミング、内燃機関の回転数によるピストン上昇速度といった運転条件にも依存するが、多くの内燃機関の運転条件に於いて、燃料噴霧20の一部は十分に気化されないままピストン2の頂面に衝突して付着し、ピストン2の頂面、主にピストン2の頂面に設けたキャビティ14の内壁面に燃料液膜21が形成される。   The injected fuel spray 20 is vaporized by receiving heat from the gas in the combustion chamber 4 to form an air-fuel mixture in the combustion chamber 4, while in the compression stroke injection in stratified combustion, as shown in FIG. The purpose is to inject fuel into the narrow combustion chamber 4 whose volume decreases every moment even during the fuel injection period, and generally to promote fuel vaporization by atomizing the fuel spray 20. Since the fuel is injected at a high pressure, the fuel is injected at a relatively strong momentum as compared with the gas flow in the combustion chamber 4. For this reason, although depending on the operating conditions such as the fuel injection amount, the fuel injection timing, and the piston ascending speed depending on the rotational speed of the internal combustion engine, a part of the fuel spray 20 is sufficiently vaporized in many operating conditions of the internal combustion engine. The fuel liquid film 21 is formed on the top surface of the piston 2, mainly on the inner wall surface of the cavity 14 provided on the top surface of the piston 2.

図4は、この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いて、圧縮行程噴射終了後に形成される混合気挙動を示す説明図である。燃料噴射終了後に於いては、燃焼室4内に形成された混合気は、燃焼室4内での流動や周囲のガスとの燃料濃度差による濃度拡散により、燃焼室4内に拡散していく一方で、ピストン2の頂面に形成された燃料液膜21はピストン2からの受熱、又は燃焼室4の圧縮によって高温化したガスからの受熱により気化が進行するため、一般的に図4に示すように、キャビティ4の内壁面近傍の燃料濃度が濃く、燃焼室4外周に向かって燃料濃度が薄くなる混合気22が燃焼室4内に形成される。   FIG. 4 is an explanatory diagram showing the mixture behavior formed after the compression stroke injection is completed in the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention. After the fuel injection is completed, the air-fuel mixture formed in the combustion chamber 4 diffuses into the combustion chamber 4 due to flow in the combustion chamber 4 and concentration diffusion due to a difference in fuel concentration with the surrounding gas. On the other hand, since the fuel liquid film 21 formed on the top surface of the piston 2 is vaporized by heat reception from the piston 2 or heat reception from a gas whose temperature has been increased by compression of the combustion chamber 4, generally, FIG. As shown, an air-fuel mixture 22 is formed in the combustion chamber 4 in which the fuel concentration near the inner wall surface of the cavity 4 is high and the fuel concentration decreases toward the outer periphery of the combustion chamber 4.

このとき、一般的にピストン2の頂面にキャビティ14を有する燃焼室4では、圧縮行程後期に於いて、燃焼室4内で容積が大きく減少するキャビティ外周部分であるスキッシュ部から容積の大きいキャビティ14に向けてガスを押し込もうとする流れ、所謂、スキッシュ流が発生する。   At this time, generally, in the combustion chamber 4 having the cavity 14 on the top surface of the piston 2, the cavity having a large volume from the squish portion which is the outer peripheral portion of the cavity whose volume is greatly decreased in the combustion chamber 4 in the latter half of the compression stroke. The flow which pushes gas toward 14, that is, a so-called squish flow is generated.

この発明の実施の形態1による筒内噴射式火花点火内燃機関では、図2に示したように、ピストン2の頂面の中心に凹型のキャビティ14をピストン外形円と同心円状の開口部を有するように設けているため、キャビティ14の外部の燃焼室4の容積はキャビティ14の中心に対して対称である。   In the in-cylinder spark ignition internal combustion engine according to Embodiment 1 of the present invention, as shown in FIG. 2, a concave cavity 14 is provided at the center of the top surface of the piston 2 and has an opening concentric with the piston outer circle. Therefore, the volume of the combustion chamber 4 outside the cavity 14 is symmetric with respect to the center of the cavity 14.

