JP2011210841A - Laser oscillator and method of assembling laser oscillator - Google Patents

Laser oscillator and method of assembling laser oscillator Download PDF

Info

Publication number
JP2011210841A
JP2011210841A JP2010075431A JP2010075431A JP2011210841A JP 2011210841 A JP2011210841 A JP 2011210841A JP 2010075431 A JP2010075431 A JP 2010075431A JP 2010075431 A JP2010075431 A JP 2010075431A JP 2011210841 A JP2011210841 A JP 2011210841A
Authority
JP
Japan
Prior art keywords
holding member
laser oscillator
optical
optical element
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010075431A
Other languages
Japanese (ja)
Other versions
JP5418362B2 (en
Inventor
Keisuke Furuta
啓介 古田
Susumu Konno
進 今野
Tetsuo Kojima
哲夫 小島
Shuichi Fujikawa
周一 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010075431A priority Critical patent/JP5418362B2/en
Publication of JP2011210841A publication Critical patent/JP2011210841A/en
Application granted granted Critical
Publication of JP5418362B2 publication Critical patent/JP5418362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a laser output decrease to equal to or less than 1% by suppressing a positional deviation after adjustment during precise fixation of an optical element by soldering with respect to a laser oscillator having the optical element positioned and fixed tightly using solder.SOLUTION: When the optical element constituting the laser oscillator is precisely fixed on an optical plane base via a solder layer, a metallic holding member for the optical element comprises an upper holding member and a lower holding member each made of material having a small coefficient of linear expansion, and the solder layer is provided between the upper holding member and lower holding member, wherein the metallic holding member of a part which supports the optical element and includes the metallic holding member and includes the solder layer, has a height h equal to or less than a predetermined value, in a direction perpendicular to an optical axis of the laser oscillator.

Description

この発明は、精密に位置決めして堅牢に固定した光学部品より形成されるレーザ発振器およびその組立方法に関するものである。   The present invention relates to a laser oscillator formed from optical parts that are precisely positioned and firmly fixed, and an assembling method thereof.

従来のレーザ発振器では、ガラス製の平面支持板上に紫外線硬化接着剤を用いてミラーなどの光学素子を精密固定している。このような構成により、発振器の組立性を容易にすると共に、光学素子の調整機構をなくすことでコスト低減や小型化を実現し、また熱膨張率の低いガラス材料で光学平面基台を構成することにより、安定なレーザ発振を実現するものである(例えば特許文献1参照)。   In a conventional laser oscillator, an optical element such as a mirror is precisely fixed on a glass flat support plate using an ultraviolet curing adhesive. With such a configuration, the assembly of the oscillator is facilitated, the adjustment mechanism of the optical element is eliminated, the cost is reduced and the size is reduced, and the optical flat base is configured with a glass material having a low coefficient of thermal expansion. Thus, stable laser oscillation is realized (for example, see Patent Document 1).

また、別の従来技術としては、半導体レーザの出力を光ファイバに結合する構成において、光ファイバを精密に位置決めして固定するために、光ファイバの保持ベースにはんだ層を設けている。このような構成により、紫外線硬化接着剤を用いるよりも信頼性の高い、堅牢な保持が実現できる。当技術をレーザ発振器に適用すれば、高信頼、高安定な動作が実現できる(例えば特許文献2参照)。 As another conventional technique, in the configuration in which the output of the semiconductor laser is coupled to the optical fiber, a solder layer is provided on the holding base of the optical fiber in order to accurately position and fix the optical fiber. With such a configuration, a more reliable and robust holding can be realized than using an ultraviolet curable adhesive. If this technology is applied to a laser oscillator, highly reliable and highly stable operation can be realized (see, for example, Patent Document 2).

特開平5−152649号公報JP-A-5-152649 米国特許第5930600号US Pat. No. 5,930,600

特許文献1のようなレーザ発振器にあっては、各光学素子を一般に10〜100ミクロン以上の厚い紫外線硬化接着剤層を介して位置決め固定するものである。一般にレーザ発振器は防塵や湿度管理のため気密な空間を維持した状態で使用するが、発振器内の接着剤が相当量である場合、接着層からのアウトガスを生じレーザ発振動作における損失になる場合がある。また、樹脂である接着層は経年劣化を生じ、接着力の低下及び形状変化を生じる場合がある。また、ガラス材質の基台は、アルミニウム等金属材質に比較して高価であり、質量が大きく、加工性が悪く設計の自由度が制限される等の問題点があった。   In the laser oscillator as in Patent Document 1, each optical element is generally positioned and fixed via a thick UV-curing adhesive layer of 10 to 100 microns or more. In general, a laser oscillator is used in a state where an airtight space is maintained for dust prevention and humidity control. However, if a considerable amount of adhesive is used in the oscillator, outgassing from the adhesive layer may occur, resulting in a loss in laser oscillation operation. is there. Moreover, the adhesive layer that is a resin may deteriorate over time, resulting in a decrease in adhesive force and a change in shape. In addition, the glass base is more expensive than a metal material such as aluminum, and has a problem that the mass is large, the workability is poor, and the freedom of design is limited.

また特許文献2のような技術を適用したレーザ発振器にあっては、レーザ発振器を構成する各光学素子の金属製保持部材にはんだ層を設け、はんだ温度をコントロールするPTCまたはNTCサーミスタを上記金属製保持部材に一体化して組み込む構成となっている。このため光学素子の位置決め調整中は上記金属製保持部材がはんだ融点以上の温度に上昇しており、位置決め固定後の金属製保持部材の冷却に伴って金属製保持部材が収縮し、光学素子の位置ズレが生じる問題点があった。更に、各光学素子の金属製保持部材の部品点数が多く、構成が複雑であり、組立性及びコストの面で問題点があった。   Further, in the laser oscillator to which the technique as disclosed in Patent Document 2 is applied, a solder layer is provided on the metal holding member of each optical element constituting the laser oscillator, and the PTC or NTC thermistor for controlling the solder temperature is made of the above metal. It is configured to be integrated into the holding member. For this reason, during the positioning adjustment of the optical element, the metal holding member rises to a temperature equal to or higher than the solder melting point, and the metal holding member contracts with the cooling of the metal holding member after positioning and fixing, so that the optical element There was a problem that a positional shift occurred. Furthermore, the number of parts of the metal holding member of each optical element is large, the configuration is complicated, and there are problems in terms of assembly and cost.

