JP2011210305A - Resin lens - Google Patents

Resin lens Download PDF

Info

Publication number
JP2011210305A
JP2011210305A JP2010075382A JP2010075382A JP2011210305A JP 2011210305 A JP2011210305 A JP 2011210305A JP 2010075382 A JP2010075382 A JP 2010075382A JP 2010075382 A JP2010075382 A JP 2010075382A JP 2011210305 A JP2011210305 A JP 2011210305A
Authority
JP
Japan
Prior art keywords
measurement surface
surface portion
resin lens
light
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010075382A
Other languages
Japanese (ja)
Other versions
JP5369038B2 (en
Inventor
Atsushi Takahashi
淳 高橋
Hiroaki Usan
郭晃 宇参
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Finetech Ltd
Original Assignee
Maxell Finetech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Finetech Ltd filed Critical Maxell Finetech Ltd
Priority to JP2010075382A priority Critical patent/JP5369038B2/en
Publication of JP2011210305A publication Critical patent/JP2011210305A/en
Application granted granted Critical
Publication of JP5369038B2 publication Critical patent/JP5369038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin lens with which inclination of the resin lens is accurately obtained even when reflected light from a mirror surface part of the resin lens does not condense to nearly one point in measuring the inclination of the resin lens.SOLUTION: The resin lens includes an optical functional part 2 which has an optical function, and a face part 41 for measurement which is arranged on a periphery of the optical functional part 2 and which can measure inclination of an optical axis of the optical functional part based on reflection of light. Differently reflecting regions 42 are provided on the face part 41 for measurement. A light reflectance and/or a direction of light reflection of the differently reflecting regions 42 are/is set to be different from those/that of the main region 53 of the face part for measurement, which is a region of the face part 41 for measurement other than the differently reflecting regions 42. Three or more differently reflecting regions 42 are provided in the circumferential direction of the optical functional part 2 with spacings.

Description

本発明は、樹脂製のレンズである樹脂レンズに関する。   The present invention relates to a resin lens that is a resin lens.

近年、ブルーレイディスク、DVD、CD等の光ディスクの読取や書き込みのための光ピックアップ装置に用いられる対物レンズ(ピックアップレンズ)は、ガラスモールドレンズに代えてたとえば熱可塑性樹脂製のレンズが用いられるようになっており、このような対物レンズはたとえば射出成形により成形されている。
また、所謂デジタルカメラやカメラ付き携帯電話やビデオカメラ等の各種カメラでも、樹脂製のレンズが用いられるようになってきている。
In recent years, as an objective lens (pickup lens) used for an optical pickup device for reading and writing of an optical disk such as a Blu-ray disc, DVD, or CD, a lens made of a thermoplastic resin, for example, is used instead of a glass mold lens. Such an objective lens is formed by, for example, injection molding.
Resin lenses are also used in various cameras such as so-called digital cameras, camera-equipped mobile phones, and video cameras.

また、前記光ピックアップ装置の対物レンズとしての樹脂レンズは、たとえば、集光機能等の光学的機能を有する光学的機能部と、光学装置への位置決めおよび固定に使用されるフランジ部とを有する。そして、フランジ部は、たとえば、光学的機能部の外周に鍔状に形成されている。   The resin lens as the objective lens of the optical pickup device includes, for example, an optical function unit having an optical function such as a light collecting function, and a flange unit used for positioning and fixing to the optical device. And the flange part is formed in the hook shape on the outer periphery of the optical function part, for example.

また、前記対物レンズとしての樹脂レンズは、光ディスクに近接して配置されることになるので、たとえば、光ピックアップ装置の対物レンズを取り付ける取付け枠の先端部分に樹脂レンズが取り付けられる。この際に、たとえば、樹脂レンズの光学的機能部が取付け枠の内周側に配置され、フランジ部が取付け枠の枠部分に配置され、フランジ部がたとえば接着等により取付け枠に固定される。
したがって、樹脂レンズは、光ピックアップ装置に取り付けた状態で、光ディスクをむく側が露出された状態となる。
Further, since the resin lens as the objective lens is disposed close to the optical disk, for example, the resin lens is attached to the tip portion of the attachment frame to which the objective lens of the optical pickup device is attached. At this time, for example, the optical functional portion of the resin lens is disposed on the inner peripheral side of the mounting frame, the flange portion is disposed on the frame portion of the mounting frame, and the flange portion is fixed to the mounting frame by, for example, adhesion.
Therefore, the resin lens is in a state where the side that peels off the optical disk is exposed in a state of being attached to the optical pickup device.

樹脂レンズの上述のように露出される光ディスク側を向く面の光学的機能の邪魔にならないフランジ部には、鏡面部が設けられている。この鏡面部は、フランジ部を形成する金型の形成面に鏡面加工を施すことにより、当該鏡面加工が施された部分で成形された部分に形成される。
この鏡面部は、フランジ部の内周側に円環状に形成され、かつ、上述の型枠の鏡面加工部分で成形されることにより他の部分より表面粗さを小さくすることで、光の反射率を高めたもので光を反射する反射面となっている。
A mirror surface portion is provided on the flange portion that does not interfere with the optical function of the surface of the resin lens that faces the optical disk exposed as described above. The mirror surface portion is formed in a portion formed by the mirror-finished portion by performing mirror surface processing on the forming surface of the mold forming the flange portion.
This mirror surface portion is formed in an annular shape on the inner peripheral side of the flange portion, and is formed by the mirror surface processing portion of the above-described mold frame, thereby reducing the surface roughness than other portions, thereby reflecting light. It is a reflective surface that reflects light with an increased rate.

そして、鏡面部は、たとえば、樹脂レンズを上述のように光ピックアップ装置に取り付ける際に、鏡面部に向かって光を照射するとともに、鏡面部からの反射光を光センサ(ここでは、たとえば、CCDカメラ)で捉え、たとえば、発射光の強度や、計測位置や、計測された形状等から樹脂レンズ(レンズの光軸)の傾き等を検知することができる(例えば、特許文献1から特許文献3を参照)。   For example, when the resin lens is attached to the optical pickup device as described above, the mirror surface portion irradiates light toward the mirror surface portion and reflects light reflected from the mirror surface portion with an optical sensor (here, for example, a CCD). For example, the inclination of the resin lens (the optical axis of the lens) can be detected from the intensity of the emitted light, the measurement position, the measured shape, and the like (for example, Patent Document 1 to Patent Document 3). See).

また、特許文献3には、従来技術として樹脂レンズの平面状とされた部分に反射膜を設けることにより鏡面部と同様に機能する反射面を設けることが記載されている。
また、樹脂レンズに反射面を設ける際に、所定の波長の光だけを反射するようにした樹脂レンズが提案されている(例えば、特許文献4参照)。
Patent Document 3 describes providing a reflective surface that functions in the same manner as a mirror surface portion by providing a reflective film on a planar portion of a resin lens as a conventional technique.
In addition, there has been proposed a resin lens that reflects only light of a predetermined wavelength when a reflective surface is provided on the resin lens (see, for example, Patent Document 4).

特開平10−282392号公報Japanese Patent Laid-Open No. 10-282392 特開2001−134975号公報JP 2001-134975 A 特開2008−58336号公報JP 2008-58336 A 特開2001−34991号公報JP 2001-34991 A

ところで、樹脂レンズの鏡面部からの反射光は、集光レンズ等で集光させてCCDカメラ等の光センサに照射させられる。したがって、円環状に形成される鏡面部が十分に平坦かつ滑らかであれば、鏡面部からの反射光は、略一点に集光されることになり、光センサで略一点に集光された輝点の位置を検知することで樹脂レンズの傾きを正確に把握することができる。
しかしながら、実際の樹脂レンズでは鏡面部の面形状が歪んだり、面粗さが変化したりするために、鏡面部からの反射光が拡散して一点に集光せず、かつ、集光されて光センサに照射された形状が円に近いような形状ともならず、樹脂レンズによって集光形状が異なる不定形となる場合がある。この場合に、反射光の集光形状から一点に集光された場合の集光位置を判断できず、レンズ(光軸)の傾きを正確に把握できない。
By the way, the reflected light from the mirror surface portion of the resin lens is condensed by a condensing lens or the like and irradiated to an optical sensor such as a CCD camera. Therefore, if the mirror surface portion formed in an annular shape is sufficiently flat and smooth, the reflected light from the mirror surface portion is collected at approximately one point, and the bright light collected at approximately one point by the optical sensor is collected. By detecting the position of the point, the inclination of the resin lens can be accurately grasped.
However, in an actual resin lens, the surface shape of the mirror surface portion is distorted or the surface roughness changes, so that the reflected light from the mirror surface portion diffuses and is not condensed at one point, but is condensed. The shape irradiated to the optical sensor may not be a shape close to a circle, and the light collecting shape may vary depending on the resin lens. In this case, the condensing position when the reflected light is condensed at one point cannot be determined, and the inclination of the lens (optical axis) cannot be accurately grasped.

本発明は、前記事情に鑑みて為されたもので、樹脂レンズの傾きの計測時に、樹脂レンズの鏡面部からの反射光が略一点に集光しない場合に計測の精度を向上できる樹脂レンズを提供することを目的とする。   The present invention has been made in view of the above circumstances, and a resin lens that can improve measurement accuracy when reflected light from a mirror surface portion of a resin lens is not collected at substantially one point when measuring the tilt of the resin lens. The purpose is to provide.