図5は、この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いて、圧縮行程後期に形成されるスキッシュ流、並びに混合気挙動を示す説明図である。図5に示すように、この発明の実施の形態1による筒内噴射式火花点火内燃機関によれば、圧縮行程後期で燃焼室4内に発生する吸気弁側スキッシュ流17、並びに排気弁側スキッシュ流18は、全て燃焼室4の外周部からキャビティ14の中心部へと向かう流れとなると共に、キャビティ14の中心に対して対向する吸気弁側スキッシュ流17と排気弁側スキッシュ流18の強さはほぼ等しく、キャビティ14中心に於いてバランスする。   FIG. 5 is an explanatory diagram showing a squish flow formed in the latter half of the compression stroke and a mixture behavior in the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention. As shown in FIG. 5, according to the in-cylinder spark ignition internal combustion engine according to the first embodiment of the present invention, the intake valve side squish flow 17 generated in the combustion chamber 4 in the latter half of the compression stroke, and the exhaust valve side squish. The flow 18 is all directed from the outer periphery of the combustion chamber 4 toward the center of the cavity 14, and the strength of the intake valve-side squish flow 17 and the exhaust valve-side squish flow 18 facing the center of the cavity 14. Are approximately equal and balance at the center of the cavity 14.

その結果、圧縮行程噴射により燃焼室4内に形成された図4に示す混合気22は、燃焼室4の圧縮が進行して圧縮行程後期になると、図5に示すように、吸気弁側スキッシュ流17、並びに排気弁側スキッシュ流18により確実にキャビティ14の中心部に向けて集められる。ここで、この発明の実施の形態1による筒内噴射式火花点火内燃機関では、図1に示すように、ペントルーフ型のシリンダヘッド3と、ペントルーフ型のピストン2の頂面で構成された高圧縮比タイプの燃焼室4とされているため、圧縮行程後期に於いて強い排気弁側スキッシュ流18、及び吸気弁側スキッシュ流17を発生させることができ、確実にキャビティ14の中心部に混合気22を集めることが可能となる。   As a result, the air-fuel mixture 22 shown in FIG. 4 formed in the combustion chamber 4 by the compression stroke injection, when the compression of the combustion chamber 4 proceeds and in the latter stage of the compression stroke, as shown in FIG. The flow 17 and the exhaust valve side squish flow 18 are surely collected toward the center of the cavity 14. Here, in the in-cylinder injection spark ignition internal combustion engine according to the first embodiment of the present invention, as shown in FIG. 1, a high compression composed of a pent roof type cylinder head 3 and a top surface of a pent roof type piston 2. Due to the ratio type combustion chamber 4, a strong exhaust valve side squish flow 18 and intake valve side squish flow 17 can be generated in the latter half of the compression stroke, and the air-fuel mixture is surely mixed at the center of the cavity 14. 22 can be collected.

図6は、この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いて、圧縮行程後期に形成されるタンブル流動、並びに混合気挙動を示す説明図である。図6に示すように、この発明の実施の形態1による筒内噴射式火花点火内燃機関に於いては、キャビティ14の排気弁側周縁エッジ部141が、排気弁側傾斜面12と球面状のキャビティ14の内壁面とをなめらかにつなぐように曲率半径の大きな曲面により形成されているため、排気弁側傾斜面12からキャビティ14の中心に向かって流れる排気弁側スキッシュ流18は、ピストン2の上昇によりピストン2の頂面側へと偏流されると共に曲面により形成された排気弁側周縁エッジ部141によりガイドされ、キャビティ14の内壁面に沿った流動となる。   FIG. 6 is an explanatory diagram showing tumble flow and air-fuel mixture behavior formed in the latter half of the compression stroke in the direct injection spark ignition internal combustion engine according to Embodiment 1 of the present invention. As shown in FIG. 6, in the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention, the exhaust valve side peripheral edge portion 141 of the cavity 14 has a spherical shape with the exhaust valve side inclined surface 12. Since it is formed by a curved surface having a large curvature radius so as to smoothly connect the inner wall surface of the cavity 14, the exhaust valve side squish flow 18 flowing from the exhaust valve side inclined surface 12 toward the center of the cavity 14 is Ascending, it drifts toward the top surface side of the piston 2 and is guided by the exhaust valve side peripheral edge portion 141 formed by a curved surface, and flows along the inner wall surface of the cavity 14.