この発明は、上記のような問題点を解決するためになされたものであり、光学素子の設置に関する調整機構を有するレーザ発振器において、高信頼な接合を可能とするはんだによって光学素子の精密固定を行う場合、調整時の位置ズレの影響を抑制して調整後のレーザ発振器の出力低下を抑えることが可能な組立方法を提供するとともに、部品点数が少なく安価な構成で上記光学素子の精密固定を実現したレーザ発振器を得ることを目的としている。   The present invention has been made to solve the above-described problems, and in a laser oscillator having an adjustment mechanism related to installation of an optical element, the optical element is precisely fixed by solder that enables highly reliable joining. In this case, an assembly method capable of suppressing the output drop of the laser oscillator after the adjustment by suppressing the influence of the positional deviation at the time of adjustment is provided, and the optical element is precisely fixed with an inexpensive configuration with a small number of parts. The purpose is to obtain a realized laser oscillator.

この発明に係るレーザ発振器は、光学平面基台上に配置されたレーザ媒質と複数の光学素子と、前記各光学素子を前記光学平面基台上に支持する金属製保持部材を有するレーザ発振器において、前記金属製保持部材は、上下方向に2分割された上部保持部材及び下部保持部材からなり、前記上部保持部材と下部保持部材との間に、はんだ層が設けられ、当該はんだ層を含む前記金属製保持部材を含む前記光学素子を支持する部分の、前記金属製保持部材の前記レーザ発振器の光軸に垂直な方向の高さhが所定値以下としたものである。   A laser oscillator according to the present invention is a laser oscillator having a laser medium and a plurality of optical elements disposed on an optical plane base, and a metal holding member that supports the optical elements on the optical plane base. The metal holding member includes an upper holding member and a lower holding member that are divided into two in the vertical direction. A solder layer is provided between the upper holding member and the lower holding member, and the metal including the solder layer. The height h of the portion supporting the optical element including the made holding member in the direction perpendicular to the optical axis of the laser oscillator of the metal holding member is set to a predetermined value or less.

一方本発明によるレーザ発振器の組立方法は、光学平面基台上に配置されたレーザ媒質と複数の光学素子と、前記各光学素子を前記光学平面基台上に支持する金属製保持部材を有するレーザ発振器において、
前記金属製保持部材は、上下に2分割された上部保持部材及び下部保持部材からなり、前記上部保持部材と下部保持部材との間にはんだ層が設けられ、当該はんだ層を含む前記金属製保持部材を含む前記光学素子を支持する部分の、前記レーザ発振器の光軸に垂直な方向の前記光学平面基台の表面からの高さhが所定値以下であるレーザ発振器の光軸上に、前記複数の光学素子を精密固定する際、複数箇所の精密固定作業を同時に実施するものである。
On the other hand, a laser oscillator assembly method according to the present invention includes a laser medium having a laser medium disposed on an optical plane base, a plurality of optical elements, and a metal holding member that supports the optical elements on the optical plane base. In the oscillator,
The metal holding member is composed of an upper holding member and a lower holding member that are divided into two vertically, and a solder layer is provided between the upper holding member and the lower holding member, and the metal holding member including the solder layer is provided. On the optical axis of the laser oscillator, the height h from the surface of the optical plane base in the direction perpendicular to the optical axis of the laser oscillator of the part supporting the optical element including the member is not more than a predetermined value, When a plurality of optical elements are precisely fixed, a plurality of precision fixing operations are simultaneously performed.

この発明によれば、はんだを用いて堅牢に光学素子を位置決め固定するレーザ発振器において、前記光学素子の金属製保持部材の高さを制限することにより、光学素子調整時から精密固定後のレーザ発振出力の低下を1%以内に抑えることが可能となる。また、恒温の光学平面基台を備えることにより、同一発振器筐体内のレーザ発振器に含まれる複数の光学素子を、同時にはんだを用いて堅牢に位置決め固定するレーザ発振器の組立方法が実現できる。   According to the present invention, in a laser oscillator that firmly positions and fixes an optical element using solder, by limiting the height of the metal holding member of the optical element, the laser oscillation after precise fixing from the time of adjusting the optical element It is possible to suppress a decrease in output within 1%. In addition, by providing a constant temperature optical flat base, it is possible to realize a laser oscillator assembly method in which a plurality of optical elements included in a laser oscillator in the same oscillator casing are firmly positioned and fixed simultaneously using solder.

本発明の実施の形態1によるレーザ発振器を示す全体構成図である。1 is an overall configuration diagram showing a laser oscillator according to a first embodiment of the present invention. 本発明の実施の形態1による光学素子保持部を示す斜視図である。It is a perspective view which shows the optical element holding | maintenance part by Embodiment 1 of this invention. 本発明の実施の形態1における、レンズの位置ズレ量とレーザ発振器出力低下の関係を示すグラフである。4 is a graph showing the relationship between the amount of lens position shift and the laser oscillator output reduction in Embodiment 1 of the present invention. 本発明の実施の形態2による光学素子保持部を示す斜視図である。It is a perspective view which shows the optical element holding | maintenance part by Embodiment 2 of this invention. 本発明の実施の形態3による光学素子保持部を示す斜視図である。It is a perspective view which shows the optical element holding | maintenance part by Embodiment 3 of this invention. 本発明の実施の形態4による光学素子保持部を示す斜視図である。It is a perspective view which shows the optical element holding | maintenance part by Embodiment 4 of this invention. 本発明の実施の形態5によるレーザ発振器を示す全体構成図である。It is a whole block diagram which shows the laser oscillator by Embodiment 5 of this invention. 本発明の実施の形態5による光学素子精密固定作業中の構成図である。It is a block diagram in the optical element precision fixing operation | work by Embodiment 5 of this invention. 本発明の実施の形態5によるレーザ発振器組立調整中の構成図である。It is a block diagram during the laser oscillator assembly adjustment by Embodiment 5 of this invention.

