JP2011210421A - Method and device for connecting superconductor - Google Patents

Method and device for connecting superconductor Download PDF

Info

Publication number
JP2011210421A
JP2011210421A JP2010074875A JP2010074875A JP2011210421A JP 2011210421 A JP2011210421 A JP 2011210421A JP 2010074875 A JP2010074875 A JP 2010074875A JP 2010074875 A JP2010074875 A JP 2010074875A JP 2011210421 A JP2011210421 A JP 2011210421A
Authority
JP
Japan
Prior art keywords
conductive member
diameter
molds
superconducting conductor
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010074875A
Other languages
Japanese (ja)
Inventor
Sumiichi Shibuya
純市 澁谷
Taisei Ogata
大成 小方
Yoshifumi Nagamoto
義史 長本
Koichi Osemochi
光一 大勢持
Mamoru Shimada
守 嶋田
Yuichi Yoshizawa
裕一 吉澤
Toshihiro Miyase
敏浩 宮瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010074875A priority Critical patent/JP2011210421A/en
Publication of JP2011210421A publication Critical patent/JP2011210421A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device in which superconductors are connected by a simple connection work by maintaining a low resistance of the connection part of the superconductors.SOLUTION: The superconductor has a channel formed in the central part and superconductive element wire bundle is arranged at the surrounding. The portion exposed from the end part of conduit of the superconductive element wire bundle is covered by a conductive member in the condition lacking the channel. Then, using a plurality of molding dies which are arranged separated with prescribed intervals in circumference direction of the conductive member, and have a pressing surface recessed in arc shape with a prescribed curvature, the conductive member is arranged in a cavity formed by these plurality of molding dies. Then, the conductive member is pressed by the pressing surface of the plurality of molding dies to reduce the diameter, and the diameter-reduced conductive member and the conductive member which is reduced in diameter covering the surrounding of the superconductive element wire bundle of the another superconductor formed by the process are insertion engaged with a groove formed in the conductive connection body, and are jointed electrically and mechanically.

Description

本発明は、超電導導体の接続方法、及び超電導導体の接続装置に関する。   The present invention relates to a superconducting conductor connection method and a superconducting conductor connection apparatus.

核融合機器や超電導エネルギー貯蔵システム装置など高磁場を発生させる大型の超電導コイル、並びに送電線等に使用する超電導コイルは、一般に複数の超電導導体を準備しておき、これらを相互に接続することによって製造している。   Large superconducting coils that generate high magnetic fields, such as fusion devices and superconducting energy storage system devices, and superconducting coils used for power transmission lines, etc. are generally prepared by connecting multiple superconducting conductors to each other. Manufacture.

例えば、特許文献1には、双方の超電導導体のコンジットを除去して超電導素線から一定の長さのフィラメントを硝酸などで露出させ、双方のフィラメントを適当数の束毎に重ね合わせ、このフィラメントを接続ピースで覆い、所定の温度および圧力を加えてフィラメントおよび安定化銅を固相接合し、双方の導体を一体化する方法が開示されている。また、特許文献2では、双方の超電導素線から接続箇所の安定化材を取り除いてフィラメントを露出させ、互いに重ね合わせて加圧しながら熱処理して接続する方法が開示されている。   For example, in Patent Document 1, the conduits of both superconducting conductors are removed to expose a filament of a certain length from the superconducting wire with nitric acid and the like, and both filaments are stacked for each appropriate number of bundles. Is covered with a connecting piece, a predetermined temperature and pressure are applied to solid-phase-bond the filament and the stabilized copper, and both conductors are integrated. Further, Patent Document 2 discloses a method in which a stabilizer is removed from both superconducting wires to expose a filament, and a heat treatment is performed while applying pressure by superposing each other.

また、特許文献3では、双方の化合物系超電導素線から接続端部の安定化材を除去した後に、チューブ状のフィラメントを互いに重ね合わせて圧力および温度を加え、チューブ状のフィラメント間を固相拡散接合する方法が開示されている。特許文献4には、超電導導体の接続すべき双方の端部をそれぞれ銅スリーブでスウェージング加工して一体化し、これらの端部をつき合わせて接続するバットジョイント法による接続方法が開示されている。   In Patent Document 3, the stabilizer at the connection end is removed from both compound-based superconducting wires, and then the tube-shaped filaments are superposed on each other to apply pressure and temperature, so that a solid phase is formed between the tube-shaped filaments. A method for diffusion bonding is disclosed. Patent Document 4 discloses a connection method using a butt joint method in which both ends of a superconducting conductor to be connected are swaged and integrated with a copper sleeve, and these ends are connected together. .

さらに、特許文献5には、超電導フィラメントを約10000本埋め込んだ構造の素線を49本束ね、さらにコンジットで被覆して所定の外径の複合導体を形成した後、この複合導体からコンジットを約200mmの長さで剥ぎ取って内部の素線を取り出し、各素線を加工ロールで断面が六角形状となるように加工した後、加工後の各素線を銅製の型枠に7本づつ挿入して、合計7つのブロックを形成する。その後、この7つのブロックを正六角形状にスウェージング加工して6次の回転対称形の複数の複合導体を得、これら複数の複合導体の端部同士を突き合わせることによって、これら複数の複合導体、すなわち超電導フィラメント同士を接続する方法が開示されている。   Further, in Patent Document 5, 49 strands having a structure in which about 10,000 superconducting filaments are embedded are bundled and further covered with a conduit to form a composite conductor having a predetermined outer diameter. Peel off the inner wire by removing it at a length of 200 mm, process each strand so that the cross section has a hexagonal shape with a processing roll, and then insert each processed strand into a copper mold Thus, a total of seven blocks are formed. Thereafter, the seven blocks are swaged into a regular hexagonal shape to obtain a plurality of sixth-order rotationally symmetric composite conductors, and the ends of the plurality of composite conductors are brought into contact with each other, whereby the plurality of composite conductors are obtained. That is, a method of connecting superconducting filaments is disclosed.

また、特許文献6には、超電導フィラメントをスリーブ内に挿入し、その後、このスリーブを例えば上枠及び下枠から構成される型内に挿入し、この上枠及び下枠の当たり面同士が当たるまでスリーブを押圧して縮径することにより、スリーブ内で超電導フィラメント同士を互いに接続する方法が開示されている。   Further, in Patent Document 6, a superconducting filament is inserted into a sleeve, and then the sleeve is inserted into a mold composed of, for example, an upper frame and a lower frame, and the contact surfaces of the upper frame and the lower frame hit each other. A method is disclosed in which superconducting filaments are connected to each other within the sleeve by pressing the sleeve until the diameter is reduced.

特開平6−163140号JP-A-6-163140 特開昭63−55875号JP-A 63-55875 特開平2−197017号Japanese Patent Application Laid-Open No. 2-197017 特開平10−21976号JP-A-10-21976 特開平8−138821号Japanese Patent Laid-Open No. 8-13821 特開平6−196341号JP-A-6-196341

しかしながら、上述した特許文献1〜6に開示された接続方法においては、はんだ付による方法と比べると接続部の低抵抗化およびコンパクト化の利点があるものの、いずれも双方の超電導素線から安定化材を、硝酸溶液等の酸を用いて安定化銅を溶解・除去してフィラメントを露出させる工程を必須とする方法であったため、超電導線のフィラメントおよび安定化材に関する取り扱いが煩雑となって、必ずしも作業効率が良いものではなかった。   However, in the connection methods disclosed in Patent Documents 1 to 6 described above, although there is an advantage in reducing the resistance and compactness of the connection portion compared to the method by soldering, both are stabilized from both superconducting wires. Since the material was a method that required the step of exposing the filament by dissolving and removing the stabilized copper using an acid such as a nitric acid solution, the handling of the superconducting wire filament and the stabilizing material became complicated, The work efficiency was not always good.

例えば、フィラメントについては数十μmの極細線であるため、取り扱い上、フィラメント同士の摩擦に起因してフィラメントが発火したり、あるいは接続後の洗浄が悪いと接続部のフィラメントが酸化して接続抵抗値が大きくなったりして、機器設計から要求される接続部抵抗の仕様値をクリヤーしないなどの問題があった。また、安定化材を除去する際に、硝酸溶液等の強酸を使用する工程が必須であったため、溶液の取り扱いや接続作業エリアの作業環境などに制約が多々あり、作業性としては効率のいいものではなかった。   For example, since the filament is an ultrathin wire of several tens of μm, the filament may ignite due to friction between the filaments in handling, or if the cleaning after connection is poor, the filament in the connection part is oxidized and the connection resistance There was a problem that the specification value of the connection resistance required from the device design was not cleared because the value increased. In addition, when removing the stabilizer, a process using a strong acid such as a nitric acid solution was indispensable, so there were many restrictions on the handling of the solution and the work environment in the connection work area, and the workability was efficient. It was not a thing.

また、特許文献4に記載の接続方法は、熱処理された超電導導体を、接続すべき端面を高度な加工(平面度、直角度、粗度、清浄度他)を施し、真空あるいは不活性ガス雰囲気中において、加熱(例えば700℃前後)及び加圧(例えば1〜10MPa)する条件において、所定の低抵抗の接続が得られるようになる。したがって、極めて高度な技術や接続装置が必要であった。   In addition, the connection method described in Patent Document 4 is such that a heat-treated superconducting conductor is subjected to advanced processing (flatness, perpendicularity, roughness, cleanliness, etc.) on the end face to be connected, and a vacuum or an inert gas atmosphere Inside, a connection with a predetermined low resistance can be obtained under conditions of heating (for example, around 700 ° C.) and pressurization (for example, 1 to 10 MPa). Therefore, extremely advanced technology and connection devices have been required.

さらに、特許文献5に記載の方法では、上述した複合導体を得るに際して、コンジットから露出した素線毎に加工ロールにて加工するため、工程が煩雑になるという問題があった。また、特許文献6に記載の方法では、スリーブ内の超電導フィラメントの縮径は、上枠及び下枠の当たり面同士が当たるまでしか行うことができず、上述した接続に際して超電導フィラメント間に隙間が生じてしまい、抵抗が増大して十分な超電導特性を得ることができないという問題があった。   Furthermore, in the method described in Patent Document 5, when the composite conductor described above is obtained, each element wire exposed from the conduit is processed by a processing roll, so that the process becomes complicated. Further, in the method described in Patent Document 6, the diameter of the superconducting filament in the sleeve can be reduced only until the contact surfaces of the upper frame and the lower frame come into contact with each other. As a result, there is a problem that the resistance increases and sufficient superconducting characteristics cannot be obtained.

本発明は、超電導導体の接続部の低抵抗化を保持し、簡易な接続作業で超電導導体同士を接続する方法及び装置を提供することを目的とする。   An object of the present invention is to provide a method and an apparatus for connecting superconducting conductors with a simple connection operation while maintaining a low resistance of the connecting portion of the superconducting conductors.

本発明の一態様は、中心部に冷媒通路のチャネルを形成した超電導素線束をコンジット内に収容してなる超電導導体の接続方法において、前記超電導素線束の、コンジット端部から露出した部分を、前記チャネルを欠く状態において導電性部材で被覆する被覆工程と、導電性部材の円周方向において所定の間隔で離隔配置され、所定の曲率で円弧状に凹んだ押圧面を有する複数の成形型を用い、これら複数の成形型により形成されるキャビティ内に前記導電性部材を配置する配置工程と、前記複数の成形型の前記押圧面で前記導電性部材を押圧して縮径する縮径工程と、縮径した前記導電性部材と、上記工程で形成された別の超電導導体の超電導素線束の周囲を被覆する縮径した導電性部材とを、導電性の接続体に形成された溝部に嵌合させて、電気的及び機械的に接合する接合工程と、を具えることを特徴とする、超電導導体の接続方法(第1の接続方法)に関する。   One aspect of the present invention is a method of connecting a superconducting conductor in which a superconducting wire bundle in which a channel of a refrigerant passage is formed in a central portion is accommodated in a conduit, and a portion of the superconducting wire bundle exposed from a conduit end is A covering step of covering with a conductive member in a state lacking the channel, and a plurality of molds having pressing surfaces that are spaced apart at predetermined intervals in the circumferential direction of the conductive member and recessed in an arc shape with a predetermined curvature And a step of arranging the conductive member in a cavity formed by the plurality of molds, and a step of reducing the diameter by pressing the conductive member with the pressing surfaces of the molds. The reduced-diameter conductive member and the reduced-diameter conductive member covering the periphery of the superconducting wire bundle of another superconducting conductor formed in the above process are fitted into the groove formed in the conductive connector. Combine A bonding step of electrically and mechanically joined, characterized in that it comprises a related method for connecting a superconducting conductor (first connection).