一方で、曲率半径の大きな曲面に形成されていない吸気弁側周縁エッジ部142では、ピストン2の頂面に沿って流れた吸気弁側スキッシュ流17は、鋭角状の吸気弁側周縁エッジ部142により吸気弁側傾斜面11から剥離され、図6に示すようにそのままキャビティ14の上部へと向かう流動となる。   On the other hand, the intake valve side squish flow 17 that flows along the top surface of the piston 2 at the intake valve side peripheral edge portion 142 that is not formed on a curved surface having a large radius of curvature is an acute intake valve side peripheral edge portion 142. Is peeled off from the intake valve-side inclined surface 11 and flows toward the upper portion of the cavity 14 as shown in FIG.

その結果、この発明の実施の形態1による筒内噴射式火花点火内燃機関では、キャビティ14の内壁面に沿って流れる排気弁側スキッシュ流18と、キャビティ14の上部へと向かって流れる吸気弁側スキッシュ流17との、強さのほぼ等しい一対の流れの相互作用によって、キャビティ14内に、図6に示すようなタンブル流動19が形成される。   As a result, in the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention, the exhaust valve side squish flow 18 that flows along the inner wall surface of the cavity 14 and the intake valve side that flows toward the top of the cavity 14 A tumble flow 19 as shown in FIG. 6 is formed in the cavity 14 by the interaction of a pair of substantially equal strength flows with the squish flow 17.

従って、この発明の実施の形態1による筒内噴射式火花点火内燃機関では、圧縮行程後期に発生するスキッシュ流によって燃焼室4の外周部からキャビティ14の中心部へと集められた混合気22は、その後、キャビティ14内に形成されたタンブル流動19に乗ってキャビティ14中心部に十分に保持されることになるため、キャビティ14の中心上部に設けられた点火プラグ10の近傍に、安定した混合気23を長期間にわたって形成することが可能である。   Therefore, in the in-cylinder spark ignition internal combustion engine according to the first embodiment of the present invention, the air-fuel mixture 22 collected from the outer peripheral portion of the combustion chamber 4 to the central portion of the cavity 14 by the squish flow generated in the latter half of the compression stroke is Then, since it is sufficiently held at the center of the cavity 14 by riding on the tumble flow 19 formed in the cavity 14, stable mixing is performed in the vicinity of the spark plug 10 provided at the upper center of the cavity 14. It is possible to form the gas 23 over a long period of time.

従って、この発明の実施の形態1による筒内噴射式火花点火内燃機関によれば、図4に示したように圧縮行程噴射により燃焼室4内に形成された混合気22は、図5に示したように圧縮行程後期に於いて発生するスキッシュ流によって燃焼室4の外周部からキャビティ14の中心部へと確実に集められると共に、図6に示したようにキャビティ14内のタンブル流動19に乗ってキャビティ14の中心部に十分に保持されることになるため、キャビティ14の中心上部に設けられた点火プラグ10の近傍に安定した混合気23を長期間にわたって形成することができ、従って様々な運転条件に対しても燃焼変動のない安定的な成層燃焼を実現できる。   Therefore, according to the direct injection spark ignition internal combustion engine according to the first embodiment of the present invention, the air-fuel mixture 22 formed in the combustion chamber 4 by the compression stroke injection as shown in FIG. 4 is shown in FIG. As shown in FIG. 6, the squish flow generated in the latter half of the compression stroke is surely collected from the outer periphery of the combustion chamber 4 to the center of the cavity 14 and rides on the tumble flow 19 in the cavity 14 as shown in FIG. Therefore, a stable air-fuel mixture 23 can be formed in the vicinity of the spark plug 10 provided at the upper center of the cavity 14 over a long period of time. Stable stratified combustion without fluctuations in combustion can be realized even under operating conditions.