実施の形態1.
図1は本発明の実施の形態1によるレーザ発振器の構成図である。光学平面基台2の上に、レーザ発振器1を構成するレーザ媒質5や音響光学Qスイッチ素子7や共振器ミラー3a、3b、励起光伝送レンズ4a、4b、モード制限アパーチャ6、また励起光伝送ファイバ8のファイバコネクタ17、発振レーザ光伝送レンズ25a、25bが固定されている。励起光は半導体レーザパッケージ9から上記励起光伝送ファイバ8を介し、励起光伝送レンズ4a、4bで励起光伝搬径を調節してレーザ媒質5に導入される、端面励起構成のレーザ発振器である。レーザ媒質5としては、固体媒質のNd:YVO、Nd:YAG等が用いられる。レーザ媒質5や音響光学Qスイッチ素子7は機械精度で位置決めされ、光学平面基台2に固定される。その他の共振器ミラー3、励起光伝送レンズ4、モード制限アパーチャ6、ファイバ端を留めるファイバコネクタ17、発振レーザ光伝送レンズ25の金属製保持部材は、2分割されて低融点はんだ層を含んだ構成となっている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a laser oscillator according to the first embodiment of the present invention. On the optical flat base 2, the laser medium 5 constituting the laser oscillator 1, the acousto-optic Q switch element 7, the resonator mirrors 3a and 3b, the pumping light transmission lenses 4a and 4b, the mode limiting aperture 6, and the pumping light transmission. The fiber connector 17 of the fiber 8 and the oscillation laser light transmission lenses 25a and 25b are fixed. The pumping light is a laser oscillator having an end face pumping configuration in which the pumping light is introduced from the semiconductor laser package 9 into the laser medium 5 through the pumping light transmission fiber 8 with the pumping light transmission lenses 4a and 4b adjusting the pumping light propagation diameter. As the laser medium 5, a solid medium such as Nd: YVO 4 or Nd: YAG is used. The laser medium 5 and the acousto-optic Q switch element 7 are positioned with mechanical accuracy and fixed to the optical flat base 2. The other resonator mirror 3, the pumping light transmission lens 4, the mode limiting aperture 6, the fiber connector 17 that holds the fiber end, and the metal holding member of the oscillation laser light transmission lens 25 are divided into two parts and include a low melting point solder layer. It has a configuration.

本発明の実施の形態1によるレーザ発振器は、ファブリー・ペロー型共振器を構成する1ヶ所以上の光学素子を有しており、前記光学素子は例えば共振器ミラーやレンズであり、それら光学素子は発振器筐体の光学平面基台上に、線膨張率の低い金属製保持部材、例えばマルテンサイト系ステンレス鋼製などの金属製保持部材で支持される。前記金属製保持部材は上下方向に2分割されており、その間に低融点はんだ層を含む。また、前記金属製保持部材にはヒータ挿入用の穴が1ヶ所設けてある。上記構成において、前記低融点はんだ層を含む金属製保持部材の高さを所定値である30mm以下にすることを特徴とする。また、焦点距離80mm以下の凸レンズ、または曲率160mm以下の凹ミラーを固定する際は、前記低融点はんだ層を含む金属製保持部材の高さを所定値の1/2である15mm以下にすることを特徴とする。または、上記高さの値を実現するために、光学素子を設置する位置の光学平面基台と金属製保持部材の間に、ヒートシンクを設けることを特徴とする。更に、光学素子位置決め調整中の光学平面基台温度を一定にする恒温機構を備えることを特徴とする。 The laser oscillator according to the first embodiment of the present invention has one or more optical elements constituting a Fabry-Perot resonator, and the optical elements are, for example, resonator mirrors and lenses. On the optical flat base of the oscillator housing, it is supported by a metal holding member having a low linear expansion coefficient, for example, a metal holding member made of martensitic stainless steel. The metal holding member is divided into two in the vertical direction, and includes a low melting point solder layer therebetween. The metal holding member is provided with one hole for inserting a heater. The said structure WHEREIN: The height of the metal holding member containing the said low melting-point solder layer shall be 30 mm or less which is a predetermined value, It is characterized by the above-mentioned. Further, when fixing a convex lens having a focal length of 80 mm or less or a concave mirror having a curvature of 160 mm or less, the height of the metal holding member including the low melting point solder layer is set to 15 mm or less which is ½ of a predetermined value. It is characterized by. Alternatively, in order to realize the above height value, a heat sink is provided between the optical flat base at the position where the optical element is installed and the metal holding member. Furthermore, a constant temperature mechanism for making the optical plane base temperature constant during the optical element positioning adjustment is provided.

図2にはんだ層を含んだ光学素子保持部の拡大図の例を示す。ここでは共振器内に設置されるミラーやレンズの例を示している。光学素子3は上部保持部材10の部材にミクロンオーダー以下の薄いエポキシ接着剤層12により接着されている。用いるエポキシは例えばセメダインEP160など、熱硬化性の接着剤を適用する。   FIG. 2 shows an example of an enlarged view of the optical element holding portion including the solder layer. Here, examples of mirrors and lenses installed in the resonator are shown. The optical element 3 is bonded to the member of the upper holding member 10 with a thin epoxy adhesive layer 12 of micron order or less. The epoxy used is a thermosetting adhesive such as Cemedine EP160.

