JP2011214430A - Power generating device and method of operating the same - Google Patents

Power generating device and method of operating the same Download PDF

Info

Publication number
JP2011214430A
JP2011214430A JP2010080636A JP2010080636A JP2011214430A JP 2011214430 A JP2011214430 A JP 2011214430A JP 2010080636 A JP2010080636 A JP 2010080636A JP 2010080636 A JP2010080636 A JP 2010080636A JP 2011214430 A JP2011214430 A JP 2011214430A
Authority
JP
Japan
Prior art keywords
working medium
condenser
medium liquid
path
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010080636A
Other languages
Japanese (ja)
Other versions
JP5658473B2 (en
Inventor
Masayoshi Matsumura
昌義 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010080636A priority Critical patent/JP5658473B2/en
Publication of JP2011214430A publication Critical patent/JP2011214430A/en
Application granted granted Critical
Publication of JP5658473B2 publication Critical patent/JP5658473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an energy loss in a condenser, while miniaturizing the condenser.SOLUTION: This power generating device 10 includes: an evaporating means 14 for evaporating an operating medium liquid; a power generating means 25 for generating power by driving a generator 24 with the operating medium steam generated in the evaporating means 14 and led into an expander 16; the condenser 18 for condensing the operating medium steam discharged from the expander 16; and a user side heat exchanger 22 using the heat of a part of the operating medium liquid condensed by the condenser 18. The condenser 18 is a direct heating type condenser which condenses the operating medium steam by directly bringing the operating medium steam and a cooling medium into contact with each other, and as the cooling medium, the operating medium liquid lowered in the temperature by extracting the heat in the user side heat exchanger 22 is used.

Description

本発明は、発電装置及び発電装置の運転方法に関するものである。   The present invention relates to a power generator and a method for operating the power generator.

従来、例えば、下記特許文献1〜5に開示されているように、タービン等の膨張機で発電機を駆動する発電装置が知られている。この種の発電装置では、膨張機で膨張した作動媒体蒸気を凝縮させる凝縮器と、凝縮した作動媒体液を蒸発させる蒸発器と、前記膨張機とを備えて、作動媒体が循環するランキンサイクル回路が形成されている。   2. Description of the Related Art Conventionally, for example, as disclosed in Patent Documents 1 to 5 below, a power generation apparatus that drives a generator with an expander such as a turbine is known. In this type of power generator, a Rankine cycle circuit that includes a condenser that condenses the working medium vapor expanded by the expander, an evaporator that evaporates the condensed working medium liquid, and the expander, and in which the working medium circulates. Is formed.

このうち、特許文献1の発電装置では、凝縮器に冷却塔が接続されて、この冷却塔からの冷却水で作動媒体液を冷却する構成となっている。また特許文献3、4及び5の発電装置では、凝縮器として復水器が用いられている。   Among these, in the power generation device of Patent Document 1, a cooling tower is connected to the condenser, and the working medium liquid is cooled with cooling water from the cooling tower. Moreover, in the electric power generating apparatus of patent document 3, 4 and 5, the condenser is used as a condenser.

特開2008−309046号公報JP 2008-309046 A 特開2005−351094号公報JP 2005-351094 A 特開昭59−180280号公報JP 59-180280 A 特開昭57−146067号公報Japanese Patent Laid-Open No. 57-146067 特開昭60−3488号公報Japanese Patent Laid-Open No. 60-3488

この種の発電装置においては、凝縮器に導入された作動媒体蒸気が凝縮する際に作動媒体蒸気の潜熱が捨てられており、エネルギー損失となっている。また、作動媒体蒸気は作動媒体液に比べて比容積が格段に大きくて熱伝達係数が小さいことから、従来のように間接熱交換器が用いられる構成では、必要伝熱面積を確保するには、凝縮器が大型のものとなってしまうという問題もある。   In this type of power generator, when the working medium vapor introduced into the condenser condenses, the latent heat of the working medium vapor is discarded, resulting in energy loss. In addition, since the working medium vapor has a significantly larger specific volume and a smaller heat transfer coefficient than the working medium liquid, in the conventional configuration using an indirect heat exchanger, it is necessary to secure the necessary heat transfer area. There is also a problem that the condenser becomes large.