また、本発明の一態様は、超電導導体における超電導素線束の、コンジット端部から露出した部分を導電性部材で被覆する被覆工程と、導電性部材の円周方向において所定の間隔で離隔配置され、所定の曲率で円弧状に凹んだ押圧面を有する複数の成形型を用い、これら複数の成形型により形成されるキャビティ内に前記導電性部材を配置する配置工程と、前記複数の成形型の前記押圧面で前記導電性部材を押圧して縮径する縮径工程と、縮径した前記導電性部材と、上記工程で形成された別の超電導導体の超電導素線束の周囲を被覆する縮径した導電性部材とを、導電性の接続体に形成された溝部に嵌合させて、電気的及び機械的に接合する接合工程と、を具えることを特徴とする、超電導導体の接続方法(第2の接続方法)に関する。   Further, according to one aspect of the present invention, a superconducting conductor bundle of superconducting conductors is covered with a covering step in which a portion exposed from the end of the conduit is covered with a conductive member, and spaced apart at a predetermined interval in the circumferential direction of the conductive member. An arrangement step of arranging the conductive member in a cavity formed by the plurality of molding dies using a plurality of molding dies having a pressing surface recessed in an arc shape with a predetermined curvature; and The diameter reducing step of pressing the conductive member with the pressing surface to reduce the diameter, the reduced diameter of the conductive member, and the diameter of the superconducting wire bundle of another superconducting conductor formed in the above step. A superconducting conductor connection method comprising: a step of fitting the conductive member into a groove formed in a conductive connection body to electrically and mechanically join the conductive member. 2nd connection method).

さらに、本発明の一態様は、超電導導体における超電導素線束の、コンジット端部から露出した部分を被覆してなる導電性部材の円周方向において所定の間隔で離隔配置され、所定の曲率で円弧状に凹んだ押圧面を有する、前記導電性部材を縮径するための複数の成形型と、前記複数の成形型に対して、前記導線性部材を縮径するための押圧力を負荷するための圧力供給手段と、前記複数の成形型及び前記圧力供給手段を保持する円筒形状の保持部材と、を具えることを特徴とする、超電導導体の接続装置に関する。   Furthermore, according to one aspect of the present invention, a superconducting wire bundle in a superconducting conductor is disposed at predetermined intervals in the circumferential direction of a conductive member that covers a portion exposed from the end of the conduit, and has a circular shape with a predetermined curvature. A plurality of molds for reducing the diameter of the conductive member having a pressing surface recessed in an arc shape, and a pressing force for reducing the diameter of the conductive member to the plurality of molds And a cylindrical holding member for holding the plurality of molds and the pressure supply means. The present invention relates to a superconducting conductor connection device.

上記第1の接続方法及び第2の接続方法によれば、超電導導体における超電導素線束の、コンジット端部から露出した部分を導電性部材で被覆した後、この導電性部材の円周方向において所定の間隔で離隔配置され、所定の曲率で円弧状に凹んだ押圧面、すなわちアール型の押圧面を有する複数の成形型で押圧し、縮径するようにしている。したがって、前記コンジットから露出した超電導素線を構成する複数の超電導線間の隙間を低減させることができ、前記超電導素線の低抵抗化を実現することができるようになる。すなわち、上記超電導導体の、接続に供する超電導素線束の低抵抗化を図ることができる。   According to the first connection method and the second connection method described above, a portion exposed from the conduit end of the superconducting wire bundle in the superconducting conductor is covered with the conductive member, and then predetermined in the circumferential direction of the conductive member. Are pressed with a plurality of molds having a pressing surface that is recessed in an arc shape with a predetermined curvature, that is, a R-shaped pressing surface, so as to reduce the diameter. Therefore, it is possible to reduce the gaps between the plurality of superconducting wires constituting the superconducting wire exposed from the conduit, and to realize a reduction in resistance of the superconducting wire. That is, the resistance of the superconducting wire bundle used for connection of the superconducting conductor can be reduced.

また、素線毎ではなく、前記コンジットから露出した超電導素線を一括して縮径するので、縮径に伴う低抵抗化の工程を簡易化することができる。   In addition, since the diameter of the superconducting wires exposed from the conduit is reduced at a time instead of every wire, the process of reducing the resistance accompanying the diameter reduction can be simplified.

さらに、超電導導体の接続は、超電導導体を上述のようにして低抵抗化した後、超電導素線束を被覆する縮径された導電性部材を、導電性の接続体に形成された溝部に嵌合させるとともに、同様にして形成した別の超電導導体の縮径された導電性部材を、同じく前記接続体に形成された溝部に嵌合させ、前記接続体を介して間接的に接続するようにしている。したがって、超電導導体と別の超電導導体とを極めて簡易に接合することができる。   Furthermore, for superconducting conductor connection, after reducing the resistance of the superconducting conductor as described above, a conductive member having a reduced diameter covering the superconducting wire bundle is fitted into a groove formed in the conductive connecting body. In addition, a conductive member having a reduced diameter of another superconducting conductor formed in the same manner is fitted into a groove formed in the connection body, and indirectly connected through the connection body. Yes. Therefore, the superconducting conductor and another superconducting conductor can be joined very easily.

なお、上述した第1の接続方法及び第2の接続方法における基本的な接続方法及びそれに伴う作用効果は互いに同一であるが、第1の接続方法と第2の接続方法とでは、接続に供する超電導導体の基本構成が異なる。すなわち、第1の接続方法においては、接続に供する超電導導体は、中心部にチャネルが形成され、その周囲に超電導素線束が配置されたような構造を呈しているが、第2の接続方法においては、接続に供する超電導導体は、中心部にチャネルが形成されておらず、超電導素線束からなるような構造を呈している。   In addition, although the basic connection method in the 1st connection method and the 2nd connection method which were mentioned above, and the effect accompanying it are mutually the same, it provides for a connection in the 1st connection method and the 2nd connection method. The basic configuration of the superconducting conductor is different. That is, in the first connection method, the superconducting conductor provided for connection has a structure in which a channel is formed at the center and a superconducting wire bundle is disposed around the channel. In the second connection method, The superconducting conductor provided for connection has a structure in which a channel is not formed in the central part but a superconducting wire bundle is formed.

本発明の一例において、縮径工程は、所定の回転機構を用いて、複数の成形型を、導電性部材の周囲に少なくとも1回以上所定の角度回転させ、縮径した導電性部材の、複数の成形型の隣接する成形型間に生じるギャップに起因した非押圧部を、複数の成形型の前記押圧面で押圧する工程を含むことができる。   In one example of the present invention, the diameter reducing step includes rotating a plurality of molding dies at least once at a predetermined angle around the conductive member by using a predetermined rotating mechanism to reduce the diameter of the plurality of conductive members. A step of pressing a non-pressing portion caused by a gap generated between adjacent molds of the molds with the pressing surfaces of the plurality of molds.

上述した第1の接続方法及び第2の接続方法のいずれにおいても、コンジットから露出した超電導素線束を被覆する導電性部材を、複数の成形型を用いて一度で所定の径となるように縮径するのは困難であるので、通常は複数回に分けて縮径を行うことになる。この際、初期の縮径においては、複数の成形型で導電性部材を押圧する際に、隣接する成形型同士が密着せずに離隔するようになる。このような場合、隣接する成形型間に生じるギャップに起因した非押圧部が形成されることになる。この非押圧部は、導電性部材の押圧面(縮径面)に対して突起状物として形成される。   In both of the first connection method and the second connection method described above, the conductive member covering the superconducting element wire bundle exposed from the conduit is shrunk at once to a predetermined diameter using a plurality of molds. Since it is difficult to reduce the diameter, the diameter reduction is usually performed in multiple steps. At this time, in the initial diameter reduction, when pressing the conductive member with a plurality of molds, adjacent molds are separated from each other without being in close contact with each other. In such a case, the non-pressing part resulting from the gap which arises between adjacent molds will be formed. This non-pressing portion is formed as a protrusion with respect to the pressing surface (reduced diameter surface) of the conductive member.

超電導導体の縮径された導電性部材において、上述のような突起状の非押圧部が存在すると、上述したように、接続体に形成された溝部に導電性部材を嵌合させることができず、超電導導体同士の、接続体を介した接続が困難となる場合がある。   In the conductive member with a reduced diameter of the superconducting conductor, if there is a protruding non-pressing portion as described above, the conductive member cannot be fitted into the groove formed in the connection body as described above. In some cases, it may be difficult to connect the superconducting conductors via the connection body.

したがって、上述のように、所定の回転機構を用いて、複数の成形型を、導電性部材の周囲に少なくとも1回以上所定の角度回転させ、縮径した導電性部材の、複数の成形型の隣接する成形型間に生じるギャップに起因した非押圧部を、複数の成形型の前記押圧面で押圧するようにすれば、上記非押圧部の形成を抑制することができる。この結果、上述した不利益を抑制することができる。   Therefore, as described above, by using a predetermined rotation mechanism, the plurality of molds are rotated at a predetermined angle around the conductive member at a predetermined angle to reduce the diameter of the plurality of molds of the conductive member. The formation of the non-pressing portion can be suppressed by pressing the non-pressing portion caused by the gap generated between the adjacent forming dies with the pressing surfaces of the plurality of forming dies. As a result, the above-mentioned disadvantage can be suppressed.

また、本発明の一例において、縮径工程は、複数の成形型の少なくとも一部が導線性部材の、先に縮径した部分と重複するようにして、複数の成形型を、所定の軸方向移動機構を用いて、導電性部材の軸方向において移動させ、複数の成形型による導電性部材の縮径を、導電性部材の軸方向において連続して行うようにすることができる。   Further, in an example of the present invention, the diameter reducing step may be performed such that at least a part of the plurality of molding dies overlaps the previously reduced diameter portion of the conductive member so that the plurality of molding dies are in a predetermined axial direction. Using the moving mechanism, the conductive member can be moved in the axial direction, and the conductive member can be continuously reduced in diameter in the axial direction of the conductive member by a plurality of molds.

すなわち、複数の成形型を移動させる際に、複数の成形型の少なくとも一部が導電性部材の先に縮径した部分と重複するようにしているので、導電性部材が長尺であって、この導電性部材に対して長尺の縮径を行う場合においても、先に縮径した部分と連続して縮径した部分との間に段差が生じるのを抑制することができ、導電性部材を接続体の溝部内に嵌合できるようになる。したがって、長尺の導電性部材に対しても上述した縮径操作を実行することができ、このような長尺の導電性部材を有する超電導導体同士の電気的及び機械的接続を、上記接続体を介して良好に行うことができるようになる。   That is, when moving a plurality of molds, because at least a part of the plurality of molds overlap with the portion of the conductive member having a reduced diameter, the conductive member is long, Even when a long diameter reduction is performed on the conductive member, it is possible to suppress the occurrence of a step between the previously reduced diameter portion and the continuously reduced diameter portion. Can be fitted into the groove of the connection body. Therefore, the above-described diameter-reducing operation can be performed also on a long conductive member, and the electrical and mechanical connection between the superconducting conductors having such a long conductive member is connected to the connection body. It will be possible to perform well through.

さらに、本発明の一例においては、配置工程において、複数の成形型を、導電性部材の周囲において等間隔で配置し、縮径工程において、複数の成形型の等間隔配置を保持した状態で、複数の成形型の押圧面で導電性部材を押圧して縮径することができる。この場合、上述したように、導電性部材の縮径を複数回に分けて行う場合に、縮径毎の複数の成形型の配置を簡易に決定することができ、複数回に亘る縮径を効率的に実施することができる。特に、上述した例における、複数の成形型の隣接する成形型間に生じるギャップに起因した非押圧部を、複数の成形型を所定角度回転させ、それらの押圧面で再度押圧して上記非押圧部の形成を抑制するという操作において、複数の成形型の配置を簡易に決定することができるようになる。また、超電導導体の超電導素線束が偏よることなく、中央に集束した状態で縮径を行うことができるようになる。   Furthermore, in an example of the present invention, in the arrangement step, a plurality of molds are arranged at equal intervals around the conductive member, and in the diameter reduction step, the plurality of molds are held at an equal interval arrangement, The conductive member can be pressed by the pressing surfaces of a plurality of molds to reduce the diameter. In this case, as described above, when the conductive member is reduced in diameter a plurality of times, the arrangement of a plurality of molding dies for each diameter reduction can be easily determined, and the diameter reduction over a plurality of times can be performed. Can be implemented efficiently. In particular, in the above-described example, the non-pressing portion caused by the gap generated between the adjacent molds of the plurality of molds is rotated by a predetermined angle, and the non-pressing portion is pressed again by their pressing surfaces. In the operation of suppressing the formation of the part, the arrangement of the plurality of molds can be easily determined. Further, the diameter of the superconducting conductor can be reduced in a state where the superconducting wire bundle is focused in the center without being deviated.

また、本発明の一例において、複数の成形型は、第1の複数の成形型及び第2の複数の成形型であり、第1の複数の成形型は第1の曲率で円弧状に凹んだ第1の押圧面を有し、第2の複数の成形型は、第1の曲率よりも小さい第2の曲率で円弧状に凹んだ第2の押圧面を有し、縮径工程は、第1の複数の成形型の第1の押圧面で導電性部材を押圧して縮径する第1の縮径工程、及び第1の縮径工程の後、第2の複数の成形型の第2の押圧面で導電性部材を押圧して縮径する第2の縮径工程を含むことができる。   In one example of the present invention, the plurality of molds are a first plurality of molds and a second plurality of molds, and the first plurality of molds are recessed in an arc shape with a first curvature. The second plurality of molds has a second pressing surface that is recessed in an arc shape with a second curvature smaller than the first curvature, and the diameter reducing step includes a first pressing surface. After the first diameter reducing step of reducing the diameter by pressing the conductive member with the first pressing surface of one of the plurality of molds, and after the first diameter reducing step, the second of the second plurality of molds A second diameter reducing step of pressing the conductive member with the pressing surface to reduce the diameter can be included.

この場合、第1の縮径工程は粗縮径工程に相当し、第2の縮径工程は精縮径工程に相当する。すなわち、第1の複数の成形型を用いて導電性部材をある程度まで縮径しておき、次いで、第2の複数の成形型を用いて導電性部材を目的とする径まで縮小する。このように2種類の成形型を用い、2段階で導電性部材の縮径を行うことにより、たとえ導電性部材の径が大きくても、縮径によって目的とする径を高精度に得ることができる。   In this case, the first diameter reduction process corresponds to a coarse diameter reduction process, and the second diameter reduction process corresponds to a fine diameter reduction process. That is, the diameter of the conductive member is reduced to some extent using the first plurality of molds, and then the conductive member is reduced to the target diameter using the second plurality of molds. Thus, by using two types of molds and reducing the diameter of the conductive member in two stages, even if the diameter of the conductive member is large, the desired diameter can be obtained with high accuracy by the reduced diameter. it can.

なお、本例では、第1の複数の成形型及び第2の複数の成形型を用い、2段階で導電性部材の縮径を行うようにしているが、3種類以上の複数の成形型を用い、3段階以上で導電性部材の縮径を行うこともできる。   In this example, the first plurality of molds and the second plurality of molds are used to reduce the diameter of the conductive member in two stages, but three or more types of molds are used. It is possible to reduce the diameter of the conductive member in three or more stages.

また、第1の複数の成形型及び第2の複数の成形型を用いた場合においても、それぞれの成形型に対し、上述した例の総てを適用することができ、当該例による作用効果を奏することができる。   In addition, even when the first plurality of molds and the second plurality of molds are used, all of the above-described examples can be applied to the respective molds. Can play.

本発明の接続方法及び接続装置においては、1つの超電導導体の長さが数百メートルであり、このような長さを有する複数の超電導体を接続して数千メートルの長さの超電導導体を得る場合に有効である。   In the connection method and connection device of the present invention, the length of one superconducting conductor is several hundred meters, and a plurality of superconductors having such a length are connected to form a superconducting conductor having a length of several thousand meters. It is effective when obtaining.

以上説明したように、本発明によれば、超電導導体の接続部の低抵抗化を保持し、簡易な接続作業で超電導導体同士を接続方法及び装置を提供することができる。   As described above, according to the present invention, it is possible to provide a method and an apparatus for connecting superconducting conductors with a simple connection operation while maintaining the resistance of the connecting portion of the superconducting conductors.

第1の実施形態の、接続に供する超電導導体の構成図である。It is a block diagram of the superconducting conductor provided for connection of 1st Embodiment. 同じく、第1の実施形態の、接続に供する超電導導体の構成図である。Similarly, it is a block diagram of a superconducting conductor provided for connection in the first embodiment. 同じく、第1の実施形態の、接続に供する超電導導体の構成図である。Similarly, it is a block diagram of a superconducting conductor provided for connection in the first embodiment. 第1の実施形態で使用する超電導導体接続装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the superconducting conductor connection apparatus used by 1st Embodiment. 図4に示す接続装置を、長さ方向に垂直な平面で切った場合の断面図である。It is sectional drawing at the time of cutting the connection apparatus shown in FIG. 4 by the plane perpendicular | vertical to a length direction. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第1の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 1st Embodiment. 第2の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 2nd Embodiment. 第2の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 2nd Embodiment. 第2の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 2nd Embodiment. 第2の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 2nd Embodiment. 第2の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 2nd Embodiment. 第2の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 2nd Embodiment. 第2の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 2nd Embodiment. 第2の実施形態における超電導導体の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the superconducting conductor in 2nd Embodiment.

以下、本発明の詳細、並びにその他の特徴及び利点について説明する。   The details of the present invention as well as other features and advantages are described below.

(第1の実施形態)
図1〜図3は、本実施形態の、接続に供する超電導導体の構成図であり、図4は、本実施形態で使用する超電導導体接続装置の概略構成を示す斜視図であり、図5は、図4に示す接続装置を、長さ方向に垂直な平面で切った場合の断面図である。なお、実施形態で示す総ての図面において、類似及び同一の構成要素に関しては、同一の参照数字を用いて表している。
(First embodiment)
1 to 3 are configuration diagrams of a superconducting conductor provided for connection in the present embodiment, FIG. 4 is a perspective view illustrating a schematic configuration of a superconducting conductor connecting device used in the present embodiment, and FIG. FIG. 5 is a cross-sectional view of the connection device shown in FIG. 4 taken along a plane perpendicular to the length direction. In all the drawings shown in the embodiments, similar and identical components are denoted by the same reference numerals.

本実施形態における超電導導体10は、図1に示すように、例えばステンレス製テープ12によってブロック状に離隔された複数の超電導素線11が、超電導導体10の長さ方向に所定の冷媒を流すために形成されたチャネル孔14の周囲を囲むようにして構成され、束を構成している。また、複数の超電導素線11はコンジット13によって被覆されている。   As shown in FIG. 1, the superconducting conductor 10 in the present embodiment has a plurality of superconducting wires 11 separated in blocks by a stainless steel tape 12, for example, so that a predetermined refrigerant flows in the length direction of the superconducting conductor 10. The channel hole 14 is formed to surround the periphery of the channel hole 14 to form a bundle. The plurality of superconducting wires 11 are covered with a conduit 13.

あるいは、図2に示すように、テープによってブロック状に離隔されることなく、また、冷媒を流すためのチャネル孔を有することなく、複数の超電導素線11がコンジット13によって被覆されてなる、超電導導体10−1としてもよい。   Alternatively, as shown in FIG. 2, a superconducting structure in which a plurality of superconducting wires 11 are covered with a conduit 13 without being separated into a block shape by a tape and without having a channel hole for flowing a coolant. It is good also as the conductor 10-1.

図1及び図2に示すいずれの超電導素線11も、例えば1本の超電導線111と2本の銅線とを撚ってなる合計3本の線をさらに3本に撚るとともに、得られた撚り線をさらに3本に撚り、結果として得られた依り線を再度2本に撚ることなどによって構成することができる。   Each of the superconducting wires 11 shown in FIGS. 1 and 2 is obtained by twisting a total of three wires, for example, by twisting one superconducting wire 111 and two copper wires into three further. The twisted wire can be further twisted into three, and the resulting twisted wire can be twisted into two again.

超電導線111は、例えば、図3に示すように、超電導フィラメント111Aの周囲を安定化銅111Bで被覆し、これを銅材111C中に複数埋設させるとともに、その周囲を銅又はアルミニウムなどの管状部材111Dで被覆することによって得ることができる。   For example, as shown in FIG. 3, the superconducting wire 111 is coated with a stabilizing copper 111B around the superconducting filament 111A, and a plurality of these are embedded in the copper material 111C, and the surroundings are tubular members such as copper or aluminum. It can be obtained by coating with 111D.

なお、本実施形態では、複数の超電導素線11は超電導素線束と同義である。したがって、以下において、参照数字11は、適宜単一の超電導素線を意味する場合もあれば、上記超電導素線束を意味する場合もある。   In the present embodiment, the plurality of superconducting element wires 11 are synonymous with a superconducting element wire bundle. Therefore, in the following, the reference numeral 11 may appropriately mean a single superconducting element wire, or may mean the superconducting element wire bundle.

また、超電導導体10においては、超電導素線11の数を6としているが、その数は必要に応じて任意に決定することができる。また、チャネル孔14についても必要に応じて省略することができる。   In the superconducting conductor 10, the number of superconducting wires 11 is six, but the number can be arbitrarily determined as necessary. Further, the channel hole 14 can be omitted if necessary.

超電導導体10は、チャネル孔14中に冷媒を流すことにより、主として核融合機器や超電導エネルギー貯蔵システム装置など高磁場を発生させる大型の超電導コイルに使用する場合を想定しており、超電導導体10−1は、冷媒を流す必要のない、主として送電線などに使用する場合を想定している。本実施形態で以下に説明する接続方法及び接続装置は、1つの超電導導体の長さが数百メートルであり、このような長さを有する複数の超電導体を接続して数千メートルの長さの超電導導体を得る場合に有効であるので、主として図1に示す超電導導体10を接続する場合を想定しているが、図2に示す超電導導体10−1を排除するものではない。   The superconducting conductor 10 is assumed to be used for a large superconducting coil that mainly generates a high magnetic field such as a fusion device or a superconducting energy storage system device by flowing a coolant through the channel hole 14. 1 assumes the case where it uses mainly for a power transmission line etc. which do not need to flow a refrigerant | coolant. In the connection method and the connection device described below in this embodiment, the length of one superconducting conductor is several hundred meters, and a length of several thousand meters is formed by connecting a plurality of superconductors having such a length. Therefore, it is assumed that the superconducting conductor 10 shown in FIG. 1 is mainly connected. However, the superconducting conductor 10-1 shown in FIG. 2 is not excluded.

図4及び図5に示すように、本実施形態で使用する接続装置20は、複数の成形型21と、これら成形型21に応じて設けられた複数の油圧シリンダー22と、円筒形状の保持部材23とを有している。複数の成形型21は、それぞれ所定の曲率で円弧状に凹んだ押圧面21Aを有し、対応する油圧シリンダー22の先端に取り付けられている。油圧シリンダー22は保持部材23の側面に形成された貫通孔中に嵌合するとともに、図示しないビスなどの固定部材を介して保持部材23に対して固定されている。また、保持部材23は、回転ローラ24を介して支持台25上に固定され、保持部材23が、回転ローラ24によってその円周方向に回転することにより、以下に示すような超電導導体の接続に供することができるようになっている。   As shown in FIGS. 4 and 5, the connection device 20 used in the present embodiment includes a plurality of molding dies 21, a plurality of hydraulic cylinders 22 provided according to these molding dies 21, and a cylindrical holding member. 23. Each of the plurality of molds 21 has a pressing surface 21 </ b> A that is recessed in a circular arc shape with a predetermined curvature, and is attached to the tip of the corresponding hydraulic cylinder 22. The hydraulic cylinder 22 is fitted into a through hole formed in the side surface of the holding member 23 and is fixed to the holding member 23 via a fixing member such as a screw (not shown). In addition, the holding member 23 is fixed on the support base 25 via the rotating roller 24, and the holding member 23 is rotated in the circumferential direction by the rotating roller 24, thereby connecting the superconducting conductors as shown below. It can be used.

また、保持部材23の一端面にはフランジ孔231Aが等間隔に形成されたフランジ231が溶接等によって接続されている。フランジ231(フランジ孔231A)は、以下に説明する接続方法において、複数の成形型21の配置角度を調整するために使用されるものである。例えば、フランジ孔231Aを等間隔に12個形成すれば、隣接するフランジ孔231Aのなす角度は30度となるので、複数の成形型21の配置角度は、前記角度を参照して決定することができる。   A flange 231 having flange holes 231A formed at equal intervals is connected to one end surface of the holding member 23 by welding or the like. The flange 231 (flange hole 231A) is used for adjusting the arrangement angle of the plurality of molds 21 in the connection method described below. For example, if twelve flange holes 231A are formed at equal intervals, the angle formed by the adjacent flange holes 231A is 30 degrees. Therefore, the arrangement angle of the plurality of molds 21 can be determined with reference to the angles. it can.

油圧シリンダー22には、図示しない油圧ユニット及び油圧制御装置が接続され、これら油圧ユニット及び油圧制御装置を介して、適当な油圧が油圧シリンダー22に供給されるようになっている。   A hydraulic unit and a hydraulic control device (not shown) are connected to the hydraulic cylinder 22, and an appropriate hydraulic pressure is supplied to the hydraulic cylinder 22 through the hydraulic unit and the hydraulic control device.

なお、本実施形態では、成形型21の数を3とし、これに接続する油圧シリンダーの数も3としているが、これらの数については特に限定されるものではない。但し、これらの数は3以上であることが好ましい。また、以下に説明する導電性部材の周囲において等間隔で配置し、複数の成形型の等間隔配置を保持した状態で、複数の成形型の押圧面で導電性部材を押圧することが好ましい。これによって、以下に説明する接続方法における縮径の工程を効率的かつ効果的に行うことができる。また、超電導導体の超電導素線束が偏よることなく、中央に集束した状態で縮径を行うことができるようになる。   In the present embodiment, the number of molding dies 21 is set to 3, and the number of hydraulic cylinders connected thereto is also set to 3, but these numbers are not particularly limited. However, these numbers are preferably 3 or more. In addition, it is preferable that the conductive members are pressed by the pressing surfaces of the plurality of molding dies in a state where the conductive members described below are arranged at regular intervals around the conductive members and the plurality of molding dies are held at regular intervals. Thereby, the diameter reduction process in the connection method described below can be performed efficiently and effectively. Further, the diameter of the superconducting conductor can be reduced in a state where the superconducting wire bundle is focused in the center without being deviated.

次に、図4及び図5に示す接続装置20を用いた場合の、図1〜3に示す構成の超電導導体10、10−1の接続方法について説明する。図6〜図18は、本実施形態における接続方法を説明するための図である。なお、図7、図8、及び図13〜図16は、接続に供する超電導導体の、長さ方向の中心線を含む面に沿って切った場合における断面図であり、図9〜図12は、図8に示す超電導導体の、成形型を含む長さ方向に垂直なI−I線に沿って切った場合の断面図である。   Next, a method of connecting the superconducting conductors 10 and 10-1 having the configuration shown in FIGS. 1 to 3 when the connecting device 20 shown in FIGS. 4 and 5 is used will be described. 6-18 is a figure for demonstrating the connection method in this embodiment. 7, 8, and 13 to 16 are cross-sectional views of the superconducting conductor used for connection when cut along a plane including the center line in the length direction, and FIGS. FIG. 9 is a cross-sectional view of the superconducting conductor shown in FIG. 8 when cut along a line I-I perpendicular to the length direction including the mold.

本実施形態では、図4及び図5に示すように、接続装置20は3つの成形型を有し、それらが互いに120度の角度をなし、保持部材23の側面に沿って等間隔で配置されている場合について説明する。また、本実施形態では、超電導導体10に関する接続方法について説明する。超電導導体10−1の場合も、チャネル孔14を有しない点を除き、超電導導体10に関する接続方法と同じである。   In the present embodiment, as shown in FIGS. 4 and 5, the connection device 20 has three molds, which form an angle of 120 degrees with each other, and are arranged at equal intervals along the side surface of the holding member 23. The case will be described. In the present embodiment, a connection method related to the superconducting conductor 10 will be described. The superconducting conductor 10-1 is the same as the connection method for the superconducting conductor 10 except that the channel hole 14 is not provided.

最初に、図6に示すように、コンジット13の端部を除去し、超電導素線束11を露出させる。この際、表面に露出したステンレステープ12も必要に応じて除去するか、若しくは可能であればコンジット13内に引っ込めてもよい。また、超電導素線束11の露出した部分におけるチャネル孔14も併せて除去する。この結果、超電導素線束11内には、チャネル孔14の除去に伴う孔部14Aが形成(残留)されることになる。なお、超電導素線11がクロムメッキ、ニッケルメッキなどで被覆されている場合は、この被覆を化学的処理あるいは機械的処理によって適宜除去する。   First, as shown in FIG. 6, the end of the conduit 13 is removed, and the superconducting element bundle 11 is exposed. At this time, the stainless steel tape 12 exposed on the surface may be removed if necessary, or may be retracted into the conduit 13 if possible. Further, the channel hole 14 in the exposed portion of the superconducting wire bundle 11 is also removed. As a result, in the superconducting element wire bundle 11, a hole portion 14 </ b> A is formed (residual) due to the removal of the channel hole 14. When the superconducting element wire 11 is coated with chromium plating, nickel plating or the like, this coating is removed as appropriate by chemical treatment or mechanical treatment.

次いで、図7に示すように、露出した超電導素線束11を導電性部材16によって被覆する。図7では、導電性部材16によって、露出した超電導素線束11の全体を覆うようにしているが、少なくとも以下に説明する超電導導体同士の接続に寄与する端部を被覆すれば足りる。   Next, as shown in FIG. 7, the exposed superconducting wire bundle 11 is covered with a conductive member 16. In FIG. 7, the entire exposed superconducting wire bundle 11 is covered with the conductive member 16, but it is sufficient to cover at least the end portion that contributes to the connection between the superconducting conductors described below.

次いで、図7に示す状態の超電導導体10を、図4及び図5に示す接続装置20の保持部材23中において、成形型21で画定されるキャビティに位置するようにして配置する。次いで、図示しない油圧ユニット及び油圧制御装置を介して、適当な油圧が油圧シリンダー22に供給され、図8に示すように、成形型21の押圧面21Aで導電性部材16、すなわち超電導導体21の円周面を押圧する。   Next, the superconducting conductor 10 in the state shown in FIG. 7 is disposed in the holding member 23 of the connecting device 20 shown in FIGS. 4 and 5 so as to be positioned in the cavity defined by the mold 21. Next, an appropriate hydraulic pressure is supplied to the hydraulic cylinder 22 via a hydraulic unit and a hydraulic control device (not shown), and the conductive member 16, that is, the superconducting conductor 21 is pressed on the pressing surface 21 </ b> A of the molding die 21 as shown in FIG. 8. Press the circumferential surface.

この際、成形型21を用いて、導電性部材16を一度で所定の径となるように縮径するのは困難であるので、図9〜図12に示すように、通常は複数回に分けて縮径を行うことになる。例えば、図9に示すように、最初に3つの成形型21を用いて、導電性部材16の所定箇所を押圧して縮径する。このとき、隣接する成形型21同士は密着せずに離隔するようになるので、隣接する成形型21間にはギャップが生じ、これに基づいて当該箇所は押圧されずに非押圧部16Aが形成されることになる。この非押圧部16Aは、特に図示しないものの、導電性部材16の押圧面(縮径面)に対して凸状となり、突起状物として形成される。   At this time, since it is difficult to reduce the diameter of the conductive member 16 so as to have a predetermined diameter at a time using the molding die 21, as shown in FIGS. To reduce the diameter. For example, as shown in FIG. 9, first, three molds 21 are used to press a predetermined portion of the conductive member 16 to reduce the diameter. At this time, since the adjacent molding dies 21 are separated from each other without being in close contact with each other, a gap is formed between the adjacent molding dies 21, and the non-pressing portion 16 </ b> A is formed based on the gap without being pressed. Will be. Although not particularly illustrated, the non-pressing portion 16A is convex with respect to the pressing surface (reduced diameter surface) of the conductive member 16, and is formed as a protrusion.

縮径された導電性部材16において、上述のような突起状の非押圧部16Aが存在すると、以下に説明するように、接続体に形成された溝部に導電性部材16、すなわち超電導導体10を嵌合させることができず、超電導導体10同士の、接続体を介した接続が困難となる場合がある。   When the reduced-diameter conductive member 16 includes the protruding non-pressing portion 16A as described above, the conductive member 16, that is, the superconducting conductor 10 is placed in the groove formed in the connection body as described below. In some cases, the superconducting conductors 10 cannot be connected to each other, and it becomes difficult to connect the superconducting conductors 10 via the connection body.

したがって、回転機構としての回転ローラ24を用いて保持部材23を所定の角度回転させることにより、導電性部材16の周囲に3つの成形型21を同じ角度回転させ、図10に示すように、縮径した導電性部材16の、隣接する成形型21間に生じるギャップに起因した非押圧部16Aを、成形型21の押圧面21Aで押圧するようにして、導電性部材16を、同じく成形型21の押圧面21Aで再度押圧するようにすれば、非押圧部16Aを消滅させることができる。保持部材23の回転は手動で行うこともできるし、図示しないモータ等によって行うこともできる。   Therefore, by rotating the holding member 23 by a predetermined angle using the rotation roller 24 as a rotation mechanism, the three molds 21 are rotated around the conductive member 16 by the same angle, and as shown in FIG. The non-pressing portion 16A caused by the gap generated between the adjacent molds 21 of the diameter conductive member 16 is pressed by the pressing surface 21A of the mold 21 so that the conductive member 16 is the same as the mold 21. If the pressing surface 21A is pressed again, the non-pressing portion 16A can be eliminated. The holding member 23 can be rotated manually or by a motor (not shown) or the like.