又、この発明の実施の形態1による筒内噴射式火花点火内燃機関では、圧縮行程後期に於いて、燃焼室4の圧縮により高温となったガスが排気弁側スキッシュ流18としてキャビティ14の内壁面に沿って流れるため、圧縮行程噴射時にキャビティ14の内壁面に付着した燃料液膜21と圧縮高温ガスとの熱伝達を向上させ、燃料液膜21の気化を促進すると共に、キャビティ14内に形成されたタンブル流動19が気化した燃料をキャビティ14の壁面近傍に滞留させることなく輸送して攪拌し、空気との混合を促進することで燃料濃度が均質化されるため、成層燃焼時においてスモークや未燃炭化水素の排出を抑制できる。   In the cylinder injection spark ignition internal combustion engine according to the first embodiment of the present invention, in the latter half of the compression stroke, the gas that has become hot due to the compression of the combustion chamber 4 becomes the exhaust valve side squish flow 18 in the cavity 14. Since it flows along the wall surface, the heat transfer between the fuel liquid film 21 adhering to the inner wall surface of the cavity 14 and the compressed high-temperature gas during the compression stroke injection is improved, and the vaporization of the fuel liquid film 21 is promoted. The fuel vaporized by the formed tumble flow 19 is transported and agitated without staying in the vicinity of the wall surface of the cavity 14, and the fuel concentration is homogenized by promoting mixing with air. And the emission of unburned hydrocarbons.

加えて、この発明の実施の形態1による筒内噴射式火花点火内燃機関によれば、燃料液膜21の気化促進により、点火タイミングまでに気化されずに残る燃料液膜が減少し、噴射された燃料が有効に利用されることから、燃焼効率が改善されて内燃機関の出力、燃料消費率を向上できると共に、燃焼変動の要因の1つとされるピストン頂面へのデポジット形成を抑制することもできる。   In addition, according to the in-cylinder injection spark ignition internal combustion engine according to the first embodiment of the present invention, the fuel liquid film 21 which is not vaporized by the ignition timing is reduced and injected by the promotion of vaporization of the fuel liquid film 21. As the fuel is effectively used, the combustion efficiency is improved, the output of the internal combustion engine and the fuel consumption rate can be improved, and the formation of deposits on the piston top surface, which is one of the causes of combustion fluctuations, is suppressed. You can also.

1 シリンダ 2 ピストン
3 シリンダヘッド 4 燃焼室
5 吸気ポート 6 排気ポート
7 吸気弁 8 排気弁
9 燃料噴射弁 10 点火プラグ
11 ピストンの吸気弁側傾斜面 12 ピストンの排気弁側傾斜面
13 ピストンの中心 14 凹型の球面状キャビティ
15 曲面 17 吸気弁側スキッシュ流
18 排気弁側スキッシュ流 19 タンブル流動
20 燃料噴霧 21 燃料液膜
22 圧縮行程噴射により形成された混合気
23 キャビティ中心部に保持された混合気
141 排気弁側周縁エッジ部 142 吸気弁側周縁エッジ部
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Piston 3 Cylinder head 4 Combustion chamber 5 Intake port 6 Exhaust port 7 Intake valve 8 Exhaust valve 9 Fuel injection valve 10 Spark plug 11 Piston intake valve side inclined surface 12 Piston exhaust valve side inclined surface 13 Piston center 14 Recessed spherical cavity 15 Curved surface 17 Intake valve side squish flow 18 Exhaust valve side squish flow 19 Tumble flow 20 Fuel spray 21 Fuel liquid film 22 Mixture formed by compression stroke injection 23 Mixture 141 held in the center of the cavity Exhaust valve side peripheral edge 142 Intake valve side peripheral edge