そこで、本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、凝縮器の小型化を図りつつ凝縮器でのエネルギー損失を低減することにある。   Therefore, the present invention has been made in view of such a point, and an object thereof is to reduce energy loss in the condenser while reducing the size of the condenser.

前記の目的を達成するため、本発明は、作動媒体液を蒸発させる蒸発手段と、前記蒸発手段で発生した作動媒体蒸気が膨張機に導入され、発電機を駆動して発電を行う発電手段と、前記膨張機から排出された作動媒体蒸気を凝縮させる凝縮器とを備え、前記凝縮器で凝縮した作動媒体液を前記蒸発手段に還流するように構成された発電装置において、前記凝縮器で凝縮した作動媒体液の一部について、その熱を利用する熱利用手段を備え、前記凝縮器は、前記作動媒体蒸気と冷却媒体とを直接接触させて、前記作動媒体蒸気を凝縮させる直接加熱方式であり、前記冷却媒体として、前記熱利用手段で抜熱されて温度が低下した作動媒体液を使用することを特徴とする発電装置である。   In order to achieve the above object, the present invention includes an evaporation means for evaporating a working medium liquid, and a power generation means for generating electric power by driving the generator by introducing the working medium vapor generated by the evaporation means into the expander. And a condenser for condensing the working medium vapor discharged from the expander, wherein the working medium liquid condensed by the condenser is recirculated to the evaporation means. The working medium liquid is provided with heat utilization means for utilizing the heat, and the condenser is a direct heating method in which the working medium vapor is brought into direct contact with the working medium vapor to condense the working medium vapor. And a working medium liquid having a reduced temperature as a result of heat removal by the heat utilization means is used as the cooling medium.

本発明の発電装置では、作動媒体蒸気を凝縮させる凝縮器として、直接加熱方式の凝縮器が用いられているため、熱交換効率が高い。このため、凝縮器を小型化することができる。しかも、凝縮器で凝縮した作動媒体液の一部が、熱利用手段に供給されるので、凝縮器において作動媒体蒸気の凝縮に伴う潜熱を有効に利用することができる。このため、凝縮器でのエネルギー損失を低減することができる。   In the power generator of the present invention, a direct heating type condenser is used as a condenser for condensing the working medium vapor, so that the heat exchange efficiency is high. For this reason, a condenser can be reduced in size. In addition, since a part of the working medium liquid condensed by the condenser is supplied to the heat utilization means, the latent heat accompanying the condensation of the working medium vapor can be effectively utilized in the condenser. For this reason, the energy loss in a condenser can be reduced.

ここで、前記凝縮器で凝縮した作動媒体液を前記蒸発手段に導くための第1経路と、前記熱利用手段に導くための第2経路とに分配する分配手段が設けられているのが好ましい。この態様では、凝縮器で凝縮した作動媒体液が分配手段によって分配され、蒸発手段及び熱利用手段にそれぞれ導入される。したがって、高い熱交換効率を確保しつつ、作動媒体液の分配を行うことができる。   Here, it is preferable that distribution means for distributing the working medium liquid condensed by the condenser to the first path for guiding to the evaporation means and the second path for guiding to the heat utilization means is provided. . In this aspect, the working medium liquid condensed by the condenser is distributed by the distribution means and introduced into the evaporation means and the heat utilization means. Therefore, the working medium liquid can be distributed while ensuring high heat exchange efficiency.

この態様において、前記第1経路には、回転数を制御することで当該第1経路における作動媒体液の流量を変更するポンプが設けられているのが好ましい。この態様では、ポンプの回転数を制御することにより、第1経路を流れる作動媒体液の流量を調整することができるので、蒸発手段、膨張機及び凝縮器の間を循環する循環量を適切な量に調整することができる。   In this aspect, it is preferable that the first path is provided with a pump that changes the flow rate of the working medium liquid in the first path by controlling the number of rotations. In this aspect, the flow rate of the working medium liquid flowing through the first path can be adjusted by controlling the number of revolutions of the pump. Therefore, the amount of circulation circulating between the evaporation means, the expander, and the condenser is set appropriately. Can be adjusted to the amount.

