JP2011210654A - Method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011210654A
JP2011210654A JP2010079053A JP2010079053A JP2011210654A JP 2011210654 A JP2011210654 A JP 2011210654A JP 2010079053 A JP2010079053 A JP 2010079053A JP 2010079053 A JP2010079053 A JP 2010079053A JP 2011210654 A JP2011210654 A JP 2011210654A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
positive electrode
nonaqueous electrolyte
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010079053A
Other languages
Japanese (ja)
Inventor
Kenta Ishida
謙太 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010079053A priority Critical patent/JP2011210654A/en
Publication of JP2011210654A publication Critical patent/JP2011210654A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics.SOLUTION: The method for manufacturing a nonaqueous electrolyte secondary battery comprising a cathode having a spinel type lithium manganate as a cathode active material, an anode, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt includes a plasma treatment process for performing a plasma treatment on the surface of the cathode by using a non-reactive gas, and a coating layer formation process for forming a coating layer with an organic monomer plasma-polymerized on the surface of the cathode after the plasma-treatment.

Description

本発明は、非水電解質二次電池に関し、詳しくは非水電解質二次電池用正極の改良に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a positive electrode for a non-aqueous electrolyte secondary battery.

非水電解質二次電池は、高いエネルギー密度を有し、高容量であるため、携帯機器の駆動電源として広く利用されている。   Nonaqueous electrolyte secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources for portable devices.

従来、非水電解質二次電池用正極活物質として、放電特性に優れるコバルト酸リチウムが用いられていたが、コバルトは埋蔵量が少なく高価であるため、埋蔵量が豊富で安価なマンガンを用いたスピネル型マンガン酸リチウムに対する注目が高まっている。   Conventionally, lithium cobalt oxide having excellent discharge characteristics has been used as a positive electrode active material for non-aqueous electrolyte secondary batteries, but cobalt is expensive because it has a small reserve and is expensive. Attention has been focused on spinel type lithium manganate.

しかしながら、スピネル型マンガン酸リチウムは、充放電サイクルを行ったり高温環境にさらされたりすると、結晶中からマンガンが溶出し、負極に移動して析出し、サイクル特性や高温保存特性等の電池特性を低下させるという問題があった。   However, when spinel type lithium manganate is subjected to a charge / discharge cycle or exposed to a high temperature environment, manganese elutes from the crystal, moves to the negative electrode and precipitates, and has battery characteristics such as cycle characteristics and high temperature storage characteristics. There was a problem of lowering.

ところで、特許文献1、2は、非水電解質二次電池の特性改善のために、電極に被覆層を設ける技術を提案している。   By the way, Patent Documents 1 and 2 propose a technique of providing a coating layer on an electrode in order to improve the characteristics of a nonaqueous electrolyte secondary battery.

特開平10-241666号公報Japanese Patent Laid-Open No. 10-241666 特開平6-310146号公報JP-A-6-310146

特許文献1は、表面が炭素質材料からなる薄膜で被覆された正極を用いる技術である。この技術によると、充電過程の電極−電解液の副反応を抑制できるとされる。   Patent Document 1 is a technique using a positive electrode whose surface is coated with a thin film made of a carbonaceous material. According to this technique, the side reaction of the electrode-electrolyte solution during the charging process can be suppressed.

特許文献2は、活物質を包摂する金属支持体の外面を厚さ0.1〜2μmの有機材料で被覆する技術である。この技術によると、充放電による析出に基づく短絡を防止できるとされる。   Patent Document 2 is a technique in which an outer surface of a metal support that includes an active material is coated with an organic material having a thickness of 0.1 to 2 μm. According to this technique, it is said that a short circuit based on precipitation due to charge / discharge can be prevented.

しかし、これらの技術では、スピネル型マンガン酸リチウム結晶からマンガンが溶出することを抑制できないという問題があった。   However, these techniques have a problem that it is not possible to suppress the elution of manganese from the spinel type lithium manganate crystal.

本発明は、上記に鑑みなされたものであって、スピネル型マンガン酸リチウムを有する非水電解質電池のマンガンの溶出を抑制することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at suppressing the elution of the manganese of the nonaqueous electrolyte battery which has a spinel type lithium manganate.

上記課題を解決するための本発明は、次のように構成されている。
スピネル型マンガン酸リチウムを正極活物質として有する正極と、負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池の製造方法において、前記正極表面を、非反応性ガスを用いてプラズマ処理を行うプラズマ処理工程と、プラズマ処理後の正極の表面に、有機モノマーをプラズマ重合してなる被覆層を形成する被覆層形成工程と、を備えることを特徴とする。
The present invention for solving the above problems is configured as follows.
In a method for producing a non-aqueous electrolyte secondary battery comprising: a positive electrode having spinel type lithium manganate as a positive electrode active material; a negative electrode; and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt. A plasma processing step of performing plasma processing using a reactive gas, and a coating layer forming step of forming a coating layer formed by plasma polymerization of an organic monomer on the surface of the positive electrode after the plasma processing, .

この構成によると、有機モノマーをプラズマ重合してなる被覆層が、マンガンの溶出を抑制するように作用する。また、非反応性ガスを用いてプラズマ処理を行うことにより、正極表面にラジカル層が形成され、このラジカル層が有機モノマーをプラズマ重合してなる被覆層と正極との密着性を向上させる。よって、充放電サイクルを繰り返したり高温条件で保存したりしても、被覆層が正極から剥がれることがないので、被覆層によるマンガン溶出抑制効果が継続的に得られ、高温保存特性やサイクル特性が飛躍的に向上する。   According to this configuration, the coating layer formed by plasma polymerization of the organic monomer acts so as to suppress elution of manganese. Further, by performing plasma treatment using a non-reactive gas, a radical layer is formed on the surface of the positive electrode, and this radical layer improves the adhesion between the coating layer formed by plasma polymerization of an organic monomer and the positive electrode. Therefore, even if the charge / discharge cycle is repeated or stored under high temperature conditions, the coating layer does not peel off from the positive electrode, so that the manganese elution suppression effect by the coating layer can be continuously obtained, and the high temperature storage characteristics and cycle characteristics are Improve dramatically.

ここで、非反応性ガスとしては、He、Ne、Ar、Kr、Xeからなる群より選択される少なくとも一種の元素を含む構成とすることが好ましい。   Here, the non-reactive gas preferably includes at least one element selected from the group consisting of He, Ne, Ar, Kr, and Xe.

また、有機モノマーとしては、プロピレン、ベンゼン、スチレンからなる群より選択される少なくとも一種の化合物を含む構成とすることが好ましい。   The organic monomer preferably includes at least one compound selected from the group consisting of propylene, benzene, and styrene.

また、プラズマ処理工程における正極の温度としては、27〜727℃(300〜1000K)であることが好ましい。   Moreover, as a temperature of the positive electrode in a plasma treatment process, it is preferable that it is 27-727 degreeC (300-1000K).

有機モノマーのプラズマ重合体による被覆層の厚みは、0.01μm未満であると、十分な効果が得られないおそれがある。また、有機モノマーのプラズマ重合体の導電性が低いため、被覆層の厚みが1μmより大きい場合には、正極の導電性が低下して、負荷特性を低下させるおそれがある。よって、有機モノマーのプラズマ重合体による被覆層の厚みは、0.01〜1μmであることが好ましい。   If the thickness of the coating layer of the organic monomer plasma polymer is less than 0.01 μm, there is a possibility that a sufficient effect cannot be obtained. In addition, since the conductivity of the plasma polymer of the organic monomer is low, when the thickness of the coating layer is larger than 1 μm, the conductivity of the positive electrode is lowered and the load characteristics may be lowered. Therefore, the thickness of the coating layer of the organic monomer plasma polymer is preferably 0.01 to 1 μm.

上記で説明したように、本発明によると、サイクル特性に優れた非水電解質二次電池を得ることができる。   As explained above, according to the present invention, a non-aqueous electrolyte secondary battery having excellent cycle characteristics can be obtained.

本発明を実施するための最良の形態を、以下の実施例を通じて、詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。   The best mode for carrying out the present invention will be described in detail through the following examples. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施例)
[実施例1]
〔正極の作製〕
スピネル型マンガン酸リチウム(LiMn)85質量部と、黒鉛粉末5質量部と、カーボンブラック5質量部と、ポリフッ化ビニリデン5質量部と、N−メチル−2−ピロリドンとを混合して、正極活物質スラリーとした。この正極活物質スラリーをドクターブレード法により厚み20μmのアルミニウム製集電体の両面に塗布し、乾燥させた後、ローラプレス機により圧延し、裁断して正極を得た。
(Example)
[Example 1]
[Production of positive electrode]
Mixing 85 parts by mass of spinel type lithium manganate (LiMn 2 O 4 ), 5 parts by mass of graphite powder, 5 parts by mass of carbon black, 5 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone A positive electrode active material slurry was obtained. This positive electrode active material slurry was applied to both sides of an aluminum current collector having a thickness of 20 μm by the doctor blade method, dried, rolled with a roller press, and cut to obtain a positive electrode.

(プラズマ処理工程)
この正極をプラズマ発生装置内に取り付け、装置内のガス雰囲気をAr雰囲気に置換した後(5分間の導入を3回)、装置内のArガス圧を0.1Torrに保ち、両電極に13.56MHzの高周波電力を印加してプラズマを発生させた。なお、放電出力は200W、放電時間は5分、温度は200℃(473K)とした。なお、1Torrは133.322Paとする。
(Plasma treatment process)
After this positive electrode was installed in the plasma generator and the gas atmosphere in the apparatus was replaced with an Ar atmosphere (introduction for 5 minutes three times), the Ar gas pressure in the apparatus was maintained at 0.1 Torr, Plasma was generated by applying high frequency power of 56 MHz. The discharge output was 200 W, the discharge time was 5 minutes, and the temperature was 200 ° C. (473 K). Note that 1 Torr is 133.322 Pa.

(被覆層形成工程)
プラズマ処理を行った正極を、大気に暴露することなく、プラズマ発生装置内のガス雰囲気をプロピレン(有機モノマー)に置換した(5分間の導入を3回)。この後、装置内のプロピレンガス圧を0.1Torrに保ち、両電極に13.56MHzの高周波電力を印加してプラズマを発生させ、プロピレンをプラズマ重合して、正極表面に被覆層を形成した。なお、放電出力は200W、放電時間は5分、温度は200℃(473K)とした。
(Coating layer forming process)
The gas atmosphere in the plasma generator was replaced with propylene (organic monomer) without exposing the positive electrode subjected to the plasma treatment to the air (introduction for 5 minutes three times). Thereafter, the propylene gas pressure in the apparatus was maintained at 0.1 Torr, high frequency power of 13.56 MHz was applied to both electrodes to generate plasma, and propylene was plasma polymerized to form a coating layer on the positive electrode surface. The discharge output was 200 W, the discharge time was 5 minutes, and the temperature was 200 ° C. (473 K).

〔負極の作製〕
天然黒鉛粉末(Lc値が150Å以上で、d(002)値が3.38Å以下)95質量部と、ポリフッ化ビニリデン5質量部と、N−メチル−2−ピロリドンと、を混合して、負極活物質スラリーとした。この負極活物質スラリーをドクターブレード法により厚み12μmの銅製集電体の両面に塗布し、乾燥させた後、ローラプレス機により圧延し、裁断して負極を得た。
(Production of negative electrode)
95 parts by mass of natural graphite powder (Lc value is 150 Å or more and d (002) value is 3.38 Å or less), 5 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone are mixed to obtain a negative electrode An active material slurry was obtained. This negative electrode active material slurry was applied to both sides of a 12 μm thick copper current collector by the doctor blade method, dried, rolled with a roller press, and cut to obtain a negative electrode.

〔電極体の作製〕
上記被覆層を形成した正極及び負極を、ポリエチレン製微多孔膜からなるセパレータを介して巻回し、最外周にポロプロピレン製のテープを貼り付けて、円筒状の電極体を作製した。この後、プレスし、缶底部分に絶縁テープを貼り付け、扁平渦巻電極体とした。
(Production of electrode body)
The positive electrode and the negative electrode on which the coating layer was formed were wound through a separator made of a polyethylene microporous film, and a polypropylene-made tape was attached to the outermost periphery to produce a cylindrical electrode body. Then, it pressed and stuck the insulating tape on the can bottom part, and it was set as the flat spiral electrode body.

〔非水電解質の調整〕
エチレンカーボネートとジエチルカーボネートを質量比3:7で混合し、電解質塩としてのLiPFを1.0M(モル/リットル)となるように溶解して、非水電解質となした。
[Nonaqueous electrolyte adjustment]
Ethylene carbonate and diethyl carbonate were mixed at a mass ratio of 3: 7, and LiPF 6 as an electrolyte salt was dissolved so as to be 1.0 M (mol / liter) to obtain a nonaqueous electrolyte.

〔電池の組み立て〕
上記扁平渦巻電極体を、角形外装缶内に挿入した。この後、注液口を備える封口体により外装缶の開口を封止し、注液口より非水電解質を注液し、この後注液口を封止して、実施例1に係る非水電解質二次電池を作製した。
[Assembling the battery]
The flat spiral electrode body was inserted into a rectangular outer can. Thereafter, the opening of the outer can is sealed with a sealing body having a liquid injection port, the nonaqueous electrolyte is injected from the liquid injection port, and then the liquid injection port is sealed, so that the nonaqueous solution according to Example 1 is used. An electrolyte secondary battery was produced.

[実施例2]
プラズマ処理工程に用いるガスをArに代えてHeとしたこと以外は、上記実施例1と同様にして、実施例2にかかる非水電解質二次電池を作製した。
[Example 2]
A nonaqueous electrolyte secondary battery according to Example 2 was fabricated in the same manner as in Example 1 except that He used instead of Ar as the gas used in the plasma treatment process.

[実施例3]
プラズマ処理工程に用いるガスをArに代えてNeとしたこと以外は、上記実施例1と同様にして、実施例3にかかる非水電解質二次電池を作製した。
[Example 3]
A nonaqueous electrolyte secondary battery according to Example 3 was fabricated in the same manner as in Example 1 except that the gas used in the plasma treatment step was changed to Ne instead of Ar.

[実施例4]
プラズマ処理工程に用いるガスをArに代えてKrとしたこと以外は、上記実施例1と同様にして、実施例4にかかる非水電解質二次電池を作製した。
[Example 4]
A nonaqueous electrolyte secondary battery according to Example 4 was produced in the same manner as in Example 1 except that the gas used in the plasma treatment step was changed to Kr instead of Ar.

[実施例5]
プラズマ処理工程に用いるガスをArに代えてXeとしたこと以外は、上記実施例1と同様にして、実施例5にかかる非水電解質二次電池を作製した。
[Example 5]
A nonaqueous electrolyte secondary battery according to Example 5 was produced in the same manner as in Example 1 except that the gas used in the plasma treatment step was changed to Xe instead of Ar.

[実施例6]
被覆層形成工程に用いるガス(有機モノマー)をプロピレンに代えてベンゼンとしたこと以外は、上記実施例1と同様にして、実施例6にかかる非水電解質二次電池を作製した。
[Example 6]
A nonaqueous electrolyte secondary battery according to Example 6 was produced in the same manner as in Example 1 except that benzene was used instead of propylene as the gas (organic monomer) used in the coating layer forming step.

[実施例7]
被覆層形成工程に用いるガス(有機モノマー)をプロピレンに代えてスチレンとしたこと以外は、上記実施例1と同様にして、実施例7にかかる非水電解質二次電池を作製した。
[Example 7]
A nonaqueous electrolyte secondary battery according to Example 7 was produced in the same manner as in Example 1 except that styrene was used instead of propylene in place of the gas (organic monomer) used in the coating layer forming step.

[比較例1]
プラズマ処理工程及び被覆層形成工程を行わなかったこと以外は、上記実施例1と同様にして、比較例1にかかる非水電解質二次電池を作製した。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that the plasma treatment step and the coating layer forming step were not performed.

[比較例2]
被覆層形成工程を行わなかったこと以外は、上記実施例1と同様にして、比較例2にかかる非水電解質二次電池を作製した。
[Comparative Example 2]
A nonaqueous electrolyte secondary battery according to Comparative Example 2 was produced in the same manner as in Example 1 except that the coating layer forming step was not performed.

[比較例3]
プラズマ処理工程を行わなかったこと以外は、上記実施例3と同様にして、比較例2にかかる非水電解質二次電池を作製した。
[Comparative Example 3]
A nonaqueous electrolyte secondary battery according to Comparative Example 2 was produced in the same manner as in Example 3 except that the plasma treatment step was not performed.

[比較例4]
プラズマ処理工程に用いるガスをArに代えてNを用いたこと以外は、上記実施例1と同様にして、比較例4にかかる非水電解質二次電池を作製した。
[Comparative Example 4]
A nonaqueous electrolyte secondary battery according to Comparative Example 4 was produced in the same manner as in Example 1 except that N 2 was used instead of Ar as the gas used in the plasma treatment process.

[比較例5]
プラズマ処理工程に用いるガスをArに代えてCHを用いたこと以外は、上記実施例1と同様にして、比較例5にかかる非水電解質二次電池を作製した。
[Comparative Example 5]
A nonaqueous electrolyte secondary battery according to Comparative Example 5 was fabricated in the same manner as in Example 1 except that CH 4 was used instead of Ar as the gas used in the plasma treatment process.

[比較例6]
プラズマ処理工程に用いるガスをArに代えてOを用いたこと以外は、上記実施例1と同様にして、比較例6にかかる非水電解質二次電池を作製した。
[Comparative Example 6]
A nonaqueous electrolyte secondary battery according to Comparative Example 6 was fabricated in the same manner as in Example 1 except that O 2 was used instead of Ar as the gas used in the plasma treatment process.

[比較例7]
プラズマ処理工程に用いるガスをArに代えてHを用いたこと以外は、上記実施例1と同様にして、比較例7にかかる非水電解質二次電池を作製した。
[Comparative Example 7]
A nonaqueous electrolyte secondary battery according to Comparative Example 7 was fabricated in the same manner as in Example 1 except that H 2 was used instead of Ar as the gas used in the plasma treatment process.

〈碁盤目試験〉
上記実施例1〜5、比較例3〜7と同様にして正極を作製し、正極と被覆層との密着性を確かめるため、JIS D0202−1988に準拠して、碁盤目テープ剥離試験を行った。テープとしてセロハンテープ(「CT24」、ニチバン(株)製)を用い、指の腹でテープを正極に密着させた後にテープを剥離し、100マス中の剥離していないマス数をカウントした。この結果を下記表1に示す。なお、剥離の有無は、X線光電子分光装置を用いてテープの付着物の組成を分析することにより確認した。
<Cross-cut test>
A positive electrode was produced in the same manner as in Examples 1 to 5 and Comparative Examples 3 to 7, and in order to confirm the adhesion between the positive electrode and the coating layer, a cross-cut tape peeling test was performed in accordance with JIS D0202-1988. . Cellophane tape (“CT24”, manufactured by Nichiban Co., Ltd.) was used as the tape, and the tape was peeled off after the tape was brought into close contact with the positive electrode with the belly of the finger. The results are shown in Table 1 below. In addition, the presence or absence of peeling was confirmed by analyzing the composition of the tape deposit using an X-ray photoelectron spectrometer.

〈高温サイクル特性試験〉
上記実施例1,6,7、比較例1〜3と同様にして電池を作製し、定電流1.20Aで電圧が4.20Vとなるまで充電し、この後定電圧4.20Vで電流が0.030Aとなるまで充電した。この後、10分休止し、定電流1.20Aで電圧が2.75Vとなるまで放電した。この充放電サイクルを300サイクル行い、下記式によりサイクル特性を算出した。この充放電サイクルは、全て60℃の恒温槽内で行った。また、充放電サイクル後の電池を解体し、負極上に析出したマンガン量を、ICP(誘導結合プラズマ)分析装置により分析した。これらの結果を下記表1に示す。なお、マンガン量は、正極に含まれる理論マンガン量に対する百分率で示す。
<High temperature cycle characteristics test>
Batteries were produced in the same manner as in Examples 1, 6, 7 and Comparative Examples 1 to 3, and charged at a constant current of 1.20 A until the voltage reached 4.20 V. Thereafter, the current was applied at a constant voltage of 4.20 V. The battery was charged until it reached 0.030A. Thereafter, the battery was rested for 10 minutes and discharged at a constant current of 1.20 A until the voltage reached 2.75V. This charge / discharge cycle was performed 300 times, and the cycle characteristics were calculated by the following formula. All the charge / discharge cycles were performed in a constant temperature bath at 60 ° C. Further, the battery after the charge / discharge cycle was disassembled, and the amount of manganese deposited on the negative electrode was analyzed by an ICP (inductively coupled plasma) analyzer. These results are shown in Table 1 below. The amount of manganese is shown as a percentage of the theoretical amount of manganese contained in the positive electrode.

容量維持率(%)=300サイクル目放電容量÷1サイクル目放電容量×100   Capacity maintenance ratio (%) = 300th cycle discharge capacity / first cycle discharge capacity × 100

〈高温保存特性試験〉
上記実施例1,6,7、比較例1〜3と同一の条件でそれぞれ電池を作製し、定電流1.20Aで電圧が4.20Vとなるまで充電し、この後定電圧4.20Vで電流が0.030Aとなるまで充電した。この後、10分休止し、定電流1.20Aで電圧が2.75Vとなるまで放電し、この放電容量を初期容量とした。この後、定電流1.20Aで電圧が4.20Vとなるまで充電し、この後定電圧4.20Vで電流が0.030Aとなるまで充電した。充電後の電池を60℃の恒温槽内に20日放置した。放置後の電池を、定電流1.20Aで電圧が2.75Vとなるまで放電し、この放電容量を残存容量とした。この後、再度上記条件で充放電を行い、その放電容量を復帰容量とした。そして下記式により残存容量率及び復帰容量率を算出した。また、上記試験後の電池を解体し、負極上に析出したマンガン量を、ICP(誘導結合プラズマ)分析装置により分析した。これらの結果を下記表1に示す。
<High temperature storage characteristics test>
Batteries were respectively produced under the same conditions as in Examples 1, 6, 7 and Comparative Examples 1 to 3, and charged at a constant current of 1.20 A until the voltage reached 4.20 V, and then at a constant voltage of 4.20 V. The battery was charged until the current reached 0.030A. Thereafter, the battery was rested for 10 minutes and discharged at a constant current of 1.20 A until the voltage reached 2.75 V, and this discharge capacity was taken as the initial capacity. Thereafter, the battery was charged at a constant current of 1.20 A until the voltage reached 4.20 V, and then charged at a constant voltage of 4.20 V until the current reached 0.030 A. The battery after charging was left in a constant temperature bath at 60 ° C. for 20 days. The battery after standing was discharged at a constant current of 1.20 A until the voltage reached 2.75 V, and this discharge capacity was defined as the remaining capacity. Thereafter, charging / discharging was performed again under the above conditions, and the discharge capacity was taken as the return capacity. And the remaining capacity rate and the return capacity rate were calculated by the following formula. Further, the battery after the test was disassembled, and the amount of manganese deposited on the negative electrode was analyzed with an ICP (inductively coupled plasma) analyzer. These results are shown in Table 1 below.

残存容量率(%)=残存容量÷初期容量×100
復帰容量率(%)=復帰容量÷初期容量×100
Remaining capacity ratio (%) = remaining capacity / initial capacity x 100
Recovery capacity ratio (%) = Recovery capacity / Initial capacity x 100

Figure 2011210654
Figure 2011210654

上記表1から、非反応性ガス(Ar、He、Ne、Kr、Xe)でプラズマ処理を行い、その後ポリプロピレンをプラズマ重合して被覆層を形成した実施例1〜5は、碁盤目試験で100マス中18〜80マスに剥離が確認されなかったのに対し、プラズマ処理を行っていない比較例3、反応性ガス(N、CH、O、H)を用いてプラズマ処理を行った比較例4〜7はいずれも、全てのマスで剥離が確認されている(碁盤目試験結果が全て0/100である)ことがわかる。 From Table 1 above, Examples 1-5 in which a plasma treatment was performed with a non-reactive gas (Ar, He, Ne, Kr, Xe), and then a polypropylene was plasma-polymerized to form a coating layer were 100 Peeling was not confirmed in 18 to 80 squares in the square, but plasma treatment was performed using Comparative Example 3 in which plasma treatment was not performed, and reactive gases (N 2 , CH 4 , O 2 , H 2 ). In Comparative Examples 4 to 7, it can be seen that peeling was confirmed in all the squares (the cross-cut test results are all 0/100).

このことは、次のように考えられる。非反応性ガス(He、Ne、Ar、Kr、Xe)を用いてプラズマ処理することにより、正極表面に存在する活性点を消失させることなく正極表面に被覆層との密着性に優れたラジカル層を形成することができる。このラジカル層により、プラズマ処理工程後に形成する被覆層(プロピレンのプラズマ重合物)と正極との密着性が向上し、被覆層が正極から剥離し難くなる。これに対し、プラズマ処理に反応性ガス(N、CH、O、H)を用いると、プラズマ処理によって正極表面に存在する活性点が消失し、その代わりに反応性ガスによる官能基(Nでは窒素官能基、CHではメチル基、Oでは酸素官能基、Hでは水素官能基)が生成するが、これらの官能基には被覆層の密着性を高める効果はないため、正極と被覆層との密着性が向上しない(比較例4〜7)。また、プラズマ処理を行わない場合、活性点は消失しないものの、正極表面に被覆層との密着性に優れたラジカル層を形成することができないため、この場合もまた、正極と被覆層との密着性が向上しない(比較例3)。 This is considered as follows. Radical layer with excellent adhesion to the positive electrode surface without losing active sites present on the positive electrode surface by plasma treatment using non-reactive gas (He, Ne, Ar, Kr, Xe) Can be formed. This radical layer improves the adhesion between the coating layer (propylene plasma polymer) formed after the plasma treatment step and the positive electrode, making it difficult for the coating layer to peel off from the positive electrode. In contrast, when a reactive gas (N 2 , CH 4 , O 2 , H 2 ) is used for the plasma treatment, the active sites present on the surface of the positive electrode disappear due to the plasma treatment, and functional groups based on the reactive gas are used instead. (N 2 is a nitrogen functional group, CH 4 is a methyl group, O 2 is an oxygen functional group, and H 2 is a hydrogen functional group), but these functional groups have no effect of increasing the adhesion of the coating layer. The adhesion between the positive electrode and the coating layer does not improve (Comparative Examples 4 to 7). In addition, in the case where the plasma treatment is not performed, the active site does not disappear, but a radical layer having excellent adhesion with the coating layer cannot be formed on the surface of the positive electrode. The property does not improve (Comparative Example 3).

上記表1から、非反応性ガスのうち、Arを用いた実施例1は、碁盤目試験結果が80/100であり、他の非反応性ガス(He、Ne、Kr、Xe)を用いた実施例2〜5の18/100〜65/100よりも優れていることがわかる。   From Table 1 above, among the non-reactive gases, Example 1 using Ar had a cross-cut test result of 80/100, and other non-reactive gases (He, Ne, Kr, Xe) were used. It turns out that it is superior to 18 / 100-65 / 100 of Examples 2-5.

このことは、次のように考えられる。He、Neは分子量が小さく、プラズマ粒子の衝突エネルギーが小さくなり、高いガス圧をかけないとラジカル層の形成が難しくなる。他方、Kr、Xeは分子量が大きいため、励起エネルギーが大きくなり、プラズマを発生させるためにより高い高周波電力を印加する必要があり、ラジカル層の形成が難しくなる。Arは分子量が適度であるため、このような問題が生じない。   This is considered as follows. He and Ne have a small molecular weight, a collision energy of plasma particles is small, and it is difficult to form a radical layer unless a high gas pressure is applied. On the other hand, since Kr and Xe have a large molecular weight, the excitation energy increases, and it is necessary to apply higher high-frequency power to generate plasma, which makes it difficult to form a radical layer. Since Ar has a moderate molecular weight, such a problem does not occur.

また、上記表1から、有機モノマーとしてベンゼンを用いた実施例6の碁盤目試験結果は84/100、有機モノマーとしてスチレンを用いた実施例7は78/100であり、有機モノマーとしてポリプロピレンを用いた実施例1の80/100と同等の効果が得られることがわかる。   Further, from Table 1 above, the cross-cut test result of Example 6 using benzene as the organic monomer is 84/100, Example 7 using styrene as the organic monomer is 78/100, and polypropylene is used as the organic monomer. It can be seen that an effect equivalent to 80/100 of Example 1 was obtained.

また、上記表1から、Arを用いてプラズマ処理を行い、有機モノマー(プロピレン、ベンゼン、スチレン)をプラズマ重合して被覆層を形成した実施例1,6,7は、高温サイクル試験後の容量維持率が75〜82%、Mn溶出量が2.53〜2.61%、高温保存後の残存容量率が76.3〜80.1%、復帰容量率が89.4〜95.3%、Mn溶出量が0.53〜0.57%であり、Arを用いたプラズマ処理及びプラズマ重合による被覆層形成の一方又は双方を行っていない比較例1〜3の、高温サイクル試験後の容量維持率58〜62%、Mn溶出量3.54〜3.62%、高温保存後の残存容量率69.3〜70.5%、復帰容量率80.5〜83.0%、Mn溶出量1.20〜1.54%よりも優れていることがわかる。   Further, from Table 1 above, Examples 1, 6, and 7 in which a coating layer was formed by performing plasma treatment using Ar and plasma-polymerizing organic monomers (propylene, benzene, styrene) are as follows. Maintenance rate is 75 to 82%, Mn elution amount is 2.53 to 2.61%, Remaining volume ratio after high temperature storage is 76.3 to 80.1%, Recovery capacity ratio is 89.4 to 95.3% The capacity after high-temperature cycle test of Comparative Examples 1 to 3 in which the elution amount of Mn is 0.53 to 0.57% and one or both of the plasma treatment using Ar and the coating layer formation by plasma polymerization are not performed. Maintenance rate 58 to 62%, Mn elution amount 3.54 to 3.62%, Remaining volume ratio after high temperature storage 69.3 to 70.5%, Restoration capacity ratio 80.5 to 83.0%, Mn elution amount It can be seen that it is superior to 1.20 to 1.54%.

このことは、次のように考えられる。有機モノマーをプラズマ重合してなる被覆層は、スピネル型マンガン酸リチウム結晶中からマンガンが溶出することを抑制するように作用する。このため、溶出したマンガンが負極に移動して析出することによる放電特性の低下を抑制できる。このため、被覆層を設けない比較例2,3よりも、実施例1,6,7のほうがマンガン溶出量が少なくなり、且つ放電特性(容量維持率、残存容量率、復帰容量率)が高まる。しかしながら、被覆層形成前にプラズマ処理を行わない場合(比較例3)、正極と被覆層との密着性が低いため、充放電サイクルや高温保存によって被覆層が正極から剥がれ易く、十分にマンガンの溶出を抑制できないので、実施例1,6,7のような放電特性向上効果が得られない。   This is considered as follows. The coating layer formed by plasma polymerization of the organic monomer acts to suppress elution of manganese from the spinel type lithium manganate crystal. For this reason, the fall of the discharge characteristic by the eluting manganese moving to a negative electrode and depositing can be suppressed. For this reason, the amount of manganese elution is smaller in Examples 1, 6 and 7 than in Comparative Examples 2 and 3 in which no coating layer is provided, and the discharge characteristics (capacity maintenance rate, remaining capacity rate, recovery capacity rate) are improved. . However, when plasma treatment is not performed before the formation of the coating layer (Comparative Example 3), the adhesion between the positive electrode and the coating layer is low, and thus the coating layer is easily peeled off from the positive electrode by charge / discharge cycles and high-temperature storage. Since elution cannot be suppressed, the effect of improving the discharge characteristics as in Examples 1, 6, and 7 cannot be obtained.

(追加事項)
本発明に用いる正極活物質は、スピネル型マンガン酸リチウムを含むことが必須であるが、その他の公知の活物質材料(コバルト酸リチウム、ニッケル酸リチウム、層状構造を有するコバルトニッケルマンガン酸リチウム、オリビン型リン酸鉄リチウム等)を含んでいてもよい。また、スピネル型マンガン酸リチウムやその他の活物質に、Co,Ni,Mg,Zr,Al,Ti,Sn等の他の元素が添加されていてもよい。
(extra content)
The positive electrode active material used in the present invention must contain spinel type lithium manganate, but other known active material materials (lithium cobaltate, lithium nickelate, cobalt nickel lithium manganate having a layered structure, olivine Type lithium iron phosphate). In addition, other elements such as Co, Ni, Mg, Zr, Al, Ti, and Sn may be added to the spinel type lithium manganate and other active materials.

また、本発明は、スピネル型マンガン酸リチウムを含む正極であればマンガンの溶出を抑制できるという効果を奏することができるので、スピネル型マンガン酸リチウムを主体とする(50質量%以上である)正極を備える非水電解質二次電池に適用できることは勿論、その他の活物質材料を主体とする(スピネル型マンガン酸リチウムが50質量%未満である)正極に適用することもできる。   Moreover, since the present invention can produce an effect that elution of manganese can be suppressed if it is a positive electrode containing spinel type lithium manganate, the positive electrode mainly composed of spinel type lithium manganate (50 mass% or more). As a matter of course, the present invention can be applied to a positive electrode mainly composed of other active material (the spinel type lithium manganate is less than 50% by mass).

また、プラズマ処理工程と、被覆層形成工程は、その間に正極が大気に暴露しないことが好ましく、このため両工程を連続的に行うことが好ましい。また、両工程ともに、装置内のガス圧力は0.005〜1Torr、電極に印加する電流の周波数は2〜500MHz、電力は2〜500kW、処理時の正極の温度を27〜727℃(300〜1000K)、より好ましくは170℃〜220℃(443K〜493K)、処理時間は5秒〜30分とすることが好ましい。   Moreover, it is preferable that a positive electrode is not exposed to air | atmosphere between a plasma treatment process and a coating layer formation process, Therefore, it is preferable to perform both processes continuously. In both steps, the gas pressure in the apparatus is 0.005 to 1 Torr, the frequency of the current applied to the electrode is 2 to 500 MHz, the power is 2 to 500 kW, and the temperature of the positive electrode during processing is 27 to 727 ° C. (300 to 300 ° C.). 1000K), more preferably 170 ° C to 220 ° C (443K to 493K), and the treatment time is preferably 5 seconds to 30 minutes.

また、有機モノマーのプラズマ重合体による被覆層は、0.01μm未満であると、十分な効果が得られないおそれがある。また、有機モノマーのプラズマ重合体の導電性が低いため、1μmより大きい場合には、正極の導電性の低下による負荷特性の低下を招くおそれがある。よって、有機モノマーのプラズマ重合体による被覆層は、0.01〜1μmであることが好ましい。   Moreover, there exists a possibility that a sufficient effect may not be acquired as the coating layer by the plasma polymer of an organic monomer is less than 0.01 micrometer. In addition, since the conductivity of the plasma polymer of the organic monomer is low, when it is larger than 1 μm, there is a possibility that the load characteristic is lowered due to the decrease in the conductivity of the positive electrode. Therefore, it is preferable that the coating layer by the plasma polymer of an organic monomer is 0.01-1 micrometer.

また、非水電解質の溶媒としては、プロピレンカーボネート・エチレンカーボネート・ブチレンカーボネート・ビニレンカーボネートに代表される環状カーボネート、γ−ブチロラクトン・γ−バレロラクトンに代表されるラクトン、ジエチルカーボネート・ジメチルカーボネート・エチルメチルカーボネートに代表される鎖状カーボネート、テトラヒドロフラン・1,2−ジメトキシエタン・ジエチレングリコールジメチルエーテル・1,3−ジオキソラン・2−メトキシテトラヒドロフラン・ジエチルエーテルに代表されるエーテル等を単独で、あるいは二種以上混合して用いることができる。また、非水電解質の電解質塩としては、LiPF、LiAsF、LiClO、LiBF、LiCFSO、LiN(CFSO等を用いることができる。 Nonaqueous electrolyte solvents include cyclic carbonates typified by propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, lactones typified by γ-butyrolactone, γ-valerolactone, diethyl carbonate, dimethyl carbonate, ethylmethyl. Chain carbonate typified by carbonate, tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, 1,3-dioxolane, 2-methoxytetrahydrofuran, ether typified by diethyl ether, etc. alone or in combination of two or more. Can be used. As the electrolyte salt in the nonaqueous electrolyte, it is possible to use LiPF 6, LiAsF 6, LiClO 4 , LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2 and the like.

以上に説明したように、本発明によれば、正極活物質として安価なスピネル型マンガン酸リチウムを有する非水電解質二次電池の高温条件におけるマンガンの溶出を抑制することができる。よって、産業上の利用可能性は大きい。   As described above, according to the present invention, elution of manganese under a high temperature condition of a nonaqueous electrolyte secondary battery having an inexpensive spinel type lithium manganate as a positive electrode active material can be suppressed. Therefore, industrial applicability is great.

Claims (4)

スピネル型マンガン酸リチウムを正極活物質として有する正極と、負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池の製造方法において、
前記正極表面を、非反応性ガスを用いてプラズマ処理を行うプラズマ処理工程と、
プラズマ処理後の正極の表面に、有機モノマーをプラズマ重合してなる被覆層を形成する被覆層形成工程と、
を備えることを特徴とする非水電解質二次電池の製造方法。
In a method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode having spinel type lithium manganate as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt,
A plasma treatment step of performing a plasma treatment on the positive electrode surface using a non-reactive gas;
A coating layer forming step of forming a coating layer formed by plasma polymerization of an organic monomer on the surface of the positive electrode after the plasma treatment;
The manufacturing method of the nonaqueous electrolyte secondary battery characterized by the above-mentioned.
請求項1に記載の非水電解質二次電池の製造方法において、
前記非反応性ガスは、He、Ne、Ar、Kr、Xeからなる群より選択される少なくとも一種の元素を含む、
ことを特徴とする非水電解質二次電池の製造方法。
In the manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1,
The non-reactive gas includes at least one element selected from the group consisting of He, Ne, Ar, Kr, and Xe.
A method for producing a non-aqueous electrolyte secondary battery.
請求項1又は2に記載の非水電解質二次電池の製造方法において、
前記有機モノマーは、プロピレン、ベンゼン、スチレンからなる群より選択される少なくとも一種の化合物を含む、
ことを特徴とする非水電解質二次電池の製造方法。
In the manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1 or 2,
The organic monomer includes at least one compound selected from the group consisting of propylene, benzene, and styrene.
A method for producing a non-aqueous electrolyte secondary battery.
請求項1、2又は3に記載の非水電解質二次電池の製造方法において、
前記プラズマ処理工程における正極の温度が27〜727℃である、
ことを特徴とする非水電解質二次電池の製造方法。
In the manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1, 2, or 3,
The temperature of the positive electrode in the plasma treatment step is 27 to 727 ° C.
A method for producing a non-aqueous electrolyte secondary battery.
JP2010079053A 2010-03-30 2010-03-30 Method for manufacturing nonaqueous electrolyte secondary battery Pending JP2011210654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079053A JP2011210654A (en) 2010-03-30 2010-03-30 Method for manufacturing nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079053A JP2011210654A (en) 2010-03-30 2010-03-30 Method for manufacturing nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2011210654A true JP2011210654A (en) 2011-10-20

Family

ID=44941476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079053A Pending JP2011210654A (en) 2010-03-30 2010-03-30 Method for manufacturing nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2011210654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073624A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Positive electrode active material
JP2020024947A (en) * 2019-11-12 2020-02-13 トヨタ自動車株式会社 Positive electrode active material
CN111908520A (en) * 2016-01-28 2020-11-10 住友金属矿山株式会社 Method for producing coated nickel-based lithium-nickel composite oxide particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908520A (en) * 2016-01-28 2020-11-10 住友金属矿山株式会社 Method for producing coated nickel-based lithium-nickel composite oxide particles
CN111908520B (en) * 2016-01-28 2023-09-05 住友金属矿山株式会社 Method for producing nickel-based lithium-nickel composite oxide particles with coating film
JP2018073624A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Positive electrode active material
JP2020024947A (en) * 2019-11-12 2020-02-13 トヨタ自動車株式会社 Positive electrode active material

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
US8192871B2 (en) Lithium secondary battery and production method of the same
KR101772754B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
KR20090066019A (en) Anode comprising surface treated anode active material and lithium battery using the same
CN110462909B (en) Lithium ion secondary battery
JP2011258348A (en) Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery
KR20090092104A (en) Electrode comprising niobium oxide and lithium battery using the same
JP2007220496A (en) Lithium secondary battery containing carboxylic acid anhydrous organic compound in electrolyte
JP4014816B2 (en) Lithium polymer secondary battery
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
JP3670938B2 (en) Lithium secondary battery
JPWO2018173521A1 (en) Negative electrode for secondary battery, method for producing the same, and secondary battery
CN109428120B (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery
KR20200076076A (en) Negative electrode comprising magnesium protective layer, method for manufacturing and lithium secondary battery comprising thereof
JP2011210654A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2007157496A (en) Electrode and secondary battery
CN114342148A (en) Method for manufacturing secondary battery
JP4775621B2 (en) Nonaqueous electrolyte secondary battery
JP2008262895A (en) Manufacturing method of lithium polymer battery
CN109119631B (en) Secondary battery
JP2019160616A (en) Lithium ion secondary battery
JP2008059753A (en) Nonaqueous electrolyte secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2014149969A (en) Current collector for battery and battery