一方、光学平面基台2には、下部保持部材11の部材がボルト21により締付固定されている。上部保持部材10と下部保持部材11の両部材は、例えば一般的なオーステナイト系ステンレス材SUS304に比較して線膨張率が約1/2と小さい例えばマルテンサイト系ステンレスSUS440などで作成する。 On the other hand, the member of the lower holding member 11 is fastened and fixed to the optical flat base 2 by bolts 21. Both the upper holding member 10 and the lower holding member 11 are made of, for example, martensitic stainless steel SUS440, which has a linear expansion coefficient that is about 1/2 that of a general austenitic stainless steel SUS304.

また、光学素子保持に適用する金属の上下両部材には、ニッケルや金などのメッキ処理を施すことによりはんだ濡れ性及び耐腐食性を確保する。両部材の間に低融点はんだ層13を設ける。用いるはんだは、例えばSn−Bi共晶合金の溶融温度約140℃の低融点はんだを適用する。 Further, both the upper and lower metal members used for holding the optical element are plated with nickel, gold, or the like to ensure solder wettability and corrosion resistance. A low melting point solder layer 13 is provided between both members. As the solder to be used, for example, a low melting point solder having a melting temperature of about 140 ° C. of Sn—Bi eutectic alloy is applied.

上記下部保持部材11には、カートリッジヒータを挿入する穴を設けており、この穴の直径は、製作時に挿入するカートリッジヒータの直径に対してすきまばめ公差基準で製作する。 The lower holding member 11 is provided with a hole for inserting a cartridge heater, and the diameter of the hole is manufactured based on a clearance fit tolerance with respect to the diameter of the cartridge heater to be inserted at the time of manufacture.

更に、上部保持部材10、下部保持部材11は、光学平面基台2の面に対して約20°傾いた面ではんだを介して接している。また、前記カートリッジヒータ挿入用穴は、上部保持部材10に設けてもよい。ここで上部保持部材10、下部保持部材11を合わせた高さ(図2のhの値)は30mm以下で構成している。 Furthermore, the upper holding member 10 and the lower holding member 11 are in contact with each other via solder on a surface inclined by about 20 ° with respect to the surface of the optical flat base 2. The cartridge heater insertion hole may be provided in the upper holding member 10. Here, the combined height of the upper holding member 10 and the lower holding member 11 (value h in FIG. 2) is 30 mm or less.

このような構成によれば、低融点はんだ層13を含む上部保持部材10、下部保持部材11が、2点の安価な金属部材で構成できる。上部保持部材10、下部保持部材11の表面はメッキ処理によりはんだ濡れ性が確保されている。また、上記上部保持部材10、下部保持部材11は、光学平面基台2の面に対して傾いた面で接しているため、上部保持部材10と下部保持部材11の対向面を傾斜方向にずらすことにより、はんだ層の厚み以上の光学素子の高さ方向の調整が可能となる。   According to such a configuration, the upper holding member 10 and the lower holding member 11 including the low melting point solder layer 13 can be constituted by two inexpensive metal members. The surfaces of the upper holding member 10 and the lower holding member 11 have solder wettability ensured by plating. Further, since the upper holding member 10 and the lower holding member 11 are in contact with each other at a surface inclined with respect to the surface of the optical flat base 2, the opposing surfaces of the upper holding member 10 and the lower holding member 11 are shifted in the inclination direction. This makes it possible to adjust the height direction of the optical element equal to or greater than the thickness of the solder layer.

光学素子3を上部保持部材10に接着するエポキシ12は熱硬化性で、調整時の高温状態でも必要な接着力を確保できる。また、エポキシ接着層12はミクロンオーダー以下の厚みで構成され使用量は極めて少なく、これまでの評価によりアウトガス及び変形の影響は無視できるレベルであることが判明している。はんだ層13に適用するはんだは低融点であるものの、光学素子位置決め調整時にははんだ層に接する上部保持部材10、下部保持部材11の温度は平均120℃程度上昇している。そのため、位置決め後に冷却して室温に戻す過程において上部保持部材10、下部保持部材11が収縮し、光学素子の位置が最適位置から低くなる方向にずれる。 The epoxy 12 for bonding the optical element 3 to the upper holding member 10 is thermosetting and can secure a necessary adhesive force even in a high temperature state during adjustment. Further, the epoxy adhesive layer 12 has a thickness of less than a micron order and is used in a very small amount, and it has been found that the influence of outgas and deformation is negligible according to previous evaluations. Although the solder applied to the solder layer 13 has a low melting point, the temperature of the upper holding member 10 and the lower holding member 11 in contact with the solder layer is increased by about 120 ° C. on average during the optical element positioning adjustment. Therefore, in the process of cooling after positioning and returning to room temperature, the upper holding member 10 and the lower holding member 11 contract, and the position of the optical element deviates from the optimum position.

一般的なシングルモード発振器における、光学素子の位置ズレ量とレーザ発振出力の関係を図3に示す。図3に示すように焦点距離80mm以上の凸レンズにおいては、40ミクロン以下の位置ズレに抑制することで、レーザ発振出力低下を1%以内に抑えることが可能となる。上部保持部材10、および下部保持部材11の線膨張係数は10.2×10-6/℃であり、120℃の温度変化を想定した場合、上部保持部材10、下部保持部材11の合計高さが30mm以内であれば位置ズレを40ミクロン以下に抑制できる。この位置ズレ量は、実際の試験によっても一致する結果を確認できた。同様の結果は、線膨張係数が12.0×10-6/℃以下の値を有する材料で上部保持部材、および下部保持部材を構成した場合に得られることを確認している。 FIG. 3 shows the relationship between the positional deviation of the optical element and the laser oscillation output in a general single mode oscillator. As shown in FIG. 3, in a convex lens with a focal length of 80 mm or more, it is possible to suppress a decrease in laser oscillation output within 1% by suppressing the positional deviation to 40 microns or less. The linear expansion coefficient of the upper holding member 10 and the lower holding member 11 is 10.2 × 10 −6 / ° C. When assuming a temperature change of 120 ° C., the total height of the upper holding member 10 and the lower holding member 11 is 30 mm. Within the range, the positional deviation can be suppressed to 40 microns or less. This positional deviation amount could be confirmed by the actual test. It has been confirmed that the same result is obtained when the upper holding member and the lower holding member are made of a material having a linear expansion coefficient of 12.0 × 10 −6 / ° C. or less.

シングルモード発振器内に用いられるレンズは一般的に焦点距離80mm以上で構成できるため、上記範囲が実現できれば通常の発振器設計には対応可能となる。また、レーザ発振器の小型化を狙うなど、焦点距離80mm以下の凸レンズ、もしくはそれとほぼ等価な働きを持つ曲率160mm以下の凹ミラーを固定する特殊な構成の際は、図3より20ミクロン以下の位置ズレに抑制すれば同様にレーザ発振出力低下を1%以内に抑えることが可能となる。20ミクロン以下の位置ズレ量を達成するためには、上部保持部材10、下部保持部材11の合計高さを所定値の1/2である15mm以下に設計する必要がある。この範囲で設計することにより、レーザ発振器内に適用でき得るあらゆるレンズに対して本構成が採用できる。 A lens used in a single mode oscillator can generally be configured with a focal length of 80 mm or more. Therefore, if the above range can be realized, a normal oscillator design can be supported. Also, when aiming to reduce the size of the laser oscillator, a special configuration that fixes a convex lens with a focal length of 80 mm or less, or a concave mirror with a curvature of 160 mm or less that has a function equivalent to that of the lens, a position of 20 microns or less from FIG. If the deviation is suppressed, a decrease in laser oscillation output can be similarly suppressed to within 1%. In order to achieve a positional shift amount of 20 microns or less, it is necessary to design the total height of the upper holding member 10 and the lower holding member 11 to be 15 mm or less, which is 1/2 of a predetermined value. By designing in this range, this configuration can be adopted for any lens that can be applied in the laser oscillator.

図2で示したような光学素子3のみならず、レーザ発振器1内のレーザ光軸上に配置されるその他の励起光伝送レンズ4や発振光伝送レンズ25、及び金属製のモード制限アパーチャ6、ファイバコネクタ17を取り付けた金属製のファイバコネクタ取付板18などについても、はんだ層を含む低線膨張率の金属部材で構成された保持部材を構成することにより、同様の効果が得られる。   In addition to the optical element 3 as shown in FIG. 2, other excitation light transmission lens 4 and oscillation light transmission lens 25 disposed on the laser optical axis in the laser oscillator 1, and a metal mode limiting aperture 6, The same effect can be obtained for the metal fiber connector mounting plate 18 to which the fiber connector 17 is attached by configuring a holding member made of a metal member having a low linear expansion coefficient including a solder layer.

レーザ光軸上に配置する素子が、モード制限アパーチャ6や、ファイバコネクタ取付板18のように金属(アルミニウムやステンレス鋼)製であれば、ニッケル及び金などはんだ濡れ性の確保できるメッキ処理を施し、直接はんだ層との接合面を持たせる構成が可能となり、更に部品点数を低減できる。 If the element placed on the laser optical axis is made of a metal (aluminum or stainless steel) such as the mode limiting aperture 6 or the fiber connector mounting plate 18, a plating process capable of ensuring solder wettability such as nickel and gold is applied. In addition, it is possible to provide a structure having a joint surface directly with the solder layer, and further reduce the number of parts.

本実施の形態1に示す構成を採用すれば、従来のようなPTCまたはNTCサーミスタを光学素子ベースに一体化する必要がなくなるため、部品点数の少ない安価で組立容易な構成のはんだ精密固定光学素子ベースが実現できる。また、この光学素子保持によってレーザ発振器を構成することにより、安価、堅牢、小型、安定動作かつ組立性の良いレーザ発振器が実現できる。   By adopting the configuration shown in the first embodiment, it is not necessary to integrate a conventional PTC or NTC thermistor into the optical element base, so that the solder precision fixing optical element having a small number of parts and an easily assembled structure can be obtained. The base can be realized. Further, by constructing a laser oscillator by holding this optical element, a laser oscillator that is inexpensive, robust, compact, stable operation and good in assemblability can be realized.

実施の形態2.
光学素子保持部の別の例を図4に示す。下部保持部材11の下にヒートシンク27を設けており、上記ヒートシンク27は例えば直接水冷されたものであり、光学素子3の位置調整中において温度上昇を5℃以下に抑えてある。このような構成とすることで、金属製保持部材の高さhを増やさず、光学素子位置決め調整時からの位置ズレによるレーザ発振器出力の低下を1%以内に抑えた状態で、光学素子を所望の高さに配置する構成が可能となる。
Embodiment 2. FIG.
Another example of the optical element holding unit is shown in FIG. A heat sink 27 is provided under the lower holding member 11. The heat sink 27 is, for example, directly water-cooled, and the temperature rise is suppressed to 5 ° C. or less during the position adjustment of the optical element 3. By adopting such a configuration, the optical element is desired in a state in which the height h of the metal holding member is not increased and the decrease in the output of the laser oscillator due to the positional deviation from the optical element positioning adjustment is suppressed to within 1%. It is possible to arrange at the height.

実施の形態3.
また、光学素子保持構造の別の例を図5に示す。この例では光学ガラス製のミラー側面に、ニッケルあるいは金などを蒸着している。このように、光学素子側面に直接はんだ濡れ性を確保してもよい。
Embodiment 3 FIG.
FIG. 5 shows another example of the optical element holding structure. In this example, nickel, gold, or the like is deposited on the side surface of the optical glass mirror. Thus, solder wettability may be secured directly on the side surface of the optical element.

この構成によれば、図2に示した上部保持部材10と下部保持部材11とが一体化でき、部品点数が低減できるため、更に発振器光軸高さを低くすることが可能となり、レーザ発振器1の小型化が図れる。また、エポキシ接着剤層を無くすことができ、信頼性を向上できる。   According to this configuration, the upper holding member 10 and the lower holding member 11 shown in FIG. 2 can be integrated, and the number of parts can be reduced. Therefore, the height of the optical axis of the oscillator can be further reduced, and the laser oscillator 1 Can be miniaturized. Moreover, an epoxy adhesive layer can be eliminated and reliability can be improved.

実施の形態4.
更に、光学素子保持構造の別の例を図6に示す。この例では光学ガラス製のミラー3を、はんだ濡れ性を確保するべくメッキ処理を行った光学素子挟み込み保持ホルダ26によって挟み込み保持している。この光学素子挟み込み保持ホルダ26は直接はんだ層を介して下部保持部材11に接することで光学素子を保持する構成となる。
Embodiment 4 FIG.
Furthermore, another example of the optical element holding structure is shown in FIG. In this example, the optical glass mirror 3 is sandwiched and held by an optical element sandwiching holder 26 which has been plated to ensure solder wettability. The optical element sandwiching and holding holder 26 is configured to hold the optical element by directly contacting the lower holding member 11 through the solder layer.

この構成によれば、図2に示した光学素子と上部保持部材を接着するエポキシ接着剤が不要となり、信頼性を更に向上させることが可能となる。   According to this configuration, the epoxy adhesive for bonding the optical element and the upper holding member shown in FIG. 2 becomes unnecessary, and the reliability can be further improved.

実施の形態5.
レーザ発振器において、光軸上に配置される光学素子、アパーチャ、ファイバコネクタ固定板などを精密固定する作業手順を示す。図8のように下部保持部材11に設けた穴に市販のカートリッジヒータ14を挿入する。
カートリッジヒータ14の外径と光学素子ベース11の内径はすきまばめ公差基準で製作してあり、必要に応じて脱着でき、かつ効率的な熱伝達が実現できる。カートリッジヒータは、ヒータ電源を兼ねた温度調節器16に接続される。
Embodiment 5 FIG.
An operation procedure for precisely fixing an optical element, an aperture, a fiber connector fixing plate and the like arranged on the optical axis in a laser oscillator will be described. A commercially available cartridge heater 14 is inserted into a hole provided in the lower holding member 11 as shown in FIG.
The outer diameter of the cartridge heater 14 and the inner diameter of the optical element base 11 are manufactured on the basis of a clearance fit tolerance, and can be removed and attached as necessary, and efficient heat transfer can be realized. The cartridge heater is connected to a temperature controller 16 that also serves as a heater power source.

一方、下部保持部材11に熱電対を取り付け、同じく温度調節器16に接続する。はんだ層13に接する上部保持部材10と下部保持部材11の対向面の温度がはんだ融点を若干超過する約150℃を維持しながら、光学素子3を別途位置調整治具24で把持して位置決めを行う。位置が確定すれば、その位置を治具24で完全に固定した状態ではんだ層温度を下げてはんだ層13を硬化させる。その後光学素子3を把持する調整治具24及びカートリッジヒータ14を取り去り、光学素子精密固定が完了する。 On the other hand, a thermocouple is attached to the lower holding member 11 and connected to the temperature controller 16. While maintaining the temperature of the opposing surfaces of the upper holding member 10 and the lower holding member 11 in contact with the solder layer 13 at about 150 ° C., which slightly exceeds the melting point of the solder, the optical element 3 is separately held by the position adjusting jig 24 for positioning. Do. If the position is determined, the solder layer temperature is lowered while the position is completely fixed by the jig 24 to cure the solder layer 13. Thereafter, the adjusting jig 24 and the cartridge heater 14 for gripping the optical element 3 are removed, and the optical element precision fixing is completed.

実際にレーザ発振器を製造、調整する際は、複数の光学素子を同時に調整する必要が生じる。図9に示すように、ここでは2つの励起光伝送レンズ4a、4b、及び2つの共振器ミラー3a、3bを同時に、各下部保持部材11にカートリッジヒータ14を挿入して、位置調整治具24によって把持した光学素子を調整している状態を示している。複数の素子を同時に位置調整するため、光学平面基台に歪みが生じてはならない。光学平面基台に十分な熱容量がなく、素子調整時のヒータ加熱中において基台の温度変化が見込まれる際は、図7に示すように恒温機能を持つ光学平面基台28を適用する。例として基台を直接水冷して温度制御を行う。本構成により、複数の素子を同時に、調整中からのレーザ発振出力低下を1%以内に抑えるよう相互の位置ズレを起こさずに精密固定することが可能となる。   When actually manufacturing and adjusting a laser oscillator, it is necessary to adjust a plurality of optical elements simultaneously. As shown in FIG. 9, here, the two pumping light transmission lenses 4 a and 4 b and the two resonator mirrors 3 a and 3 b are simultaneously inserted into the respective lower holding members 11, and the position adjusting jig 24 is inserted. The state which is adjusting the optical element hold | gripped by is shown. In order to adjust the position of a plurality of elements at the same time, the optical flat base must not be distorted. When the optical flat base does not have a sufficient heat capacity and the temperature of the base is expected to change during heating of the heater during element adjustment, an optical flat base 28 having a constant temperature function is applied as shown in FIG. As an example, temperature control is performed by directly cooling the base with water. With this configuration, a plurality of elements can be precisely fixed at the same time without causing mutual positional deviation so as to suppress the laser oscillation output decrease during adjustment to within 1%.

また、カートリッジヒータは繰り返し使用できるため、レーザ発振器の製造コスト低減が可能となる。部品点数も少なく、組立も容易となり、複数箇所光学素子の同時調整も容易に実施できる。   Further, since the cartridge heater can be used repeatedly, the manufacturing cost of the laser oscillator can be reduced. The number of parts is small, assembly is easy, and simultaneous adjustment of optical elements at a plurality of locations can be easily performed.

1 レーザ発振器、2 光学平面基台、3 光学素子、4 励起光伝送レンズ、5 レーザ媒質、6 モード制限アパーチャ、7 音響光学Qスイッチ、8 励起光伝送光ファイバ、9 半導体レーザパッケージ、10 上部保持部材、11 下部保持部材、12 エポキシ接着剤、13 はんだ、14 カートリッジヒータ、15 熱電対、16 温度調節器、17 ファイバコネクタ、18 ファイバコネクタ取付板、19 熱電対一体型カートリッジヒータ、20 カートリッジヒータ挿入用穴、21 固定ボルト、22 側面金属蒸着ミラー、23 ヒータ用給電線、24 位置調整治具、25 レーザ発振光伝送レンズ、26 光学素子挟み込み保持ホルダ、27 ヒートシンク、28 恒温の光学平面基台。   DESCRIPTION OF SYMBOLS 1 Laser oscillator, 2 Optical plane base, 3 Optical element, 4 Excitation light transmission lens, 5 Laser medium, 6 Mode restriction | limiting aperture, 7 Acoustooptic Q switch, 8 Excitation light transmission optical fiber, 9 Semiconductor laser package, 10 Upper holding Member, 11 Lower holding member, 12 Epoxy adhesive, 13 Solder, 14 Cartridge heater, 15 Thermocouple, 16 Temperature controller, 17 Fiber connector, 18 Fiber connector mounting plate, 19 Thermocouple integrated cartridge heater, 20 Cartridge heater insertion Hole, 21 Fixing bolt, 22 Side metal deposition mirror, 23 Heater feed line, 24 Position adjustment jig, 25 Laser oscillation light transmission lens, 26 Optical element pinching holder, 27 Heat sink, 28 Constant temperature optical flat base.

Claims (10)

光学平面基台上に配置されたレーザ媒質と複数の光学素子と、前記各光学素子を前記光学平面基台上に支持する金属製保持部材を有するレーザ発振器において、
前記金属製保持部材は、上下方向に2分割された上部保持部材及び下部保持部材からなり、前記上部保持部材と下部保持部材との間に、はんだ層が設けられ、当該はんだ層を含む前記金属製保持部材を含む前記光学素子を支持する部分の、前記金属製保持部材の前記レーザ発振器の光軸に垂直な方向の高さhが所定値以下であることを特徴とするレーザ発振器。
In a laser oscillator having a laser medium and a plurality of optical elements arranged on an optical plane base, and a metal holding member that supports the optical elements on the optical plane base,
The metal holding member includes an upper holding member and a lower holding member that are divided into two in the vertical direction. A solder layer is provided between the upper holding member and the lower holding member, and the metal including the solder layer. A laser oscillator characterized in that a height h of a portion supporting the optical element including a made holding member in a direction perpendicular to the optical axis of the laser oscillator of the metallic holding member is equal to or less than a predetermined value.
金属製保持部材の前記レーザ発振器の光軸に垂直な方向の高さhを所定値の1/2以下としたことを特徴とする請求項1に記載のレーザ発振器。 The laser oscillator according to claim 1, wherein a height h of the metal holding member in a direction perpendicular to the optical axis of the laser oscillator is set to ½ or less of a predetermined value. 金属製保持部材と前記光学平面基台との間に、ヒートシンクを挿入したことを特徴とする請求項1または2に記載のレーザ発振器。 3. The laser oscillator according to claim 1, wherein a heat sink is inserted between a metal holding member and the optical flat base. 金属製保持部材は、12.0×10-6/℃以下の線膨張係数を有する材料で構成したことを特徴とする請求項1または2に記載のレーザ発振器。 3. The laser oscillator according to claim 1, wherein the metal holding member is made of a material having a linear expansion coefficient of 12.0 × 10 −6 / ° C. or less. 金属製保持部材にカートリッジヒータを挿入できる穴を設けたことを特徴とする請求項1または2に記載のレーザ発振器。 3. The laser oscillator according to claim 1, wherein a hole for inserting a cartridge heater is provided in the metal holding member. 光学平面基台に恒温機構を設けたことを特徴とする請求項1または2に記載のレーザ発振器。 3. The laser oscillator according to claim 1, wherein a constant temperature mechanism is provided on the optical flat base. 光学素子の側面に金属蒸着を施し、前記光学平面基台上に固定された前記下部保持部材に対して、はんだ層を介して光学素子を直接、接合し固定したことを特徴とする請求項1または2に記載のレーザ発振器。 The metal element is vapor-deposited on the side surface of the optical element, and the optical element is directly bonded and fixed to the lower holding member fixed on the optical flat base via a solder layer. Or the laser oscillator of 2. 光学素子を光学素子挟み込み保持ホルダで機械的に挟み込んで固定し、前記光学平面基台上に固定された下部保持部材に対して、前記はんだ層を介して前記光学素子挟み込み保持ホルダを接合固定したことを特徴とする請求項1または2に記載のレーザ発振器。 An optical element is mechanically sandwiched and fixed by an optical element sandwiching holding holder, and the optical element sandwiching holding holder is bonded and fixed to the lower holding member fixed on the optical flat base via the solder layer. The laser oscillator according to claim 1 or 2, wherein 光学平面基台上に配置されたレーザ媒質と複数の光学素子と、前記各光学素子を前記光学平面基台上に支持する金属製保持部材を有するレーザ発振器において、
前記金属製保持部材は、上下に2分割された上部保持部材及び下部保持部材からなり、前記上部保持部材と下部保持部材との間にはんだ層が設けられ、当該はんだ層を含む前記金属製保持部材を含む前記光学素子を支持する部分の、前記レーザ発振器の光軸に垂直な方向の前記光学平面基台の表面からの高さhが所定値以下であるレーザ発振器の光軸上に、前記複数の光学素子を精密固定する際、複数箇所の精密固定作業を同時に実施することを特徴とするレーザ発振器の組立方法。
In a laser oscillator having a laser medium and a plurality of optical elements arranged on an optical plane base, and a metal holding member that supports the optical elements on the optical plane base,
The metal holding member is composed of an upper holding member and a lower holding member that are divided into two vertically, and a solder layer is provided between the upper holding member and the lower holding member, and the metal holding member including the solder layer is provided. On the optical axis of the laser oscillator, the height h from the surface of the optical plane base in the direction perpendicular to the optical axis of the laser oscillator of the part supporting the optical element including the member is not more than a predetermined value, A method for assembling a laser oscillator, wherein when a plurality of optical elements are precisely fixed, a plurality of precision fixing operations are simultaneously performed.
光学平面基台は恒温機構を備えたことを特徴とする請求項9に記載のレーザ発振器の組立方法。 10. The laser oscillator assembling method according to claim 9, wherein the optical flat base is provided with a constant temperature mechanism.
JP2010075431A 2010-03-29 2010-03-29 Laser oscillator and method for assembling laser oscillator Active JP5418362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075431A JP5418362B2 (en) 2010-03-29 2010-03-29 Laser oscillator and method for assembling laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075431A JP5418362B2 (en) 2010-03-29 2010-03-29 Laser oscillator and method for assembling laser oscillator

Publications (2)

Publication Number Publication Date
JP2011210841A true JP2011210841A (en) 2011-10-20
JP5418362B2 JP5418362B2 (en) 2014-02-19

Family

ID=44941609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075431A Active JP5418362B2 (en) 2010-03-29 2010-03-29 Laser oscillator and method for assembling laser oscillator

Country Status (1)

Country Link
JP (1) JP5418362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174735A (en) * 2019-05-13 2019-08-27 大连藏龙光电子科技有限公司 Lens adjustment structure and its light emitting devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235714A (en) * 1994-02-23 1995-09-05 Mitsubishi Electric Corp Solid laser apparatus
JPH07333472A (en) * 1994-06-06 1995-12-22 Canon Inc Height adjusting and fixing method for optical parts, fixing member and optical module in which optical device and optical fiber are built in
JPH0933761A (en) * 1995-07-18 1997-02-07 Shinko Electric Ind Co Ltd Optical module
JP2001051174A (en) * 1999-08-05 2001-02-23 Tokin Corp Manufacture of optical parts
JP2006351601A (en) * 2005-06-13 2006-12-28 Showa Optronics Co Ltd Fitting method of optical component in solid-state laser apparatus
JP2008028380A (en) * 2006-06-22 2008-02-07 Matsushita Electric Ind Co Ltd Laser beam source equipment and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235714A (en) * 1994-02-23 1995-09-05 Mitsubishi Electric Corp Solid laser apparatus
JPH07333472A (en) * 1994-06-06 1995-12-22 Canon Inc Height adjusting and fixing method for optical parts, fixing member and optical module in which optical device and optical fiber are built in
JPH0933761A (en) * 1995-07-18 1997-02-07 Shinko Electric Ind Co Ltd Optical module
JP2001051174A (en) * 1999-08-05 2001-02-23 Tokin Corp Manufacture of optical parts
JP2006351601A (en) * 2005-06-13 2006-12-28 Showa Optronics Co Ltd Fitting method of optical component in solid-state laser apparatus
JP2008028380A (en) * 2006-06-22 2008-02-07 Matsushita Electric Ind Co Ltd Laser beam source equipment and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174735A (en) * 2019-05-13 2019-08-27 大连藏龙光电子科技有限公司 Lens adjustment structure and its light emitting devices

Also Published As

Publication number Publication date
JP5418362B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
EP0604327A1 (en) Method and apparatus for combined active and passive athermalization of an optical assembly
JP5181208B2 (en) Drive module and electronic device
JPH0675150A (en) Temperature compensating optical assembly
WO2012050132A1 (en) Semiconductor laser device
JP2002267891A (en) Semiconductor laser module and aligning method for the semiconductor laser module
US5646674A (en) Optical print head with flexure mounted optical device
JP2011107413A (en) Actuator, drive module, and electronic equipment
JP5418362B2 (en) Laser oscillator and method for assembling laser oscillator
CA2863284C (en) Light source device
JP2000277843A (en) Semiconductor laser module and manufacture thereof
EP1936414A2 (en) Small optical package having multiple optically aligned soldered elements therein
WO2013128728A1 (en) Optical module and production method for same
JP2002267894A (en) Ferrule product, manufacturing method therefor and optical module
JP2007030044A (en) Method for fixing small component on held substrate with high accuracy
EP1186923B1 (en) Device for aligning optical source and optical fiber in optical source module
US10630038B2 (en) Stress-optimized laser disk mounting systems
JP2010156887A (en) Lens unit, and imaging element and electronic apparatus using it
JP7102860B2 (en) Optical module
JP6877271B2 (en) Manufacturing method of optical module
WO2007142089A1 (en) Optical transmission module and its manufacturing method
JP4223491B2 (en) Optical fiber fixing member and manufacturing method thereof, and optical module and manufacturing method thereof
JP3993083B2 (en) Fiber collimator and manufacturing method thereof
JP5228876B2 (en) Quartz crystal resonator and manufacturing method thereof
JP2013021220A (en) Optical module
JP5228898B2 (en) Crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R151 Written notification of patent or utility model registration

Ref document number: 5418362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250