また、前記第2経路には、回転数を制御することで当該第2経路における作動媒体液の流量を変更するポンプが設けられているのが好ましい。この態様では、ポンプの回転数を制御することにより、第2経路を流れる作動媒体液の流量を調整することができるので、凝縮器及び熱利用手段の間を循環する循環量を調整でき、これにより、凝縮器での熱交換量の最適化を図ることができる。   The second path is preferably provided with a pump that changes the flow rate of the working medium liquid in the second path by controlling the rotation speed. In this aspect, the flow rate of the working medium liquid flowing through the second path can be adjusted by controlling the rotation speed of the pump, so that the circulation amount circulating between the condenser and the heat utilization means can be adjusted. Thus, the heat exchange amount in the condenser can be optimized.

本発明は、蒸発手段で作動媒体液を蒸発させ、発生した作動媒体蒸気を膨張機に導入して発電機を駆動して発電を行い、膨張機から排出された作動媒体蒸気を凝縮器内において、熱利用手段で抜熱されて温度が低下した作動媒体液と直接接触させて凝縮させ、当該凝縮器で凝縮した作動媒体液の一部を前記蒸発手段に還流する一方、前記凝縮器で凝縮した作動媒体液の他部について、その熱を熱利用手段で利用する発電装置の運転方法である。   The present invention evaporates the working medium liquid by the evaporation means, introduces the generated working medium vapor into the expander, drives the generator to generate power, and discharges the working medium vapor discharged from the expander in the condenser. Then, it is condensed by direct contact with the working medium liquid that has been removed by the heat utilization means and the temperature is lowered, and a part of the working medium liquid condensed by the condenser is returned to the evaporation means, while being condensed by the condenser. This is a method of operating the power generation apparatus that uses the heat of the other part of the working medium liquid as heat utilization means.

以上説明したように、本発明によれば、凝縮器の小型化を図りつつ凝縮器でのエネルギー損失を低減することができる。   As described above, according to the present invention, it is possible to reduce the energy loss in the condenser while reducing the size of the condenser.

本発明の実施形態に係る発電装置の構成を概略的に示す図である。It is a figure showing roughly the composition of the power generator concerning the embodiment of the present invention.

以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

図1に示すように、本実施形態に係る発電装置10は、作動媒体(作動媒体蒸気、作動媒体液)が循環する循環回路12が形成されるとともに、この循環回路12を流れる作動媒体で膨張機16を駆動することによって発電機24で発電を行う発電装置10である。作動媒体蒸気としては、例えば水蒸気を用いることができる。   As shown in FIG. 1, the power generation apparatus 10 according to the present embodiment is formed with a circulation circuit 12 through which a working medium (working medium vapor, working medium liquid) circulates, and is expanded by the working medium flowing through the circulation circuit 12. This is a power generation apparatus 10 that generates power by a generator 24 by driving a machine 16. For example, water vapor can be used as the working medium vapor.

前記循環回路12は、蒸発手段14と、膨張機16と、凝縮器18と、分配手段20と、利用側熱交換器22と、備えている。これら蒸発手段14、膨張機16、凝縮器18、分配手段20及び利用側熱交換器22は、配管によって接続されている。   The circulation circuit 12 includes an evaporation means 14, an expander 16, a condenser 18, a distribution means 20, and a use side heat exchanger 22. The evaporation means 14, the expander 16, the condenser 18, the distribution means 20, and the use side heat exchanger 22 are connected by a pipe.

蒸発手段14は、熱源23から受けた熱によって作動媒体蒸気を蒸発させるように構成されている。例えば、蒸発手段14としては、太陽熱を熱源23とする集光器、バイオマスや化石燃料を熱源23とするボイラー、その他の蒸発器等によって構成することができる。   The evaporating unit 14 is configured to evaporate the working medium vapor by the heat received from the heat source 23. For example, the evaporation means 14 can be constituted by a condenser using solar heat as the heat source 23, a boiler using biomass or fossil fuel as the heat source 23, other evaporators, and the like.

膨張機16は、蒸発手段14で蒸発して高温となった作動媒体蒸気が導入され、この導入された作動媒体蒸気によって回転軸16aを回転させる。膨張機16の回転軸16aは発電機24に接続されており、膨張機16の回転軸16aが回転することによって発電機24を駆動して発電を行うことができる。膨張機16及び発電機24により発電手段25が構成されている。   The expander 16 is introduced with the working medium vapor evaporated by the evaporating means 14 and heated to a high temperature, and rotates the rotating shaft 16a by the introduced working medium vapor. The rotating shaft 16a of the expander 16 is connected to the generator 24. The rotating shaft 16a of the expander 16 rotates to drive the generator 24 to generate power. A power generation means 25 is configured by the expander 16 and the power generator 24.