Claims (3)

ピストンを収納したシリンダと、前記シリンダに固定されたシリンダヘッドと、前記ピストンの頂面と前記シリンダヘッドの内面との間に形成された燃焼室内に直接燃料を噴射する燃料噴射弁と、前記シリンダの吸気ポートに設けられた吸気弁と、前記シリンダの排気ポートに設けられた排気弁と、前記燃焼室の頂部の略中心部に位置して前記シリンダヘッドに固定された点火プラグとを有し、圧縮行程の間に前記燃料噴射弁から前記燃焼室内に噴射された燃料を、前記点火プラグにより点火して成層燃焼を行うようにした筒内噴射式火花点火内燃機関であって、
前記ピストンは、その頂面の中央部に前記ピストンとほぼ同心円に形成された開口部を有する凹型球面状のキャビティを備え、
前記キャビティの開口部は、前記吸気弁側に位置する吸気弁側周縁エッジ部と、前記排気弁側に位置する排気弁側周縁エッジ部とにより形成され、
前記吸気弁側周縁エッジ部と前記排気弁側周縁エッジ部とのうちの一方は、他方に比して曲率半径の大きな曲面により形成されている、
ことを特徴とする筒内噴射式火花点火内燃機関。
A cylinder housing a piston; a cylinder head fixed to the cylinder; a fuel injection valve that directly injects fuel into a combustion chamber formed between a top surface of the piston and an inner surface of the cylinder head; and the cylinder An intake valve provided at the intake port of the engine, an exhaust valve provided at the exhaust port of the cylinder, and an ignition plug fixed to the cylinder head at a substantially central portion of the top of the combustion chamber. A cylinder-injected spark ignition internal combustion engine configured to perform stratified combustion by igniting the fuel injected into the combustion chamber from the fuel injection valve during the compression stroke by the ignition plug;
The piston includes a concave spherical cavity having an opening formed substantially concentrically with the piston at the center of the top surface thereof.
The opening of the cavity is formed by an intake valve side peripheral edge portion positioned on the intake valve side and an exhaust valve side peripheral edge portion positioned on the exhaust valve side,
One of the intake valve side peripheral edge portion and the exhaust valve side peripheral edge portion is formed by a curved surface having a larger curvature radius than the other.
An in-cylinder injection spark ignition internal combustion engine.
前記シリンダヘッドは、その内面に、前記シリンダの頂部に向かって傾斜する一対の傾斜面を備え、
前記ピストンは、その頂面に、前記シリンダヘッドの内面に形成された前記一対の傾斜面に夫々略平行傾斜する吸気弁側傾斜面と排気弁側傾斜面とを備え、
前記吸気弁側周縁エッジ部は、前記吸気弁側傾斜面に形成され、
前記排気弁側周縁エッジ部は、前記排気弁側傾斜面に形成されている、
ことを特徴とする請求項1に記載の筒内噴射式火花点火内燃機関。
The cylinder head includes a pair of inclined surfaces inclined toward the top of the cylinder on the inner surface thereof,
The piston includes an intake valve side inclined surface and an exhaust valve side inclined surface which are inclined substantially parallel to the pair of inclined surfaces formed on the inner surface of the cylinder head on the top surface,
The intake valve side peripheral edge part is formed on the intake valve side inclined surface,
The exhaust valve side peripheral edge portion is formed on the exhaust valve side inclined surface,
2. The in-cylinder injection spark ignition internal combustion engine according to claim 1, wherein
前記曲面は、前記吸気弁側周縁エッジ部と前記排気弁側周縁エッジ部との接続部に向かって曲率半径が漸次減少するように形成されていることを特徴とする請求項1又は2に記載の筒内噴射式火花点火内燃機関。   The curved surface is formed so that a radius of curvature gradually decreases toward a connection portion between the intake valve side peripheral edge portion and the exhaust valve side peripheral edge portion. In-cylinder injection spark ignition internal combustion engine.
JP2010085997A 2010-04-02 2010-04-02 In-cylinder injection spark ignition internal combustion engine Expired - Fee Related JP4994473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085997A JP4994473B2 (en) 2010-04-02 2010-04-02 In-cylinder injection spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085997A JP4994473B2 (en) 2010-04-02 2010-04-02 In-cylinder injection spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011214557A true JP2011214557A (en) 2011-10-27
JP4994473B2 JP4994473B2 (en) 2012-08-08