前記目的を達成するために、請求項1に記載の樹脂レンズは、光学的機能を有する光学的機能部と、前記光学的機能部の周囲に設けられるとともに、光の反射に基づいて前記光学的機能部の光軸の傾きを計測可能とする計測用面部とを備え、
前記計測用面部には、異反射領域が設けられ、
前記異反射領域は、当該異反射領域以外の前記計測用面部の領域である計測用面部本体領域に対して、光の反射率および/または光の反射方向が異なる設定とされ、かつ、前記光学的機能部の周方向に間隔をあけて3つ以上設けられていることを特徴とする。
In order to achieve the above object, the resin lens according to claim 1 is provided around an optical function part having an optical function, the optical function part, and based on reflection of light. And a measuring surface part capable of measuring the inclination of the optical axis of the functional part,
The measurement surface portion is provided with a different reflection region,
The different reflection area is set to have a light reflectance and / or a light reflection direction different from those of the measurement surface main body area which is an area of the measurement surface area other than the different reflection area, and the optical It is characterized in that three or more are provided at intervals in the circumferential direction of the functional part.

請求項1に記載の発明においては、例えば、計測用面部本体領域を光の反射率が高い面(鏡面部)とし、それに対してこの計測用面部に設けられる異反射領域を計測用面部本体領域と反射率が異なり、光の反射率が低い面とする。この場合に、計測用面部に光を照射して、この計測用面部からの反射光を集光して光センサに照射した場合に、光センサに照射される光が略一点に集光しないと、計測用面部の異反射領域からの反射光量が少ないことに基づいて、光センサに照射された反射光の形状の中に異反射領域の数に応じて暗い領域が3つ以上生じることになる。この場合に、前記反射光の形状は、3つ以上の暗い領域の間に明るい突出部を有する形状となり、この3つ以上の突出部の中心を前記反射光の中心として、樹脂レンズの光軸の傾きを測定することで、反射光が略一点に集光しなくても樹脂レンズの光軸の傾きの測定精度を向上することができる。   In the first aspect of the present invention, for example, the measurement surface portion main body region is a surface (mirror surface portion) having high light reflectance, and the different reflection region provided on the measurement surface portion is a measurement surface portion main body region. And the reflectance is different and the light reflectance is low. In this case, when light is irradiated to the measurement surface portion, and the reflected light from the measurement surface portion is condensed and irradiated to the optical sensor, the light irradiated to the optical sensor must be condensed at approximately one point. Based on the fact that the amount of reflected light from the different reflection area of the measurement surface portion is small, three or more dark areas are generated in the shape of the reflected light irradiated to the optical sensor according to the number of the different reflection areas. . In this case, the shape of the reflected light is a shape having a bright protrusion between three or more dark regions, and the optical axis of the resin lens with the center of the three or more protrusions as the center of the reflected light. By measuring the inclination, it is possible to improve the measurement accuracy of the inclination of the optical axis of the resin lens even if the reflected light is not collected at substantially one point.

逆に計測用面部本体領域を光の反射率が低い面とし、それに対して異反射領域を計測用面部本体領域と反射率が異なり、光の反射率が高い面とした場合にも、光センサに照射される反射光の形状の暗い部分と明るい部分とが逆となるが、前記反射光の形状が、3つ以上の暗い領域の間に明るい突出部を有する形状となる。この3つ以上の突出部の中心を前記反射光の中心として、樹脂レンズの光軸の傾きを測定することで、反射光が略一点に集光しなくても樹脂レンズの光軸の傾きの測定精度を向上することができる。   On the other hand, even if the measurement surface section main body area is a surface with low light reflectance, and the different reflection area is different from the measurement surface section main body area, the light sensor also has a high light reflectance. The dark part and the bright part of the shape of the reflected light applied to the light are reversed, but the shape of the reflected light has a bright protrusion between three or more dark regions. By measuring the inclination of the optical axis of the resin lens with the center of the three or more protrusions as the center of the reflected light, the inclination of the optical axis of the resin lens can be reduced even if the reflected light is not condensed at one point. Measurement accuracy can be improved.

請求項2に記載の樹脂レンズは、請求項1に記載の発明において、前記計測用面部は、円環状に形成され、前記異反射領域は、前記計測用面部の外周縁から内周縁に至る範囲を含む領域、前記計測用面部の外周縁を含まず内周縁を含む領域および前記計測用面部の内周縁を含まず外周縁を含む領域のうちのいずれかの領域に設けられていることを特徴とする。   According to a second aspect of the present invention, in the resin lens according to the first aspect, the measurement surface portion is formed in an annular shape, and the different reflection region ranges from an outer peripheral edge to an inner peripheral edge of the measurement surface portion. , A region including an inner periphery without including an outer periphery of the measurement surface portion, and a region including an outer periphery without including an inner periphery of the measurement surface portion. And

請求項2に記載の発明においては、前記計測用面部の外周縁から内周縁に至る範囲を含む領域、前記計測用面部の外周縁を含まず内周縁を含む領域、前記計測用面部の内周縁を含まず外周縁を含む領域のうちから樹脂レンズの形状等に基づく計測用面部の面のひずみ等の特徴に対応して、上述の暗い領域が最も明確となるように異反射領域を設定することができる。   In the invention according to claim 2, a region including a range from the outer periphery to the inner periphery of the measurement surface portion, a region including the inner periphery without including the outer periphery of the measurement surface portion, and the inner periphery of the measurement surface portion In response to characteristics such as distortion of the surface of the measurement surface portion based on the shape of the resin lens, etc., in the region including the outer periphery without including the outer peripheral edge, the different reflection region is set so that the above-described dark region becomes the most clear be able to.

請求項3に記載の樹脂レンズは、請求項1または請求項2に記載の発明において、前記異反射領域は、前記計測用面部本体領域に対して相対的に反射率を増加するかまたは反射率を抑制することにより形成されていることを特徴とする。   According to a third aspect of the present invention, there is provided the resin lens according to the first or second aspect of the present invention, wherein the extra-reflection area has a relatively increased reflectance or a reflectance relative to the measurement surface main body area. It is formed by suppressing.

請求項3に記載の発明においては、計測用面部本体領域に対して相対的に、異反射領域となる部分の反射率を増加するか抑制することにより、異反射領域の反射率を計測用面部本体領域と異なるものとしている。この場合に、例えば、樹脂レンズを成形するための型枠の計測用面部を形成する部分において、計測用面部に対して異反射領域となる部分の表面粗さを大きくすると、反射率が抑制され、表面粗さを小さくすると反射率が増加させられる。
また、反射率を抑制する場合に計測用面部の異反射領域となる部分に反射防止膜を設けることで、反射率を抑制することができる。また、反射率を増加する場合に計測用面部の異反射領域となる部分に反射膜を設けることで、反射率を増加させることができる。
また、計測用面部の異反射領域を除く部分である計測用面部本体領域の反射率を上述の異反射領域の場合のように増加もしくは抑制することで、相対的に異反射領域の反射率を計測用面部に対して増加もしくは抑制することができる。
In the invention according to claim 3, the reflectance of the different reflection region is increased or suppressed relative to the measurement surface main body region to thereby increase the reflectance of the different reflection region. It is different from the main body area. In this case, for example, in the portion where the measurement surface portion of the mold for molding the resin lens is formed, if the surface roughness of the portion that becomes the different reflection region with respect to the measurement surface portion is increased, the reflectance is suppressed. When the surface roughness is reduced, the reflectance is increased.
In addition, when the reflectance is suppressed, the reflectance can be suppressed by providing an antireflection film in a portion that becomes a different reflection region of the measurement surface portion. In addition, when the reflectance is increased, the reflectance can be increased by providing a reflective film in a portion that becomes a different reflection region of the measurement surface portion.
Also, by increasing or suppressing the reflectance of the measurement surface portion main body region, which is a portion excluding the different reflection region of the measurement surface portion, as in the case of the above-described different reflection region, the reflectance of the different reflection region is relatively increased. It can be increased or suppressed with respect to the measurement surface portion.

請求項4に記載の樹脂レンズは、請求項1から請求項3のいずれか1項に記載の発明において、前記計測用面部に、前記異反射領域が4つ形成されていることを特徴とする。   The resin lens according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, four different reflection regions are formed on the measurement surface portion. .

請求項4に記載の発明においては、計測用面部から反射されて集光され、光センサに照射される光が略一点に集光されなかった場合に、光センサに照射された光の形状には、相対的に反射率が低くなる計測用面部の異反射領域もしくは異反射領域の間となる部分に対応して暗い部分が4つ形成される。これに対応して、光センサに照射された光の形状には、上述の突出部が4つ形成されて十字に近い形となり明るい部分が交差した状態となる部分を略一点に集光された場合の光点の代わりに使用することで、樹脂レンズの光軸の傾きの計測精度を向上することができる。   In the invention according to claim 4, when the light reflected from the measurement surface portion and collected and irradiated to the optical sensor is not collected at substantially one point, the shape of the light irradiated to the optical sensor is obtained. The four dark portions are formed corresponding to the different reflection regions or the portions between the different reflection regions of the measurement surface portion where the reflectance is relatively low. Correspondingly, the shape of the light irradiated to the optical sensor is such that the above-mentioned four protrusions are formed, and a portion close to a cross is formed, and the portion where the bright portion intersects is condensed at approximately one point. By using instead of the light spot in the case, the measurement accuracy of the inclination of the optical axis of the resin lens can be improved.

請求項5に記載の樹脂レンズは、請求項1から請求項4のいずれか1項に記載の発明において、前記計測用面部は円環状に形成されるとともに、前記計測用面部本体領域は前記異反射領域に対して反射率が高く設定され、前記計測用面部の一部をこの計測用面部の周方向に覆う円環状の反射防止膜が設けられていることを特徴とする。   The resin lens according to claim 5 is the resin lens according to any one of claims 1 to 4, wherein the measurement surface portion is formed in an annular shape, and the measurement surface portion main body region is the different region. A reflectance is set high with respect to the reflection region, and an annular antireflection film is provided to cover a part of the measurement surface portion in the circumferential direction of the measurement surface portion.

請求項5に記載の発明においては、異反射領域より反射率が高くされた円環状の計測用面部の一部をその周方向に覆う円環状の反射防止膜を設けることで、計測用面部のひずみ等により計測用面部の反射光が略一点に集光されない場合に、環状の計測用面部を環状に覆って半径方向に沿う幅を狭くすることで、光センサに照射される集光された反射光の形状を小さくし、樹脂レンズの傾きの計測の際の精度を向上することができる。   In the invention according to claim 5, by providing an annular antireflection film that covers a part of the annular measurement surface portion whose reflectance is higher than that of the different reflection region in the circumferential direction, When the reflected light of the measurement surface portion is not collected at substantially one point due to distortion or the like, the light is condensed on the optical sensor by covering the annular measurement surface portion in an annular shape and narrowing the width along the radial direction. It is possible to reduce the shape of the reflected light and improve the accuracy in measuring the tilt of the resin lens.

請求項6に記載の樹脂レンズは、請求項1から請求項5のいずれか1項に記載の発明において、前記計測用面部は、外周側から内周側に向かうにつれて凹む斜面に形成されていることを特徴とする。   The resin lens according to claim 6 is the invention according to any one of claims 1 to 5, wherein the measurement surface portion is formed on a slope that is recessed from the outer peripheral side toward the inner peripheral side. It is characterized by that.

請求項6に記載の発明においては、前記計測用面部を外周側から内周側に向かうにつれて凹む斜面としていることにより、計測用面部から反射する光を確実に光センサへ照射することができる。これにより、樹脂レンズの光軸の傾きの計測制度を向上することができる。   In the invention according to claim 6, the light reflected from the measurement surface portion can be reliably irradiated to the optical sensor by forming the measurement surface portion as an inclined surface that is recessed from the outer peripheral side toward the inner peripheral side. Thereby, the measuring system of the inclination of the optical axis of a resin lens can be improved.

本発明によれば、従来の鏡面部の面の歪みや表面粗さのぶれなどによる鏡面部からの反射光の集光形状の歪みの発生に対して、異反射領域に、前述の面の歪みや表面粗さのぶれよりも大きな反射方向のずれや反射率の違いを故意に設けることで、積極的に前記集光形状を変化させ、集光形状の明らかに異反射領域により変化した部分に基づいて、前記集光形状の計測の基準となる範囲を狭めることにより計測精度の向上が図られる。   According to the present invention, with respect to the occurrence of the distortion of the condensing shape of the reflected light from the mirror surface due to the distortion of the surface of the conventional mirror surface or the roughness of the surface, the distortion of the surface described above is applied to the different reflection region. By deliberately providing a deviation in the reflection direction or a difference in reflectance that is greater than the fluctuation in surface roughness, the shape of the light collection is positively changed, and the portion of the light collection shape clearly changed due to the different reflection region On the basis of this, the measurement accuracy can be improved by narrowing a range that is a reference for measurement of the condensing shape.

本発明の第1実施形態に係る樹脂レンズを示す図であって、(a)は第1面側となる側面図であり、(b)は断面図であり、(c)は第2面側となる側面図である。It is a figure which shows the resin lens which concerns on 1st Embodiment of this invention, Comprising: (a) is a side view used as the 1st surface side, (b) is sectional drawing, (c) is the 2nd surface side FIG. 本発明の第2実施形態に係る樹脂レンズを示す第1面側の側面図である。It is a side view of the 1st surface side which shows the resin lens which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る樹脂レンズを示す第1面側の側面図である。It is a 1st surface side view which shows the resin lens which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る樹脂レンズを示す第1面側の側面図である。It is a 1st surface side view which shows the resin lens which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る樹脂レンズを示す第1面側の側面図である。It is a 1st surface side view which shows the resin lens which concerns on 5th Embodiment of this invention. 第5実施形態の樹脂レンズを示す図であって、(a)は断面図であり、(b)は(a)の要部拡大図である。It is a figure which shows the resin lens of 5th Embodiment, Comprising: (a) is sectional drawing, (b) is a principal part enlarged view of (a). 本発明の第6実施形態の樹脂レンズを示す図であって、(a)は断面図であり、(b)は(a)の要部拡大図である。It is a figure which shows the resin lens of 6th Embodiment of this invention, Comprising: (a) is sectional drawing, (b) is a principal part enlarged view of (a). 本発明の第7実施形態に係る樹脂レンズを示す第1面側の側面図である。It is a 1st surface side view which shows the resin lens which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る樹脂レンズを示す第1面側の側面図である。It is a 1st surface side view which shows the resin lens which concerns on 8th Embodiment of this invention.

以下、図面を参照しながら、本発明の実施の形態について説明する。
図1(a)、(b)、(c)に示すように第1実施形態の樹脂レンズ1は、たとえば、CD、DVD、ブルーレイディスク等の光ピックアップ装置のピックアップレンズ(対物レンズ)として使用されるものである。
ここで、樹脂レンズ1の形状の説明において、光軸に直交し、かつ、肉厚内にある所定の基準となる面を、この例では固定金型と可動金型とのパーティングラインに沿った平面とし、当該基準面からの前記光軸方向に沿った距離を高さと表現する。なお、基準面から離れるほど高く、近づくほど低くなる。また、後述の第1面11側でも第2面12側でも基準面からの距離を高さでそれぞれ表すものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1A, 1B, and 1C, the resin lens 1 of the first embodiment is used as a pickup lens (objective lens) of an optical pickup device such as a CD, a DVD, or a Blu-ray disc. Is.
Here, in the description of the shape of the resin lens 1, a predetermined reference surface that is orthogonal to the optical axis and is within the thickness is along the parting line between the fixed mold and the movable mold in this example. The distance along the optical axis direction from the reference plane is expressed as height. In addition, it is so high that it leaves | separates from a reference plane, and becomes low, so that it approaches. In addition, the distance from the reference plane is expressed by the height on both the first surface 11 side and the second surface 12 side, which will be described later.

ピックアップレンズとしての樹脂レンズ1は、集光機能等の光学的機能を有する光学的機能部2と、光学的機能部2の周囲に鍔状に形成されるフランジ部3とを備えている。
また、樹脂レンズ1は、情報の読取や書込みが行われる光ディスク側を向く第2面12と、光源からの光が入射する第1面11とを有し、それぞれが光学的機能部2の表面となる光学的機能面21,22と、フランジ部3の表面となるフランジ面31,32とを有する。
すなわち、第1面11は、その中央部が光学的機能面21となり、その外周部がフランジ面31となっている。第2面12は、その中央部が光学的機能面22となり、その外周部がフランジ面32となっている。
A resin lens 1 as a pickup lens includes an optical function part 2 having an optical function such as a light collecting function, and a flange part 3 formed in a bowl shape around the optical function part 2.
The resin lens 1 has a second surface 12 facing the optical disc side where information is read and written, and a first surface 11 on which light from the light source is incident, each of which is a surface of the optical function unit 2. Optical function surfaces 21 and 22 to be and flange surfaces 31 and 32 to be surfaces of the flange portion 3.
That is, the first surface 11 has an optical functional surface 21 at the center and a flange surface 31 at the outer periphery. The second surface 12 has an optical functional surface 22 at the center and a flange surface 32 at the outer periphery.

また、樹脂レンズ1の第1面11側においては、光学的機能部2の光学的機能面21が湾曲して光源側(光ディスクの反対側)に突出した形状となっている。
そして、光学的機能部2の第2面12側の光学的機能面21は、光ディスクに近接して配置されることになり、緩やかな凸面状に湾曲した形状となっている。フランジ部3の第2面12側のフランジ面32の少なくとも一部は、同じ第2面12側の光学的機能面21より高くなっており、フランジ部3の方が、光学的機能部2より、光ディスク側に出っ張った状態となっている。
On the first surface 11 side of the resin lens 1, the optical functional surface 21 of the optical functional unit 2 is curved and protrudes toward the light source side (opposite side of the optical disk).
The optical function surface 21 on the second surface 12 side of the optical function unit 2 is disposed close to the optical disk, and has a shape that is gently curved. At least a part of the flange surface 32 on the second surface 12 side of the flange portion 3 is higher than the optical function surface 21 on the same second surface 12 side, and the flange portion 3 is more than the optical function portion 2. It is in a state of protruding to the optical disc side.

光ピックアップ装置に当該樹脂レンズ1が取り付けられるが、樹脂レンズ1の取り付け位置は、光ピックアップ装置において、光ディスクに最も近接する位置であり、光ピックアップ装置の先端部の取り付け枠に樹脂レンズ1がそのフランジ部3を固定された状態となる。なお、この際には、樹脂レンズ1の第1面11側のフランジ面31の基準面33が前記取り付け枠の先端面に当接されて、たとえば、接着固定される。そして、光学的機能部2は取り付け枠の内部空間に対応し、光が通過可能となっている。   The resin lens 1 is attached to the optical pickup device. The attachment position of the resin lens 1 is the position closest to the optical disk in the optical pickup device, and the resin lens 1 is attached to the attachment frame at the tip of the optical pickup device. The flange portion 3 is fixed. At this time, the reference surface 33 of the flange surface 31 on the first surface 11 side of the resin lens 1 is brought into contact with the front end surface of the mounting frame and is, for example, bonded and fixed. And the optical function part 2 respond | corresponds to the internal space of an attachment frame, and light can pass through.

光ディスク側を向く樹脂レンズ1の第2面12においては、フランジ部3のフランジ面32が内周側の内周部34と外周側の外周部35とからなり、内周部34に計測用面部41が設けられている。
計測用面部41は、樹脂レンズ1の第2面12側となるフランジ部3のフランジ面32に形成されている。計測用面部41は、樹脂レンズ1の断面円形状に形成された光学的機能部2の第2面12側の光学的機能面22の外周縁に連続して円環状で帯状に形成されている。すなわち、計測用面部41は、フランジ面32の光学的機能面22に連続する内周部34に光学的機能面22に連続する面として形成されている。
また、計測用面部41は、許容される誤差の範囲で、光学的機能部2の光軸に対して直交する平面とされている。
On the second surface 12 of the resin lens 1 facing the optical disk side, the flange surface 32 of the flange portion 3 is composed of an inner peripheral portion 34 on the inner peripheral side and an outer peripheral portion 35 on the outer peripheral side. 41 is provided.
The measurement surface portion 41 is formed on the flange surface 32 of the flange portion 3 on the second surface 12 side of the resin lens 1. The measurement surface portion 41 is formed in an annular band shape continuously to the outer peripheral edge of the optical function surface 22 on the second surface 12 side of the optical function portion 2 formed in a circular cross section of the resin lens 1. . That is, the measurement surface portion 41 is formed as a surface continuous with the optical functional surface 22 on the inner peripheral portion 34 continuous with the optical functional surface 22 of the flange surface 32.
The measurement surface portion 41 is a plane orthogonal to the optical axis of the optical function portion 2 within an allowable error range.

このような計測用面部41は、取り付け枠に樹脂レンズ1を取り付けた際に、光ディスク側を向くことになる。光ピックアップ装置の取り付け枠に樹脂レンズ1を設置して固定する際に、計測用面部41に光を照射するとともに、所定の光センサに計測用面部41からの反射光を集光して照射することで、取り付け枠上の樹脂レンズ1の傾き(樹脂レンズ1の光軸の傾き)を測定可能となっている。   Such a measurement surface portion 41 faces the optical disc side when the resin lens 1 is attached to the attachment frame. When the resin lens 1 is installed and fixed to the mounting frame of the optical pickup device, the measurement surface portion 41 is irradiated with light, and the reflected light from the measurement surface portion 41 is condensed and irradiated onto a predetermined optical sensor. Thus, the inclination of the resin lens 1 on the mounting frame (the inclination of the optical axis of the resin lens 1) can be measured.

例えば、光センサで計測された計測用面部41からの反射光の位置の基準位置からのずれ量により樹脂レンズ1(の光軸)の傾きを計測する。
この計測用面部41の詳細については、後述する。
また、第2面12において、フランジ部3の内周部34の外側には、内周部34の計測用面部41およびそれより内周側の光学的機能面22より高い外周部35が形成されている。外周部35が計測用面部41および光学的機能面22より高く突出することで、外周部35が内周側の計測用面部41や光学的機能面21を保護している。
For example, the inclination of the resin lens 1 (its optical axis) is measured based on the amount of deviation from the reference position of the position of the reflected light from the measurement surface 41 measured by the optical sensor.
Details of the measurement surface portion 41 will be described later.
Further, on the second surface 12, an outer peripheral portion 35 higher than the measurement surface portion 41 of the inner peripheral portion 34 and the optical functional surface 22 on the inner peripheral side thereof is formed outside the inner peripheral portion 34 of the flange portion 3. ing. Since the outer peripheral portion 35 protrudes higher than the measurement surface portion 41 and the optical functional surface 22, the outer peripheral portion 35 protects the measurement surface portion 41 and the optical functional surface 21 on the inner peripheral side.

また、樹脂レンズ1は、射出成形により形成されるもので、可動金型と固定金型を備える射出成形金型を用い、樹脂レンズ1の第1面11および第2面12のうちの一方の面側が可動金型により成形され、他方の面が固定金型により成形される。
また、樹脂レンズ1の光学的機能部2とフランジ部3の内周側部分を含む部分は、それぞれ可動金型および固定金型に設けられた入れ子71,72により成形される。
樹脂レンズ1の第1面11では、基準面33およびその内周側の光学機能面21が入れ子71に形成された形成面で成形され、樹脂レンズ2の第2面12では、計測用面部41およびその内周側の光学機能面22が入れ子72より形成される。また、樹脂レンズ1の外周縁部の一箇所には、成形時のゲートを切断したゲート切断部50が形成されている。
The resin lens 1 is formed by injection molding, and uses an injection mold having a movable mold and a fixed mold, and one of the first surface 11 and the second surface 12 of the resin lens 1 is used. The surface side is molded by a movable mold, and the other surface is molded by a fixed mold.
Moreover, the part including the optical function part 2 of the resin lens 1 and the inner peripheral side part of the flange part 3 is shape | molded by the nests 71 and 72 provided in the movable mold and the fixed mold, respectively.
On the first surface 11 of the resin lens 1, the reference surface 33 and the optical function surface 21 on the inner peripheral side thereof are molded with the formation surface formed on the insert 71, and on the second surface 12 of the resin lens 2, the measurement surface portion 41. The optical function surface 22 on the inner peripheral side is formed by the insert 72. Further, a gate cutting portion 50 is formed at one location on the outer peripheral edge of the resin lens 1 by cutting the gate at the time of molding.

このような樹脂レンズ1において、計測用面部41には、3つ以上の異反射領域42が設けられている。なお、計測用面部41は、異反射領域42以外となる計測用面部本体領域43と、3つ以上の異反射領域42とからなるものである。
第1実施形態では、計測用面部41に設けられた異反射領域42が4つとされている。また、異反射領域42は、円環状で帯状の計測用面部41において、計測用面部41の内周縁から外周縁の範囲まで形成されている。また、各異反射領域42は、計測用面部41の周方向、すなわち、光学的機能部2の周方向に間隔をあけて配置されている。また、隣り合う異反射領域42どうしの各間隔は、略同じとされ、異反射領域42は、前記周方向に略等間隔に配置されている。
In such a resin lens 1, the measurement surface portion 41 is provided with three or more different reflection regions 42. The measurement surface portion 41 includes a measurement surface portion main body region 43 other than the different reflection region 42 and three or more different reflection regions 42.
In the first embodiment, there are four different reflection regions 42 provided on the measurement surface portion 41. Further, the different reflection region 42 is formed from the inner peripheral edge to the outer peripheral edge of the measurement surface portion 41 in the annular and band-shaped measurement surface portion 41. Further, the different reflection regions 42 are arranged at intervals in the circumferential direction of the measurement surface portion 41, that is, in the circumferential direction of the optical function portion 2. Further, the intervals between adjacent different reflection areas 42 are substantially the same, and the different reflection areas 42 are arranged at substantially equal intervals in the circumferential direction.

第1実施形態では、計測用面部本体領域43の光の反射率に対して異反射領域42の光の反射率が低いものとされている。上述の樹脂レンズの傾きの測定に使われている光は、例えば、650nmであり、特にこの波長およびそこの波長の近傍の波長を含む波長域の光に対して計測用面部本体領域43と、異反射領域42とで反射率が異なる必要がある。
なお、樹脂レンズの傾きの計測に用いられる光の波長が上述の650nmと異なる場合に、計測用の波長域の光の反射率が計測用面部本体領域43と異反射領域42で異なるものとなっていればよい。
In the first embodiment, the reflectance of light in the different reflection region 42 is lower than the reflectance of light in the measurement surface main body region 43. The light used for the measurement of the inclination of the resin lens is, for example, 650 nm, and in particular for the light in a wavelength range including this wavelength and wavelengths in the vicinity thereof, the measurement surface body region 43, The reflectance needs to be different between the different reflection regions 42.
In addition, when the wavelength of light used for measurement of the inclination of the resin lens is different from the above-described 650 nm, the reflectance of light in the wavelength region for measurement differs between the measurement surface main body region 43 and the different reflection region 42. It only has to be.

計測用面部本体領域43の光の反射率と異反射領域42の光の反射率との差は、計測面部本体領域43を一様の反射率を有する反射面として形成した場合の製造誤差に基づく位置による反射率の違いより大きくなっていることが好ましい。さらに、異反射領域42の光の反射率の低下による計測用面部41の光の反射光量の減少が、計測用面部41の面の歪みによる光の反射の影響に基づいて光センサに照射される反射光量の減少より大きな反射光量の減少となっていることが好ましい。
また、計測用面部本体領域43は、従来の鏡面部と同様に型枠(入れ子72)の計測用面部本体領域43を形成する成形面に鏡面加工を施すことにより、光の反射率を増加させて反射率を高いものとしている。それに対して、異反射領域42は、型枠(入れ子72の)の異反射領域42を形成する形成面を荒らして表面粗さを大きくすることで、光の反射率を抑制して低いものとしている。
The difference between the light reflectance of the measurement surface portion main body region 43 and the light reflectance of the different reflection region 42 is based on a manufacturing error when the measurement surface portion main body region 43 is formed as a reflective surface having a uniform reflectance. It is preferable to be larger than the difference in reflectance depending on the position. Further, the decrease in the amount of reflected light of the measurement surface portion 41 due to the decrease in the light reflectance of the different reflection region 42 is applied to the optical sensor based on the influence of light reflection due to the distortion of the surface of the measurement surface portion 41. It is preferable that the amount of reflected light is larger than the amount of reflected light.
Further, the measurement surface portion main body region 43 increases the light reflectivity by applying mirror processing to the molding surface forming the measurement surface portion main body region 43 of the mold (nesting 72) in the same manner as the conventional mirror surface portion. Therefore, the reflectance is high. On the other hand, the different reflection area 42 is low by suppressing the reflectance of light by roughening the formation surface forming the different reflection area 42 of the mold (nest 72) and increasing the surface roughness. Yes.

また、計測用面部本体領域43と異反射領域42とで光の反射率を異なるものとする方法としては、上述のように樹脂レンズ1を成形する型枠の成形面を加工するのではなく、樹脂レンズ1を成形した後に後加工で、計測面部本体領域43に鏡面加工を施して光の反射率を高いものとし、異反射領域42の表面を荒らして光の反射率を低いものとしてもよい。
また、計測面部本体領域43と異反射領域42との一方を上述の型枠の形成面の加工により光の反射率を所望の値に設定するとともに、他方を上述の後加工により光の反射率を所望の値に設定するものとしてもよい。
Moreover, as a method of making the reflectance of light different between the measurement surface portion main body region 43 and the irregular reflection region 42, instead of processing the molding surface of the mold for molding the resin lens 1 as described above, In the post-processing after molding the resin lens 1, the measurement surface portion main body region 43 may be mirror-finished to increase the light reflectance, and the surface of the different reflection region 42 may be roughened to reduce the light reflectance. .
Further, the reflectance of light is set to a desired value by processing one of the measurement surface portion main body region 43 and the extra-reflective region 42 by processing the forming surface of the mold, and the other is processed by the post-processing described above. May be set to a desired value.

また、計測用面部本体領域43と異反射領域42とで光の反射率を異なるものとする方法としては、計測用面部本体領域43に光の反射率が高い反射膜を設け、異反射領域42に光の反射率が低い反射防止膜を設けるものとしてもよい。なお、計測用面部本体領域43に反射膜を設け、異反射領域42の表面粗さを大きくすることにより異反射領域42の光の反射率を低くすることで、計測用面部本体領域43と異反射領域42とで光の反射率を異なるものとしてもよい。また、異反射領域42に反射防止膜を設け、計測用面部本体領域43は、表面粗さを小さくすることにより光の反射率を高くすることで、計測用面部本体領域43と異反射領域42とで光の反射率を異なるものとしてもよい。また、計測用面部本体領域43と異反射領域42とで光の反射率を異なるものとする際に反射率の増加と抑制との両方を行うのではなく、どちらか一方だけを行うものとしてもよい。   Further, as a method of making the light reflectance different between the measurement surface main body region 43 and the different reflection region 42, a reflection film having a high light reflectance is provided on the measurement surface main body region 43. Further, an antireflection film having a low light reflectance may be provided. Note that a reflective film is provided on the measurement surface main body region 43 and the reflectance of the light in the different reflection region 42 is lowered by increasing the surface roughness of the different reflection region 42, thereby making it different from the measurement surface main body region 43. The light reflectance may be different from that of the reflective region 42. In addition, an antireflection film is provided in the different reflection region 42, and the measurement surface portion main body region 43 has a higher light reflectivity by reducing the surface roughness, so that the measurement surface portion main body region 43 and the different reflection region 42. The reflectance of light may be different. In addition, when the reflectance of light is made different between the measurement surface main body region 43 and the irregular reflection region 42, both the increase and the suppression of the reflectance are not performed, but only one of them is performed. Good.

以上のような樹脂レンズ1によれば、樹脂レンズ1の傾きを測定する際に、計測用面部41に面の歪や反射率の位置によるぶれがあることにより、計測用面部41を反射した光を略一点に集光できない場合でも、上述のように計測用面部41を従来の鏡面部とした場合の位置による反射率の違いより、計測用面部本体領域43と異反射領域42との反射率の違いの方が大きくなる。これにより、集光されて光センサに照射される光の形状に異反射領域42に基づく明らに暗い領域がたとえば4つ生じることになる。これにより、集光された光の形状に4つの暗い領域が光の形状の略周方向に沿って配置されることから、前記光の形状が十字に近い形状となる、この十字の交差部分を計測用面部41が略一点に集光された場合の光点とみなすことにより、樹脂レンズの傾きの計測の精度の向上を図ることができる。   According to the resin lens 1 as described above, when the inclination of the resin lens 1 is measured, the light reflected from the measurement surface portion 41 due to the measurement surface portion 41 being shaken due to the distortion of the surface or the position of the reflectance. Even if the light cannot be condensed at substantially one point, the reflectivity between the measurement surface portion main body region 43 and the different reflection region 42 due to the difference in reflectivity depending on the position when the measurement surface portion 41 is a conventional mirror surface portion as described above. The difference is greater. As a result, for example, four clearly dark regions based on the different reflection regions 42 are generated in the shape of the light that is collected and applied to the optical sensor. As a result, four dark regions are arranged along the substantially circumferential direction of the light shape in the shape of the condensed light, so that the cross portion of the cross becomes a shape close to a cross. By considering the measurement surface portion 41 as a light spot when the light is condensed at approximately one point, it is possible to improve the accuracy of measurement of the inclination of the resin lens.

次に、本発明の第2実施形態を説明する。
図2に示すように第2実施形態の樹脂レンズ1aは、計測用面部41aの構成以外は、第1実施形態と同様となっている。
第2実施形態においては、計測用面部41aの異反射領域42aが第1実施形態のように円環状で帯状の計測用面部41aの外周縁から内周縁に至り、外周縁と内周縁との両方を含むような構成となっておらず、異反射領域42aが計測用面部41aの内周縁部を含まず、外周縁部を含むものとなっている。
Next, a second embodiment of the present invention will be described.
As shown in FIG. 2, the resin lens 1a of 2nd Embodiment is the same as that of 1st Embodiment except the structure of the measurement surface part 41a.
In the second embodiment, the different reflection area 42a of the measurement surface portion 41a extends from the outer periphery to the inner periphery of the ring-shaped measurement surface portion 41a as in the first embodiment, and both the outer periphery and the inner periphery. The different reflection area 42a does not include the inner peripheral edge portion of the measurement surface portion 41a but includes the outer peripheral edge portion.

したがって、計測用面部本体領域43aは、第1実施形態のように異反射領域42aにより分断されておらず一体となっている。第2実施形態においては、異反射領域42aの樹脂レンズ1の半径方向に沿った幅が狭くなり、かつ計測用面部41aの外周よりとなり、計測用面部41aの反射光を集光し、略一点に集光しなかった場合に集光された反射光の形状に第1実施形態の場合と少し異なる影響を与える可能性がある。
しかし、集光された反射光の形状への基本的な影響は、上述の第1の実施形態と略同様であり、第2実施形態の樹脂レンズ1aにおいても、第1実施形態と同様の優れた作用効果を奏することができる。
Accordingly, the measurement surface portion main body region 43a is not divided by the different reflection region 42a as in the first embodiment, but is integrated. In the second embodiment, the width in the radial direction of the resin lens 1 of the different reflection region 42a is narrowed and becomes the outer periphery of the measurement surface portion 41a, and the reflected light of the measurement surface portion 41a is condensed, and approximately one point. When the light is not condensed, there is a possibility that the shape of the reflected light that has been condensed has a slightly different influence from the case of the first embodiment.
However, the basic influence on the shape of the collected reflected light is substantially the same as that of the first embodiment described above, and the resin lens 1a of the second embodiment is also excellent as in the first embodiment. It is possible to achieve the operational effects.

次に、本発明の第3実施形態を説明する。
図3に示すように第3実施形態の樹脂レンズ1bは、計測用面部41bの構成以外は、第1実施形態と同様となっている。
第3実施形態においては、計測用面部41bの異反射領域42bが、第1実施形態のように円環状で帯状の計測用面部41bの外周縁から内周縁に至り、外周縁と内周縁との両方を含むような構成となっておらず、異反射領域42bが計測用面部41bの外周縁部を含まず、内周縁部を含むものとなっている。
Next, a third embodiment of the present invention will be described.
As shown in FIG. 3, the resin lens 1b of the third embodiment is the same as that of the first embodiment except for the configuration of the measurement surface portion 41b.
In the third embodiment, the different reflection region 42b of the measurement surface portion 41b extends from the outer periphery to the inner periphery of the ring-shaped measurement surface portion 41b as in the first embodiment. It is not configured to include both, and the different reflection region 42b does not include the outer peripheral edge portion of the measurement surface portion 41b but includes the inner peripheral edge portion.

したがって、計測用面部本体領域43bは、第1実施形態のように異反射領域42bにより分断されておらず一体となっている。第3実施形態においては、異反射領域42bの樹脂レンズ1の半径方向に沿った幅が狭くなり、かつ計測用面部41bの内周よりとなり、計測用面部41bの反射光を集光し、略一点に集光しなかった場合に集光された反射光の形状に第1実施形態の場合と少し異なる影響を与える可能性がある。
しかし、集光された反射光の形状への基本的な影響は、上述の第1の実施形態と略同様であり、第3実施形態の樹脂レンズ1bにおいても、第1実施形態と同様の優れた作用効果を奏することができる。
Therefore, the measurement surface main body region 43b is not divided by the different reflection region 42b as in the first embodiment, but is integrated. In the third embodiment, the width in the radial direction of the resin lens 1 of the different reflection region 42b is narrow and is from the inner periphery of the measurement surface portion 41b, and the reflected light of the measurement surface portion 41b is condensed, When the light is not collected at one point, the shape of the reflected light collected may have a slightly different influence from the case of the first embodiment.
However, the basic influence on the shape of the collected reflected light is substantially the same as in the first embodiment described above, and the resin lens 1b of the third embodiment is also excellent as in the first embodiment. It is possible to achieve the operational effects.

次に、本発明の第4実施形態を説明する。
図4に示すように、第4実施形態の樹脂レンズ1cは、第1から第3実施形態において、計測用面部41,41a,41b(計測用面部本体領域43,43a,43b)の光の反射率を増加させ、異反射領域42,42a,42bの光の反射率を抑制していたのに対して、計測用面部41c(計測用面部本体領域43c)の光の反射率を抑制し、異反射領域42cの光の反射率を増加させている。なお、樹脂レンズ1cは、計測用面部41c以外の構成が第1実施形態と同様となっている。
Next, a fourth embodiment of the present invention will be described.
As shown in FIG. 4, the resin lens 1c according to the fourth embodiment reflects light from the measurement surface portions 41, 41a and 41b (measurement surface portion main body regions 43, 43a and 43b) in the first to third embodiments. The reflectance is increased and the light reflectance of the different reflection regions 42, 42a and 42b is suppressed, whereas the light reflectance of the measurement surface portion 41c (measurement surface portion main body region 43c) is suppressed, The light reflectance of the reflection region 42c is increased. The resin lens 1c has the same configuration as that of the first embodiment except for the measurement surface portion 41c.

また、計測用面部41cの計測用面部本体領域43cと、異反射領域42cとにおける反射率の増加方法および反射率の抑制方法は、第1実施形態と同様である。また、計測用面部41cの計測用面部本体領域43cと、異反射領域42cとの形状は、第1実施形態と同様となっている。
第4実施形態においては、計測用面部41cにおける光の反射率の高い部位と、光の反射率の低い部位とが第1実施形態と逆になり、光の反射率の高い部分の面積の値と、光の反射率の低い部分の面積の値とが第1実施形態と逆になる。
Further, the method for increasing the reflectance and the method for suppressing the reflectance in the measurement surface portion main body region 43c of the measurement surface portion 41c and the different reflection region 42c are the same as in the first embodiment. Further, the shape of the measurement surface portion main body region 43c and the different reflection region 42c of the measurement surface portion 41c is the same as that of the first embodiment.
In the fourth embodiment, the portion with high light reflectance and the portion with low light reflectance in the measurement surface portion 41c are opposite to those in the first embodiment, and the value of the area of the portion with high light reflectance. And the value of the area of the low light reflectance portion is opposite to that of the first embodiment.

これにより、計測用面部41cの反射光の光量が変化するが、光学機能面の周囲に形成された円環状の計測用面部41の周方向に並んで異反射領域42cが配置されているので、基本的に異反射領域42cの間となる部分も異反射領域42cの数と同じだけ配置されることになり、計測用面部41においては、異反射領域42cと異反射領域42の間となる領域とが略同様に配置されていることになる。これらの異反射領域42cと異反射領域42の間となる領域との反射率の高低を逆転しても、反射率の高い領域と、反射率の低い領域とが周方向に交互に配置される構成は変わらないことになる。したがって、第4実施形態においても、第1実施形態と同様の優れた作用効果を奏することができる。   As a result, the amount of reflected light from the measurement surface portion 41c changes, but the different reflection regions 42c are arranged side by side in the circumferential direction of the annular measurement surface portion 41 formed around the optical functional surface. Basically, the portion between the different reflection regions 42c is also arranged in the same number as the number of the different reflection regions 42c, and in the measurement surface portion 41, a region between the different reflection regions 42c and the different reflection regions 42. Are arranged in substantially the same manner. Even if the high and low reflectivity of the region between the different reflection region 42c and the different reflection region 42 is reversed, the high reflectivity region and the low reflectivity region are alternately arranged in the circumferential direction. The configuration will not change. Therefore, also in the fourth embodiment, the same excellent effects as those in the first embodiment can be achieved.

次に、本発明の第5実施形態を説明する。
図5及び図6に示すように、第5実施形態の樹脂レンズ1dは、異反射領域42dおよび測定用本体領域43dを有する計測用面部41d以外の構成は、第1実施形態と同様となっている。また、第1から第4実施形態において、計測用面部本体領域43,43a,43b,43cと、異反射領域42,42a,42b,42cとで光の反射率が異なるものとしているが、第5実施形態では、計測用面部本体領域43dと異反射領域42dとで反射方向が異なるものとなっている。
Next, a fifth embodiment of the present invention will be described.
As shown in FIGS. 5 and 6, the resin lens 1 d of the fifth embodiment has the same configuration as the first embodiment except for the measurement surface portion 41 d having the different reflection region 42 d and the measurement main body region 43 d. Yes. In the first to fourth embodiments, the light reflectance is different between the measurement surface main body regions 43, 43a, 43b, 43c and the different reflection regions 42, 42a, 42b, 42c. In the embodiment, the measurement surface portion main body region 43d and the different reflection region 42d have different reflection directions.

第5実施形態では、計測用面部41dの異反射領域42d以外の部分となる計測用面部本体領域43dは、ピックアップレンズとして機能する光学的機能部2の光軸に対して直交する面となっている。したがって、例えば、前記光軸方向に沿って計測用面部本体領域43dに入射される光は、計測用面部本体領域43dへの入射角が90度となり、この光の反射光は、前記光軸に沿ったものとなる。   In the fifth embodiment, the measurement surface portion main body region 43d that is a portion other than the different reflection region 42d of the measurement surface portion 41d is a surface orthogonal to the optical axis of the optical function portion 2 that functions as a pickup lens. Yes. Therefore, for example, the light incident on the measurement surface portion main body region 43d along the optical axis direction has an incident angle to the measurement surface portion main body region 43d of 90 degrees, and the reflected light of this light is incident on the optical axis. It will be along.

それに対して、異反射領域42dの表面を構成する平面は、前記光軸に対して直交せずに斜めとなっている。この例では、異反射領域42dの表面は、樹脂レンズ1dの半径方向に中心側から外側に向って低くなるように傾いている。したがって、前記光軸方向に沿って異反射領域42dに入射される光は、異反射領域42dへの入射角が例えば90度より大きくなり、この光の反射光は、前記光軸に対して斜めとなり、例えば、樹脂レンズ1dの半径方向にそって中心側から外周側に傾いたものとなっている。   On the other hand, the plane constituting the surface of the different reflection area 42d is not perpendicular to the optical axis but is inclined. In this example, the surface of the different reflection region 42d is inclined so as to become lower from the center side toward the outside in the radial direction of the resin lens 1d. Therefore, the light incident on the different reflection region 42d along the optical axis direction has an incident angle to the different reflection region 42d larger than 90 degrees, for example, and the reflected light of this light is oblique to the optical axis. For example, it is inclined from the center side to the outer peripheral side along the radial direction of the resin lens 1d.

したがって、計測用面部41dに前記光軸方向に沿って入射する光を集光レンズ等の集光光学系で集光する場合に、計測用面部41dの異反射領域42dで反射した光の全部もしくは一部が集光レンズの範囲から外れて集光されない状態となる。これにより、第1実施形態と同様に、計測用面部41dで反射されて集光された光が略一点に集光されなかった場合の集光された光の形状には、異反射領域42dに対応する暗い部分が存在することになり、第1実施形態の場合と同様の優れた作用効果を得ることができる。   Therefore, when the light incident on the measurement surface portion 41d along the optical axis direction is condensed by a condensing optical system such as a condensing lens, all of the light reflected by the different reflection region 42d of the measurement surface portion 41d or A part of the light falls outside the range of the condenser lens and is not condensed. Thus, as in the first embodiment, the shape of the collected light when the light reflected and collected by the measurement surface portion 41d is not collected at a substantially single point is formed in the different reflection region 42d. Corresponding dark portions exist, and the same excellent effects as those in the first embodiment can be obtained.

計測用面部本体領域43dと表面の角度が異なる異反射領域42dは、例えば、計測用面部41dを成形する成形面を備えた型枠、例えば、可動型枠と固定型枠のうちの固定型枠の入れ子72の成形面で形成される。したがって、入れ子72の成形面には、計測用面部41dを成形する部分に計測用面部本体領域41に対して斜めとなり、内周側から外周側に向うにつれて突出量が大きくなる異反射領域42d用の成形面が形成される。   The different reflection region 42d having a surface angle different from that of the measurement surface portion main body region 43d is, for example, a mold having a molding surface for forming the measurement surface portion 41d, for example, a fixed mold frame of a movable mold frame and a fixed mold frame. It is formed by the molding surface of the nest 72. Therefore, on the molding surface of the nest 72, the portion for molding the measurement surface portion 41d is inclined with respect to the measurement surface portion main body region 41, and the projection amount increases from the inner circumference side toward the outer circumference side. The molding surface is formed.

これにより、上述の異反射領域42dが形成される。ただし、入れ子72は、回転して使用されるので、この場合に、例えば、ゲート切断部50に対する各異反射領域42dの位置が入れ子72の回転角度により異なるものとなる。
ゲート切断部50は、外周が略円形となるフランジ部3において、ゲート切断部50部分だけ異なる形状となっているとともに、この部分から樹脂が充填されるので、このゲート切断部50の近傍で計測用面部41dの面の歪みが大きくなる可能性がある。この場合に、異反射領域42dの位置がゲート切断部50に対して製造される各樹脂レンズで同様となっていることが好ましい場合も有り得る。
Thereby, the above-mentioned different reflection area 42d is formed. However, since the nest 72 is used by being rotated, in this case, for example, the positions of the different reflection regions 42 d with respect to the gate cutting part 50 differ depending on the rotation angle of the nest 72.
The gate cutting part 50 has a shape that differs only in the gate cutting part 50 part in the flange part 3 whose outer periphery is substantially circular, and is filled with resin from this part. Therefore, the gate cutting part 50 is measured in the vicinity of the gate cutting part 50. There is a possibility that the distortion of the surface of the working surface portion 41d becomes large. In this case, it may be preferable that the positions of the different reflection regions 42d are the same in each resin lens manufactured with respect to the gate cutting part 50.

そこで、コスト状は、入れ子72の成形面に異反射領域42dを成形する形状が設けられることが好ましいが、測定面部41dを異反射領域42dとなる部分も含めて、入れ子72の成形面で一つの平面に成形するものとし、樹脂レンズ1dを成形した後に、後加工として切削加工を行い、異反射領域42dを形成するものとしてもよい。   Therefore, the cost is preferably provided with a shape for forming the different reflection region 42d on the molding surface of the nesting 72, but the measurement surface portion 41d is the same as the molding surface of the nesting 72 including the portion to be the different reflection region 42d. It is also possible to mold into two planes, and after molding the resin lens 1d, the post-processing may be cut to form the different reflection region 42d.

なお、測定面部本体領域43dと、異反射領域42dとの光の反射率を同じとしてもよいが、異反射領域42dが高い反射率を有する必要がなく、測定面部本体領域43dに対して異反射領域42dの反射率が低くなっていてもよい。
すなわち、入れ子72により異反射領域42dを形成する際に、入れ子72の異反射領域42dを成形する成形面を鏡面加工する必要ない。また、後加工する際に樹脂レンズ1dの切削した部分を鏡面仕上げする必要はない。
したがって、第1実施形態と同様に、測定面部本体領域43dに対して、異反射領域42dの反射率が低くなる構成となっていてもよい。
また、異反射領域42dの表面は必ずしも平面でなくてもよく、曲面であってもよい。
The light reflectance of the measurement surface portion main body region 43d and the different reflection region 42d may be the same. However, the different reflection region 42d does not need to have a high reflectance, and is different from the measurement surface portion main body region 43d. The reflectance of the region 42d may be low.
That is, when forming the different reflection region 42d by the insert 72, it is not necessary to mirror-finish the molding surface for forming the different reflection region 42d of the insert 72. Further, it is not necessary to mirror finish the cut portion of the resin lens 1d during post-processing.
Therefore, as in the first embodiment, the reflectance of the different reflection region 42d may be lower than the measurement surface portion main body region 43d.
Further, the surface of the different reflection region 42d is not necessarily a flat surface, and may be a curved surface.

次に、本発明の第6実施形態について説明する。
ここで、第1実施形態から第4実施形態において、計測用面部41,41a〜cが前記光軸に対して直交する平面とされているが、図7に示すように、第6実施形態においては、計測用面部41eが光軸に対して直交する平面とされず、外周側から内周側に向うにつれて低くなる斜面となっている。すなわち、円錐台の形状の凹部の内周面と同様の形状となっている。但し、計測用面部41eの角度は、前記光軸に直交する平面に対して小さなものである。
Next, a sixth embodiment of the present invention will be described.
Here, in the first to fourth embodiments, the measurement surface portions 41 and 41a to 41c are planes orthogonal to the optical axis, but as shown in FIG. The measurement surface portion 41e is not a plane orthogonal to the optical axis, and is a slope that becomes lower from the outer peripheral side toward the inner peripheral side. That is, it has the same shape as the inner peripheral surface of the truncated conical recess. However, the angle of the measurement surface portion 41e is small with respect to the plane orthogonal to the optical axis.

計測用面部4以外の構成については、第1実施形態から第4実施形態の構成のいずれかと同様となっている。
第6実施形態の樹脂レンズにあっては、計測用面部41eに面の歪みがあったとしても確実に計測用面部41eからの反射光を受光センサに照射できるので、より光軸の角度の測定の精度の向上を図ることができる。なお、樹脂レンズの面の歪みの程度は勿論、光軸の傾きを測定する際の集光レンズ等の集光光学系等を考慮して、前記光センサに照射される光の面積が縮小傾向となるように計測用面部41eの前記角度を決定する必要がある。
実施例5の場合には、異反射領域42eを除く、計測用面部本体領域43eが上述の構成となるようにすれば同様の効果を得ることができる。
The configuration other than the measurement surface portion 4 is the same as any one of the configurations of the first to fourth embodiments.
In the resin lens of the sixth embodiment, even if there is a distortion of the surface of the measurement surface portion 41e, the reflected light from the measurement surface portion 41e can be reliably radiated to the light receiving sensor. The accuracy can be improved. In addition to the degree of distortion of the surface of the resin lens, the area of the light irradiated to the optical sensor tends to be reduced in consideration of a condensing optical system such as a condensing lens when measuring the inclination of the optical axis. It is necessary to determine the angle of the measurement surface portion 41e so that
In the case of the fifth embodiment, the same effect can be obtained if the measurement surface main body region 43e excluding the different reflection region 42e is configured as described above.

次に、本発明の第7実施形態について説明する。
図8に示すように、第7実施形態においては、第1実施形態の構成において、反射防止膜61を円環状に設けた構成となっている。これにより、樹脂レンズ1の形状を変更することなく、計測用面部41の光を反射する部分の面積を任意に設定できるとともに、円環状の反射防止膜61により、計測用面部41の反射光を集光して光センサに照射して樹脂レンズ1の傾きを計測する際に、光センサに照射される反射光が一点に集光しなかった場合に、集光された反射光の形状を小さくすることが可能となる。
Next, a seventh embodiment of the present invention will be described.
As shown in FIG. 8, in the seventh embodiment, the antireflection film 61 is provided in an annular shape in the configuration of the first embodiment. Thereby, without changing the shape of the resin lens 1, the area of the portion of the measurement surface portion 41 that reflects the light can be arbitrarily set, and the reflected light of the measurement surface portion 41 can be reflected by the annular antireflection film 61. When measuring the tilt of the resin lens 1 by condensing and irradiating the optical sensor, if the reflected light applied to the optical sensor is not collected at one point, the shape of the condensed reflected light is reduced. It becomes possible to do.

なお、図8においては、計測用面部41の外周側に反射防止膜61を円環状に設けたが、計測用面部41の内周側に円環状に設ける構成としてもよい。
また、第2実施形態から第6実施形態の計測用面部41,41a,41b,41c,41d,41eに円環状の反射防止膜61を設ける構成としてもよい。
また光学機能面21には、ディスクの読取や書込みに用いられるレーザー光を有効利用するための反射防止膜が付与される場合があるが、上述した反射防止膜61を兼用するように構成しても良い。例えば計測用面部41の内周側に反射防止膜61を設ける場合に、光学機能面21と計測面部41の内周部に同時に反射防止膜を形成することができる。
尚、光学機能面21に反射防止膜を付与する際、レンズ形状や生産上の事由によって、光学機能面21だけでなく計測用面部41の一部に反射防止膜を付与せざるを得ない場合がある。このような場合にも、反射防止膜の形状は略円形とすることが望ましい。例えば、矩形やライン状とした場合には、計測用面部41からの反射光は反射防止膜の形状の影響を受けて集光形状が不定形となり、発明効果を減じてしまう。
In FIG. 8, the antireflection film 61 is provided in an annular shape on the outer peripheral side of the measurement surface portion 41, but may be provided in an annular shape on the inner peripheral side of the measurement surface portion 41.
Moreover, it is good also as a structure which provides the cyclic | annular antireflection film 61 in the measurement surface parts 41, 41a, 41b, 41c, 41d, and 41e of 2nd Embodiment-6th Embodiment.
The optical function surface 21 may be provided with an antireflection film for effectively using a laser beam used for reading and writing on the disk. Also good. For example, when the antireflection film 61 is provided on the inner peripheral side of the measurement surface portion 41, the antireflection film can be simultaneously formed on the optical function surface 21 and the inner peripheral portion of the measurement surface portion 41.
In addition, when an antireflection film is applied to the optical function surface 21, it is necessary to apply an antireflection film not only to the optical function surface 21 but also to a part of the measurement surface portion 41 depending on the lens shape and production reasons. There is. Even in such a case, it is desirable that the antireflection film has a substantially circular shape. For example, in the case of a rectangular shape or a line shape, the reflected light from the measurement surface portion 41 is affected by the shape of the antireflection film, and the condensing shape becomes indefinite, which reduces the invention effect.

次に、本発明の第8実施形態について説明する。
図9に示すように、第8実施形態の樹脂レンズ1fにおいては、第1実施形態と略同様の樹脂レンズ1fの計測用面部41fに4つではなく3つの異反射領域42fを設けたものであり、それ以外の構成は第1実施形態の樹脂レンズ1と同様となっている。計測用面部41fの異反射領域42f以外の領域が計測用面部本体領域43fとされるとともに、異反射領域42fが円環状の計測用面部本体領域43fに周方向に略等間隔に配置されている。
Next, an eighth embodiment of the present invention will be described.
As shown in FIG. 9, in the resin lens 1f of the eighth embodiment, the measurement surface portion 41f of the resin lens 1f substantially similar to the first embodiment is provided with three different reflection regions 42f instead of four. There are other configurations, which are the same as those of the resin lens 1 of the first embodiment. A region other than the different reflection region 42f of the measurement surface portion 41f is set as a measurement surface portion main body region 43f, and the different reflection regions 42f are arranged in the annular measurement surface portion main body region 43f at substantially equal intervals in the circumferential direction. .

計測用面部41fに3つの異反射領域42fを設けることで、上述のように樹脂レンズ1fの傾きを測定する際に、集光された反射光に3つの暗い領域が発生することになる。この場合に、異反射領域42fを四つとした場合に集光された反射光の形状を十字とすることはできないが、3つの突出部を有する形状とすることが可能となり、集光された反射光の形状を中心が求めやすい形状とすることができる。これにより、樹脂レンズ1fの傾きの計測精度の向上を図ることができる。なお、異反射領域を2つとした場合には、集光された反射光の形状が中心を求めやすい形状となりづらく、異反射領域を3つ以上とする必要がある。なお、第2実施形態から第6実施形態の計測用面部41,41a,41b,41c,41d,41eにおいて、異反射領域42,42a,42b,42c,42d,42eを3つとしてもよい。   By providing the three different reflection regions 42f on the measurement surface portion 41f, when the inclination of the resin lens 1f is measured as described above, three dark regions are generated in the collected reflected light. In this case, when the number of the different reflection regions 42f is four, the shape of the reflected light that has been collected cannot be a cross, but it can be a shape having three protrusions, and the reflected light that has been collected. It is possible to make the shape of light easy to obtain at the center. Thereby, the measurement accuracy of the inclination of the resin lens 1f can be improved. When there are two different reflection regions, the shape of the collected reflected light is difficult to obtain the center easily, and it is necessary to have three or more different reflection regions. In the measurement surface portions 41, 41a, 41b, 41c, 41d, and 41e of the second to sixth embodiments, the number of the different reflection areas 42, 42a, 42b, 42c, 42d, and 42e may be three.

1,1a,1b,1c,1d、1e,1f 樹脂レンズ
2 光学的機能部
41,41a,41b,41c,41d、41e,41f 計測用面部
42,42a,42b,42c,42d、42e,42f 異反射領域
43,43a,43b,43c,43d、43e,43f 計測用面部本体領域
1, 1a, 1b, 1c, 1d, 1e, 1f Resin lens 2 Optical function part 41, 41a, 41b, 41c, 41d, 41e, 41f Measuring surface part 42, 42a, 42b, 42c, 42d, 42e, 42f Reflection area 43, 43a, 43b, 43c, 43d, 43e, 43f Measurement surface main body area

Claims (6)

光学的機能を有する光学的機能部と、前記光学的機能部の周囲に設けられるとともに、光の反射に基づいて前記光学的機能部の光軸の傾きを計測可能とする計測用面部とを備え、
前記計測用面部には、異反射領域が設けられ、
前記異反射領域は、当該異反射領域以外の前記計測用面部の領域である計測用面部本体領域に対して、光の反射率および/または光の反射方向が異なる設定とされ、かつ、前記光学的機能部の周方向に間隔をあけて3つ以上設けられていることを特徴とする樹脂レンズ。
An optical function unit having an optical function, and a measurement surface unit provided around the optical function unit and capable of measuring the inclination of the optical axis of the optical function unit based on reflection of light. ,
The measurement surface portion is provided with a different reflection region,
The different reflection area is set to have a light reflectance and / or a light reflection direction different from those of the measurement surface main body area which is an area of the measurement surface area other than the different reflection area, and the optical Three or more resin lenses are provided at intervals in the circumferential direction of the functional part.
前記計測用面部は、円環状に形成され、前記異反射領域は、前記計測用面部の外周縁から内周縁に至る範囲を含む領域、前記計測用面部の外周縁を含まず内周縁を含む領域および前記計測用面部の内周縁を含まず外周縁を含む領域のうちのいずれかの領域に設けられていることを特徴とする請求項1に記載の樹脂レンズ。   The measurement surface portion is formed in an annular shape, and the different reflection region is a region including a range from the outer periphery to the inner periphery of the measurement surface portion, and a region including the inner periphery without including the outer periphery of the measurement surface portion. 2. The resin lens according to claim 1, wherein the resin lens is provided in any one of regions including an outer peripheral edge not including an inner peripheral edge of the measurement surface portion. 前記異反射領域は、前記計測用面部本体領域に対して相対的に反射率を増加するかまたは反射率を抑制することにより形成されていることを特徴とする請求項1または請求項2に記載の樹脂レンズ。   The said different reflection area | region is formed by increasing a reflectance relatively with respect to the said surface part main body area | region for a measurement, or suppressing a reflectance, The Claim 1 or Claim 2 characterized by the above-mentioned. Resin lens. 前記計測用面部に、前記異反射領域が4つ形成されていることを特徴とする請求項1から請求項3のいずれか1項に記載の樹脂レンズ。   4. The resin lens according to claim 1, wherein four different reflection regions are formed on the measurement surface portion. 5. 前記計測用面部は円環状に形成されるとともに、前記計測用面部本体領域は前記異反射領域に対して反射率が高く設定され、前記計測用面部の一部をこの計測用面部の周方向に覆う円環状の反射防止膜が設けられていることを特徴とする請求項1から請求項4のいずれか1項に記載の樹脂レンズ。   The measurement surface portion is formed in an annular shape, and the measurement surface portion main body region is set to have a higher reflectance than the irregular reflection region, and a part of the measurement surface portion is arranged in the circumferential direction of the measurement surface portion. The resin lens according to claim 1, further comprising an annular antireflection film that covers the resin lens. 前記計測用面部は、外周側から内周側に向かうにつれて凹む斜面に形成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の樹脂レンズ。   6. The resin lens according to claim 1, wherein the measurement surface portion is formed on an inclined surface that is recessed from the outer peripheral side toward the inner peripheral side.
JP2010075382A 2010-03-29 2010-03-29 Resin lens, optical pickup device manufacturing method, resin lens manufacturing method Active JP5369038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075382A JP5369038B2 (en) 2010-03-29 2010-03-29 Resin lens, optical pickup device manufacturing method, resin lens manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075382A JP5369038B2 (en) 2010-03-29 2010-03-29 Resin lens, optical pickup device manufacturing method, resin lens manufacturing method

Publications (2)

Publication Number Publication Date
JP2011210305A true JP2011210305A (en) 2011-10-20
JP5369038B2 JP5369038B2 (en) 2013-12-18

Family

ID=44941199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075382A Active JP5369038B2 (en) 2010-03-29 2010-03-29 Resin lens, optical pickup device manufacturing method, resin lens manufacturing method

Country Status (1)

Country Link
JP (1) JP5369038B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133596A1 (en) * 2011-03-28 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 Optical element, molding die, and method for manufacturing optical element
JP5414945B1 (en) * 2012-02-06 2014-02-12 パナソニック株式会社 Optical element and imaging apparatus including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167805A (en) * 1987-12-24 1989-07-03 Matsushita Electric Ind Co Ltd Optical parts
JPH02158927A (en) * 1988-11-09 1990-06-19 Matsushita Graphic Commun Syst Inc Optical deck objective lens
JPH0543109U (en) * 1991-11-11 1993-06-11 旭光学工業株式会社 Lens barrel
JP2001034991A (en) * 1999-07-19 2001-02-09 Sharp Corp Lens, optical pickup device, and lens inclination detection method
JP2004030770A (en) * 2002-06-25 2004-01-29 Enplas Corp Object lens and method of adjusting its tilt
JP2010014983A (en) * 2008-07-03 2010-01-21 Maxell Finetech Ltd Resin lens and method for molding resin lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167805A (en) * 1987-12-24 1989-07-03 Matsushita Electric Ind Co Ltd Optical parts
JPH02158927A (en) * 1988-11-09 1990-06-19 Matsushita Graphic Commun Syst Inc Optical deck objective lens
JPH0543109U (en) * 1991-11-11 1993-06-11 旭光学工業株式会社 Lens barrel
JP2001034991A (en) * 1999-07-19 2001-02-09 Sharp Corp Lens, optical pickup device, and lens inclination detection method
JP2004030770A (en) * 2002-06-25 2004-01-29 Enplas Corp Object lens and method of adjusting its tilt
JP2010014983A (en) * 2008-07-03 2010-01-21 Maxell Finetech Ltd Resin lens and method for molding resin lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133596A1 (en) * 2011-03-28 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 Optical element, molding die, and method for manufacturing optical element
JP5414945B1 (en) * 2012-02-06 2014-02-12 パナソニック株式会社 Optical element and imaging apparatus including the same

Also Published As

Publication number Publication date
JP5369038B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
US20090190225A1 (en) Optical member and optical device including the optical member
US20070153298A1 (en) Method and apparatus for measuring interfacial positions, method and apparatus for measuring layer thickness, and method and apparatus for manufacturing optical discs
US8085646B2 (en) Optical pickup lens capable of detecting the tilt state
JP5369038B2 (en) Resin lens, optical pickup device manufacturing method, resin lens manufacturing method
TW200834570A (en) Objective lens for optical pick-up
WO2006064641A1 (en) Optical element, composite optical element having same and optical device
JPWO2007142186A1 (en) Optical member
JP5189420B2 (en) Resin lens and resin lens molding method
JP5218514B2 (en) Arrangement method of light receiving lens and optical displacement sensor
JP2005010307A (en) Optical element
US8488434B2 (en) Objective lens, optical pickup apparatus using the same, and method for manufacturing objective lens
JP5892993B2 (en) Resin lens and resin lens manufacturing method
WO2013115113A1 (en) Method for producing objective lens for optical pickup device, objective lens, and method for inspecting objective lens
JP5799686B2 (en) Objective lens, optical pickup device, and optical disk device
JP2008032588A (en) Lens-measuring device
JP5099197B2 (en) Coupling lens and optical pickup device
JP5416633B2 (en) Resin lens and resin lens manufacturing method
JP5383581B2 (en) Resin lens and resin lens molding method
JPH10282392A (en) Plastic lens
JP2009282222A (en) Lens element
JP4611174B2 (en) Image sensor position measuring apparatus and image sensor position measuring method
JP2010281847A (en) Objective lens
JP2008276836A (en) Optical element, optical pickup using the same, and optical disk device
US20080304398A1 (en) Optical Head That Improves Read Signal Characteristics
JP5339793B2 (en) Lens and lens molding method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5369038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250