凝縮器18は、膨張機16から排出された作動媒体蒸気を導入するための蒸気導入ポート18aと、利用側熱交換器22からの作動媒体液を導入するための液導入ポート18bと、作動媒体液を排出するための排出ポート18cとが設けられた筐体を備えている。凝縮器18は、この筐体内において、蒸気導入ポート18aを通して導入された作動媒体蒸気と液導入ポート18bを通して導入された作動媒体液とが直接接触することによって両者が熱交換を行う直接加熱方式に構成されている。   The condenser 18 includes a steam introduction port 18a for introducing the working medium vapor discharged from the expander 16, a liquid introduction port 18b for introducing the working medium liquid from the use side heat exchanger 22, and a working medium. A housing provided with a discharge port 18c for discharging the liquid is provided. The condenser 18 adopts a direct heating method in which the working medium vapor introduced through the vapor introduction port 18a and the working medium liquid introduced through the liquid introduction port 18b are in direct contact with each other to exchange heat in the casing. It is configured.

凝縮器18で凝縮した作動媒体液は分配手段20に導入される。分配手段20は、作動媒体を貯溜しておく貯溜部を兼ねており、分配手段20の筐体には、作動媒体液が導入される導入ポート20aと、筐体内に導入された作動媒体液の一部を流出させる第1分配ポート20bと、筐体内に導入された作動媒体液の他部を流出させる第2分配ポート20cとが設けられている。第1分配ポート20bは第1経路27に繋がっており、第1分配ポート20bから流出した作動媒体液は第1経路27を通して蒸発手段14に導かれる。一方、第2分配ポート20cは第2経路28に繋がっており、第2分配ポート20cから流出した作動媒体液は第2経路28を通して利用側熱交換器22に導かれる。したがって、循環回路12には、蒸発手段14、膨張機16、凝縮器18及び分配手段20の間で作動媒体が循環する熱源側循環部12aと、凝縮器18、分配手段20及び利用側熱交換器22の間で作動媒体液が循環する利用側循環部12bとが含まれている。   The working medium liquid condensed by the condenser 18 is introduced into the distribution means 20. The distribution means 20 also serves as a reservoir for storing the working medium. The housing of the distribution means 20 has an introduction port 20a through which the working medium liquid is introduced, and a working medium liquid introduced into the housing. A first distribution port 20b through which a part flows out and a second distribution port 20c through which the other part of the working medium liquid introduced into the housing flows out are provided. The first distribution port 20 b is connected to the first path 27, and the working medium liquid flowing out from the first distribution port 20 b is guided to the evaporation means 14 through the first path 27. On the other hand, the second distribution port 20 c is connected to the second path 28, and the working medium liquid flowing out from the second distribution port 20 c is guided to the usage-side heat exchanger 22 through the second path 28. Therefore, in the circulation circuit 12, the heat source side circulation unit 12a in which the working medium circulates between the evaporation means 14, the expander 16, the condenser 18 and the distribution means 20, the condenser 18, the distribution means 20 and the use side heat exchange. The utilization side circulation part 12b through which the working medium liquid circulates between the containers 22 is included.

利用側熱交換器22は、作動媒体液の熱を利用するための熱利用手段の一例であり、本実施形態では、作動媒体液の熱を熱利用設備35で利用できるように構成されている。熱利用設備35としては、バイナリー発電機やプロセス設備等が挙げられる。熱利用手段としては、この構成に限られるものではないが、要は、作動媒体液が流れる流路が形成されていて、その流路を流れる作動媒体液の熱を取り出すことができるような構成であればよい。   The usage-side heat exchanger 22 is an example of heat utilization means for utilizing the heat of the working medium liquid. In the present embodiment, the heat of the working medium liquid is configured to be utilized by the heat utilization equipment 35. . Examples of the heat utilization equipment 35 include a binary generator and process equipment. The heat utilization means is not limited to this configuration, but in short, a configuration in which a flow path through which the working medium liquid flows is formed and the heat of the working medium liquid flowing through the flow path can be taken out. If it is.