Family

ID=44944523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085997A Expired - Fee Related JP4994473B2 (en) 2010-04-02 2010-04-02 In-cylinder injection spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4994473B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252972A (en) * 2018-08-14 2019-01-22 天津大学 A kind of combustion chamber for natural gas engine
JP2021080899A (en) * 2019-11-21 2021-05-27 本田技研工業株式会社 Internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061487A (en) * 1996-08-21 1998-03-03 Mitsubishi Motors Corp Piston for spark ignition type direct injection type engine
JP2000248944A (en) * 1999-03-02 2000-09-12 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2001107734A (en) * 1999-10-08 2001-04-17 Suzuki Motor Corp Structure of combustion chamber of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061487A (en) * 1996-08-21 1998-03-03 Mitsubishi Motors Corp Piston for spark ignition type direct injection type engine
JP2000248944A (en) * 1999-03-02 2000-09-12 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2001107734A (en) * 1999-10-08 2001-04-17 Suzuki Motor Corp Structure of combustion chamber of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252972A (en) * 2018-08-14 2019-01-22 天津大学 A kind of combustion chamber for natural gas engine
JP2021080899A (en) * 2019-11-21 2021-05-27 本田技研工業株式会社 Internal combustion engine
US11408367B2 (en) 2019-11-21 2022-08-09 Honda Motor Co., Ltd. Internal combustion engine
JP7118943B2 (en) 2019-11-21 2022-08-16 本田技研工業株式会社 internal combustion engine
JP2022140601A (en) * 2019-11-21 2022-09-26 本田技研工業株式会社 internal combustion engine
JP7352699B2 (en) 2019-11-21 2023-09-28 本田技研工業株式会社 internal combustion engine

Also Published As

Publication number Publication date
JP4994473B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4501832B2 (en) Spark ignition direct injection engine
WO2013153842A1 (en) 2-cycle gas engine
JP3741494B2 (en) In-cylinder injection engine
JP2002188448A (en) Cylinder fuel injection type gasoline engine where fuel is injected inside the cylinder
JP4657187B2 (en) Internal combustion engine
JP2006291839A (en) Cylinder direct fuel injection type engine and its control method, and piston and fuel injection valve to be used for the same
JP2008111381A (en) Cylinder direct injection type internal combustion engine
JP5765819B2 (en) 2-cycle gas engine
JP2009270540A (en) Engine and ignition plug for engine
US4742804A (en) Spark-ignition engine
WO2006072983A1 (en) Cylinder injection spark ignition type internal combustion engine
JP2016089747A (en) Control device of internal combustion engine
JP2016053333A (en) Internal combustion engine
JP2000034925A (en) Gasoline direct injection engine
JP2005264768A (en) Internal combustion engine
KR20170070750A (en) Gasolin-diesel complex combustion engine
CN110953067B (en) Engine and double-jet combustion method thereof
KR100579065B1 (en) In-cylinder injection type internal combustion engine and ignition control method thereof
KR20100062724A (en) A piston of gasoline direct injection engine
JP4994473B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2007278257A (en) Direct injection type spark ignition internal combustion engine
JP5140836B2 (en) Sub-chamber gas engine
JP3781537B2 (en) Combustion chamber structure of in-cylinder injection engine
KR20140052146A (en) A pre-chamber arrangement for piston engine
JP2005232987A (en) Subsidiary chamber type engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4994473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees