JP2011209524A - Laminate and display device using the same - Google Patents

Laminate and display device using the same Download PDF

Info

Publication number
JP2011209524A
JP2011209524A JP2010077487A JP2010077487A JP2011209524A JP 2011209524 A JP2011209524 A JP 2011209524A JP 2010077487 A JP2010077487 A JP 2010077487A JP 2010077487 A JP2010077487 A JP 2010077487A JP 2011209524 A JP2011209524 A JP 2011209524A
Authority
JP
Japan
Prior art keywords
laminate
layer
expansion coefficient
ppm
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010077487A
Other languages
Japanese (ja)
Inventor
Yasuhiko Awano
康彦 阿波野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010077487A priority Critical patent/JP2011209524A/en
Publication of JP2011209524A publication Critical patent/JP2011209524A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laminate which is capable of suppressing the maximum amount of deflection generated therein due to a change in temperature or relative humidity of an atmosphere wherein the laminate is used, and to provide a display device which is assembled using the laminate as a substrate and is free from display defects and component mounting failures.SOLUTION: In the laminate having a plurality of layers, one arbitrary layer constituting the laminate has a thermal expansion coefficient of 15 ppm/K or less and a humidity expansion coefficient of 70 ppm/%RH, and a difference between a thermal expansion coefficient of at least one of layers sharing interfaces with the one arbitrary layer and the thermal expansion coefficient of the one arbitrary layer is 20 ppm/K or less, and a difference between a humidity expansion coefficient of at least the one of the layers sharing the interfaces with the one arbitrary layer and the humidity expansion coefficient of the one arbitrary layer is 20 ppm/%RH or less.

Description

本発明は複数層を有する積層板に関し、特に表示用装置に使用する積層板に関するものである。   The present invention relates to a laminate having a plurality of layers, and more particularly to a laminate used for a display device.

近年、表示用装置あるいは電子装置などは多機能化の要求が高まっている。それに伴い、複数の材料を積層して構成される積層板の用途が増えている。これは、積層板を複数の材料により構成することで、単一の材料では得られない特性の発現が可能となるためである。   In recent years, there has been an increasing demand for multifunctional display devices or electronic devices. In connection with that, the use of the laminated board comprised by laminating | stacking a some material is increasing. This is because the laminated plate is composed of a plurality of materials, so that characteristics that cannot be obtained with a single material can be obtained.

そのいっぽうで、積層板を使用する雰囲気の条件に対する特性、その中でも特に温度変化や相対湿度の変化に対する、寸法安定性や耐環境性などを確保することへの要求がますます強くなってきている。特に、寸法安定性については、前記表示用装置や電子装置などに対するさらなる高精細化や薄型化への追及が進むに及んで、これまで以上に厳しい条件を満たすことが要求されている。   On the other hand, there is an increasing demand for characteristics that are suitable for the conditions of the atmosphere in which the laminated board is used, especially dimensional stability and environmental resistance against changes in temperature and relative humidity. . In particular, with regard to dimensional stability, it is required to satisfy stricter conditions than ever as the pursuit for further high definition and thinning of the display device and the electronic device progresses.

ところで、積層板を構成する複数層、それら各々の物性値は必ずしも同一とは限らないため、温度変化や相対湿度の変化などの環境変化に対して、各層の単独での変形挙動は必ずしも同一とはならない。このように単独での変形挙動が前記各層ごとに異なる、複数層により積層板を構成した場合、各層間の界面にずれやすべりが発生することなく、積層板としての構成を維持するために、積層板にたわみが発生する。   By the way, since the physical properties of each of the multiple layers constituting the laminated plate are not necessarily the same, the deformation behavior of each layer alone is not necessarily the same with respect to environmental changes such as temperature changes and relative humidity changes. Must not. In this way, when the laminated plate is composed of a plurality of layers, the deformation behavior of each layer is different for each layer, in order to maintain the configuration as a laminated plate without causing slippage or slipping at the interface between the layers, Deflection occurs in the laminate.

このような積層板に発生するたわみは、積層板を使用する上で様々な問題を引き起こす原因の一つとなっている。例えば、表示用装置を構成する積層板に前記のようなたわみが発生すると、画像の表示ムラ、あるいは、表示駆動用部品の実装不良などの不具合の原因となる可能性が大きい。   The deflection generated in such a laminated plate is one of the causes that cause various problems when the laminated plate is used. For example, when the above-described deflection occurs in the laminated plate constituting the display device, there is a high possibility of causing problems such as uneven display of images or defective mounting of display drive components.

以上のような積層板に発生するたわみを抑えることが目的で、これまでに種々対応策がとられてきた。例えば、積層体を構成する絶縁フィルム層の熱膨張係数を規定することで、耐リフロー性に優れ、なおかつ反りを低減することができる手段が考案されている(特許文献1)。   Various countermeasures have been taken so far for the purpose of suppressing the deflection generated in the laminated board as described above. For example, a means has been devised that is excellent in reflow resistance and can reduce warpage by defining the thermal expansion coefficient of an insulating film layer constituting a laminate (Patent Document 1).

さらに、積層板を構成する各層の線熱膨張係数の取り得る範囲を規定するのみならず、湿度膨張係数についても取り得る範囲を規定することで、積層体の温度変化時または湿度変化時に伴う反りを防止できる手段も考案されている(特許文献2)。   Furthermore, by defining not only the range that can be taken for the linear thermal expansion coefficient of each layer that constitutes the laminate, but also the range that can be taken for the humidity expansion coefficient, it is possible to warp at the time of temperature change or humidity change of the laminate. Means that can prevent this have been devised (Patent Document 2).

しかし、特許文献1では、積層体を構成する層の特性について、温度変化に対する熱膨張係数の取り得る値については規定しているものの、相対湿度の変化に関係すると考えられる物性値については、飽和吸湿膨張率(%)、すなわち吸水率(%)を規定しているに留まっている。これは当該層の静的な吸水容量を示しているに過ぎず、相対湿度の変化による動的な影響を考慮しているとは言い難い。   However, in Patent Document 1, although the value of the thermal expansion coefficient with respect to the temperature change is defined for the characteristics of the layers constituting the laminate, the physical property value considered to be related to the change in relative humidity is saturated. It only defines the hygroscopic expansion rate (%), that is, the water absorption rate (%). This only indicates the static water absorption capacity of the layer, and it is difficult to say that the dynamic influence due to the change in relative humidity is taken into consideration.

また、特許文献2で示されている熱膨張係数および湿度膨張係数の規定範囲は、光情報記録媒体及びその製造方法に適した用途に限定されており、表示用装置などを使用する雰囲気の温度変化や相対湿度変化に対応した条件とは言い難い。   The specified ranges of the thermal expansion coefficient and the humidity expansion coefficient disclosed in Patent Document 2 are limited to applications suitable for the optical information recording medium and the manufacturing method thereof, and the temperature of the atmosphere in which the display device or the like is used. It is hard to say that the conditions correspond to changes and relative humidity changes.

特開2004−031931号公報JP 2004-031931 A 特開2009−277346号公報JP 2009-277346 A

本発明は前記のような従来技術の問題点に鑑みて、積層板を使用する雰囲気の温度あるいは相対湿度が変化した場合でも、寸法安定性を確保し、たわみを抑えることが可能な積層板を提供し、また、前記積層板を基板として用いて組立てた表示用装置において、表示ムラなどの表示不具合や表示駆動用部品などの部品実装不良が発生しない表示用装置を提供することすることを目的とするものである。   In view of the problems of the prior art as described above, the present invention provides a laminate that can ensure dimensional stability and suppress deflection even when the temperature or relative humidity of the atmosphere in which the laminate is used changes. Another object of the present invention is to provide a display device in which display defects such as display unevenness and component mounting defects such as display drive components do not occur in a display device assembled using the laminate as a substrate. It is what.

前記の目的を達成するため、本発明の積層板は、複数層を有する積層板であって、前記積層板を構成する複数層のうちの任意の1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数が15ppm/K以下であって、かつ、前記任意の1つの層の湿度膨張係数が70ppm/%RH以下であって、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数と前記任意の1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数との差が20ppm/K以下であって、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層の湿度膨張係数と前記任意の1つの層の湿度膨張係数との差が20ppm/%RH以下であることを特徴とする。   In order to achieve the above object, the laminate of the present invention is a laminate having a plurality of layers, and is 20 ° C. above the glass transition temperature of any one of the plurality of layers constituting the laminate. The thermal expansion coefficient at a low temperature or lower is 15 ppm / K or lower, and the humidity expansion coefficient of the arbitrary one layer is 70 ppm /% RH or lower, and shares an interface with the arbitrary one layer. A coefficient of thermal expansion below 20 ° C. below the glass transition temperature of at least one of the layers, and a coefficient of thermal expansion below 20 ° C. below the glass transition temperature of any one of the layers, The difference between the humidity expansion coefficient of at least one of the layers sharing the interface with the arbitrary one layer and the humidity expansion coefficient of the arbitrary one layer is 20 ppm. /% RH or less To.

また、本発明の積層板を基板として表示用装置を構成することができる。   In addition, a display device can be configured using the laminate of the present invention as a substrate.

本発明の積層板によれば、前記積層板を使用する雰囲気の温度あるいは相対湿度が変化した場合であっても、前記積層板を構成する任意の1つの層と前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層との間で発生するひずみを低減できるので、前記積層板に発生する最大たわみ量を抑えることができ、温度変化、湿度変化に対する反りを小さくできる。さらに、前記積層板を基板として用いて組立てた表示用装置は、前記表示用装置を使用する雰囲気の温度あるいは相対湿度が変化しても、前記積層板の最大たわみ量を抑えることができるので、前記積層板の最大たわみ量に起因する画像の表示ムラなどの表示不具合や、表示駆動用部品の部品実装不良などの発生を抑えることができる。   According to the laminate of the present invention, even if the temperature or relative humidity of the atmosphere in which the laminate is used changes, any one layer constituting the laminate and the any one layer and the interface Since the strain generated between at least one of the layers sharing the same can be reduced, the maximum amount of deflection generated in the laminated plate can be suppressed, and the warpage against temperature change and humidity change can be reduced. Furthermore, the display device assembled by using the laminate as a substrate can suppress the maximum deflection of the laminate even if the temperature or relative humidity of the atmosphere in which the display device is used changes. It is possible to suppress the occurrence of display defects such as image display unevenness due to the maximum deflection amount of the laminated plate, and component mounting defects of display drive components.

複数層を有する積層板の一例を示す断面図である。It is sectional drawing which shows an example of the laminated board which has multiple layers. 温度変化と相対湿度の変化とにより、たわみが発生した積層板の一例を示す断面図である。It is sectional drawing which shows an example of the laminated board which the bending generate | occur | produced by the temperature change and the change of relative humidity. 積層板を構成する複数層のうちの任意の1つの層と、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層の断面を示す図である。It is a figure which shows the cross section of the arbitrary 1 layer of the several layers which comprise a laminated board, and the at least 1 layer of the layers which share an interface with the said arbitrary 1 layer.

以下、本発明を詳しく説明する。
複数層を有する積層板の一例を図1に示す。ここで最上部の層の上端から下方向にy軸が向くように座標を設定する。また、積層板を構成する複数層は、最上部の層を第1番目の層として、以下、第2番目の層、...、第i番目の層、第(i+1)番目の層、...、第n番目の層、というように称する。
The present invention will be described in detail below.
An example of a laminated board having a plurality of layers is shown in FIG. Here, the coordinates are set so that the y-axis is directed downward from the upper end of the uppermost layer. In addition, the plurality of layers constituting the laminated plate have the uppermost layer as the first layer, the second layer,. . . , I th layer, (i + 1) th layer,. . . , And the nth layer.

複数層を有する積層板を使用する雰囲気の温度あるいは相対湿度が変化した場合、図2に示すようにたわみが発生する。この場合、積層板において、以下の式(1)、式(2)、式(3)、および、式(4)で示される関係がある。   When the temperature or relative humidity of the atmosphere in which the laminated board having a plurality of layers is used changes, deflection occurs as shown in FIG. In this case, in the laminated plate, there is a relationship represented by the following formula (1), formula (2), formula (3), and formula (4).

Figure 2011209524
Figure 2011209524

ここで、上記の式(1)、式(2)、式(3)、および、式(4)における記号について説明する。ρは第i番目の層の曲率半径を示し、Mは第i番目の層の中立面まわりの曲げモーメントを示し、Eは第i番目の層の縦弾性係数を示し、Iは第i番目の層の中立面まわりの断面二次モーメントを示し、αは第i番目の層の熱膨張係数を示し、ΔTは前記積層板を使用する雰囲気の温度変化を示し、ζは第i番目の層の湿度膨張係数を示し、ΔHは前記積層板を使用する雰囲気の相対湿度の変化を示し、Pは第i番目の層に働く軸力を示し、Aは第i番目の層の断面積を示し、hは第i番目の層の厚さを示し、αi+1は第(i+1)番目の層の熱膨張係数を示し、ζi+1は第(i+1)番目の層の湿度膨張係数を示し、Pi+1は第(i+1)番目の層に働く軸力を示し、Ai+1は第(i+1)番目の層の断面積を示し、Ei+1は第(i+1)番目の層の縦弾性係数を示し、hi+1は第(i+1)番目の層の厚さを示し、ρi+1は第(i+1)番目の層の曲率半径を示す。さらに、yは積層板の最上部の層の上面から前記積層板の中立面までの距離を示す。 Here, the symbols in the above equations (1), (2), (3), and (4) will be described. ρ i represents the radius of curvature of the i-th layer, M i represents the bending moment around the neutral plane of the i-th layer, E i represents the longitudinal elastic modulus of the i-th layer, and I i Indicates the second moment of section around the neutral plane of the i-th layer, α i indicates the thermal expansion coefficient of the i-th layer, ΔT indicates the temperature change of the atmosphere in which the laminate is used, and ζ i represents the humidity expansion coefficient of the i-th layer, ΔH represents the change in relative humidity of the atmosphere in which the laminate is used, P i represents the axial force acting on the i-th layer, and A i represents the i-th layer. i represents the cross-sectional area of the i-th layer, h i represents the thickness of the i-th layer, α i + 1 represents the thermal expansion coefficient of the (i + 1) -th layer, and ζ i + 1 represents the (i + 1) -th layer. shows the humidity expansion coefficient of layer, P i + 1 represents the axial force acting on the (i + 1) th layer, a i + 1 is the cross section of the (i + 1) th layer Are shown, E i + 1 represents the longitudinal elastic coefficient of the (i + 1) th layer, h i + 1 denotes the thickness of the (i + 1) th layer, the [rho i + 1 the curvature radius of the (i + 1) th layer Show. Furthermore, y represents the distance from the upper surface of the uppermost layer of the laminate to the neutral plane of the laminate.

次に式(1)、式(2)、式(3)、および、式(4)の意味する内容について説明する。式(1)は第i番目の層のたわみに関する曲率半径と第i番目の層の中立面まわりの曲げモーメントとの関係を表している。式(2)は第i番目の層と第(i+1)番目の層とが共有する界面において、第i番目の層に起因して発生するひずみと、第(i+1)番目の層に起因して発生するひずみとが等しいことを表している。式(3)は前記積層板を構成する複数層のそれぞれに働く軸力がつり合っていることを表す。式(4)は前記積層板を構成する複数層のそれぞれに働く、中立面まわりの曲げモーメントがつり合っていることを表す。   Next, the contents of the expressions (1), (2), (3), and (4) will be described. Equation (1) represents the relationship between the radius of curvature related to the deflection of the i-th layer and the bending moment around the neutral plane of the i-th layer. Equation (2) is derived from the strain generated due to the i-th layer and the (i + 1) -th layer at the interface shared by the i-th layer and the (i + 1) -th layer. This means that the generated strain is equal. Formula (3) represents that the axial force acting on each of the plurality of layers constituting the laminate is balanced. Equation (4) represents that the bending moments around the neutral plane acting on each of the plurality of layers constituting the laminate are balanced.

前記式(1)、式(2)、式(3)、および、式(4)から中立面の曲率半径ρを求めることができる。前記中立面の曲率半径を次に示す式(5)に代入することにより、最大たわみ量を計算することができる。   The radius of curvature ρ of the neutral plane can be obtained from the above equations (1), (2), (3), and (4). The maximum deflection amount can be calculated by substituting the radius of curvature of the neutral plane into the following equation (5).

Figure 2011209524
Figure 2011209524

式(5)における記号の意味は次のとおりである。Vmaxは前記積層板に発生する最大たわみ量を示し、Lは前記積層板の長さを示す。 The meanings of the symbols in the formula (5) are as follows. V max indicates the maximum amount of deflection generated in the laminate, and L indicates the length of the laminate.

以上の計算を実施することにより、複数層を有する積層板を使用する雰囲気の温度あるいは相対湿度が変化した場合に、前記積層j板に発生する最大たわみ量を求めることができる。   By performing the above calculation, when the temperature or relative humidity of the atmosphere in which the laminated board having a plurality of layers is changed, the maximum deflection amount generated in the laminated j board can be obtained.

なお、前記積層板の曲率半径は前記積層板の厚さと比べて十分に大きいと考えると、前記積層板の複数層の各層の曲率半径は次の式(6)のように表すことができる。   If it is considered that the radius of curvature of the laminated plate is sufficiently larger than the thickness of the laminated plate, the radius of curvature of each of the plurality of layers of the laminated plate can be expressed as the following equation (6).

Figure 2011209524
Figure 2011209524

すなわち、前記積層板の複数層の各層の曲率半径は、前記積層板の中立面の曲率半径ρに等しいと見做せる。この関係を用いて前記積層板の曲率半径ρを求める方法を具体的に説明する。   That is, it can be considered that the radius of curvature of each of the plurality of layers of the laminate is equal to the radius of curvature ρ of the neutral plane of the laminate. A method for obtaining the curvature radius ρ of the laminate using this relationship will be specifically described.

今、図3に示すように、前記積層板の複数層のうちの、第i番目の層と第(i+1)番目の層とに着目する。前記第i番目の層と前記第(i+1)番目の層とは互いに界面を共有する関係にある。式(6)により、式(1)、および、式(2)は次のように表せる。   Now, as shown in FIG. 3, attention is focused on the i-th layer and the (i + 1) -th layer among the plurality of layers of the laminate. The i-th layer and the (i + 1) -th layer share a common interface. From equation (6), equations (1) and (2) can be expressed as follows.

Figure 2011209524
Figure 2011209524

また、式(3)の関係から、次の式(9)が成り立つ。   Further, from the relationship of Expression (3), the following Expression (9) is established.

Figure 2011209524
Figure 2011209524

いっぽう、式(4)で示された中立面まわりの曲げモーメントのつり合いは、図3に示す、第i番目の層と第(i+1)番目の層との場合では、式(6)で示した関係を考慮して、前記第i番目の層と第(i+1)番目の層とが共有する界面における曲げモーメントのつり合いとして考えて、次の式(10)のように表せる。   On the other hand, the balance of the bending moment around the neutral plane expressed by the equation (4) is expressed by the equation (6) in the case of the i-th layer and the (i + 1) -th layer shown in FIG. Considering this relationship, it can be expressed as the following equation (10), considering the balance of the bending moment at the interface shared by the i-th layer and the (i + 1) -th layer.

Figure 2011209524
Figure 2011209524

以上の式(7)、式(8)、式(9)、および、式(10)により、前記積層板の曲率半径ρを求める式は、次に示す式(11)で表わされる。   The equation for obtaining the radius of curvature ρ of the laminate by the above equations (7), (8), (9), and (10) is represented by the following equation (11).

Figure 2011209524
Figure 2011209524

仮に、前記第i番目の層の厚さhと、第(i+1)番目の層の厚さhi+1とが等しく、ともにhであるならば、前記の式(11)は、次に示す式(12)のように簡略化できる。 If the thickness h i of the i-th layer is equal to the thickness h i + 1 of the (i + 1) -th layer and both are h, then the above equation (11) is expressed by the following equation: It can be simplified as in (12).

Figure 2011209524
Figure 2011209524

前記の式(5)から、前記積層板の最大たわみ量Vmax を小さくするためには前記積層板の曲率半径ρが大きくなるよう、前記積層板の複数層の各層の材料を選定すればよい。具体的には、前記の式(12)の中のα、αi+1、ΔT、ζ、ζi+1、および、ΔHで表わされる部分が限りなく0に近ければよいことになる。すなわち、次の式(13)で表わすとおりである。 From the above equation (5), in order to reduce the maximum deflection amount V max of the laminate, the material of each layer of the laminate may be selected so that the radius of curvature ρ of the laminate is increased. . Specifically, it is only necessary that the parts represented by α i , α i + 1 , ΔT, ζ i , ζ i + 1 , and ΔH in the formula (12) are as close to 0 as possible. That is, it is as represented by the following formula (13).

Figure 2011209524
Figure 2011209524

前記積層板の複数層の各層の材料としては、高耐熱性ポリイミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、アラミド樹脂、ポリメチルメタクリレート樹脂、ポリエーテルサルファイド樹脂、ポリフェニレンサルファイド樹脂、ポリアミド樹脂、ポリエチレンナフタレート樹脂、ポリエーテルイミド樹脂、変性ポリフェニルエーテル樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、エポキシ樹脂、透明ポリイミド樹脂、液晶ポリマー樹脂などがある。この他にも、ガラス板、銅箔なども使用することができる。   As a material of each layer of the multilayer board, high heat-resistant polyimide resin, polyester resin, polycarbonate resin, aramid resin, polymethyl methacrylate resin, polyether sulfide resin, polyphenylene sulfide resin, polyamide resin, polyethylene naphthalate resin, Examples include polyetherimide resins, modified polyphenyl ether resins, polyphenylene sulfide resins, polyether sulfone resins, epoxy resins, transparent polyimide resins, and liquid crystal polymer resins. In addition, a glass plate, copper foil, etc. can also be used.

以上挙げた材料に熱的反応性や光学的反応性を持たせることで、接着機能を有した材料としてもよい。さらに、前記に挙げた材料と、ガラス繊維などの無機繊維や有機繊維を補強材として組み合わせた材料としてもよい。   A material having an adhesive function may be obtained by giving thermal reactivity or optical reactivity to the materials mentioned above. Furthermore, it is good also as a material which combined the material mentioned above, inorganic fiber, such as glass fiber, and organic fiber as a reinforcing material.

ところで、複数層を有する積層板では、積層板全体の強度を確保するための芯材としての働きを持たせた層を含む場合が多く、前記積層板を使用する雰囲気の温度あるいは相対湿度が変化した場合に、前記芯材としての働きを持たせた層自体は変形量が小さくなるように材料の選定を行うことが多い。前記芯材としての働きを持たせた層自体は温度変化に対する変形量が小さくなるように、熱膨張係数が15ppm/K以下であることが望ましく好適である。さらに、前記芯材としての働きを持たせた層自体は相対湿度の変化に対する変形量が小さくなるように湿度膨張係数が70ppm/%RH以下であることが望ましく好適である。   By the way, a laminated board having a plurality of layers often includes a layer having a function as a core material for ensuring the strength of the whole laminated board, and the temperature or relative humidity of the atmosphere in which the laminated board is used changes. In such a case, the material is often selected so that the amount of deformation of the layer itself serving as the core material is reduced. The layer itself serving as the core material desirably has a thermal expansion coefficient of 15 ppm / K or less so that the amount of deformation with respect to temperature change is small. Further, it is desirable and preferable that the layer itself serving as the core material has a humidity expansion coefficient of 70 ppm /% RH or less so that a deformation amount with respect to a change in relative humidity becomes small.

なお、熱膨張係数として、ガラス転移点温度よりも20℃低い温度以下での測定値を採用する理由は、次のとおりである。すなわち、ガラス転移点温度との差が10℃以下の温度範囲では熱膨張係数の温度依存性が大きく、前記ガラス転移点温度付近では温度が1℃変化するだけで熱膨張係数が急激に変化するため、物性値として熱膨張係数を材料ごとに比較することが困難になるためである。   The reason why the measured value at a temperature 20 ° C. or lower than the glass transition temperature is employed as the thermal expansion coefficient is as follows. That is, the temperature dependence of the thermal expansion coefficient is large in the temperature range where the difference from the glass transition temperature is 10 ° C. or less, and the thermal expansion coefficient changes rapidly only by a temperature change of 1 ° C. near the glass transition temperature. For this reason, it is difficult to compare the thermal expansion coefficient for each material as a physical property value.

また、前記積層板の芯材としての働きを持たせる層の材料の望ましい熱膨張係数が15ppm/K以下が好適であり、いっぽう、前記積層板の芯材としての働きを持たせる層の材料の望ましい湿度膨張係数が70ppm/K以下と、熱膨張係数と湿度膨張係数とでは異なる範囲になっているのは、積層板を使用する雰囲気の温度変化と相対湿度の変化の変化速度が違うためである。一般に、温度変化の速度に比べて相対湿度の変化の速度のほうが遅く、変化が遅いほど、その雰囲気に曝されている材料への外的な負荷を小さく見積もることができる。反対に温度変化は相対湿度の変化に比べて変化速度が大きく、その雰囲気に曝されている材料への外的な負荷を大きく見積もらねばならず、その結果、熱膨張係数の条件範囲を低く設定する必要がある。   Further, a desirable thermal expansion coefficient of the layer material that serves as a core material of the laminate is preferably 15 ppm / K or less. On the other hand, the layer material that acts as the core material of the laminate is preferable. The desired humidity expansion coefficient is 70 ppm / K or less, and the thermal expansion coefficient and the humidity expansion coefficient are in different ranges because the change rate of the temperature change of the atmosphere and the change of relative humidity are different. is there. In general, the rate of change in relative humidity is slower than the rate of change in temperature, and the slower the change, the smaller the external load on the material exposed to the atmosphere. Conversely, the change in temperature is faster than the change in relative humidity, and the external load on the material exposed to the atmosphere must be greatly estimated. As a result, the condition range for the coefficient of thermal expansion is set low. There is a need to.

以上のような積層板の芯材としての働きを持たせる層を含めた、前記積層板の任意の1つの層と、前記任意の1つの層と界面を共有する層とは、前記の式(13)に示すような関係を実現するため、複数層を有する積層板を構成する複数層のうちの任意の1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数と、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層の、ガラス転移点温度よりも20℃低い温度以下での熱膨張係数との差が小さいほどよく、さらに、前記任意の1つの層の湿度膨張係数と、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層の湿度膨張係数との差が小さいほどよい。   An arbitrary layer of the laminated plate including a layer that serves as a core material of the laminated plate as described above, and a layer sharing an interface with the arbitrary one layer are represented by the above formula ( 13) In order to realize the relationship shown in FIG. 13, a thermal expansion coefficient at a temperature not higher than 20 ° C. lower than the glass transition point temperature of any one of the plurality of layers constituting the laminate having a plurality of layers, The difference between the thermal expansion coefficient of at least one of the layers sharing an interface with any one of the layers at a temperature lower than or equal to 20 ° C. below the glass transition temperature is better. The smaller the difference between the humidity expansion coefficient of one layer and the humidity expansion coefficient of at least one of the layers sharing the interface with the arbitrary one layer, the better.

一方で、前記任意の1つの層と前記任意の1つの層と界面を共有する層の熱膨張係数の差は20ppm/K以下であり、さらに、前記任意の1つの層と前記任意の1つの層と界面を共有する層の湿度膨張係数との差は20ppm/%RH以下とする。これらの範囲内であれば、前記積層板を表示用材料や電子装置などに用いた場合に、前記表示用装置や電子装置などを使用する雰囲気の温度変化や相対湿度の変化に対して、前記表示用装置や電子装置などの性能を低下させることなく、使用することが可能である。   On the other hand, the difference in thermal expansion coefficient between the arbitrary one layer and the layer sharing the interface with the arbitrary one layer is 20 ppm / K or less, and further, the arbitrary one layer and the arbitrary one layer The difference between the coefficient of humidity expansion of the layer sharing the interface with the layer is 20 ppm /% RH or less. Within these ranges, when the laminate is used for a display material, an electronic device, or the like, with respect to a change in temperature or relative humidity of an atmosphere in which the display device or the electronic device is used, the It can be used without degrading the performance of a display device or an electronic device.

ただし、前記熱膨張係数の取り得る範囲と、前記湿度膨張係数の取り得る範囲は、前記式(11)において、第i番目の層の厚さhと、第(i+1)番目の層の厚さhi+1とが1μm以上のオーダーに想定した場合が多い。もし、第i番目の層の厚さh、あるいは、第(i+1)番目の層の厚さhi+1が数10nm以下のオーダーとなった場合、前記式(11)、および、前記式(5)とから、最大たわみ量を小さくするためには、熱膨張係数の取り得る範囲と湿度膨張係数の取り得る範囲とを規定するだけではなく、弾性係数についての条件も考慮しなくてはならず、本発明の示す範囲からは外れる。 However, the possible range of the thermal expansion coefficient, the possible range of the humidity expansion coefficient in the formula (11), the thickness h i of the i-th layer, the thickness of the (i + 1) th layer In many cases, h i + 1 is assumed to be on the order of 1 μm or more. If the thickness of the i-th layer h i or, if the (i + 1) the thickness of the second layer h i + 1 is equal to or less than the order of a few 10 nm, the formula (11), and the formula (5 Therefore, in order to reduce the maximum deflection, not only the range that the thermal expansion coefficient can take and the range that the humidity expansion coefficient can take, but also the conditions for the elastic coefficient must be considered. This is outside the scope of the present invention.

前記、複数層を有する積層板を用いて表示用装置を形成することができる。具体的には、液晶表示装置(Liquid Crystal Display、以下LCDと略記)、プラズマ表示装置(Plasma Display Panel、以下PDPと略記)、有機EL表示装置(Organic Electroluminescence Display、以下OLEDと略記)、電界放出型表示装置(Field Emission Display、以下FEDと略記)などがある。これらの表示用装置の基板として従来はガラス基板を主に用いていたが、最近ではガラスとプラスチックとにより構成される積層板が用いられることが多い。   A display device can be formed using the laminate having a plurality of layers. Specifically, liquid crystal display (Liquid Crystal Display, hereinafter abbreviated as LCD), plasma display (Plasma Display Panel, hereinafter abbreviated as PDP), organic EL display (Organic Electroluminescence Display, hereinafter abbreviated as OLED), field emission There is a type display device (Field Emission Display, hereinafter abbreviated as FED). Conventionally, a glass substrate has been mainly used as a substrate of these display devices, but recently, a laminated plate made of glass and plastic is often used.

以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例の説明に先立って、本発明の実施において必要となる物性値の測定方法について説明する。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Prior to the description of the examples, a method for measuring physical property values necessary for carrying out the present invention will be described.

ガラス転移点温度は、材料の動的粘弾性測定を行い、その結果を温度と損失正接(tanδ)との関係のグラフにしたときの、ピークの頂点の温度(ピークトップ温度)をガラス転移点温度とする。実際は、ピークトップ温度は測定装置にて自動的に検出される。すなわち、強制震動非共振型粘弾性測定器(株式会社オリエンテック製、商品名:レオバイブロン)を用いて、測定条件:加振周波数11Hz、静的張力3.0gf、サンプルサイズ0.5mm(幅)×30mm(長)にて、常温常湿環境下から昇温速度10℃/分で400℃まで昇温し、温度と損失正接との関係を求めることにより得られる。   The glass transition temperature is measured by measuring the dynamic viscoelasticity of the material, and when the result is plotted in a graph of the relationship between temperature and loss tangent (tan δ), the temperature at the peak apex (peak top temperature) is the glass transition temperature. Let it be temperature. In practice, the peak top temperature is automatically detected by the measuring device. That is, using a forced vibration non-resonance type viscoelasticity measuring device (Orientec Co., Ltd., trade name: Leo Vibron), measurement conditions: excitation frequency 11 Hz, static tension 3.0 gf, sample size 0.5 mm (width) It is obtained by raising the temperature to 400 ° C. at a temperature rising rate of 10 ° C./min from a room temperature and humidity environment at a length of 30 mm (long) and determining the relationship between the temperature and loss tangent.

熱膨張係数は、Thermo Mechanical Analyzer(セイコーインスツルメンツ株式会社製)を用いた引張測定を行い、JIS K7197に示す平均熱膨張係数算出方法により、50℃から測定サンプルのガラス転移点温度よりも20℃低い温度における平均熱膨張係数を算出した。すなわち、フィルム状のサンプルをガラス転移点温度よりも20℃低い温度に昇温後、5℃/分で冷却して測定サンプルのガラス転移点温度よりも20℃低い温度から50℃までの平均の熱膨張係数を測定することにより求められる。   The thermal expansion coefficient is a tensile measurement using Thermo Mechanical Analyzer (manufactured by Seiko Instruments Inc.), and is 20 ° C. lower than the glass transition temperature of the measurement sample from 50 ° C. according to the average thermal expansion coefficient calculation method shown in JIS K7197. The average coefficient of thermal expansion at temperature was calculated. That is, the film-like sample was heated to a temperature 20 ° C. lower than the glass transition temperature, cooled at 5 ° C./min, and averaged from a temperature 20 ° C. to 50 ° C. lower than the glass transition temperature of the measurement sample. It is obtained by measuring the thermal expansion coefficient.

湿度膨張係数は、25℃において、1.5cm×2.5mmの大きさの樹脂フィルムを、相対湿度(RH)25%及び90%における長軸方向の長さ(L25及びL90)を測定し、得られた測定値の差L(cm)=L90−L25から、次の式により求める。
L(cm)×1/1.5(cm)×1/(90−25)(%RH)
具体的な測定条件は、湿度制御型Thermo Mechanical Analyzer(エスアイアイ・ナノテクノロジー株式会社製)を用い、25℃の測定温度制御下、試料の樹脂フィルムの相対湿度25%及び90%における長軸方向の寸法変化を測定し、1cm当たり、1%RH当たりの寸法変化率を湿度膨張係数として求める。
The humidity expansion coefficient is a resin film having a size of 1.5 cm × 2.5 mm at 25 ° C., and the length in the major axis direction (L25 and L90) at 25% and 90% relative humidity (RH) is measured. From the obtained measured value difference L (cm) = L90−L25, the following equation is used.
L (cm) × 1 / 1.5 (cm) × 1 / (90-25) (% RH)
Specific measurement conditions were a humidity-controlled Thermo Mechanical Analyzer (manufactured by SII Nanotechnology Co., Ltd.) and controlled the measurement temperature at 25 ° C., and the major axis direction at 25% and 90% relative humidity of the resin film of the sample. The dimensional change per 1 cm is measured as a humidity expansion coefficient.

積層板に発生する最大たわみ量は、三次元寸法測定機(株式会社ニコン製CNC画像測定システム NEXIV)により測定した。具体的には、サンプル60mm×80mmの大きさのサンプルの頂点に顕微鏡の焦点を合わせてZ座標の数値を求めて、最も低い点を通る面を基準面として基準面から最も高い値を最大たわみ量とした。   The maximum amount of deflection generated in the laminate was measured by a three-dimensional dimension measuring machine (Nikon Corporation CNC image measurement system NEXIV). Specifically, the value of the Z coordinate is obtained by focusing the microscope on the apex of the sample with a size of 60 mm × 80 mm, and the maximum deflection from the reference plane is determined with the plane passing through the lowest point as the reference plane. The amount.

積層板を使用する雰囲気の温度変化および相対湿度の変化を所望の値に設定するため、恒温恒湿器(ヤマト科学株式会社製、IG420)を使用した。温度、相対湿度それぞれの初期条件を設定して、前記初期条件から到達させたい温度、および、相対湿度とを設定する。さらに温度については温度変化速度を設定する。相対湿度は温度変化に追従して制御されるため、相対湿度の変化速度は決めない。   A constant temperature and humidity chamber (Yamato Scientific Co., Ltd., IG420) was used in order to set the temperature change and the relative humidity change of the atmosphere using the laminate to desired values. The initial conditions for temperature and relative humidity are set, and the temperature and relative humidity that are desired to be reached from the initial conditions are set. Furthermore, the temperature change speed is set for the temperature. Since the relative humidity is controlled following the temperature change, the rate of change of the relative humidity is not determined.

(実施例1)
アラミド樹脂フィルム(東レ株式会社製ミクトロン、熱膨張係数13ppm/K、湿度膨張係数15ppm/%RH、厚さ100μm)と、ポリアミドイミド樹脂フィルム(東洋紡績株式会社製タイプC、熱膨張係数22ppm/K、湿度膨張係数10ppm/%RH、厚さ100μm)とを、熱硬化性接着剤A(熱膨張係数15ppm/K、湿度膨張係数20ppm/%RH、硬化物の厚さ40μm)を介して構成する積層板[1]とした。前記熱硬化性接着剤Aは、ビスフェノールA型エポキシ樹脂(エポキシ当量:175)175質量部、ビスフェノールA(水酸基当量:110)110質量部、水酸化ナトリウム1.77質量部をN,N−ジメチルホルムアミド547.9質量部に溶解し、撹拌しながら、オイルバスにより温度を120℃に保持した後、3時間反応させて得られる、直鎖状エポキシ重合体溶液である。前記アラミド樹脂フィルム、熱硬化性接着剤A、および、ポリアミドイミド樹脂フィルムは真空プレス機により、200℃、3MPaで30分加熱プレスすることで積層板[1]が得られた。得られた積層板[1]の放置環境を25℃、45%RHの状態から5分かけて、60℃、90%RHの状態に変化させたところ、前記積層板[1]の最大たわみ量は95μmであった。
Example 1
Aramid resin film (Mikutron manufactured by Toray Industries, Inc., thermal expansion coefficient 13 ppm / K, humidity expansion coefficient 15 ppm /% RH, thickness 100 μm) and polyamideimide resin film (type C, manufactured by Toyobo Co., Ltd., thermal expansion coefficient 22 ppm / K) And a humidity expansion coefficient of 10 ppm /% RH and a thickness of 100 μm) via a thermosetting adhesive A (thermal expansion coefficient of 15 ppm / K, humidity expansion coefficient of 20 ppm /% RH, cured product thickness of 40 μm). A laminate [1] was obtained. The thermosetting adhesive A comprises 175 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 175), 110 parts by weight of bisphenol A (hydroxyl equivalent: 110), and 1.77 parts by weight of sodium hydroxide in N, N-dimethyl. It is a linear epoxy polymer solution obtained by dissolving in 547.9 parts by mass of formamide, maintaining the temperature at 120 ° C. with an oil bath while stirring, and then reacting for 3 hours. The aramid resin film, thermosetting adhesive A, and polyamide-imide resin film were heat-pressed at 200 ° C. and 3 MPa for 30 minutes with a vacuum press to obtain a laminate [1]. When the leaving environment of the obtained laminated board [1] was changed from the state of 25 ° C. and 45% RH to the state of 60 ° C. and 90% RH over 5 minutes, the maximum deflection amount of the laminated board [1] was obtained. Was 95 μm.

(実施例2)
アラミド樹脂フィルム(東レ株式会社製ミクトロン、熱膨張係数13ppm/K、湿度膨張係数15ppm/%RH、厚さ100μm)と、ポリアミドイミド樹脂フィルム(東洋紡績株式会社製タイプC、熱膨張係数22ppm/K、湿度膨張係数10ppm/%RH、厚さ100μm)とを、光硬化性接着剤A(熱膨張係数16ppm/K、湿度膨張係数18ppm/%RH、硬化物の厚さ50μm)を介して構成する積層板[2]とした。前記光硬化性接着剤Aは、ポリアミック酸を45質量部、光重合性化合物TMCH−5(分子内にウレタン結合と脂環式炭化水素骨格とエチレン性不飽和基とを有する光重合性化合物、日立化成工業株式会社製)を35質量部、光重合開始剤イルガキュア651(I−651、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、チバ・スペシャリティ・ケミカルズ社製)を7質量部、架橋剤YH−434(4官能のアミン型エポキシ樹脂、東都化成株式会社製)を13質量部をスピンコーターを用いて軽剥離フィルム(セラピールMD、東レフィルム加工株式会社製)上に回転数2000r.p.m.で塗布した後、100℃のホットプレートで4分間加熱後、軽剥離フィルムから剥して得られる。前記アラミド樹脂フィルム、光硬化性接着剤A、および、ポリアミドイミド樹脂フィルムはプレス機により、70℃、0.5MPaで3分プレスした後、UV照射露光機により、UV照射露光機(中心波長365nm)で、照度600mJ/分で露光することで、積層板[2]が得られた。得られた積層板[2]の放置環境を25℃、45%RHの状態から5分かけて、60℃、90%RHの状態に変化させたところ、前記積層板[2]の最大たわみ量は75μmであった。
(Example 2)
Aramid resin film (Mikutron manufactured by Toray Industries, Inc., thermal expansion coefficient 13 ppm / K, humidity expansion coefficient 15 ppm /% RH, thickness 100 μm) and polyamideimide resin film (type C, manufactured by Toyobo Co., Ltd., thermal expansion coefficient 22 ppm / K) And a humidity expansion coefficient of 10 ppm /% RH and a thickness of 100 μm) via a photocurable adhesive A (thermal expansion coefficient of 16 ppm / K, humidity expansion coefficient of 18 ppm /% RH, cured product thickness of 50 μm). A laminate [2] was obtained. The photocurable adhesive A comprises 45 parts by mass of polyamic acid, a photopolymerizable compound TMCH-5 (a photopolymerizable compound having a urethane bond, an alicyclic hydrocarbon skeleton, and an ethylenically unsaturated group in the molecule, 35 parts by mass of Hitachi Chemical Co., Ltd.) and 7 of photopolymerization initiator Irgacure 651 (I-651, 2,2-dimethoxy-1,2-diphenylethane-1-one, manufactured by Ciba Specialty Chemicals) 13 parts by mass of 13 parts by mass of a cross-linking agent YH-434 (tetrafunctional amine type epoxy resin, manufactured by Toto Kasei Co., Ltd.) on a light release film (Therapy MD, manufactured by Toray Film Processing Co., Ltd.) 2,000 r. p. m. It is obtained by peeling off from the light release film after heating for 4 minutes on a hot plate at 100 ° C. The aramid resin film, photocurable adhesive A, and polyamideimide resin film were pressed by a press machine at 70 ° C. and 0.5 MPa for 3 minutes, and then UV irradiation exposure machine (center wavelength 365 nm). ), The laminate [2] was obtained by exposing at an illuminance of 600 mJ / min. When the leaving environment of the obtained laminate [2] was changed from the state of 25 ° C. and 45% RH to the state of 60 ° C. and 90% RH over 5 minutes, the maximum deflection amount of the laminate [2] was obtained. Was 75 μm.

(実施例3)
前記実施例1で得た積層板[1]と、前記実施例2で得た積層板[2]とを、前記熱硬化性接着剤Aを介して構成する積層板[3]とした。前記積層板[1]、熱硬化性接着剤A、および、前記積層板[2]とは、プレス機により、200℃、3MPaで30分加熱プレスすることで、積層板[3]が得られた。得られた積層板[3]の放置環境を25℃、45%RHの状態から5分かけて、60℃、90%RHの状態に変化させたところ、前記積層板内の最大たわみ量は60μmであった。
(Example 3)
The laminate [1] obtained in Example 1 and the laminate [2] obtained in Example 2 were used as the laminate [3] configured with the thermosetting adhesive A interposed therebetween. The laminated board [1], the thermosetting adhesive A, and the laminated board [2] are heated and pressed at 200 ° C. and 3 MPa for 30 minutes by a press machine to obtain the laminated board [3]. It was. When the leaving environment of the obtained laminate [3] was changed from 25 ° C. and 45% RH to 60 ° C. and 90% RH over 5 minutes, the maximum deflection in the laminate was 60 μm. Met.

(実施例4)
前記実施例1で得た積層板[1]と、前記実施例2で得た積層板[2]とを、前記光硬化性接着剤Aを介して構成する積層板[4]とし。前記積層板[1]、光硬化性接着剤A、および、前記積層板[2]とは、プレス機により、70℃、0.5MPaで3分プレスした後、UV照射露光機により、UV照射露光機(中心波長365nm)で、照度600mJ/分で露光することで、積層板[4]が得られた。得られた積層板[4]の放置環境を25℃、45%RHの状態から5分かけて、60℃、90%RHの状態に変化させたところ、前記積層板[4]の最大たわみ量は55μmであった。
Example 4
The laminate [1] obtained in Example 1 and the laminate [2] obtained in Example 2 are referred to as a laminate [4] configured with the photo-curable adhesive A interposed therebetween. The laminate [1], the photocurable adhesive A, and the laminate [2] are pressed with a press machine at 70 ° C. and 0.5 MPa for 3 minutes, and then UV irradiated with a UV irradiation exposure machine. Laminate [4] was obtained by exposing with an illuminance of 600 mJ / min with an exposure machine (center wavelength: 365 nm). When the leaving environment of the obtained laminate [4] was changed from the state of 25 ° C. and 45% RH to the state of 60 ° C. and 90% RH over 5 minutes, the maximum deflection amount of the laminate [4] was obtained. Was 55 μm.

(実施例5)
ポリエーテルスルフォン樹脂フィルム(スミカエクセル、住友化学工業株式会社製、熱膨張係数5.7ppm/K、湿度膨張係数10ppm/%RH、厚さ100μm)と、ガラス板(D263、松浪硝子工業株式会社製、熱膨張係数7.2ppm/K、湿度膨張係数0.5ppm/%RH以下、厚さ100μm)とを、前記光硬化性接着剤Aを介して構成する積層板[5]とした。前記ポリエーテルスルフォン樹脂フィルム、光硬化性接着剤A、および、ガラス板は70℃、0.5MPaで3分プレスした後、UV照射露光機(中心波長365nm)により、照度600mJ/分で露光することで、積層板[5]が得られた。得られた積層板[5]の放置環境を25℃、45%RHの状態から5分かけて、60℃90%RHの状態に変化させたところ、前記積層板[5]の最大たわみ量は50μmであった。
(Example 5)
Polyether sulfone resin film (Sumika Excel, manufactured by Sumitomo Chemical Co., Ltd., thermal expansion coefficient 5.7 ppm / K, humidity expansion coefficient 10 ppm /% RH, thickness 100 μm) and glass plate (D263, manufactured by Matsunami Glass Industrial Co., Ltd.) And a thermal expansion coefficient of 7.2 ppm / K, a humidity expansion coefficient of 0.5 ppm /% RH or less, and a thickness of 100 μm) were used as a laminate [5] composed of the photocurable adhesive A. The polyether sulfone resin film, the photocurable adhesive A, and the glass plate are pressed at 70 ° C. and 0.5 MPa for 3 minutes, and then exposed at an illuminance of 600 mJ / min by a UV irradiation exposure machine (center wavelength 365 nm). Thus, a laminate [5] was obtained. When the leaving environment of the obtained laminate [5] was changed from 25 ° C. and 45% RH to 60 ° C. and 90% RH over 5 minutes, the maximum deflection of the laminate [5] was It was 50 μm.

(実施例6)
前記実施例5の積層板[5]にTFT(Thin Film Transistor、薄膜トランジスタ)を形成して、前記TFT上に配向膜(リクソンアライナー、チッソ株式会社製)を形成して、前記配向膜上にシール剤(熱硬化性シール剤3025B、株式会社スリーボンド製)を額縁状に形成して、前記シール剤を額縁状に配した内側の領域に液晶を配して、前記液晶中にスぺーサー(ミクロパールEX、積水化学工業株式会社製)を配した後、カラーフィルタ基板で前記液晶を封止して、さらに、前記TFT駆動用部品を、異方導電接着フィルムを介して、前記積層板[5]の電極上に実装することで、液晶表示用装置を形成した。前記液晶表示用装置を、25℃、45%RHの雰囲気中で画像を表示させたところ良好な画像を得ることができた。さらに、前記液晶表示用装置の放置環境を25℃、45%RHから5分かけて60℃、90%RHの状態に変化させても画像の表示状態は良好であった。
(Example 6)
A TFT (Thin Film Transistor) is formed on the laminate [5] of Example 5, an alignment film (Rixon Aligner, manufactured by Chisso Corporation) is formed on the TFT, and a seal is formed on the alignment film. An adhesive (thermosetting sealant 3025B, manufactured by ThreeBond Co., Ltd.) is formed in a frame shape, a liquid crystal is arranged in an inner region where the sealant is arranged in a frame shape, and a spacer (micrometer) is formed in the liquid crystal. Pearl EX, manufactured by Sekisui Chemical Co., Ltd.), the liquid crystal is sealed with a color filter substrate, and the TFT driving component is further bonded to the laminated plate [5 via an anisotropic conductive adhesive film. ] Was mounted on the electrode to form a liquid crystal display device. When the liquid crystal display device displayed an image in an atmosphere of 25 ° C. and 45% RH, a good image could be obtained. Further, even when the standing environment of the liquid crystal display device was changed from 25 ° C. and 45% RH to 60 ° C. and 90% RH over 5 minutes, the image display state was good.

(比較例)
ポリアミドイミド樹脂フィルム(東洋紡績株式会社製タイプA、熱膨張係数50ppm/K、湿度膨張係数45ppm/%RH、厚さ100μm)と、高耐熱性透明ポリイミド樹脂フィルム(三菱ガス化学株式会社製L−1000、熱膨張係数54ppm/K、湿度膨張係数50ppm/%RH以下、厚さ100μm)とを、前記光硬化性接着剤Aを介して構成する積層板[6]とした。前記ポリアミドイミド樹脂フィルム、光硬化性接着剤A、および、高耐熱性透明ポリイミド樹脂フィルムは70℃、0.5MPaで3分プレスした後、UV照射露光機(中心波長365nm)により、照度600mJ/分で露光することで、積層板[6]が得られた。得られた積層板[6]の放置環境を25℃、45%RHの状態から5分かけて、60℃、90%RHの状態に変化させたところ、前記積層板[6]の最大たわみ量は2626μmであった。
(Comparative example)
Polyamideimide resin film (type A, manufactured by Toyobo Co., Ltd., thermal expansion coefficient 50 ppm / K, humidity expansion coefficient 45 ppm /% RH, thickness 100 μm) and high heat-resistant transparent polyimide resin film (L-, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 1000, a thermal expansion coefficient of 54 ppm / K, a humidity expansion coefficient of 50 ppm /% RH or less, and a thickness of 100 μm) were used as a laminate [6] configured with the photocurable adhesive A interposed therebetween. The polyamideimide resin film, photocurable adhesive A, and high heat-resistant transparent polyimide resin film were pressed at 70 ° C. and 0.5 MPa for 3 minutes, and then irradiated with a UV irradiation exposure machine (center wavelength: 365 nm) with an illuminance of 600 mJ / Laminate [6] was obtained by exposing in minutes. When the leaving environment of the obtained laminate [6] was changed from the state of 25 ° C. and 45% RH to the state of 60 ° C. and 90% RH over 5 minutes, the maximum deflection amount of the laminate [6] was obtained. Was 2626 μm.

以上の実施例および比較例を表1にまとめて示した。   The above Examples and Comparative Examples are summarized in Table 1.

Figure 2011209524
Figure 2011209524

複数層のうちの任意の1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数が15ppm/K以下で、湿度膨張係数が70ppm/%RH以下である、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数と前記任意の1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数との差が20ppm/K以下であって、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層の湿度膨張係数と前記任意の1つの層の湿度膨張係数との差が20ppm/%RH以下である実施例1〜6は、たわみ量が少ない。これに対し、任意の1つの層の熱膨張係数が15ppm/Kを超え(50,16,54ppm/K)、その任意の層と界面を共有する層との熱膨張係数との差が20ppm/Kを超え(34,38ppm/K)、湿度膨張係数が70ppm/%RH以下であっても、任意の1つの層と界面を共有する層のうちの少なくとも1つの層の湿度膨張係数と任意の1つの層の湿度膨張係数との差が20ppm/%RHを超える(27,32ppm/%RH)比較例はたわみ量が、極めて大きくなる。   The arbitrary one having a thermal expansion coefficient of 15 ppm / K or less and a humidity expansion coefficient of 70 ppm /% RH or less at a temperature 20 ° C. or less lower than the glass transition temperature of any one of the plurality of layers. The coefficient of thermal expansion below 20 ° C. below the glass transition temperature of at least one of the layers sharing an interface with one layer and the temperature 20 ° C. below the glass transition temperature of any one of the layers The difference between the thermal expansion coefficient in the following is 20 ppm / K or less, and the humidity expansion coefficient of at least one of the layers sharing the interface with the arbitrary one layer and the humidity of the arbitrary one layer In Examples 1 to 6, in which the difference from the expansion coefficient is 20 ppm /% RH or less, the amount of deflection is small. On the other hand, the coefficient of thermal expansion of any one layer exceeds 15 ppm / K (50, 16, 54 ppm / K), and the difference between the coefficient of thermal expansion between the arbitrary layer and the layer sharing the interface is 20 ppm / K Even if it exceeds K (34,38 ppm / K) and the humidity expansion coefficient is 70 ppm /% RH or less, the humidity expansion coefficient of at least one of the layers sharing the interface with any one layer and any The difference between the humidity expansion coefficient of one layer exceeds 20 ppm /% RH (27,32 ppm /% RH) and the amount of deflection is extremely large.

1 ・・・中立面
2 ・・・第1番目の層
3 ・・・第2番目の層
4a・・・第i番目の層
4b・・・第(i+1)番目の層
5 ・・・第n番目の層
DESCRIPTION OF SYMBOLS 1 ... Neutral surface 2 ... 1st layer 3 ... 2nd layer 4a ... i-th layer 4b ... (i + 1) th layer 5 ... 1st layer nth layer

Claims (2)

複数層を有する積層板であって、前記積層板を構成する複数層のうちの任意の1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数が15ppm/K以下であって、かつ、前記任意の1つの層の湿度膨張係数が70ppm/%RH以下であって、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数と前記任意の1つの層のガラス転移点温度よりも20℃低い温度以下での熱膨張係数との差が20ppm/K以下であって、前記任意の1つの層と界面を共有する層のうちの少なくとも1つの層の湿度膨張係数と前記任意の1つの層の湿度膨張係数との差が20ppm/%RH以下であることを特徴とする積層板。 A laminate having a plurality of layers, wherein a coefficient of thermal expansion at a temperature 20 ° C. or less lower than the glass transition temperature of any one of the plurality of layers constituting the laminate is 15 ppm / K or less. And the humidity expansion coefficient of the arbitrary layer is 70 ppm /% RH or less, and is higher than the glass transition temperature of at least one of the layers sharing the interface with the arbitrary layer. The difference between the coefficient of thermal expansion below 20 ° C. and the coefficient of thermal expansion below 20 ° C. below the glass transition temperature of the one arbitrary layer is 20 ppm / K or less, The laminated board characterized by the difference between the humidity expansion coefficient of at least one of the layers sharing an interface with one layer and the humidity expansion coefficient of the arbitrary one layer being 20 ppm /% RH or less. 請求項1記載の積層板を基板として構成することを特徴とする表示用装置。 A display device comprising the laminate according to claim 1 as a substrate.
JP2010077487A 2010-03-30 2010-03-30 Laminate and display device using the same Pending JP2011209524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077487A JP2011209524A (en) 2010-03-30 2010-03-30 Laminate and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077487A JP2011209524A (en) 2010-03-30 2010-03-30 Laminate and display device using the same

Publications (1)

Publication Number Publication Date
JP2011209524A true JP2011209524A (en) 2011-10-20

Family

ID=44940655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077487A Pending JP2011209524A (en) 2010-03-30 2010-03-30 Laminate and display device using the same

Country Status (1)

Country Link
JP (1) JP2011209524A (en)

Similar Documents

Publication Publication Date Title
US11069750B2 (en) Flexible color filter, flexible organic light emitting display device comprising same, and manufacturing method therefor
CN106710449A (en) Flexible display module and display device
JP2018055098A (en) Window for display device and display device
JP2020510850A (en) Flexible display panel, method of manufacturing the same, and display device
TWI760556B (en) Flexible cover lens films
US20120113361A1 (en) Optical Level Composite Pressure-Sensitive Adhesive and an Apparatus Therewith
US10353125B2 (en) Polarizing plate and image display device including the same
JP2010133987A (en) Optical film laminate and display device using the same
KR101533883B1 (en) Polarizer plate and display device having the same
Ha et al. Highly flexible cover window using ultra-thin glass for foldable displays
US20140307398A1 (en) Image display device
JP2007203473A (en) Composite sheet
JP4785458B2 (en) Protective film for polarizing plate
US20220367832A1 (en) Front panel for display device, flexible organic electroluminescence display device, stacked body for display device, and stacked body
KR20180089070A (en) Transparent stack structure
CN114141149B (en) Flexible display module and display device
CN111093984A (en) Laminate, polarizing plate, and image display device
WO2022092249A1 (en) Laminate and display device
KR102047920B1 (en) Display device and method of manufacturing the same
JP2016212443A (en) Optical film laminate and method for manufacturing the same
KR102018387B1 (en) Resin sheet for laminating a hardened flat board, laminated body and image display body
TW202132100A (en) Optical layered body and display device
JP6840867B2 (en) Display device
JP2011209524A (en) Laminate and display device using the same
WO2015119049A1 (en) Method for conveying film and method for producing optical film