循環回路12には、第1ポンプ38と第2ポンプ39とが設けられている。第1ポンプ38は第1経路27に配設されるものであり、回転数を制御することにより、第1経路27の流量を調整することができるようになっている。第2ポンプ39は第2経路28に配設されるものであり、回転数を制御することにより、第2経路28の流量を調整することができるようになっている。   The circulation circuit 12 is provided with a first pump 38 and a second pump 39. The first pump 38 is disposed in the first path 27, and the flow rate of the first path 27 can be adjusted by controlling the rotation speed. The second pump 39 is disposed in the second path 28, and the flow rate of the second path 28 can be adjusted by controlling the rotation speed.

ここで、本実施形態に係る発電装置10の運転動作について説明する。   Here, the operation of the power generation device 10 according to the present embodiment will be described.

第1ポンプ38及び第2ポンプ39を駆動することにより、作動媒体(作動媒体蒸気、作動媒体液)が循環回路12を流れる。蒸発手段14では、熱源23から受けた熱によって作動媒体液を蒸発させる。蒸発手段14で発生した作動媒体蒸気は膨張機16に導入され、その蒸気流量に応じて発電機24が駆動され、これにより発電が行われる。   By driving the first pump 38 and the second pump 39, the working medium (working medium vapor, working medium liquid) flows through the circulation circuit 12. In the evaporation means 14, the working medium liquid is evaporated by the heat received from the heat source 23. The working medium vapor generated by the evaporation means 14 is introduced into the expander 16, and the generator 24 is driven in accordance with the flow rate of the vapor, thereby generating electric power.

膨張機16から排出された作動媒体蒸気は、蒸気導入ポート18aを通して凝縮器18に導入される。凝縮器18には、利用側熱交換器22で抜熱されて温度が低下した作動媒体液が液導入ポート18bを通して導入されている。このため、凝縮器18内では、作動媒体蒸気が作動媒体液と直接接触し、熱交換が行われる。これにより作動媒体蒸気は凝縮し、凝縮器18で凝縮した作動媒体液は排出ポート18cから排出されて分配手段20に導入される。分配手段20に流入した作動媒体液の一部は、第1分配ポート20bから流出して第1経路27を通して蒸発手段14に還流する。また、分配手段20に流入した作動媒体液の他部は、第2分配ポート20cから流出して第2経路28を通して利用側熱交換器22に流入する。したがって、作動媒体の一部は凝縮器18、蒸発手段14及び膨張機16の間を循環し、他部は凝縮器18及び利用側熱交換器22の間を循環する。   The working medium vapor discharged from the expander 16 is introduced into the condenser 18 through the vapor introduction port 18a. The condenser 18 is introduced with the working medium liquid, whose temperature has been reduced by the use side heat exchanger 22, through the liquid introduction port 18b. For this reason, in the condenser 18, the working medium vapor comes into direct contact with the working medium liquid, and heat exchange is performed. Thereby, the working medium vapor is condensed, and the working medium liquid condensed by the condenser 18 is discharged from the discharge port 18 c and introduced into the distribution means 20. A part of the working medium liquid that has flowed into the distribution unit 20 flows out from the first distribution port 20 b and returns to the evaporation unit 14 through the first path 27. The other part of the working medium liquid that has flowed into the distribution means 20 flows out from the second distribution port 20 c and flows into the usage-side heat exchanger 22 through the second path 28. Therefore, a part of the working medium circulates between the condenser 18, the evaporation means 14, and the expander 16, and the other part circulates between the condenser 18 and the use side heat exchanger 22.

第1ポンプ38の回転数を制御することにより、凝縮器18、分配手段20、蒸発手段14及び膨張機16の間を循環する流量が調整される。第1ポンプ38の回転数は、発電機24の出力、発電量、蒸気温度、蒸気量、蒸気圧力等を検出し、その検出結果に応じて制御することが可能である。   By controlling the rotation speed of the first pump 38, the flow rate circulating between the condenser 18, the distribution unit 20, the evaporation unit 14, and the expander 16 is adjusted. The rotation speed of the first pump 38 can be controlled in accordance with the detection result by detecting the output of the generator 24, the power generation amount, the steam temperature, the steam amount, the steam pressure, and the like.