なお、図10に示す状態においても、隣接する成形型21間にはギャップが形成されるので、このギャップに基づいて突起状の非押圧部16Aが再度形成されるようになる。したがって、この場合においても、上記同様に、回転ローラ24を用いて保持部材23を所定の角度回転させることにより、導電性部材16の周囲に3つの成形型21を同じ角度回転させ、図11に示すように、縮径した導電性部材16の、隣接する成形型21間に生じるギャップに起因した非押圧部16Aを、成形型21の押圧面21Aで押圧するようにして、導電性部材16を、同じく成形型21の押圧面21Aで再度押圧するようにすれば、非押圧部16Aを消滅させることができる。   Even in the state shown in FIG. 10, since a gap is formed between the adjacent molds 21, the protruding non-pressing portion 16A is formed again based on this gap. Therefore, also in this case, similarly to the above, by rotating the holding member 23 by a predetermined angle using the rotating roller 24, the three molds 21 are rotated around the conductive member 16 by the same angle, and FIG. As shown, the non-pressing portion 16A due to the gap generated between the adjacent molds 21 of the reduced-diameter conductive member 16 is pressed by the pressing surface 21A of the mold 21 so that the conductive member 16 is Similarly, if the pressing surface 21A of the mold 21 is pressed again, the non-pressing portion 16A can be eliminated.

以上のような操作を繰り返し、非押圧部16Aを消滅させながら導電性部材16、すなわち超電導導体10の縮径を実施した後は、図12に示すように、隣接する成形型21間にギャップが生じないようにして押圧する。この場合は、前記ギャップに起因した非押圧部16Aは形成されず、さらに隣接する成形型21同士が接触するようになるので、最早これ以上の圧力を負荷して導電性部材16を押圧することができなくなるので、導電性部材16、すなわち超電導導体10の縮径は終了する。   After repeating the above operation and reducing the diameter of the conductive member 16, that is, the superconducting conductor 10, while eliminating the non-pressing portion 16A, as shown in FIG. 12, there is a gap between the adjacent molds 21. Press so that it does not occur. In this case, the non-pressing portion 16A due to the gap is not formed, and the adjacent molding dies 21 come into contact with each other, so that the conductive member 16 is pressed with a pressure higher than this. Therefore, the diameter reduction of the conductive member 16, that is, the superconducting conductor 10, is completed.

図9〜図12に示す工程間の移行は、成形型21による導電性部材16の押圧を一旦解放した後に行う。押圧した状態で工程間を移行する、すなわち成形型21を所定の角度回転させると、成形型21の回転に対して巨大な外力が必要となるとともに、成形型21の押圧面21Aによって導電性部材16の表面を傷つけてしまうことになるので、後に説明する接続体の溝部内への嵌合を行うことができず、超電導導体10同士の接合を行うことができなくなる場合がある。   9 to 12 is performed after the pressing of the conductive member 16 by the molding die 21 is once released. When the process is shifted in a pressed state, that is, when the mold 21 is rotated by a predetermined angle, a huge external force is required for the rotation of the mold 21, and the conductive surface is formed by the pressing surface 21 </ b> A of the mold 21. Since the surface of 16 will be damaged, there is a case where the connection of the connecting body described later cannot be performed and the superconducting conductors 10 cannot be joined.

なお、本実施形態においては、3つの成形型21を、導電性部材16の周囲において等間隔で配置しているので、図9〜図12に示すように、導電性部材16の縮径を複数回に分けて行う場合に、特に保持部材23のフランジ231に形成したフランジ孔231Aを参照して、図9〜図12における縮径毎の成形型21の配置を簡易に決定することができ、複数回に亘る縮径を効率的に実施することができる。また、隣接する成形型21間に生じるギャップに起因した非押圧部16Aを、成形型21を所定角度回転させ、それらの押圧面21Aで押圧して非押圧部16Aを消滅させ、導電性部材16を再度縮径するという操作において、成形型21の配置を簡易に決定することができるようになる。   In the present embodiment, since the three molding dies 21 are arranged at equal intervals around the conductive member 16, a plurality of reduced diameters of the conductive member 16 are provided as shown in FIGS. In the case of carrying out divided times, in particular, referring to the flange hole 231A formed in the flange 231 of the holding member 23, it is possible to easily determine the arrangement of the molding die 21 for each reduced diameter in FIGS. The diameter reduction over a plurality of times can be carried out efficiently. Further, the non-pressing portion 16A caused by the gap generated between the adjacent molding dies 21 is rotated by a predetermined angle, and the pressing surface 21A is pressed to extinguish the non-pressing portion 16A. In the operation of reducing the diameter again, the arrangement of the mold 21 can be easily determined.

また、図8からも明らかなように、一般には、成形型21の、超電導導体10の長さ方向における押圧面21Aの長さに比較して、同方向における導電性部材16の長さの方が大きくなっている。したがって、図9〜図12に示す導電性部材16の縮径の操作は、導電性部材16の長さ方向における特定部位の円周面に対して行われるに過ぎない。   As is clear from FIG. 8, generally, the length of the conductive member 16 in the same direction as that of the pressing surface 21 </ b> A in the length direction of the superconducting conductor 10 of the molding die 21 is generally greater. Is getting bigger. Therefore, the operation of reducing the diameter of the conductive member 16 shown in FIGS. 9 to 12 is only performed on the circumferential surface of a specific portion in the length direction of the conductive member 16.

したがって、本実施形態では、図示しない軸方向移動機構によって導電性部材16を軸方向、すなわちその長さ方向に順次に移動させ、導電性部材16の長さ方向の全体に亘り、図9〜図12に示すような導電性部材16の縮径の操作を実施し、導電性部材16の全体的な縮径を行う。このような縮径は、例えば、図13〜図15に示すような操作に基づいて行う。   Therefore, in the present embodiment, the conductive member 16 is sequentially moved in the axial direction, that is, the length direction thereof by an axial movement mechanism (not shown), and the entire length direction of the conductive member 16 is shown in FIGS. 12 is carried out to reduce the overall diameter of the conductive member 16. Such a diameter reduction is performed based on an operation as shown in FIGS.

最初に、図13に示すように、導電性部材16の長さ方向の、コンジット13に近接した部位Aにおいて、例えば図9〜図12に示したような操作によって縮径を実施した後、縮径した部位Aと次に縮径すべき部位Bとが一部重複するようにして成形型21を導電性部材16の長さ方向に移動させ、再度図9〜図12に示すような操作を実施し、部位Bの縮径を行う。続いて、図14に示すように、縮径した部位Bと次に縮径すべき部位Cとが一部重複するようにして成形型21を導電性部材16の長さ方向に移動させ、再度図9〜図12に示すような操作を実施し、部位Cの縮径を行う。同様に、図15に示すように、縮径した部位Cと次に縮径すべき部位Dとが一部重複するようにして成形型21を導電性部材16の長さ方向に移動させ、再度図9〜図12に示すような操作を実施し、部位Dの縮径を行う。   First, as shown in FIG. 13, after the diameter reduction is performed by the operation shown in FIGS. 9 to 12, for example, in the portion A in the length direction of the conductive member 16 and close to the conduit 13, The molding die 21 is moved in the length direction of the conductive member 16 so that the diameter-reduced portion A and the next-reduced portion B are partially overlapped, and the operations shown in FIGS. 9 to 12 are performed again. The diameter of the part B is reduced. Subsequently, as shown in FIG. 14, the mold 21 is moved in the length direction of the conductive member 16 so that the reduced diameter portion B and the next diameter reduction portion C partially overlap, and again. The operation as shown in FIGS. 9 to 12 is performed to reduce the diameter of the part C. Similarly, as shown in FIG. 15, the molding die 21 is moved in the length direction of the conductive member 16 so that the portion C having a reduced diameter and the portion D to be reduced next overlap partially, and again. The operation as shown in FIGS. 9 to 12 is performed to reduce the diameter of the part D.

以上のような操作を繰り返すことによって、導電性部材16を長さ方向の全体に亘って縮径することができ、図16に示すような、導電性部材16が縮径されてなる超電導導体10を得る。   By repeating the above operation, the diameter of the conductive member 16 can be reduced over the entire length direction, and the superconducting conductor 10 formed by reducing the diameter of the conductive member 16 as shown in FIG. Get.

なお、図13〜図16から明らかなように、縮径が終了した部位においては成形型21の押圧によって孔部14Aが押し潰されて消滅する。   As apparent from FIGS. 13 to 16, the hole 14 </ b> A is crushed by the pressing of the mold 21 and disappears at the portion where the diameter reduction has been completed.

次いで、図17に示すように、導電性材料からなる接続体31を準備し、この一方の溝部31Aに、図16に示すような導電性部材16が縮径されてなる超電導導体10の、縮径された導電性部材16を嵌合させ、他方の溝部31Aに、同様にして製造した同じ超電導導体10の、縮径された導電性部材16を嵌合させる。これによって、2本の超電導導体10は、接続体31によって電気的及び機械的に接続されるようになる。   Next, as shown in FIG. 17, a connection body 31 made of a conductive material is prepared, and the shrinkage of the superconducting conductor 10 in which the conductive member 16 as shown in FIG. The conductive member 16 having a reduced diameter of the same superconducting conductor 10 manufactured in the same manner is fitted into the other groove 31A. As a result, the two superconducting conductors 10 are electrically and mechanically connected by the connection body 31.

なお、本実施形態では、溝部31Aに縮径させた導電性部材16を嵌合させた超電導導体10が溝部31Aから離脱しないように、溝部31Aの相当する箇所に、それぞれ溝部32A及び33Aが設けられた上金型32及び下金型33を準備し、超電導導体10の導電性部材16を、接続体31の溝部31Aと、上金型32の溝部32A及び下金型33の溝部33Aとで狭持して、締結するようにしている。この場合、上金型32及び下金型33も導電性材料から構成するようにすれば、超電導導体10同士の電気的接続をより良好な状態で実現することができる。   In the present embodiment, the groove portions 32A and 33A are provided at corresponding portions of the groove portion 31A so that the superconducting conductor 10 fitted with the conductive member 16 having a reduced diameter in the groove portion 31A is not detached from the groove portion 31A. The upper mold 32 and the lower mold 33 thus prepared are prepared, and the conductive member 16 of the superconducting conductor 10 is divided into the groove 31A of the connection body 31, the groove 32A of the upper mold 32, and the groove 33A of the lower mold 33. It is pinched and fastened. In this case, if the upper mold 32 and the lower mold 33 are also made of a conductive material, electrical connection between the superconducting conductors 10 can be realized in a better state.

以上のように、超電導導体10における超電導素線束11の、コンジット端部13から露出した部分を導電性部材16で被覆した後、この導電性部材16の円周方向において所定の間隔で離隔配置され、円弧状に凹んだ押圧面21A、すなわちアール型の押圧面21Aを有する複数(3つ)の成形型21で押圧し、縮径するようにしている。したがって、コンジット13から露出した超電導素線11を構成する複数の超電導線111間の隙間を低減させることができ、超電導素線11の低抵抗化を実現することができるようになる。すなわち、超電導導体10の、接続に供する超電導素線束11の低抵抗化を図ることができる。   As described above, the portion of the superconducting wire bundle 11 in the superconducting conductor 10 that is exposed from the conduit end 13 is covered with the conductive member 16, and then the conductive member 16 is spaced apart at a predetermined interval in the circumferential direction. The pressure is reduced by a plurality of (three) molding dies 21 having a pressing surface 21A that is recessed in an arc shape, that is, a rounded pressing surface 21A. Therefore, gaps between the plurality of superconducting wires 111 constituting the superconducting wire 11 exposed from the conduit 13 can be reduced, and the resistance of the superconducting wire 11 can be reduced. That is, the resistance of the superconducting wire bundle 11 used for connection of the superconducting conductor 10 can be reduced.

また、素線毎ではなく、コンジット13から露出した超電導素線11を一括して縮径するので、縮径に伴う低抵抗化の工程を簡易化することができる。   In addition, since the diameter of the superconducting element wires 11 exposed from the conduit 13 is reduced at a time, not for each element line, the process of reducing the resistance accompanying the diameter reduction can be simplified.

さらに、超電導導体10の接続は、超電導導体10を上述のようにして低抵抗化した後、超電導素線束11を被覆する縮径された導電性部材16を、導電性の接続体31に形成された溝部31Aに嵌合させるとともに、同様にして形成した別の超電導導体10の縮径された導電性部材16を、同じく接続体31に形成された溝部31Aに嵌合させ、接続体31を介して間接的に接続するようにしている。したがって、超電導導体10同士を極めて簡易に接合することができる。   Furthermore, the superconducting conductor 10 is connected to the conductive connecting member 31 by forming the conductive member 16 having a reduced diameter covering the superconducting wire bundle 11 after reducing the resistance of the superconducting conductor 10 as described above. In addition, the conductive member 16 having a reduced diameter of another superconducting conductor 10 formed in the same manner is fitted into the groove 31A formed in the connection body 31 and the connection body 31 is interposed. To connect indirectly. Therefore, the superconducting conductors 10 can be joined very easily.

(第2の実施形態)
図19〜図26は、本実施形態における超電導導体の接続方法を説明するための図である。なお、接続に供する超電導導体の構成は図1〜図3と同様である。また、接続に使用する装置の構成も基本的には図4及び図5に示す装置と同様であるが、成形型の大きさ及び形状が異なる。
(Second Embodiment)
19 to 26 are diagrams for explaining a method of connecting superconducting conductors in the present embodiment. The configuration of the superconducting conductor provided for connection is the same as that shown in FIGS. The configuration of the apparatus used for connection is basically the same as that of the apparatus shown in FIGS. 4 and 5, but the size and shape of the mold are different.

すなわち、上記第1の実施形態では、所定の曲率で円弧状に凹んだ押圧面を有する1種類の成形型を用いて超電導導体10の導電性部材16の縮径を行ったが、本実施形態では、第1の実施形態で使用した成形型に比較し、より小さい曲率で円弧状に凹んだ押圧面を有する別種の成形型を追加で用いて超電導導体10の導電性部材16の縮径を行う。換言すれば、最初に、上記第1の実施形態で説明したようにして、曲率の大きな円弧状に凹んだ押圧面を有する成形型で超電導導体10の導電性部材16の縮径を行った後、より小さい曲率で円弧状に凹んだ押圧面を有する別種の成形型で再度超電導導体10の縮径を行う。   That is, in the first embodiment, the diameter of the conductive member 16 of the superconducting conductor 10 is reduced by using one type of mold having a pressing surface recessed in an arc shape with a predetermined curvature. Then, compared with the mold used in the first embodiment, the diameter of the conductive member 16 of the superconducting conductor 10 is reduced by additionally using another type of mold having a pressing surface recessed in an arc shape with a smaller curvature. Do. In other words, after reducing the diameter of the conductive member 16 of the superconducting conductor 10 with a forming die having a pressing surface recessed in an arc shape having a large curvature, as described in the first embodiment. The diameter of the superconducting conductor 10 is reduced again with another type of mold having a pressing surface recessed in an arc shape with a smaller curvature.

この場合、第1の実施形態で実施した縮径は粗縮径に相当し、本実施形態で行う縮径は精縮径に相当する。すなわち、第1の複数の成形型を用いて導電性部材をある程度まで縮径しておき、次いで、第2の複数の成形型を用いて導電性部材を目的とする径まで縮小する。このように2種類の成形型を用い、2段階で導電性部材の縮径を行うことにより、たとえ導電性部材の径が大きくても、縮径によって目的とする径を高精度に得ることができる。   In this case, the diameter reduction performed in the first embodiment corresponds to a rough diameter reduction, and the diameter reduction performed in this embodiment corresponds to a fine diameter reduction. That is, the diameter of the conductive member is reduced to some extent using the first plurality of molds, and then the conductive member is reduced to the target diameter using the second plurality of molds. Thus, by using two types of molds and reducing the diameter of the conductive member in two stages, even if the diameter of the conductive member is large, the desired diameter can be obtained with high accuracy by the reduced diameter. it can.

なお、本実施形態では、上述したように、第1の実施形態で使用した成形型21の押圧面21Aの曲率よりも小さい曲率で円弧状に凹んだ押圧面41Aを有する3つの成形型41を、それらが互いに120度の角度をなし、保持部材23の側面に沿って等間隔で配置して縮径する場合について説明する。   In the present embodiment, as described above, the three molding dies 41 having the pressing surface 41A that is recessed in an arc shape with a curvature smaller than the curvature of the pressing surface 21A of the molding die 21 used in the first embodiment are provided. A case will be described in which they form an angle of 120 degrees with each other and are arranged at equal intervals along the side surface of the holding member 23 to reduce the diameter.

最初に、第1の実施形態における図6〜図16に示す工程を実施して、チャネル孔14を取り除いた後の孔部14Aを完全に消滅させることなく、狭小化された孔部14Bが残留するようにして超電導導体10の導電性部材16の粗縮径を行う。   First, the steps shown in FIGS. 6 to 16 in the first embodiment are performed, and the narrowed hole 14B remains without completely annihilating the hole 14A after removing the channel hole 14. In this way, the coarse diameter reduction of the conductive member 16 of the superconducting conductor 10 is performed.

次いで、図19及び図20〜図23に示すように、粗縮径された導電性部材16の長さ方向における特定部位の円周方向に対して精縮径を行う。この工程は、基本的には、上記第1の実施形態における図8及び図9〜図12に示す工程と同様にして行う。すなわち、成形型21よりも小さい曲率で凹んだ円弧状の押圧面41Aを有する成形型41を用いて、導電性部材16、すなわち超電導導体10を一度で所定の径となるように縮径するのは困難であるので、図20〜図23に示すように、複数回に分けて縮径を行う。   Next, as shown in FIGS. 19 and 20 to 23, the diameter of the conductive member 16 roughly reduced in diameter is reduced in the circumferential direction of a specific portion in the length direction. This step is basically performed in the same manner as the steps shown in FIGS. 8 and 9 to 12 in the first embodiment. That is, the conductive member 16, that is, the superconducting conductor 10 is reduced in diameter so as to have a predetermined diameter at once using the molding die 41 having the arc-shaped pressing surface 41 </ b> A that is recessed with a smaller curvature than the molding die 21. Therefore, as shown in FIGS. 20 to 23, the diameter is reduced in multiple times.

この際、図20に示すように、3つの成形型41を用いて、導電性部材16の所定箇所を押圧して縮径すると、隣接する成形型41同士は密着せずに離隔するようになるので、隣接する成形型41間にはギャップが生じ、これに基づいて当該箇所は押圧されずに非押圧部16Bが形成されることになる。したがって、図21及び図22に示すように、図4及び図5に示す回転ローラ24を用いて保持部材23を所定の角度回転させることにより、導電性部材16の周囲に3つの成形型21を順次所定の角度回転させ、隣接する成形型41間に生じるギャップに起因した非押圧部16Bを順次消滅させながら縮径を行う。   At this time, as shown in FIG. 20, when the predetermined portion of the conductive member 16 is pressed and reduced in diameter using the three molds 41, the adjacent molds 41 are separated from each other without being in close contact with each other. Therefore, a gap is generated between the adjacent molding dies 41, and the non-pressing portion 16 </ b> B is formed based on the gap without being pressed. Therefore, as shown in FIGS. 21 and 22, the three molding dies 21 are formed around the conductive member 16 by rotating the holding member 23 by a predetermined angle using the rotating roller 24 shown in FIGS. 4 and 5. The diameter is reduced while the non-pressing portion 16B caused by the gap generated between the adjacent molding dies 41 is sequentially disappeared by sequentially rotating by a predetermined angle.

次いで、図23に示すように、隣接する成形型41間にギャップが生じないようにして押圧する。この場合は、前記ギャップに起因した非押圧部16Bは形成されず、さらに隣接する成形型41同士が接触するようになるので、最早これ以上の圧力を負荷して導電性部材16を押圧することができなくなるので、導電性部材16、すなわち超電導導体10の縮径は終了する。   Next, as shown in FIG. 23, pressing is performed so that no gap is formed between adjacent molds 41. In this case, the non-pressing portion 16B due to the gap is not formed, and the adjacent molding dies 41 come into contact with each other, so that the conductive member 16 is pressed with a pressure higher than this. Therefore, the diameter reduction of the conductive member 16, that is, the superconducting conductor 10, is completed.

なお、図20〜図23に示す工程間の移行は、成形型41による導電性部材16の押圧を一旦解放した後に行う。   20 to 23 is performed after the pressing of the conductive member 16 by the molding die 41 is once released.

また、本実施形態においても、3つの成形型41を、導電性部材16の周囲において等間隔で配置しているので、図20〜図23に示すように、導電性部材16の縮径を複数回に分けて行う場合に、特に保持部材23のフランジ231に形成したフランジ孔231Aを参照して、図20〜図23における縮径毎の成形型41の配置を簡易に決定することができ、複数回に亘る縮径を効率的に実施することができる。また、隣接する成形型41間に生じるギャップに起因した非押圧部16Bを、成形型41を所定角度回転させ、それらの押圧面41Aで押圧して非押圧部16Bを消滅させ、導電性部材16を再度縮径するという操作において、成形型41の配置を簡易に決定することができるようになる。   Also in this embodiment, since the three molds 41 are arranged at equal intervals around the conductive member 16, a plurality of reduced diameters of the conductive member 16 are provided as shown in FIGS. In the case of carrying out divided times, particularly referring to the flange hole 231A formed in the flange 231 of the holding member 23, it is possible to easily determine the arrangement of the forming die 41 for each reduced diameter in FIGS. The diameter reduction over a plurality of times can be carried out efficiently. Further, the non-pressing portion 16B caused by the gap generated between the adjacent molding dies 41 is rotated by a predetermined angle, and the pressing surface 41A is pressed to eliminate the non-pressing portion 16B. In the operation of reducing the diameter again, the arrangement of the mold 41 can be easily determined.

次いで、図24〜図26に示す工程に従って、導電性部材16の縮径をその軸方向、すなわち長さ方向に亘って行う。この縮径は、第1の実施形態における図13〜図15に示す工程と同様にして行うことができる。   Next, in accordance with the steps shown in FIGS. 24 to 26, the diameter of the conductive member 16 is reduced in the axial direction, that is, in the length direction. This diameter reduction can be performed in the same manner as the steps shown in FIGS. 13 to 15 in the first embodiment.

最初に、図24に示すように、導電性部材16の長さ方向の、コンジット13に近接した部位A’において、例えば図20〜図23に示したような操作によって縮径を実施した後、縮径した部位A’と次に縮径すべき部位B’とが一部重複するようにして成形型41を導電性部材16の長さ方向に移動させて、再度図20〜図23に示すような操作を実施し、次いで、図25及び図26に示すように、縮径した部位B’と次に縮径すべき部位C’とが一部重複するようにして成形型41を導電性部材16の長さ方向に移動させ、再度図20〜図23に示すような操作を実施し、縮径した部位C’と次に縮径すべき部位D’とが一部重複するようにして成形型41を導電性部材16の長さ方向に移動させ、再度図20〜図23に示すような操作を実施し、部位D’の縮径を行う。   First, as shown in FIG. 24, in the portion A ′ in the length direction of the conductive member 16 and close to the conduit 13, for example, after performing the diameter reduction by an operation as shown in FIGS. 20 to 23, The mold 41 is moved in the length direction of the conductive member 16 so that the part A ′ having a reduced diameter partially overlaps the part B ′ to be reduced next, and again shown in FIGS. Then, as shown in FIG. 25 and FIG. 26, the mold 41 is made conductive so that the part B ′ having a reduced diameter and the part C ′ to be reduced next overlap partially. The member 16 is moved in the length direction and the operation as shown in FIGS. 20 to 23 is performed again so that the reduced diameter portion C ′ and the next reduced diameter portion D ′ partially overlap each other. The mold 41 is moved in the length direction of the conductive member 16, and the operation as shown in FIGS. Performed, performing diameter reduction portion D '.

以上のような操作を繰り返すことによって、導電性部材16を長さ方向の全体に亘って縮径することができ、図16に示すような、導電性部材16が縮径されてなる超電導導体10を得る。   By repeating the above operation, the diameter of the conductive member 16 can be reduced over the entire length direction, and the superconducting conductor 10 formed by reducing the diameter of the conductive member 16 as shown in FIG. Get.

次いで、第1の実施形態と同様に、図17に示すように、導電性材料からなる接続体31を準備し、この一方の溝部31Aに、図16に示すような導電性部材16が縮径されてなる超電導導体10の、縮径された導電性部材16を嵌合させ、他方の溝部31Aに、同様にして製造した同じ超電導導体10の、縮径された導電性部材16を嵌合させる。これによって、2本の超電導導体10を、接続体31によって電気的及び機械的に接続させる。   Next, similarly to the first embodiment, as shown in FIG. 17, a connection body 31 made of a conductive material is prepared, and the conductive member 16 as shown in FIG. The reduced-diameter conductive member 16 of the superconductor 10 thus formed is fitted, and the reduced-diameter conductive member 16 of the same superconductor 10 manufactured in the same manner is fitted into the other groove 31A. . Thus, the two superconducting conductors 10 are electrically and mechanically connected by the connection body 31.

また、必要に応じて、溝部31Aに縮径させた導電性部材16を嵌合させた超電導導体10が溝部31Aから離脱しないように、溝部31Aの相当する箇所に、それぞれ溝部32A及び33Aが設けられた上金型32及び下金型33を準備し、超電導導体10の導電性部材16を、接続体31の溝部31Aと、上金型32の溝部32A及び下金型33の溝部33Aとで狭持して、締結するようにすることもできる。   Further, if necessary, groove portions 32A and 33A are provided at corresponding portions of the groove portion 31A so that the superconducting conductor 10 fitted with the conductive member 16 having a reduced diameter in the groove portion 31A is not detached from the groove portion 31A. The upper mold 32 and the lower mold 33 thus prepared are prepared, and the conductive member 16 of the superconducting conductor 10 is divided into the groove 31A of the connection body 31, the groove 32A of the upper mold 32, and the groove 33A of the lower mold 33. It can also be clamped and fastened.

したがって、本実施形態では、第1の実施形態と同様の作用効果を奏することができることに加えて、2種類の成形型を用い、2段階で導電性部材の縮径を行うことにより、たとえ導電性部材の径が大きくても、縮径によって目的とする径を高精度に得ることができるという作用効果をも奏することができる。   Therefore, in this embodiment, in addition to being able to achieve the same operational effects as those of the first embodiment, by using two types of molds and reducing the diameter of the conductive member in two stages, it is possible to conduct electricity. Even if the diameter of the conductive member is large, the effect of being able to obtain the target diameter with high accuracy by reducing the diameter can be obtained.

なお、本実施形態は、押圧面の曲率が異なる2種類の成形型21及び41を用い、2段階で導電性部材16の縮径を行うようにしているが、3種類以上の複数の成形型を用い、3段階以上で導電性部材16の縮径を行うこともできる。   In the present embodiment, the two types of molding dies 21 and 41 having different curvatures of the pressing surface are used to reduce the diameter of the conductive member 16 in two stages, but there are three or more types of molding dies. The diameter of the conductive member 16 can be reduced in three or more stages.

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいて、あらゆる変形や変更が可能
である。
The present invention has been described in detail based on the above specific examples. However, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention.

10,10−1 超電導導体
11 超電導素線(超電導素線束)
12 ステンレス製テープ
13 コンジット
14 チャネル孔
16 導電性部材
20 超電導導体の接続装置
21,41 成形型
21A,41A 押圧面
22 油圧シリンダー
23 保持部材
24 回転ローラ
25 支持台
31 接続体
31A 溝部
32 上金型
33 下金型
10, 10-1 Superconducting conductor 11 Superconducting wire (superconducting wire bundle)
12 Stainless steel tape 13 Conduit 14 Channel hole 16 Conductive member 20 Superconducting conductor connection device 21, 41 Mold 21A, 41A Press surface 22 Hydraulic cylinder 23 Holding member 24 Rotating roller 25 Support base 31 Connection body 31A Groove 32 Upper mold 33 Lower mold

Claims (20)

中心部に冷媒通路のチャネルを形成した超電導素線束をコンジット内に収容してなる超電導導体の接続方法において、
前記超電導素線束の、コンジット端部から露出した部分を、前記チャネルを欠く状態において導電性部材で被覆する被覆工程と、
導電性部材の円周方向において所定の間隔で離隔配置され、所定の曲率で円弧状に凹んだ押圧面を有する複数の成形型を用い、これら複数の成形型により形成されるキャビティ内に前記導電性部材を配置する配置工程と、
前記複数の成形型の前記押圧面で前記導電性部材を押圧して縮径する縮径工程と、
縮径した前記導電性部材と、上記工程で形成された別の超電導導体の超電導素線束の周囲を被覆する縮径した導電性部材とを、導電性の接続体に形成された溝部に嵌合させて、電気的及び機械的に接合する接合工程と、
を具えることを特徴とする、超電導導体の接続方法。
In the method of connecting a superconducting conductor in which a superconducting wire bundle in which a channel of a refrigerant passage is formed in the center is accommodated in a conduit,
A covering step of covering a portion of the superconducting wire bundle exposed from the conduit end with a conductive member in a state lacking the channel;
A plurality of molds having pressing surfaces recessed in an arc shape with a predetermined curvature are provided at predetermined intervals in the circumferential direction of the conductive member, and the conductive material is contained in a cavity formed by the plurality of molds. An arrangement step of arranging a sex member;
A diameter reducing step of reducing the diameter by pressing the conductive member with the pressing surfaces of the plurality of molds;
The reduced-diameter conductive member and the reduced-diameter conductive member that covers the periphery of the superconducting wire bundle of another superconductor formed in the above process are fitted into the groove formed in the conductive connector. A joining step of electrically and mechanically joining,
A method for connecting a superconducting conductor, comprising:
超電導導体における超電導素線束の、コンジット端部から露出した部分を導電性部材で被覆する被覆工程と、
導電性部材の円周方向において所定の間隔で離隔配置され、所定の曲率で円弧状に凹んだ押圧面を有する複数の成形型を用い、これら複数の成形型により形成されるキャビティ内に前記導電性部材を配置する配置工程と、
前記複数の成形型の前記押圧面で前記導電性部材を押圧して縮径する縮径工程と、
縮径した前記導電性部材と、上記工程で形成された別の超電導導体の超電導素線束の周囲を被覆する縮径した導電性部材とを、導電性の接続体に形成された溝部に嵌合させて、電気的及び機械的に接合する接合工程と、
を具えることを特徴とする、超電導導体の接続方法。
A covering step of covering a portion exposed from the conduit end of the superconducting wire bundle in the superconducting conductor with a conductive member;
A plurality of molds having pressing surfaces recessed in an arc shape with a predetermined curvature are provided at predetermined intervals in the circumferential direction of the conductive member, and the conductive material is contained in a cavity formed by the plurality of molds. An arrangement step of arranging a sex member;
A diameter reducing step of reducing the diameter by pressing the conductive member with the pressing surfaces of the plurality of molds;
The reduced-diameter conductive member and the reduced-diameter conductive member that covers the periphery of the superconducting wire bundle of another superconductor formed in the above process are fitted into the groove formed in the conductive connector. A joining step of electrically and mechanically joining,
A method for connecting a superconducting conductor, comprising:
前記縮径工程は、前記複数の成形型を、前記導電性部材の周囲に少なくとも1回以上所定の角度回転させ、縮径した前記導電性部材の、前記複数の成形型の隣接する成形型間に生じるギャップに起因した非押圧部を、前記複数の成形型の前記押圧面で押圧する工程を含むことを特徴とする、請求項1又は2に記載の超電導導体の接続方法。   In the diameter reduction step, the plurality of molds are rotated at a predetermined angle around the conductive member at a predetermined angle to reduce the diameter between the adjacent molds of the plurality of molds. The method for connecting a superconducting conductor according to claim 1, further comprising a step of pressing a non-pressing portion caused by a gap generated in the step with the pressing surfaces of the plurality of molding dies. 前記縮径工程は、前記複数の成形型の少なくとも一部が前記導電性部材の先に縮径した部分と重複するようにして、前記複数の成形型を前記導電性部材の軸方向において移動させ、前記複数の成形型による前記導電性部材の縮径を、前記導電性部材の軸方向において連続して行う工程を含むことを特徴とする、請求項1〜3のいずれか一に記載の超電導導体の接続方法。   In the diameter reducing step, the plurality of molds are moved in the axial direction of the conductive member such that at least a part of the plurality of molds overlaps a portion of the conductive member having a reduced diameter. The superconductivity according to any one of claims 1 to 3, further comprising a step of continuously reducing the diameter of the conductive member by the plurality of molds in the axial direction of the conductive member. Conductor connection method. 前記配置工程において、前記複数の成形型は、前記導電性部材の周囲において等間隔で配置し、前記縮径工程において、前記複数の成形型の等間隔配置を保持した状態で、前記複数の成形型の前記押圧面で前記導電性部材を押圧して縮径することを特徴とする、請求項1〜4のいずれか一に記載の超電導導体の接続方法。   In the arranging step, the plurality of forming dies are arranged at equal intervals around the conductive member, and in the diameter reducing step, the plurality of forming dies are held in a state in which the plurality of forming dies are held at equal intervals. The method for connecting a superconducting conductor according to claim 1, wherein the diameter of the conductive member is reduced by pressing the conductive member with the pressing surface of the mold. 前記複数の成形型は、第1の複数の成形型及び第2の複数の成形型であり、前記第1の複数の成形型は第1の曲率で円弧状に凹んだ第1の押圧面を有し、前記第2の複数の成形型は、前記第1の曲率よりも小さい第2の曲率で円弧状に凹んだ第2の押圧面を有し、
前記縮径工程は、前記第1の複数の成形型の前記第1の押圧面で前記導電性部材を押圧して縮径する第1の縮径工程、及び前記第1の縮径工程の後、前記第2の複数の成形型の前記第2の押圧面で前記導電性部材を押圧して縮径する第2の縮径工程を含むことを特徴とする、請求項1又は2に記載の超電導導体の接続方法。
The plurality of forming dies are a first plurality of forming dies and a second plurality of forming dies, and the first plurality of forming dies have a first pressing surface recessed in an arc shape with a first curvature. And the second plurality of molds have a second pressing surface that is recessed in an arc shape with a second curvature smaller than the first curvature,
The diameter reduction step includes a first diameter reduction step of reducing the diameter by pressing the conductive member with the first pressing surface of the first plurality of molds, and after the first diameter reduction step. 3. The method according to claim 1, further comprising a second diameter reducing step of reducing the diameter by pressing the conductive member with the second pressing surface of the second plurality of molds. Superconducting conductor connection method.
前記第1の縮径工程は、前記第1の複数の成形型を、前記導電性部材の周囲に少なくとも1回以上所定の角度回転させ、縮径した前記導電性部材の、前記第1の複数の成形型の隣接する成形型間に生じるギャップに起因した非押圧部を、前記第1の複数の成形型の前記第1の押圧面で押圧する工程を含むことを特徴とする、請求項6に記載の超電導導体の接続方法。   In the first diameter reducing step, the first plurality of molds are rotated at a predetermined angle around the conductive member at least once by a predetermined angle to reduce the diameter of the first plurality of conductive members. 7. The method includes a step of pressing a non-pressing portion caused by a gap generated between adjacent molding dies of the first molding die with the first pressing surfaces of the first plurality of molding dies. The connection method of the superconducting conductor as described in 2. 前記第1の縮径工程は、前記第1の複数の成形型の少なくとも一部が前記導線性部材の先に縮径した部分と重複するようにして、前記第1の複数の成形型を前記導電性部材の軸方向において移動させ、前記第1の複数の成形型による前記導電性部材の縮径を、前記導電性部材の軸方向において連続して行う工程を含むことを特徴とする、請求項6又は7に記載の超電導導体の接続方法。   In the first diameter reducing step, at least a part of the first plurality of molds overlaps with a portion of the conductive member that has been reduced in diameter so that the first plurality of molds are The method includes a step of continuously moving in the axial direction of the conductive member by moving in the axial direction of the conductive member and continuously reducing the diameter of the conductive member by the first plurality of molds. Item 8. The superconducting conductor connection method according to Item 6 or 7. 前記第2の縮径工程は、前記第2の複数の成形型を、前記導電性部材の周囲に少なくとも1回以上所定の角度回転させ、縮径した前記導電性部材の、前記第2の複数の成形型の隣接する成形型間に生じるギャップに起因した非押圧部を、前記第2の複数の成形型の前記第2の押圧面で押圧する工程を含むことを特徴とする、請求項6〜8のいずれか一に記載の超電導導体の接続方法。   In the second diameter reducing step, the second plurality of molds are rotated at a predetermined angle around the conductive member by a predetermined angle to reduce the diameter of the second plurality of conductive members. The method further comprises a step of pressing a non-pressing portion caused by a gap generated between adjacent molds of the molds with the second pressing surfaces of the second plurality of molds. The connection method of the superconducting conductor as described in any one of -8. 前記第2の縮径工程は、前記第2の複数の成形型の少なくとも一部が前記導線性部材の先に縮径した部分と重複するようにして、前記第2の複数の成形型を前記導電性部材の軸方向において移動させ、前記第2の複数の成形型による前記導電性部材の縮径を、前記導電性部材の軸方向において連続して行う工程を含むことを特徴とする、請求項6〜9のいずれか一に記載の超電導導体の接続方法。   In the second diameter reducing step, at least a part of the second plurality of molds overlaps with a portion of the conductive member that has been reduced in diameter, so that the second plurality of molds are The method includes a step of moving in the axial direction of the conductive member and continuously reducing the diameter of the conductive member by the second plurality of molds in the axial direction of the conductive member. Item 10. The method for connecting a superconducting conductor according to any one of Items 6 to 9. 前記配置工程において、前記第1の複数の成形型は、前記導電性部材の周囲において等間隔で配置し、前記第1の縮径工程において、前記複数の成形型の等間隔配置を保持した状態で、前記第1の複数の成形型の前記第1の押圧面で前記導電性部材を押圧して縮径することを特徴とする、請求項6〜10のいずれか一に記載の超電導導体の接続方法。   In the arranging step, the first plurality of molding dies are arranged at equal intervals around the conductive member, and in the first diameter reducing step, the equally spaced arrangement of the plurality of molding dies is maintained. The superconducting conductor according to any one of claims 6 to 10, wherein the diameter of the conductive member is reduced by pressing the conductive member with the first pressing surface of the first plurality of molds. Connection method. 前記配置工程において、前記第2の複数の成形型は、前記導電性部材の周囲において等間隔で配置し、前記第2の縮径工程において、前記複数の成形型の等間隔配置を保持した状態で、前記第2の複数の成形型の前記第2の押圧面で前記導電性部材を押圧して縮径することを特徴とする、請求項6〜11のいずれか一に記載の超電導導体の接続方法。   In the arranging step, the second plurality of molding dies are arranged at equal intervals around the conductive member, and in the second diameter reducing step, the equally spaced arrangement of the plurality of molding dies is maintained. The superconducting conductor according to claim 6, wherein the diameter of the conductive member is reduced by pressing the conductive member with the second pressing surface of the second plurality of molds. Connection method. 超電導導体における超電導素線束の、コンジット端部から露出した部分を被覆してなる導電性部材の円周方向において所定の間隔で離隔配置され、所定の曲率で円弧状に凹んだ押圧面を有する、前記導電性部材を縮径するための複数の成形型と、
前記複数の成形型に対して、前記導線性部材を縮径するための押圧力を負荷するための圧力供給手段と、
前記複数の成形型及び前記圧力供給手段を保持する円筒形状の保持部材と、
を具えることを特徴とする、超電導導体の接続装置。
The superconducting conductor bundle in the superconducting conductor has a pressing surface that is spaced apart at a predetermined interval in the circumferential direction of the conductive member that covers the portion exposed from the end of the conduit, and is recessed in an arc with a predetermined curvature. A plurality of molds for reducing the diameter of the conductive member;
Pressure supply means for applying a pressing force for reducing the diameter of the conductive member with respect to the plurality of molds;
A cylindrical holding member that holds the plurality of molds and the pressure supply means;
A connection device for a superconducting conductor, comprising:
前記複数の成形型を、前記導電性部材の周囲に少なくとも1回以上所定の角度回転させるための回転機構を具えることを特徴とする、請求項13に記載の超電導導体の接続装置。   14. The superconducting conductor connection device according to claim 13, further comprising a rotation mechanism for rotating the plurality of molds at a predetermined angle around the conductive member at least once. 前記複数の成形型の少なくとも一部が前記導線性部材の先に縮径した部分と重複するようにして、前記複数の成形型を前記導電性部材の軸方向において移動させるための、軸方向移動機構を具えることを特徴とする、請求項13又は14に記載の超電導導体の接続装置。   Axial movement for moving the plurality of molds in the axial direction of the conductive member such that at least a part of the plurality of molds overlaps a portion of the conductive member having a reduced diameter. 15. The superconducting conductor connecting device according to claim 13, further comprising a mechanism. 前記複数の成形型は、第1の複数の成形型及び第2の複数の成形型であり、前記第1の複数の成形型は第1の曲率で円弧状に凹んだ第1の押圧面を有し、前記第2の複数の成形型は、前記第1の曲率よりも小さい第2の曲率で円弧状に凹んだ第2の押圧面を有することを特徴とする、請求項13に記載の超電導導体の接続装置。   The plurality of forming dies are a first plurality of forming dies and a second plurality of forming dies, and the first plurality of forming dies have a first pressing surface recessed in an arc shape with a first curvature. The second plurality of molds has a second pressing surface that is recessed in an arc shape with a second curvature smaller than the first curvature. Superconducting conductor connection device. 前記回転機構は、前記第1の複数の成形型を、前記導電性部材の周囲に少なくとも1回以上所定の角度回転させることを特徴とする、請求項16に記載の超電導導体の接続装置。   The superconducting conductor connection device according to claim 16, wherein the rotating mechanism rotates the first plurality of molding dies at a predetermined angle at least once around the conductive member. 前記回転機構は、前記第2の複数の成形型を、前記導電性部材の周囲に少なくとも1回以上所定の角度回転させることを特徴とする、請求項16又は17に記載の超電導導体の接続装置。   The superconducting conductor connection device according to claim 16 or 17, wherein the rotating mechanism rotates the second plurality of molding dies at a predetermined angle around the conductive member at least once. . 前記軸方向移動機構は、前記第1の複数の成形型の少なくとも一部が前記導線性部材の先に縮径した部分と重複するようにして、前記第1の複数の成形型を前記導電性部材の軸方向において移動させることを特徴とする、請求項16〜18のいずれか一に記載の超電導導体の接続装置。   The axial movement mechanism is configured such that at least a part of the first plurality of molding dies overlaps a portion of the conductive member having a reduced diameter before the first plurality of molding dies. The superconducting conductor connecting device according to any one of claims 16 to 18, wherein the connecting member is moved in an axial direction of the member. 前記軸方向移動機構は、前記第2の複数の成形型の少なくとも一部が前記導線性部材の先に縮径した部分と重複するようにして、前記第2の複数の成形型を前記導電性部材の軸方向において移動させることを特徴とする、請求項16〜19のいずれか一に記載の超電導導体の接続装置。   The axial direction moving mechanism is configured such that at least a part of the second plurality of molding dies overlaps a portion of the conductive member that has a reduced diameter before the second plurality of molding dies. The superconducting conductor connecting device according to any one of claims 16 to 19, wherein the superconducting conductor is moved in an axial direction of the member.
JP2010074875A 2010-03-29 2010-03-29 Method and device for connecting superconductor Withdrawn JP2011210421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010074875A JP2011210421A (en) 2010-03-29 2010-03-29 Method and device for connecting superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010074875A JP2011210421A (en) 2010-03-29 2010-03-29 Method and device for connecting superconductor

Publications (1)

Publication Number Publication Date
JP2011210421A true JP2011210421A (en) 2011-10-20

Family

ID=44941276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010074875A Withdrawn JP2011210421A (en) 2010-03-29 2010-03-29 Method and device for connecting superconductor

Country Status (1)

Country Link
JP (1) JP2011210421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102717009A (en) * 2012-06-29 2012-10-10 遵义长征电器防爆设备有限责任公司 Processing method of connection wire of mining vacuum starter
JP2013229520A (en) * 2012-04-26 2013-11-07 Sumitomo Heavy Ind Ltd Manufacturing method of superconduction current lead, superconduction current lead, and superconduction magnet device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229520A (en) * 2012-04-26 2013-11-07 Sumitomo Heavy Ind Ltd Manufacturing method of superconduction current lead, superconduction current lead, and superconduction magnet device
CN102717009A (en) * 2012-06-29 2012-10-10 遵义长征电器防爆设备有限责任公司 Processing method of connection wire of mining vacuum starter

Similar Documents

Publication Publication Date Title
WO2010090023A1 (en) Superconductive conductor connecting method and superconductive coil
CN100440621C (en) Joint for superconducting cable
US7622425B2 (en) Method for producing a superconductive electrical conductor
US6583351B1 (en) Superconducting cable-in-conduit low resistance splice
JP2014507052A (en) Superconducting cable and manufacturing method thereof
CN109148074B (en) Cylindrical sub-cable lap joint superconducting joint
JP4917524B2 (en) Superconducting wire and method of manufacturing superconducting wire
GB2498961A (en) Methods of joining superconducting wires
JP2011210421A (en) Method and device for connecting superconductor
JP2005353379A (en) Intermediate connection structure of superconductive cable
KR101823814B1 (en) Joint part for superconducting cable and joint structure for superconducting cable
JP5100533B2 (en) Superconducting conductor connection method, connection structure, connection member
JP2023504694A (en) Cable joints and related technologies for superconducting cables
JP2012079694A (en) Method of manufacturing superconductive electrical conductor and superconductive conductor
EP2827344B1 (en) Superconductor electric cable and method for the obtainment thereof
CN115249936A (en) Coaxial type bridging superconducting cable joint structure and manufacturing method thereof
JP5731627B1 (en) Method for manufacturing terminal structure of superconducting cable and terminal structure of superconducting cable
RU2531370C2 (en) High tensile strength crimped connector for armoured cable
JP2013225598A (en) Mgb2 superconducting magnet
JP5003942B2 (en) Superconducting cable and superconducting cable connection
KR101353474B1 (en) Connecting method of superconductive conductor
Chavez et al. CIC cable technologies for high-current windings
KR20150021875A (en) Connecting method of superconductive conductor
Fabbricatore et al. Pre-industrialization activities related to CMS coil winding
JP2000222952A (en) Superconductive conductor, superconductive conductor connecting structure, and superconducting coil using them

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604