一方、第2ポンプ39の回転数を制御することにより、凝縮器18、分配手段20及び利用側熱交換器22の間を循環する流量が調整される。第2ポンプ39の回転数は、バイナリー発電機24の発電量、2次媒体の温度、2次媒体の圧力、凝縮器18又は利用側熱交換器22内における作動媒体液の液面高さ等を検出し、その検出結果に応じて制御することが可能である。そして、第1ポンプ38の回転数と第2ポンプ39の回転数とを統合制御することにより、最適な運転条件で発電装置10を運転することができる。   On the other hand, by controlling the rotation speed of the second pump 39, the flow rate circulating between the condenser 18, the distribution means 20, and the use side heat exchanger 22 is adjusted. The rotation speed of the second pump 39 is the amount of power generated by the binary generator 24, the temperature of the secondary medium, the pressure of the secondary medium, the liquid level height of the working medium liquid in the condenser 18 or the use side heat exchanger 22, etc. Can be detected and controlled according to the detection result. Then, by integrally controlling the rotational speed of the first pump 38 and the rotational speed of the second pump 39, the power generation apparatus 10 can be operated under optimal operating conditions.

以上説明したように、本実施形態の発電装置10では、作動媒体蒸気を凝縮させる凝縮器18として、直接加熱方式の凝縮器18が用いられているため、熱交換効率が高い。このため、凝縮器18を小型化することができる。しかも、凝縮器18で凝縮した作動媒体液の一部が、利用側熱交換器22に供給されるので、凝縮器18において作動媒体蒸気の凝縮に伴う潜熱を有効に利用することができる。このため、凝縮器18でのエネルギー損失を低減することができる。   As described above, in the power generation apparatus 10 of the present embodiment, the direct heating type condenser 18 is used as the condenser 18 that condenses the working medium vapor, and thus the heat exchange efficiency is high. For this reason, the condenser 18 can be reduced in size. In addition, since part of the working medium liquid condensed in the condenser 18 is supplied to the use-side heat exchanger 22, the latent heat accompanying the condensation of the working medium vapor can be effectively utilized in the condenser 18. For this reason, the energy loss in the condenser 18 can be reduced.

さらに本実施形態では、凝縮器18で凝縮した作動媒体液を第1経路27と第2経路28に分配する分配手段20が設けられているので、凝縮器18で凝縮した作動媒体液が分配手段20によって分配され、蒸発手段14及び利用側熱交換器22にそれぞれ導入される。したがって、高い熱交換効率を確保しつつ、作動媒体液の分配を行うことができる。   Furthermore, in this embodiment, since the distribution means 20 for distributing the working medium liquid condensed by the condenser 18 to the first path 27 and the second path 28 is provided, the working medium liquid condensed by the condenser 18 is distributed. 20 and distributed to the evaporating means 14 and the use side heat exchanger 22, respectively. Therefore, the working medium liquid can be distributed while ensuring high heat exchange efficiency.

また本実施形態では、第1経路27に第1ポンプ38が設けられており、このポンプ38の回転数を制御することにより、第1経路27を流れる作動媒体液の流量を調整することができるので、蒸発手段14、膨張機16及び凝縮器18の間を循環する循環量を適切な量に調整することができる。   In the present embodiment, the first pump 38 is provided in the first path 27, and the flow rate of the working medium liquid flowing in the first path 27 can be adjusted by controlling the rotation speed of the pump 38. Therefore, the circulation amount circulating between the evaporation means 14, the expander 16, and the condenser 18 can be adjusted to an appropriate amount.

また本実施形態では、第2経路28に第2ポンプ39が設けられており、このポンプ39の回転数を制御することにより、第2経路28を流れる作動媒体液の流量を調整することができるので、凝縮器18及び利用側熱交換器22の間を循環する循環量を調整でき、これにより、凝縮器18での熱交換量の最適化を図ることができる。   In the present embodiment, a second pump 39 is provided in the second path 28, and the flow rate of the working medium liquid flowing through the second path 28 can be adjusted by controlling the rotational speed of the pump 39. Therefore, the amount of circulation circulating between the condenser 18 and the use side heat exchanger 22 can be adjusted, whereby the heat exchange amount in the condenser 18 can be optimized.

10 発電装置
12 循環回路
12a 熱源側循環部
12b 利用側循環部
14 蒸発手段
16 膨張機
16a 回転軸
18 凝縮器
18a 蒸気導入ポート
18b 液導入ポート
18c 排出ポート
20 分配手段
20a 導入ポート
20b 第1分配ポート
20c 第2分配ポート
22 利用側熱交換器
23 熱源
24 発電機
25 発電手段
27 第1経路
28 第2経路
35 熱利用設備
38 第1ポンプ
39 第2ポンプ
DESCRIPTION OF SYMBOLS 10 Power generator 12 Circulation circuit 12a Heat source side circulation part 12b Use side circulation part 14 Evaporating means 16 Expander 16a Rotating shaft 18 Condenser 18a Steam introduction port 18b Liquid introduction port 18c Discharge port 20 Distribution means 20a Introduction port 20b 1st distribution port 20c 2nd distribution port 22 Use side heat exchanger 23 Heat source 24 Generator 25 Electric power generation means 27 1st path | route 28 2nd path | route 35 Heat utilization equipment 38 1st pump 39 2nd pump

Claims (5)

作動媒体液を蒸発させる蒸発手段と、前記蒸発手段で発生した作動媒体蒸気が膨張機に導入され、発電機を駆動して発電を行う発電手段と、前記膨張機から排出された作動媒体蒸気を凝縮させる凝縮器とを備え、前記凝縮器で凝縮した作動媒体液を前記蒸発手段に還流するように構成された発電装置において、
前記凝縮器で凝縮した作動媒体液の一部について、その熱を利用する熱利用手段を備え、
前記凝縮器は、前記作動媒体蒸気と冷却媒体とを直接接触させて、前記作動媒体蒸気を凝縮させる直接加熱方式であり、前記冷却媒体として、前記熱利用手段で抜熱されて温度が低下した作動媒体液を使用することを特徴とする発電装置。
Evaporating means for evaporating the working medium liquid, working medium vapor generated by the evaporating means is introduced into the expander, power generation means for driving the generator to generate electric power, and working medium vapor discharged from the expander A power generator configured to recirculate the working medium liquid condensed in the condenser to the evaporation means,
About a part of the working medium liquid condensed by the condenser, a heat utilization means for utilizing the heat is provided,
The condenser is a direct heating method in which the working medium vapor and the cooling medium are brought into direct contact with each other to condense the working medium vapor, and as the cooling medium, the heat is removed by the heat utilization means and the temperature is lowered. A power generator using a working medium liquid.
前記凝縮器で凝縮した作動媒体液を前記蒸発手段に導くための第1経路と、前記熱利用手段に導くための第2経路とに分配する分配手段が設けられていることを特徴とする請求項1に記載の発電装置。   Distributing means for distributing the working medium liquid condensed by the condenser to a first path for guiding the liquid to the evaporating means and a second path for guiding the working medium liquid to the heat utilization means is provided. Item 2. The power generation device according to Item 1. 前記第1経路には、回転数を制御することで当該第1経路における作動媒体液の流量を変更するポンプが設けられていることを特徴とする請求項2に記載の発電装置。   The power generator according to claim 2, wherein the first path is provided with a pump that changes a flow rate of the working medium liquid in the first path by controlling a rotation speed. 前記第2経路には、回転数を制御することで当該第2経路における作動媒体液の流量を変更するポンプが設けられていることを特徴とする請求項2又は3に記載の発電装置。   The power generator according to claim 2 or 3, wherein the second path is provided with a pump that changes the flow rate of the working medium liquid in the second path by controlling the rotation speed. 蒸発手段で作動媒体液を蒸発させ、発生した作動媒体蒸気を膨張機に導入して発電機を駆動して発電を行い、膨張機から排出された作動媒体蒸気を凝縮器内において、熱利用手段で抜熱されて温度が低下した作動媒体液と直接接触させて凝縮させ、当該凝縮器で凝縮した作動媒体液の一部を前記蒸発手段に還流する一方、前記凝縮器で凝縮した作動媒体液の他部について、その熱を熱利用手段で利用する発電装置の運転方法。   The working medium liquid is evaporated by the evaporation means, the generated working medium vapor is introduced into the expander, the generator is driven to generate electric power, and the working medium vapor discharged from the expander is used as heat utilization means in the condenser. The working medium liquid that has been heat-removed and reduced in temperature is directly contacted and condensed, and a part of the working medium liquid condensed by the condenser is returned to the evaporation means, while the working medium liquid condensed by the condenser is used. About the other part, the operating method of the electric power generating apparatus which utilizes the heat with a heat utilization means.
JP2010080636A 2010-03-31 2010-03-31 Power generation device and operation method of power generation device Expired - Fee Related JP5658473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080636A JP5658473B2 (en) 2010-03-31 2010-03-31 Power generation device and operation method of power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080636A JP5658473B2 (en) 2010-03-31 2010-03-31 Power generation device and operation method of power generation device

Publications (2)

Publication Number Publication Date
JP2011214430A true JP2011214430A (en) 2011-10-27
JP5658473B2 JP5658473B2 (en) 2015-01-28

Family

ID=44944435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080636A Expired - Fee Related JP5658473B2 (en) 2010-03-31 2010-03-31 Power generation device and operation method of power generation device

Country Status (1)

Country Link
JP (1) JP5658473B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047638A (en) * 2012-08-29 2014-03-17 Kobe Steel Ltd Power and heat generation device
WO2014084013A1 (en) * 2012-11-28 2014-06-05 株式会社Ihi Waste heat power generation device
EP2767679A1 (en) 2013-02-14 2014-08-20 Anest Iwata Corporation Power generating apparatus and method of operating power generating apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731488A (en) * 1970-06-30 1973-05-08 Sasakura Eng Co Ltd Method of condensing turbine exhaust at the power plant
EP0048179A2 (en) * 1980-09-17 1982-03-24 Babcock Power Limited Thermal power plants
JP2006112345A (en) * 2004-10-15 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Method and device for decomposing gas-hydrate in gas turbine combined power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731488A (en) * 1970-06-30 1973-05-08 Sasakura Eng Co Ltd Method of condensing turbine exhaust at the power plant
EP0048179A2 (en) * 1980-09-17 1982-03-24 Babcock Power Limited Thermal power plants
JP2006112345A (en) * 2004-10-15 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Method and device for decomposing gas-hydrate in gas turbine combined power generation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047638A (en) * 2012-08-29 2014-03-17 Kobe Steel Ltd Power and heat generation device
WO2014084013A1 (en) * 2012-11-28 2014-06-05 株式会社Ihi Waste heat power generation device
JP2014105643A (en) * 2012-11-28 2014-06-09 Ihi Corp Waste heat generating device
TWI567290B (en) * 2012-11-28 2017-01-21 Ihi股份有限公司 Waste heat power generation apparatus
US9784138B2 (en) 2012-11-28 2017-10-10 Ihi Corporation Waste heat power generation device
EP2767679A1 (en) 2013-02-14 2014-08-20 Anest Iwata Corporation Power generating apparatus and method of operating power generating apparatus
US9528394B2 (en) 2013-02-14 2016-12-27 Anest Iwata Corporation Power generating apparatus and method of operating power generating apparatus

Also Published As

Publication number Publication date
JP5658473B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
RU2485331C2 (en) Method and device for conversion of thermal energy of low-temperature source of heat into mechanical energy
KR101290289B1 (en) Apparatus for ship's orc power generating system
JP6086726B2 (en) Power generation system and power generation method
KR101280520B1 (en) Power Generation System Using Waste Heat
US9540250B2 (en) Cooling tower water reclamation system and method
US20140075945A1 (en) System combining power generation apparatus and desalination apparatus
CN103993921A (en) Power generating apparatus and method of operating power generating apparatus
JP2008101521A (en) Power generation system by exhaust heat
KR101902083B1 (en) Waste heat recovery system using absorption heat pump
JP2014047675A (en) Cooling water supply system and binary generator with the same
JP5658473B2 (en) Power generation device and operation method of power generation device
JP5592305B2 (en) Power generator
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
JP5910122B2 (en) Heat recovery generator
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
JP5713824B2 (en) Power generation system
JP2011074897A (en) Fluid machine driving system
WO2020217509A1 (en) High-temperature exhaust gas generation device combined cycle power generation system
JP2005214139A (en) Solar heat power generation and desalination system
JP2010223439A (en) Solar heat utilizing steam generating system and solar heat utilizing absorption refrigerating machine using the same
JP2014214608A (en) Rotating machine drive system
JPH10274010A (en) Binary power generating system
JP2017002756A (en) Electrothermal cogeneration system
JP2013170553A (en) Geothermal power generation device
JP4155916B2 (en) Waste heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5658473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees