WO2015119049A1 - Method for conveying film and method for producing optical film - Google Patents

Method for conveying film and method for producing optical film Download PDF

Info

Publication number
WO2015119049A1
WO2015119049A1 PCT/JP2015/052634 JP2015052634W WO2015119049A1 WO 2015119049 A1 WO2015119049 A1 WO 2015119049A1 JP 2015052634 W JP2015052634 W JP 2015052634W WO 2015119049 A1 WO2015119049 A1 WO 2015119049A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
optical
layer
resin
Prior art date
Application number
PCT/JP2015/052634
Other languages
French (fr)
Japanese (ja)
Inventor
敬之 名田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2015560963A priority Critical patent/JPWO2015119049A1/en
Priority to CN201580007278.4A priority patent/CN105980279B/en
Priority to KR1020167022376A priority patent/KR101983707B1/en
Publication of WO2015119049A1 publication Critical patent/WO2015119049A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/12Advancing webs by suction roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/443Moving, forwarding, guiding material by acting on surface of handled material
    • B65H2301/4432Moving, forwarding, guiding material by acting on surface of handled material by means having an operating surface contacting only one face of the material, e.g. roller
    • B65H2301/44324Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/443Moving, forwarding, guiding material by acting on surface of handled material
    • B65H2301/4433Moving, forwarding, guiding material by acting on surface of handled material by means holding the material
    • B65H2301/44336Moving, forwarding, guiding material by acting on surface of handled material by means holding the material using suction forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/84Quality; Condition, e.g. degree of wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays

Definitions

  • the present invention relates to a film transport method, and more particularly to a method of continuously transporting a connection film formed by connecting a plurality of films including an optical film having relatively low toughness by a drive roll along a transport path. .
  • the present invention also relates to a method for producing an optical film using the transport method.
  • a method of continuously feeding a film while continuously feeding the film through a predetermined conveyance path and contacting a plurality of rolls is a general film conveyance method, and is a film wound in a roll shape. It is also a common practice in the production of various optical films to roll out the film from the roll and perform rewinding and stretching of the film and pasting with other films during the conveyance.
  • the various rolls used in the transporting process include a free roll that supports only one side of the film and a nip roll that is arranged on both sides of the film and supports the film from both sides.
  • the nip roll is the tension of the film. It is one of the rolls that greatly affects the adjustment, driving for film conveyance, pressing on the film, and prevention of air bubbles, wrinkles and unevenness.
  • Patent Document 1 discloses a method of forming a film by pressing a melt-extruded resin with a nip roll.
  • Patent Document 2 further discloses JP-A-2006-339287 (Patent Document 3) in order to prevent unevenness of the web (film) generated during drying in the tenter.
  • nip rolls Discloses the use of nip rolls as means for applying pressure from both sides of the web (film) for defoaming gas that enters the member during film bonding.
  • a lead film is connected in advance to the leading end of the film, and first the lead film is continuously passed through the transport path.
  • the film is conveyed and subsequently the target film is conveyed.
  • the lead film is stopped in a state in which the lead film is connected to the end of the film in preparation for the subsequent re-operation.
  • the conveyance of the target film is started by connecting to the end of the film.
  • the films may be connected to each other in order to continuously transport the film, such as adding the same type of film or switching to a different type of film. As described above, the connection between the films is frequently used in the continuous conveyance process of the film.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2010-008509
  • Patent Document 5 discloses a method of joining a plurality of original fabric rolls with a turret.
  • JP 2005-035147 A Japanese Patent Laid-Open No. 11-048271 JP 2006-339287 A JP 2010-008509 A Japanese Patent Application Laid-Open No. 08-208083
  • Triacetyl cellulose films have been widely used in the past, but recently, from the viewpoint of transparency and heat resistance, thin glass, acrylic and norbornene resin films are also being used.
  • the portion When the film is cracked, cracked or broken, the portion is discarded as a defective portion, so that the yield of the film is reduced and the manufacturing efficiency is reduced due to the removal operation of the defective portion and preparation for restarting the process. Further, when the film is cracked or broken, the inside of the process may be contaminated by the scattered film fragments.
  • the present invention provides the following film transport method and optical film manufacturing method.
  • the first film and the second film are both optical films
  • connection film further includes a third film connected to a longitudinal end of the second film.
  • optical film includes a base film and a coating layer laminated thereon.
  • the optical film is selected from the group consisting of a single-layer optical film, a multilayer optical film, a stretched optical film, and an optical film having a coating layer.
  • a connecting film including an optical film having a relatively low toughness that is, a relatively low flexibility and a brittleness, in particular, without causing problems such as cracks, cracks and fractures in the connecting portion.
  • the connecting film can be conveyed.
  • FIG. 1 It is a schematic diagram which shows an example of the conveying apparatus used for the conveying method of the film which concerns on this invention, and the manufacturing method of an optical film. It is a top view which shows an example of a connection film typically.
  • a long connecting film including a first film and a second film connected to a longitudinal end thereof is moved along a transport path including one or more driving rolls constructed by a transport device. (Through a transport path) and a method of transporting continuously by the one or more drive rolls.
  • At least one of the first film and the second film is an optical film having relatively small flexibility and being brittle and having a Charpy impact strength of less than 200 kJ / m 2 .
  • the drive roll means a rotatable roll that gives a driving force for film conveyance, and simply plays a role of supporting a traveling film, and a guide roll (free roll) that cannot give a driving force for film conveyance. Is also not included in the drive roll.
  • the driving roll the above-described nip roll is typical, but in the present invention, a suction roll (suction roll) is used for all of the one or more driving rolls, and the conveyance path does not include the nip roll.
  • the suction roll is a rotatable roll having a large number of suction holes formed on the outer peripheral surface and capable of adsorbing a film that contacts the outer peripheral surface by sucking air from the suction holes. Unlike the nip roll, the suction roll supports only one side of the passing film. However, since the above-described adsorption can prevent slippage between the film and the roll, the rotational driving force of the roll is transmitted to the adsorbed film. Thus, the film can be conveyed while maintaining an appropriate film tension.
  • the suction roll is not particularly limited, but for example, a metal such as stainless steel or a ceramic one can be used.
  • a film in which the contact surface with the film is coated with nickel mesh, rubber, urethane resin or the like may be used.
  • the film connecting portion of the connecting film has some unevenness
  • a nip roll that presses the film from above and below is used as a driving roll
  • pressure is applied to the convex portion when the connecting portion passes between the nip rolls. It may cause cracks, cracks (cracks), and breaks in the connecting part. If all of the drive rolls are suction rolls, no pressing load is applied to the convex portions of the connecting portions, so that the above-described problems can be effectively prevented.
  • FIG. 1 is a schematic diagram showing an example of a transport device used in a film transport method and an optical film manufacturing method according to the present invention.
  • FIG. 2 is a top view schematically showing an example of the connection film, and shows the connection film shown in FIG. 1 in an enlarged manner.
  • FIG. 1 shows a state in which a connecting film in which a long first film 10 and a long second film 20 are connected is continuously transported along a transport path of a transport device.
  • the transport path is such that the film (second film 20 in the example of FIG. 1) is continuously fed out by its rotation; a guide roll 60 that supports the traveling film from one side; a drive roll
  • the suction roll 40 is included.
  • a winding device for winding the film is usually provided at the downstream end of the transport path, and the film that has passed through the transport path is sequentially wound into a film roll.
  • solid line arrows indicate the film conveyance direction or the rotation direction of the feeding device.
  • the connection film can be conveyed, for example, as follows. First, the long first film 10 conveyed in advance is passed through the conveyance path, and continuous conveyance is started using the rotational driving force of the suction roll 40.
  • the long first film 10 is usually prepared as a film roll wound in a roll shape.
  • the film roll is set in a feeding device (the feeding device 50 or another feeding device different from this), and the first film 10 is continuously fed out from the feeding device and is continuously conveyed.
  • the first film 10 may be an optical film having a Charpy impact strength of less than 200 kJ / m 2 or may be another film such as the lead film described above.
  • the long second film 20 is also usually prepared as a film roll wound in a roll shape.
  • the second film 20 may be an optical film having a Charpy impact strength of less than 200 kJ / m 2 , or may be another film such as the lead film described above.
  • the first film 10 is another film
  • the second film 20 is an optical film. Switching between film rolls (paper splicing) can also be performed using a turret.
  • connection film After connecting the 1st film 10 and the 2nd film 20, a film (connection film) is conveyed using the rotational driving force of the suction roll 40 continuously.
  • the present invention also relates to a method for producing an optical film using the film transport method. That is, with reference to FIG. 1, the manufacturing method of the optical film which concerns on this invention is the following process in one embodiment: Producing an optical film having a Charpy impact strength of less than 200 kJ / m 2 ; A step of continuously transporting the first film and the connection film including the second film connected to the longitudinal end thereof along the transport path including the one or more drive rolls by the one or more drive rolls; including.
  • At least one of the first film and the second film in the transporting step is an optical film having a Charpy impact strength of less than 200 kJ / m 2 manufactured in the manufacturing step.
  • the one or more drive rolls included in the transport path are all suction rolls 40 as in the film transport method according to the present invention.
  • the optical film can be a single layer optical film, a multilayer optical film, a stretched optical film, an optical film having a coating layer, etc., as will be described later.
  • the manufacturing method of the optical film which concerns on this invention is the following process in other embodiment: Producing a second optical film from the first optical film; A step of continuously transporting the first film and the connection film including the second film connected to the longitudinal end thereof along the transport path including the one or more drive rolls by the one or more drive rolls; including.
  • At least one of the first film and the second film in the transporting step is the first optical film or the second optical film manufactured in the manufacturing step and has a Charpy impact strength of 200 kJ. / M 2 is an optical film.
  • the one or more drive rolls included in the transport path are all suction rolls 40 as in the film transport method according to the present invention.
  • the first optical film and the second optical film may be a single layer optical film, a multilayer optical film, a stretched optical film, an optical film having a coating layer, etc., as will be described later.
  • the first optical film has a Charpy impact strength of less than 200 kJ / m 2 and the second optical film is a multilayer optical film.
  • the second optical film is a stretched optical film or an optical film having a coating layer, and has a Charpy impact strength of less than 200 kJ / m 2 .
  • the following description relates to both the film transport method and the optical film manufacturing method according to the present invention.
  • the films are connected using the connecting tape 30, but the present invention is not limited to this, and other methods such as heat sealing can be used as a matter of course. It is.
  • the connecting tape 30 is used, the convex portion generated in the film connecting portion is likely to be larger than the connection by heat sealing. Therefore, the method of the present invention is particularly effective when applied to a connecting film using the connecting tape 30.
  • the connecting tape 30 can be a single-sided adhesive tape.
  • the base material of the single-sided adhesive tape is, for example, a polyester resin such as polyethylene terephthalate; a cellulose resin such as cellulose; paper (Japanese paper or the like); aluminum; a nonwoven fabric; polytetrafluoroethylene, polyvinyl chloride, or polyvinylidene chloride.
  • a polyester resin such as polyethylene terephthalate
  • a cellulose resin such as cellulose
  • paper Japanese paper or the like
  • aluminum Japanese paper or the like
  • a nonwoven fabric polytetrafluoroethylene, polyvinyl chloride, or polyvinylidene chloride.
  • chlorine-containing resin polycarbonate resin, polyurethane resin, ABS resin, polystyrene resin, polyolefin resin such as polyethylene and polypropylene, polyacetal resin, polylactic acid, polyimide resin, polyamide resin, etc. be able to.
  • Adhesive layer of single-sided adhesive tape is acrylic, epoxy, polyurethane, synthetic rubber, EVA, silicone, vinyl chloride, chloroprene rubber, cyanoacrylate, isocyanate, polyvinyl alcohol, melamine resin It can consist of
  • the transport path for transporting the connecting film may include two or more suction rolls 40.
  • the film transport speed when the connected film is continuously transported along the transport path is, for example, in the range of 2 to 120 m / min, and preferably in the range of 10 to 50 m / min.
  • the conveyance direction of a connection film changes 10 degrees or more, further 30 degrees or more, and still more 40 degrees or more, when passing the suction roll 40.
  • the angle refers to the conveyance direction before the film conveyance direction is changed by the suction roll 40 (the conveyance direction immediately before passing through the suction roll 40), and after the film conveyance direction is changed by the suction roll 40.
  • the tension of the film when the first film 10 transported in advance is continuously transported along the transport path, and the tension of the film when the connected film is transported continuously along the transport path are, for example, 20 -1500 N / m, preferably 50-1000 N / m, more preferably 70-700 N / m.
  • the tension of the film is in such a range, it is possible to stabilize the conveyance of the film, and this may occur due to the occurrence of wrinkles or scratches due to the sliding of the film or the occurrence of the wrinkles or scratches. Breakage of the film can be prevented.
  • the tension of the film is set in the above range. Is effective in preventing the occurrence of wrinkles or scratches and the breakage of the film.
  • the diameter of the suction roll 40 is, for example, 100 to 900 mm, and preferably 200 to 400 mm.
  • the tension of the film can be adjusted appropriately, thereby causing wrinkles or scratches due to slipping of the film, or the occurrence of wrinkles or scratches.
  • breakage of the film that may occur can be prevented.
  • at least one of the first film and the second film constituting the connecting film provided for the method according to the present invention is a film having a relatively small flexibility and a brittleness
  • the diameter of the suction roll 40 is within the above range. It is effective to prevent the generation of wrinkles or scratches and the breakage of the film.
  • the diameter of the suction hole of the suction roll 40 is, for example, 0.1 to 10 mm, preferably 0.5 to 5 mm.
  • the tension of the film can be adjusted appropriately, which may be caused by the occurrence of wrinkles or scratches due to the sliding of the film or the occurrence of the wrinkles or scratches. It is possible to prevent the film from being broken.
  • at least one of the first film and the second film constituting the connection film provided for the method according to the present invention is a film having relatively small flexibility and brittleness, the diameter of the suction hole is in the above range. This is effective in preventing the occurrence of wrinkles or scratches and the breakage of the film.
  • the diameter of the suction hole is in the above range, it is possible to prevent the suction hole from being left on the surface of the film to be conveyed.
  • the suction pressure of the suction roll 40 is, for example, 1 to 100 kPa, preferably 2 to 30 kPa.
  • the tension of the film can be adjusted appropriately, thereby causing wrinkles or scratches due to slipping of the film, and the occurrence of the wrinkles or scratches. It is possible to prevent breakage of the film that may be caused.
  • at least one of the first film and the second film constituting the connection film provided for the method according to the present invention is a film having relatively small flexibility and brittleness
  • the suction pressure of the suction roll 40 is in the above range. It is effective in preventing the occurrence of wrinkles or scratches and the breakage of the film.
  • the suction pressure of the suction roll 40 is within the above range, it is possible to prevent the suction holes from being left on the surface of the film being conveyed.
  • the film transport method of the present invention can be applied to a process of continuously transporting a connecting film including at least a part of an optical film and any manufacturing process using an optical film including the transport process.
  • Specific examples include a step of simply transporting the optical film, a step of applying some kind of treatment (for example, coating treatment or stretching treatment) to the optical film, and a step of bonding the optical film to another member (film or the like).
  • Patent Document 4 Patent Document 5, JP 2011-154371 A, International Publication No. 09/128384, International Publication No. 12/160966, JP 2009-276754 A, JP 2012-061837 A. It can also be applied to the processes described in the publication.
  • connection film includes the first film 10 and the second film 20 connected to the end in the longitudinal direction.
  • the connection film may include a third film connected to the end of the second film 20 in the longitudinal direction, a fourth film connected to the end of the third film in the longitudinal direction, if necessary.
  • At least one of the first film 10 and the second film 20 is an optical film having a Charpy impact strength of less than 200 kJ / m 2 .
  • the other film can be the lead film described above.
  • the lead film is first passed through the transport path (or previously passed through the transport path), and the optical film is terminated at the end. For example, when the film is continuously conveyed.
  • the first film 10 is an optical film and the second film 20 is a lead film
  • the lead film is placed at the end of the optical film in preparation for a subsequent restart. For example, when the lead film is connected and the transport process is stopped in a state where the lead film exists in the transport path. In this case, a new optical film is connected to the end of the lead film and the transport process is restarted.
  • Both the first film 10 and the second film 20 may be optical films.
  • these optical films may be different optical films or the same kind of optical films.
  • the same kind of optical film means the same (functions, configurations, and specifications are the same) except that the film rolls prepared for conveyance are different.
  • the first film / second film / third film are lead film / optical film / lead film, lead film / optical film / optical film, optical film / Examples thereof include an optical film / lead film and an optical film / optical film / optical film.
  • “Charpy impact strength” in the present invention refers to the impact absorption energy of plastics stipulated in JIS K 7111: 2006 “Plastics-Determination of Charpy impact properties-Part 1: Uninstrumented impact test” It is a value of shock absorption energy measured in accordance with a Charpy impact test. In this Charpy impact test, the energy required for a hammer (pendulum) for punching a test piece to punch (break) the test piece in the width direction perpendicular to its length direction is taken as shock absorption energy.
  • the JIS standard defines a case where a notched test piece is used and a case where a notched test piece is used, but since the present invention is intended for a film, the notched test piece is adopted.
  • a test piece having a width of about 10 mm and a length of about 82 mm is punched or cut out from the film.
  • a test piece a first test piece having a length direction (direction of 82 mm on one side) as a mechanical extrusion direction (MD) of the film and a length direction (82 mm on a side) perpendicular to MD (TD).
  • MD mechanical extrusion direction
  • TD length direction
  • Two types of second test specimens, each having a direction of 2) are prepared in order to test each of a case in which a hammer is hit from one side of the film and a case in which it is hit from the other side.
  • both ends of the specimen in the long side direction are fixed to the support base, and the energy required to break the specimen with the Charpy impact tester (impact absorption energy) Measure. It means that a test piece, ie, a film, is hard to break, so that this shock absorption energy is large.
  • the impact absorption energy of TD is given and the TD of the film is set to the length direction. Since the 2nd test piece fractures along MD, it gives impact absorption energy of MD.
  • an optical film having a Charpy impact strength of less than 200 kJ / m 2 means the impact absorption energy in MD and TD when a hammer is hit from one side of the film, measured by the above method. It is defined as an optical film in which at least one of the value and the value of impact absorption energy in MD and TD when a hammer is hit from the other side of the film is less than 200 kJ / m 2 .
  • the lead film As a material constituting the lead film, conventionally known materials can be used, but the lead film is preferably a tough film having a Charpy impact strength of 200 kJ / m 2 or more. When a lead film having a Charpy impact strength of 200 kJ / m 2 or more is used, it is difficult to break, so that handling properties when used as a connecting film itself are improved. In addition, the connection film can be made less susceptible to cracks, cracks and breaks.
  • “Charpy impact strength is 200 kJ / m 2 or more” means the value of impact absorption energy in MD and TD when a hammer is hit from one side of the film, measured by the above method, and It means that all the values of the impact absorption energy in MD and TD when hitting a hammer from the other side of the film are 200 kJ / m 2 or more.
  • the lead film can be a resin film, and as a resin material capable of achieving the Charpy impact strength in the above range, for example, a polyester resin such as polyethylene terephthalate; a polyvinyl chloride resin such as polyvinyl chloride; Examples thereof include polyolefin resins such as polyethylene and polypropylene.
  • the Charpy impact strength of the lead film is more preferably 250 kJ / m 2 or more, and further preferably 300 kJ / m 2 or more.
  • the single-layer optical film is not particularly limited as long as it has translucency (preferably transparency), and may be a film made of an organic material or an inorganic material. It may be a film.
  • a suitable example of a film made of an inorganic material is a film made of a glass material from the viewpoint of transparency. Examples of the film made of a glass material include glass films described in JP 2012-247785 A, International Publication No. 12/090693, JP 08-283041 A, and the like.
  • thermoplastic resin films examples include various thermoplastic resin films.
  • the thermoplastic resin include, for example, a polyolefin resin such as a chain polyolefin resin and a cyclic polyolefin resin (such as a norbornene resin); a polyester resin such as polyethylene terephthalate; and a methyl methacrylate resin.
  • (meth) acryl means at least one selected from acrylic and methacrylic. The same applies to cases such as “(meth) acryloyl” and “(meth) acrylate”.
  • the optical film can contain various additives as required.
  • additives include fluorescent brighteners, dispersants, heat stabilizers, light stabilizers, ultraviolet absorbers, infrared absorbers, antistatic agents, antioxidants, rubber elastic particles, lubricants, and the like.
  • the ultraviolet absorber is a compound that absorbs ultraviolet rays having a wavelength of 400 nm or less.
  • the durability of the polarizing plate in which the protective film is bonded to the polarizing film can be improved by adding an ultraviolet absorber.
  • UV absorber a benzophenone UV absorber, a benzotriazole UV absorber, an acrylonitrile UV absorber, or the like can be used.
  • 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol] is one of preferable ultraviolet absorbers.
  • the blending amount of the ultraviolet absorber is preferably selected so that the light transmittance at a wavelength of 370 nm or less of the optical film is preferably 10% or less, more preferably 5% or less, and further preferably 2% or less.
  • the method of containing the ultraviolet absorber include a method in which the ultraviolet absorber is pre-blended into a resin and pelletized, and this is molded into a film by melt extrusion or the like. And a method of adding an agent.
  • An infrared absorber is a compound that absorbs infrared rays having a wavelength of 800 nm or more.
  • a nitroso compound and a metal complex thereof a cyanine compound; a squarylium compound; a thiol nickel complex compound; a phthalocyanine compound; a naphthalocyanine compound; a triarylmethane compound; an imonium compound; Anthraquinone compounds; amino compounds; aminium salt compounds; carbon blacks; indium tin oxide; antimony tin oxides; oxides, carbides or borides of metals belonging to groups 4A, 5A or 6A of the periodic table Can do.
  • the infrared absorber is preferably selected so that it can absorb the entire infrared ray (light having a wavelength in the range of about 800 to 1100 nm), and two or more types may be used in combination.
  • the blending amount of the infrared absorber is preferably selected so that, for example, the light transmittance at a wavelength of 800 nm or more of the optical film is 10% or less.
  • Rubber elastic particles are particles including a layer exhibiting rubber elasticity.
  • the rubber elastic particles may be particles composed of only a layer exhibiting rubber elasticity, or may be particles having a multilayer structure having other layers together with a layer exhibiting rubber elasticity.
  • rubber elastic bodies include olefin-based elastic polymers, diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers. Of these, acrylic elastic polymers are preferably used from the viewpoints of surface hardness, light resistance and transparency of the optical film.
  • the acrylic elastic polymer can be composed of a polymer mainly composed of alkyl acrylate.
  • the polymer mainly composed of alkyl acrylate may be a homopolymer of alkyl acrylate, or a copolymer of 50% by weight or more of alkyl acrylate and 50% by weight or less of other monomers. May be.
  • As the alkyl acrylate an alkyl acrylate having 4 to 8 carbon atoms is usually used.
  • Examples of copolymerization of monomers other than alkyl acrylate include alkyl methacrylates such as methyl methacrylate and ethyl methacrylate; styrene monomers such as styrene and alkyl styrene; acrylonitrile and methacrylo Monofunctional monomers such as unsaturated nitriles such as nitriles, and alkenyl esters of unsaturated carboxylic acids such as allyl (meth) acrylate and methallyl (meth) acrylate; dibasic acids such as diallyl maleate And polyfunctional monomers such as unsaturated carboxylic acid diesters of glycols such as alkylene glycol di (meth) acrylate.
  • alkyl methacrylates such as methyl methacrylate and ethyl methacrylate
  • styrene monomers such as styrene and alkyl styrene
  • the rubber elastic particles containing the acrylic elastic polymer are preferably multi-layered particles having an acrylic elastic polymer layer.
  • the thing of the 3 layer structure which has a polymer layer is mentioned.
  • the polymer mainly composed of alkyl methacrylate constituting the hard polymer layer formed outside or inside the acrylic elastic body is preferably a polymer mainly composed of methyl methacrylate.
  • Acrylic rubber elastic particles having a multilayer structure can be produced by a method described in, for example, Japanese Patent Publication No. 55-027576.
  • a lubricant is added to the optical film, especially in the case of a (meth) acrylic resin film, the slipperiness of the surface of the optical film is improved, and the film roll is tightened. The appearance can be improved.
  • the lubricant and the rubber elastic body particles are used in combination, the effect of improving slipperiness can be further enhanced.
  • the lubricant there are a stearic acid compound, a (meth) acrylic compound, an ester compound, etc. Among them, a stearic acid compound is preferably used.
  • the thickness of the single-layer optical film is usually about 2 to 300 ⁇ m, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the single-layer optical film can be produced by an arbitrary method such as a melt extrusion method or a solvent casting method.
  • a melt extrusion method a method of forming a film in a state in which a melt-extruded resin (thermoplastic resin) is sandwiched between two metal rolls is preferably employed.
  • the metal roll is preferably a mirror roll, whereby an optical film having excellent surface smoothness can be obtained.
  • the optical film may be a multilayer optical film having a multilayer structure of two layers, three layers or more.
  • the structure of a multilayer optical film is not specifically limited, For example, the following embodiment can be illustrated.
  • a multilayer optical film of the same type, but coextruded by combining layers made of different resins for example, a first layer made of (meth) acrylic resin and a different (meth) acrylic resin
  • a multilayer optical film comprising a second layer
  • a multilayer optical film for example, a multilayer optical film including a first layer made of (meth) acrylic resin and a second layer made of polystyrene resin
  • [C] A multilayer optical film made of the same type (or the same) resin but coextruded by combining layers having different types and contents of additives, [D] a multilayer optical film in which the above-mentioned single-layer optical film or multilayer optical film is laminated by extrusion lamination, [E] A multilayer optical film obtained by laminating the above-described single-layer optical film via an adhesive or a pressure-sensitive adhesive, or a single-layer optical film and a multilayer optical film, or a multilayer optical film and a multilayer optical film with an adhesive or pressure-sensitive adhesive. Multi-layer optical film bonded through.
  • the multilayer optical film co-extruded in the above [a] to [c] can be produced in the same manner as the single-layer optical film except that the resin composition forming each layer is multilayer co-extruded.
  • the multilayer optical film of [d] may be a laminate of the same type of film, or may be a laminate of different types of films.
  • the multilayer optical film of [d] above is obtained by laminating and laminating another optical film from a certain side in the process on the melt-extruded optical film, pressing and bonding, cooling, and rolling it with a winder It can be produced by winding.
  • the optical film is fed out from one side in the process, the resin layer is melt-extruded thereon, and another optical film is fed out from the other side in the process, laminated on the resin layer, and added in the same manner. It can be produced by pressing and bonding, cooling, and winding into a roll with a winder.
  • the number of layers to be laminated is not particularly limited, and a necessary layer may be appropriately laminated, or the above-described treatment may be performed as necessary at the time of lamination.
  • the multilayer optical film of [e] above is a combination of layers made of the same type of resin (including the same resin and different resins) when single-layer optical films are bonded together. Alternatively, a combination of different resin layers may be used. Moreover, as above-mentioned, the combination of a single layer optical film and a multilayer optical film, and the combination of a multilayer optical film and a multilayer optical film may be sufficient.
  • An example of the multilayer optical film of [e] is one in which a thermoplastic resin film is bonded to at least one surface of a polarizing film via an adhesive or a pressure-sensitive adhesive.
  • the polarizing film can be a film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film to give a predetermined polarizing property.
  • the adhesive a water-based adhesive or a solventless adhesive can be used.
  • the water-based adhesive is, for example, an adhesive component such as a water-soluble crosslinkable epoxy resin or a hydrophilic urethane resin dissolved in water, or the adhesive component dispersed in water. Can do.
  • Solventless adhesives do not contain a significant amount of solvent, and contain a curable component (monomer or oligomer) that is reactively cured by heating or irradiation with active energy rays (eg, ultraviolet rays, visible light, electron beams, X-rays, etc.). And an adhesive layer is formed by curing the curable component, and typically includes the curable component and a polymerization initiator.
  • a curable component monomer or oligomer
  • active energy rays eg, ultraviolet rays, visible light, electron beams, X-rays, etc.
  • curable component examples include epoxy resins, urethane resins, cyanoacrylate resins, (meth) acrylamide resins, and the like.
  • a pressure-sensitive adhesive composition containing a base polymer such as a (meth) acrylic resin, a silicone-based resin, a polyester-based resin, a polyurethane-based resin, or a polyether-based resin, and a crosslinking agent is used. Can do.
  • the pressure-sensitive adhesive composition can further contain an additive such as an antistatic agent.
  • the pressure-sensitive adhesive composition is preferably one in which the reaction with the crosslinking agent has sufficiently progressed by aging.
  • the aging conditions are not particularly limited. For example, aging can be performed for several hours to several days in an environment of a temperature of 23 ° C. and a relative humidity of 65%.
  • the optical film may be obtained by subjecting the thermoplastic resin film produced as described above to a stretching treatment.
  • a stretching process may be required to obtain an optical film having desired optical properties.
  • the stretching treatment include uniaxial stretching and biaxial stretching.
  • the stretching direction include a machine flow direction (MD) of an unstretched film, a direction orthogonal to the machine flow direction (TD), and a direction oblique to the machine flow direction (MD).
  • Biaxial stretching may be simultaneous biaxial stretching in which stretching is performed simultaneously in two stretching directions, or sequential biaxial stretching in which stretching is performed in a predetermined direction and then stretching in another direction.
  • nip rolls with increased peripheral speed on the outlet side are used to stretch in the longitudinal direction (machine flow direction: MD), or the both ends of the unstretched film are gripped with a chuck and machine flow is performed. It is performed by spreading in a direction (TD) orthogonal to the direction.
  • the draw ratio by the drawing treatment is preferably more than 0 to 300%, more preferably 100 to 250%. If the draw ratio exceeds 300%, the film thickness becomes too thin and breaks easily, or the handleability decreases.
  • a heat shrinkable film may be bonded to a thermoplastic resin film in place of or along with the stretching process, and a process of shrinking the thermoplastic resin film may be performed.
  • optical film which has a coating layer By providing a coating layer to an optical film, the specific function according to the kind of coating layer can be provided.
  • an optical film having a coating layer include, for example: [a] an optical film having a hard coat layer for preventing scratches on the surface, [B] an optical film having an antistatic layer, [C] an optical film having an antireflection layer, [D] an optical film having an antifouling layer; [E] an optical film having an antiglare layer for improving visibility, preventing reflection of external light, and reducing moire due to interference between a prism sheet and a color filter, It is.
  • a single-layer optical film or a multilayer optical film such as the above-described thermoplastic resin film can be used as the above-described thermoplastic resin film.
  • a multilayer optical film having a coating layer obtained by laminating an optical film obtained by laminating a coating layer on a single layer or a multilayer optical film with another single layer optical film or a multilayer optical film can also be used.
  • the Charpy impact strength of the optical film may be extremely smaller than before the coating layer is provided, and thus an optical film having a small Charpy impact strength.
  • the present invention is preferably applied.
  • the hard coat layer has a function of increasing the surface hardness of the optical film and is provided for the purpose of preventing scratches on the surface.
  • the hard coat layer is a pencil hardness test as defined in JIS K 5600-5-4: 1999 “Paint General Test Method—Part 5: Mechanical Properties of Coating Film—Section 4: Scratch Hardness (Pencil Method)”
  • An optical film having a hard coat layer is measured by placing it on a glass plate), and it is preferable to show a value of 2H or higher.
  • the material for forming the hard coat layer is generally cured by heat or light.
  • organic hard coat materials such as organic silicone, melamine, epoxy, (meth) acrylic, urethane (meth) acrylate, and inorganic hardcoat materials such as silicon dioxide can be used.
  • organic hard coat materials such as organic silicone, melamine, epoxy, (meth) acrylic, urethane (meth) acrylate, and inorganic hardcoat materials such as silicon dioxide
  • the base film on which the hard coat layer is laminated is a (meth) acrylic resin film
  • the adhesive strength to the film is good and the productivity is excellent.
  • a polyfunctional or polyfunctional (meth) acrylate hard coat material is preferred.
  • the hard coat layer contains various fillers for the purpose of adjusting the refractive index, improving the flexural modulus, stabilizing the volume shrinkage, and improving heat resistance, antistatic properties, antiglare properties, etc., if desired. can do.
  • the hard coat layer can also contain additives such as an antioxidant, an ultraviolet absorber, a light stabilizer, an antistatic agent, a leveling agent, and an antifoaming agent.
  • the antistatic layer is provided for the purpose of imparting conductivity to the surface of the optical film and suppressing the influence of static electricity.
  • a method of applying a resin composition containing a conductive substance (antistatic agent) to the base film can be employed.
  • an antistatic hard coat layer can be formed by allowing an antistatic agent to coexist in the hard coat material used for forming the hard coat layer described above.
  • the antireflection layer is a layer for preventing reflection of external light, and is provided directly on the surface (surface exposed to the outside) of the optical film or via another layer such as a hard coat layer.
  • the optical film having the antireflection layer preferably has a reflectance of 2% or less at an incident angle of 5 ° with respect to light having a wavelength of 430 to 700 nm, and particularly has a reflectance of 1 at the same incident angle with respect to light having a wavelength of 550 nm. % Or less is preferable.
  • the thickness of the antireflection layer can be about 0.01 to 1 ⁇ m, preferably 0.02 to 0.5 ⁇ m.
  • the antireflection layer is formed from a low refractive index layer having a refractive index smaller than the refractive index of the layer (base film, hard coat layer, etc.) on which it is provided, specifically a refractive index of 1.30 to 1.45. Or a plurality of low refractive index layers made of inorganic compounds and high refractive index layers made of inorganic compounds alternately stacked.
  • the material for forming the low refractive index layer is not particularly limited as long as it has a low refractive index.
  • a resin material such as an ultraviolet curable (meth) acrylic resin; a hybrid material in which inorganic fine particles such as colloidal silica are dispersed in the resin; a sol-gel material containing an alkoxysilane can be used.
  • Such a low refractive index layer may be formed by applying a polymer that has been polymerized, or may be formed by applying in the state of a monomer or oligomer that becomes a precursor, and then polymerizing and curing.
  • each material contains the compound which has a fluorine atom in a molecule
  • a material having a fluorine atom in the molecule is preferably used as the sol-gel material for forming the low refractive index layer.
  • a typical example of a sol-gel material having a fluorine atom in the molecule is perfluoroalkylalkoxysilane.
  • the perfluoroalkylalkoxysilane is, for example, the following formula: CF 3 (CF 2 ) n CH 2 CH 2 Si (OR) 3 Wherein R represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 12. Of these, compounds in which n is 2 to 6 in the above formula are preferred.
  • perfluoroalkylalkoxysilanes include the following compounds.
  • the low refractive index layer can be composed of a cured product of a thermosetting fluorine-containing compound or an active energy ray-curable fluorine-containing compound.
  • This cured product preferably has a dynamic friction coefficient in the range of 0.03 to 0.15, and preferably has a contact angle with water in the range of 90 to 120 °.
  • the curable fluorine-containing compound a polyfluoroalkyl group-containing silane compound (for example, the above-mentioned 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10) , 10-heptadecafluorodecyltriethoxysilane, etc.), and fluorine-containing polymers having a crosslinkable functional group.
  • the fluorine-containing polymer having a crosslinkable functional group is obtained by copolymerizing a fluorine-containing monomer and a monomer having a crosslinkable functional group, or by copolymerizing a fluorine-containing monomer and a monomer having a functional group, and then polymer. It can be produced by a method of adding a compound having a crosslinkable functional group to the functional group therein.
  • fluorine-containing monomer used here examples include fluoroolefins such as fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, and others ( Examples thereof include partially or fully fluorinated alkyl ester derivatives of (meth) acrylic acid and completely or partially fluorinated vinyl ethers.
  • Monomers having a crosslinkable functional group or compounds having a crosslinkable functional group include monomers having a glycidyl group such as glycidyl acrylate and glycidyl methacrylate; monomers having a carboxyl group such as acrylic acid and methacrylic acid; Examples thereof include monomers having a hydroxyl group such as hydroxyalkyl methacrylate; monomers having an alkenyl group such as allyl acrylate and allyl methacrylate; monomers having an amino group; monomers having a sulfonic acid group.
  • the material for forming the low refractive index layer can improve scratch resistance, and therefore includes a sol in which fine particles of inorganic compounds such as silica, alumina, titania, zirconia, and magnesium fluoride are dispersed in an alcohol solvent. It can also consist of things.
  • the inorganic compound fine particles used for this purpose are preferably those having a smaller refractive index from the viewpoint of antireflection properties. Such inorganic compound fine particles may have voids, and silica hollow fine particles are particularly preferable.
  • the average particle size of the hollow fine particles is preferably in the range of 5 to 2000 nm, and more preferably in the range of 20 to 100 nm.
  • the average particle diameter here is a number average particle diameter obtained by observation with a transmission electron microscope.
  • the antifouling layer is provided for imparting water repellency, oil repellency, sweat resistance, antifouling properties and the like.
  • a suitable material for forming the antifouling layer is a fluorine-containing organic compound. Examples of the fluorine-containing organic compound include fluorocarbon, perfluorosilane, and high molecular compounds thereof.
  • a method for forming the antifouling layer a physical vapor deposition method, a chemical vapor deposition method, a wet coating method, or the like typified by vapor deposition or sputtering can be used depending on the material to be formed.
  • the average thickness of the antifouling layer is usually about 1 to 50 nm, preferably 3 to 35 nm.
  • an antiglare film An optical film in which an antiglare layer is laminated on a base film is called an antiglare film. That is, the antiglare film consists of a base film and an antiglare layer.
  • the antiglare layer is a layer having a fine uneven shape on the surface, and is preferably formed using the hard coat material described above.
  • the antiglare layer having a fine uneven shape on the surface is 1) a method of forming a coating film containing fine particles on a base film and providing unevenness based on the fine particles, and 2) containing or not containing fine particles.
  • the coating film After the coating film is formed on the base film, it can be formed by a method (also called an embossing method) of transferring the uneven shape by pressing against a roll having an uneven shape on the surface.
  • an antiglare layer is formed by applying a curable resin composition containing a curable transparent resin and fine particles on a substrate film, and curing the coating layer by irradiation with light such as ultraviolet rays or heating.
  • the curable transparent resin is preferably selected from materials that have high hardness (hard coat).
  • a photocurable resin such as an ultraviolet curable resin, a thermosetting resin, an electron beam curable resin, and the like can be used.
  • a photocurable resin is preferably used. More preferred is an ultraviolet curable resin.
  • the curable resin composition further includes a photopolymerization initiator.
  • polyfunctional (meth) acrylate is generally used as the photocurable resin. Specific examples thereof include tri-methylolpropane di- or tri- (meth) acrylate; pentaerythritol tri- or tetra- (meth) acrylate; reaction of (meth) acrylate having at least one hydroxyl group in the molecule with diisocyanate.
  • the product includes polyfunctional urethane (meth) acrylate and the like. These polyfunctional (meth) acrylates can be used alone or in combination of two or more as required.
  • a mixture of polyfunctional urethane (meth) acrylate, polyol (meth) acrylate, and (meth) acrylic polymer having an alkyl group containing two or more hydroxyl groups can be used as the photocurable resin.
  • the polyfunctional urethane (meth) acrylate constituting this photocurable resin is produced using, for example, (meth) acrylic acid and / or (meth) acrylic acid ester, polyol, and diisocyanate.
  • hydroxy (meth) acrylate having at least one hydroxyl group in the molecule from (meth) acrylic acid and / or (meth) acrylic acid ester and polyol, and reacting it with diisocyanate, A polyfunctional urethane (meth) acrylate can be produced.
  • the polyfunctional urethane (meth) acrylate thus produced is also the photocurable resin itself listed above.
  • (meth) acrylic acid and / or (meth) acrylic acid ester may be used singly or in combination of two or more, respectively, and polyol and diisocyanate are similarly used. One type may be used, or two or more types may be used in combination.
  • (Meth) acrylic acid ester which is one raw material of polyfunctional urethane (meth) acrylate can be a linear or cyclic alkyl ester of (meth) acrylic acid. Specific examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, alkyl (meth) acrylate such as butyl (meth) acrylate, and cyclohexyl (meth). Examples include cycloalkyl (meth) acrylates such as acrylates.
  • Polyol which is another raw material for polyfunctional urethane (meth) acrylate, is a compound having at least two hydroxyl groups in the molecule.
  • Diisocyanate which is yet another raw material of polyfunctional urethane (meth) acrylate, is a compound having two isocyanato groups (—NCO) in the molecule, and uses various aromatic, aliphatic or alicyclic diisocyanates. be able to. Specific examples include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 3,3′-dimethyl-4,4 ′.
  • the polyol (meth) acrylate constituting the above-described photocurable resin together with the polyfunctional urethane (meth) acrylate is a (meth) acrylate of a compound having at least two hydroxyl groups in the molecule (that is, polyol).
  • Specific examples thereof include pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,6-hexanediol di (meth) acrylate.
  • a polyol (meth) acrylate may be used individually by 1 type, and may use 2 or more types together.
  • the polyol (meth) acrylate preferably comprises pentaerythritol triacrylate and / or pentaerythritol tetraacrylate.
  • the (meth) acrylic polymer having an alkyl group containing two or more hydroxyl groups which constitutes a photocurable resin together with these polyfunctional urethane (meth) acrylates and polyol (meth) acrylates, has hydroxyl groups in one constituent unit. It has an alkyl group containing 2 or more. Examples thereof include a polymer containing 2,3-dihydroxypropyl (meth) acrylate as a constituent unit, and a polymer containing 2-hydroxyethyl (meth) acrylate as a constituent unit together with 2,3-dihydroxypropyl (meth) acrylate. .
  • the fine particles those having an average particle size of 0.5 to 5 ⁇ m and a refractive index difference from the curable transparent resin after curing of 0.02 to 0.2 are preferably used. By using fine particles having an average particle diameter and a refractive index difference within these ranges, haze can be effectively expressed.
  • the average particle diameter of the fine particles can be obtained by a dynamic light scattering method or the like.
  • the average particle diameter in this case is a weight average particle diameter.
  • the fine particles can be organic fine particles or inorganic fine particles.
  • resin particles are generally used.
  • silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, calcium carbonate, calcium phosphate and the like can be used.
  • acetophenone series various types such as acetophenone series, benzophenone series, benzoin ether series, amine series, and phosphine oxide series can be used.
  • compounds classified as acetophenone photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone (also known as benzyldimethyl ketal), 2,2-diethoxyacetophenone, 1- (4-isopropylphenyl) There are -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, and the like.
  • Examples of compounds classified as benzophenone photopolymerization initiators include benzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, and the like.
  • Examples of compounds classified as benzoin ether photopolymerization initiators include benzoin methyl ether and benzoin propyl ether.
  • Examples of compounds classified as amine photopolymerization initiators include N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone (also known as Michler's ketone).
  • Examples of phosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • xanthone compounds and thioxant compounds can also be used as photopolymerization initiators.
  • photopolymerization initiators are commercially available. Examples of typical commercial products are “Irgacure 907” and “Irgacure 184" sold by Swiss Ciba, and "Lucirin TPO” sold by BASF Germany. is there.
  • the curable resin composition can contain a solvent as needed.
  • a solvent arbitrary organic solvents which can melt
  • the curable resin composition may contain a leveling agent, and examples thereof include a fluorine-based or silicone-based leveling agent.
  • silicone leveling agents include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
  • the silicone leveling agents preferred are reactive silicone and siloxane leveling agents. When a leveling agent made of reactive silicone is used, slipperiness is imparted to the surface of the antiglare layer, and excellent scratch resistance can be maintained for a long period of time. Further, if a siloxane leveling agent is used, film formability can be improved.
  • an antiglare layer having a fine surface uneven shape by the above method 2) embssing method
  • a mold having a fine uneven shape is used and the shape of the mold is set on the base film. It may be transferred to the resin layer formed in the above.
  • the resin layer to which the uneven shape is transferred may or may not contain fine particles.
  • the resin constituting the resin layer is preferably a photocurable resin as exemplified in the method 1), and more preferably an ultraviolet curable resin.
  • a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet rays can be used by appropriately selecting a photopolymerization initiator instead of the ultraviolet curable resin.
  • a curable resin composition containing a photo-curable resin such as an ultraviolet curable resin is applied on a base film, and the applied layer is cured while being pressed against an uneven surface of the mold.
  • the uneven surface is transferred to the coating layer. More specifically, in a state where the curable resin composition is applied onto the base film and the coating layer is in close contact with the uneven surface of the mold, the coating layer is irradiated with light such as ultraviolet rays from the base film side. Next, the uneven shape of the mold is transferred to the antiglare layer by peeling the optical film having the cured coating layer (antiglare layer) from the mold.
  • the thickness of the antiglare layer is not particularly limited, but is generally 2 to 30 ⁇ m, preferably 3 ⁇ m or more, and preferably 20 ⁇ m or less. If the antiglare layer is too thin, sufficient hardness cannot be obtained, and the surface tends to be easily scratched. On the other hand, if it is too thick, the film is prone to cracking, or the film is curled due to curing shrinkage of the antiglare layer. Tend to decrease.
  • the haze value of the antiglare film is preferably in the range of 1 to 50%. If the haze value is too small, sufficient antiglare performance cannot be obtained, and external light is likely to be reflected on the screen when applied to an image display device. On the other hand, if the haze value is too large, the reflection of external light can be reduced, but the black display screen is reduced.
  • the haze value is a ratio of the diffuse transmittance to the total light transmittance, and is measured according to JIS K 7136: 2000 “How to determine haze of plastic-transparent material”.
  • the coating width of the coating layer may be the entire width of the optical film, or uncoated portions may be provided at both ends in the width direction.
  • the width of the uncoated part at each end can be about 0.05 to 20% of the total film width. If the width of the uncoated portion is 0.05% or more, curling (ear standing) of the film end due to curing shrinkage of the coated layer can be suppressed, and film transport and film connection (paper splicing) are facilitated.
  • the width of the uncoated part is less than 0.05%, curling tends to occur at the film end, and in some cases, curling with a height of 10 mm or more from the horizontal part of the film may occur. However, even if such curling occurs, according to the present invention, it is possible to carry the film without causing film breakage or the like.
  • a copolymer of methyl methacrylate / methyl acrylate (weight ratio 96/4) was prepared.
  • the innermost layer is made of a hard polymer obtained by copolymerizing methyl methacrylate with a small amount of allyl methacrylate, and the intermediate layer is mainly composed of butyl acrylate.
  • Acrylic elastic polymer particles having an average particle diameter of about 250 nm when not having a particle diameter were prepared.
  • the (meth) acrylic resin and rubber elastic particles are blended in a weight ratio of 70/30, and 0.05 parts by weight of a lubricant (stearic acid) and about 1.0 parts per 100 parts by weight in total.
  • Pellets containing a part by weight of a benzotriazole-based ultraviolet absorber were put into a 65 mm ⁇ single screw extruder and extruded from a T die having a set temperature of 275 ° C. Both sides of the extruded film-like molten resin are sandwiched and cooled by two polishing rolls having a mirror surface temperature set at 45 ° C., and a long (meth) acrylic resin film having a thickness of 80 ⁇ m is obtained as a film roll. It was.
  • Antiglare comprising (meth) acrylate ultraviolet curable resin, photopolymerization initiator, resin fine particles and solvent on one side of (meth) acrylic resin film produced in (A) above. After coating and drying the layer forming coating solution, the coating layer side is irradiated with ultraviolet rays to cure the coating layer, and an antiglare layer with irregularities is formed on the surface of the (meth) acrylic resin film A long antiglare film was prepared. The obtained anti-glare film was wound around a 6 inch (about 15 cm) diameter core to form a film roll. When the haze value of the antiglare film was measured using a haze meter, it was 1.5%. The antiglare film had a thickness of 89 ⁇ m.
  • the Charpy impact strength of the obtained antiglare film was measured by the following procedure. First, a rectangular test piece having a width of 10 mm and a length of 82 mm was cut out from the antiglare film. As a test piece, a test piece for measuring shock absorption energy in MD, and a test piece for measuring shock absorption energy in TD, when a hammer is hit from the antiglare layer side, A total of 4 pieces were cut out, 2 pieces each for testing with the case of hitting from the opposite side.
  • both ends in the long side direction of the test piece are fixed to the support so that the test piece does not move due to impact when punched with a hammer, and according to the above measurement procedure, a Charpy impact tester (Hammer Weighing) manufactured by Yasuda Seiki Seisakusho Co., Ltd. 1.0J), the hammer is struck from the antiglare layer side so that the longitudinal direction of the blade edge is parallel to the width direction at the center in the length direction of the test piece, and the energy required for breaking the film (impact absorption energy) ) was measured.
  • the impact absorption energy of TD was 17 kJ / m 2
  • the impact absorption energy of MD was 19 kJ / m 2 .
  • the antiglare layer side impact absorption energy of the TD and MD when irradiated with a hammer from the opposite side were respectively 8kJ / m 2, 11kJ / m 2.
  • the antiglare film was folded in half with a finger so that the antiglare layer side was convex, the antiglare film was broken.
  • a lead film polyethylene terephthalate film with a thickness of 38 ⁇ m
  • a film made of polytetrafluoroethylene with a thickness of 60 ⁇ m is used as a base material.
  • the connecting film formed by using the single-sided adhesive tape is continuously conveyed using the rotational driving force of the suction roll at a conveying speed of 1 to 40 m / min through the conveying path including the suction roll. .
  • a suction roll having a diameter of 300 mm and a suction hole diameter of 3 mm was used.
  • the suction pressure of the suction roll is 5 to 25 kPa, and the angle ⁇ (see FIG.
  • Example 2 An optical film was prepared in which a hard coat layer having a thickness of 4 ⁇ m was laminated on a triacetyl cellulose having a thickness of 25 ⁇ m. About this optical film, Charpy impact strength was measured by the same measuring method as above. As a result, the impact absorption energy of TD and MD when irradiated with a hammer from the hard coat layer side, were respectively 145kJ / m 2, 138kJ / m 2. Note that the hard coat layer side impact absorption energy of the TD and MD when irradiated with a hammer from the opposite side were respectively 186kJ / m 2, 134kJ / m 2. Further, when the optical film was folded in half with a finger so that the hard coat layer side was convex, the optical film was broken.
  • the connected film was continuously conveyed in the same manner as in Example 1 except that this optical film was used. Even when the connecting portion passed through the suction roll, the connecting film was not cracked, cracked or broken, and the connecting film could be continuously conveyed without any problem.
  • connection film was continuously conveyed in the same manner as in Example 2 except that the connection film was passed through a conveyance path including a nip roll made of a rubber roll instead of the suction roll. When the connection portion passed through the nip roll, the connection film was connected. The part broke.
  • connection film was continuously conveyed in the same manner as in Comparative Example 1, and the connection film (including the connection part was included), including when the connection part passed through the nip roll. .) was not cracked, cracked or broken.
  • connection film was continuously conveyed in the same manner as in Comparative Example 1 except that this triacetylcellulose film was used, the connection film (including the connection part) was included even when the connection part passed through the nip roll. No cracks, cracks or breaks occurred.
  • connection film was continuously conveyed in the same manner as in Comparative Example 1, and the connection film (including the connection part) was cracked even when the connection part passed through the nip roll. No cracks or breaks occurred.
  • connection film was continuously conveyed in the same manner as in Comparative Example 1 except that this polypropylene film was used, the connection film cracked into the connection film (including the connection part), including when the connection part passed through the nip roll. Cracks and fractures did not occur.

Landscapes

  • Polarising Elements (AREA)
  • Advancing Webs (AREA)
  • Replacement Of Web Rolls (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a method for continuously conveying a joined film, which includes a first film (10) and a second film (20) joined to a longitudinal terminal end thereof, by means of one or more drive rolls (40) along a conveying path including the one or more drive rolls, wherein the first film and/or the second film is an optical film having a Charpy impact strength of less than 200 kJ/m2, and the one or more drive rolls are all suction rolls.

Description

フィルムの搬送方法及び光学フィルムの製造方法Film conveying method and optical film manufacturing method
 本発明は、フィルムの搬送方法に関し、より詳しくは、靭性の比較的小さい光学フィルムを含む複数のフィルムを連結してなる連結フィルムを、搬送経路に沿って駆動ロールにより連続的に搬送する方法に関する。また本発明は、当該搬送方法を用いた光学フィルムの製造方法にも関する。 The present invention relates to a film transport method, and more particularly to a method of continuously transporting a connection film formed by connecting a plurality of films including an optical film having relatively low toughness by a drive roll along a transport path. . The present invention also relates to a method for producing an optical film using the transport method.
 フィルムを連続的に供給しつつ、所定の搬送経路に通し、複数のロールに接触させながらフィルムを連続的に搬送する方法は、フィルム搬送方法として一般的であり、ロール状に巻回されたフィルムをロールから繰り出しつつ、上記搬送中にフィルムの巻替えや延伸、他のフィルム等との貼合などを行うことも、各種光学用フィルムの製造において常法となっている。 A method of continuously feeding a film while continuously feeding the film through a predetermined conveyance path and contacting a plurality of rolls is a general film conveyance method, and is a film wound in a roll shape. It is also a common practice in the production of various optical films to roll out the film from the roll and perform rewinding and stretching of the film and pasting with other films during the conveyance.
 上記搬送工程で使用される各種ロールには、フィルムの片側のみ支持するフリーロールや、フィルムの両側に配置され、フィルムを両側から支持するニップロールなどがあるが、このうち、ニップロールは、フィルムの張力調整、フィルム搬送のための駆動、フィルムへの押圧、気泡混入・シワ・ムラの防止に大きく影響するロールの一つである。 The various rolls used in the transporting process include a free roll that supports only one side of the film and a nip roll that is arranged on both sides of the film and supports the film from both sides. Among these, the nip roll is the tension of the film. It is one of the rolls that greatly affects the adjustment, driving for film conveyance, pressing on the film, and prevention of air bubbles, wrinkles and unevenness.
 例えば、特開2005-035147号公報(特許文献1)には、溶融押出しされた樹脂をニップロールで押圧してフィルムとする方法が開示されている。また、特開平11-048271号公報(特許文献2)には、テンター内で乾燥中に発生するウェブ(フィルム)のムラを防止するために、さらに、特開2006-339287号公報(特許文献3)には、フィルム貼り合わせ時に部材に入り込む気体の脱泡のために、ウェブ(フィルム)両面から圧力を加える手段としてニップロールを用いることが開示されている。 For example, Japanese Patent Application Laid-Open No. 2005-035147 (Patent Document 1) discloses a method of forming a film by pressing a melt-extruded resin with a nip roll. JP-A-11-048271 (Patent Document 2) further discloses JP-A-2006-339287 (Patent Document 3) in order to prevent unevenness of the web (film) generated during drying in the tenter. ) Discloses the use of nip rolls as means for applying pressure from both sides of the web (film) for defoaming gas that enters the member during film bonding.
 また、上述のフィルムの連続的搬送方法において、目的のフィルムを所定の搬送経路に最初に通すときには、そのフィルム始端に予めリードフィルムを連結し、まずこのリードフィルムを搬送経路に通して連続的に搬送し、引き続き目的のフィルムを搬送するのが一般的である。また、搬送工程を一旦停止するときにも同様に、後の再稼動に備えて、フィルムの終端にリードフィルムを連結させた状態で停止し、再稼働時には、目的のフィルムの始端を当該リードフィルムの終端に連結することにより、目的のフィルムの搬送を開始するのが一般的である。さらには、同種のフィルムの継ぎ足しや、異種のフィルムへの切り替え等、連続的にフィルムを搬送するためにフィルム同士の連結を行うこともある。このように、フィルム同士の連結は、フィルムの連続搬送工程では多用されている。 In the above-described continuous film transport method, when a target film is first passed through a predetermined transport path, a lead film is connected in advance to the leading end of the film, and first the lead film is continuously passed through the transport path. In general, the film is conveyed and subsequently the target film is conveyed. Similarly, when the transport process is temporarily stopped, the lead film is stopped in a state in which the lead film is connected to the end of the film in preparation for the subsequent re-operation. Generally, the conveyance of the target film is started by connecting to the end of the film. Furthermore, the films may be connected to each other in order to continuously transport the film, such as adding the same type of film or switching to a different type of film. As described above, the connection between the films is frequently used in the continuous conveyance process of the film.
 フィルム同士を連結する方法としては、特開2010-008509号公報(特許文献4)に開示されているようなヒートシールによる連結や、フィルム同士をテープにより連結する方法などがある。また、特開平08-208083号公報(特許文献5)には、複数の原反ロールをターレットによって紙継ぎする方法が開示されている。 Examples of methods for connecting films include heat sealing as disclosed in Japanese Patent Application Laid-Open No. 2010-008509 (Patent Document 4), and methods of connecting films with a tape. Japanese Patent Application Laid-Open No. 08-208083 (Patent Document 5) discloses a method of joining a plurality of original fabric rolls with a turret.
特開2005-035147号公報JP 2005-035147 A 特開平11-048271号公報Japanese Patent Laid-Open No. 11-048271 特開2006-339287号公報JP 2006-339287 A 特開2010-008509号公報JP 2010-008509 A 特開平08-208083号公報Japanese Patent Application Laid-Open No. 08-208083
 近年、消費電力が小さく、低電圧で動作し、軽量でかつ薄型の画像表示装置(例えば液晶表示装置)が、携帯電話、携帯情報端末、コンピュータ用のモニター、テレビなどの情報表示デバイスに広く用いられている。このような情報表示デバイスは、用途によってはより一層の薄型化が求められ、それを構成する各種光学フィルムについても薄膜化が求められている。 In recent years, low-power consumption, low-voltage operation, lightweight and thin image display devices (for example, liquid crystal display devices) are widely used in information display devices such as mobile phones, personal digital assistants, computer monitors, and televisions. It has been. Such an information display device is required to be further thinned depending on applications, and various optical films constituting the information display device are also required to be thin.
 用いられる光学フィルムの材質に関しても、性能向上を目的として様々な設計変更が提案されており、例えば液晶表示装置に用いられる偏光板を例に挙げれば、偏光フィルムに貼合される保護フィルムとして、トリアセチルセルロースフィルムが従来広く用いられてきたが、近年、透明性及び耐熱性の観点から、薄肉ガラスや、アクリル系、ノルボルネン系などの樹脂フィルムも使用されるようになってきている。 Regarding the material of the optical film used, various design changes have been proposed for the purpose of improving performance.For example, if a polarizing plate used in a liquid crystal display device is taken as an example, as a protective film bonded to the polarizing film, Triacetyl cellulose films have been widely used in the past, but recently, from the viewpoint of transparency and heat resistance, thin glass, acrylic and norbornene resin films are also being used.
 ところが、光学フィルムの薄膜化や多様化によって、靭性に劣るものでは、工程内でハンドリング中に割れるなどの問題が生じるようになった。例えば、フィルム同士を連結する場合、どのような連結方法を用いても、わずかなフィルム間のずれや重なりが生じたり、フィルム上に連結用のテープを貼り付けたりするため、フィルムの連結部に凹凸が生じることは避けられない。このため、フィルムの連結部がニップロール間を通過した際、そのわずかな凸部に圧力がかかって、フィルムに割れ、亀裂(ヒビ)が生じることがあり、フィルムの破断に至ることもある。特に、柔軟性の小さい脆いフィルムにおいて、これらの問題が起こりやすい。 However, due to the thinning and diversification of optical films, problems with inferior toughness have arisen, such as cracking during handling in the process. For example, when connecting films to each other, no matter what connection method is used, a slight shift or overlap between films occurs, or a connecting tape is affixed on the film. Unevenness is inevitable. For this reason, when the connection part of a film passes between nip rolls, a pressure is applied to the slight convex part, and a crack, a crack (crack) may arise in a film, and it may lead to a fracture of a film. In particular, these problems are likely to occur in a fragile film with low flexibility.
 フィルムに割れ、亀裂、破断が生じると、その部分は欠陥部として廃棄されるため、フィルムの歩留まりが低下するとともに、欠陥部の除去作業や工程の再稼働準備のために製造効率が低下する。また、フィルムに割れや破断が生じると、飛散したフィルムの破片によって工程内が汚染されるおそれもある。 When the film is cracked, cracked or broken, the portion is discarded as a defective portion, so that the yield of the film is reduced and the manufacturing efficiency is reduced due to the removal operation of the defective portion and preparation for restarting the process. Further, when the film is cracked or broken, the inside of the process may be contaminated by the scattered film fragments.
 本発明の目的は、靭性(柔軟性)の比較的小さい光学フィルムを含む複数のフィルムを連結してなる連結フィルムを搬送する方法であって、当該連結フィルム、とりわけフィルムの連結部に割れ、亀裂、破断のような不具合を生じさせることなく連続的にフィルム搬送することができる方法を提供することにある。また本発明の他の目的は、上記搬送方法を用いて光学フィルムを製造する方法であって、当該光学フィルム、とりわけフィルムの連結部に割れ、亀裂、破断のような不具合を生じさせることなく連続的に当該光学フィルムを製造することができる方法を提供することにある。 An object of the present invention is a method for transporting a connecting film formed by connecting a plurality of films including an optical film having a relatively low toughness (flexibility), and the connecting film, particularly a connecting portion of the film is cracked. Another object of the present invention is to provide a method capable of continuously conveying a film without causing problems such as breakage. Another object of the present invention is a method for producing an optical film by using the above-mentioned transport method, and the optical film, in particular, a continuous portion without causing problems such as cracks, cracks and breaks in the connecting portion of the film. Another object of the present invention is to provide a method capable of manufacturing the optical film.
 本発明は、以下に示すフィルムの搬送方法及び光学フィルムの製造方法を提供する。
 [1] 第1フィルム及びその長手方向終端に連結される第2フィルムを含む連結フィルムを、1以上の駆動ロールを含む搬送経路に沿って、前記1以上の駆動ロールにより連続的に搬送する方法であって、
 前記第1フィルム及び前記第2フィルムの少なくともいずれか一方は、シャルピー衝撃強さが200kJ/m2未満の光学フィルムであり、
 前記1以上の駆動ロールがすべてサクションロールである、搬送方法。
The present invention provides the following film transport method and optical film manufacturing method.
[1] A method of continuously transporting a connecting film including a first film and a second film connected to a longitudinal end thereof along the transport path including one or more driving rolls by the one or more driving rolls. Because
At least one of the first film and the second film is an optical film having a Charpy impact strength of less than 200 kJ / m 2 ,
The conveying method, wherein the one or more drive rolls are all suction rolls.
 [2] 前記第1フィルム及び前記第2フィルムのいずれか一方は前記光学フィルムであり、他方はシャルピー衝撃強さが200kJ/m2以上のリードフィルムである、[1]に記載の搬送方法。 [2] The transport method according to [1], wherein one of the first film and the second film is the optical film, and the other is a lead film having a Charpy impact strength of 200 kJ / m 2 or more.
 [3] 前記第1フィルム及び前記第2フィルムはともに前記光学フィルムであり、
 前記第1フィルムと前記第2フィルムとは同種の光学フィルムである、[1]に記載の搬送方法。
[3] The first film and the second film are both optical films,
The transport method according to [1], wherein the first film and the second film are the same type of optical film.
 [4] 少なくとも前記第2フィルムは前記光学フィルムであり、
 前記連結フィルムは、前記第2フィルムの長手方向終端に連結される第3フィルムをさらに含む、[1]~[3]のいずれかに記載の搬送方法。
[4] At least the second film is the optical film,
The transport method according to any one of [1] to [3], wherein the connection film further includes a third film connected to a longitudinal end of the second film.
 [5] 前記光学フィルムは、基材フィルムと、その上に積層されるコーティング層とを備えるものである、[1]~[4]のいずれかに記載の搬送方法。 [5] The transport method according to any one of [1] to [4], wherein the optical film includes a base film and a coating layer laminated thereon.
 [6] シャルピー衝撃強さが200kJ/m2未満の光学フィルムを作製する工程と、
 第1フィルム及びその長手方向終端に連結される第2フィルムを含む連結フィルムを、1以上の駆動ロールを含む搬送経路に沿って、前記1以上の駆動ロールにより連続的に搬送する工程と、
を含み、
 前記第1フィルム及び前記第2フィルムの少なくともいずれか一方は、前記光学フィルムであり、
 前記1以上の駆動ロールがすべてサクションロールである、光学フィルムの製造方法。
[7] 前記光学フィルムは、単層光学フィルム、多層光学フィルム、延伸された光学フィルム、及びコーティング層を有する光学フィルムからなる群より選択される、[6]に記載の製造方法。
[6] A step of producing an optical film having a Charpy impact strength of less than 200 kJ / m 2 ;
A step of continuously transporting the first film and a connecting film including the second film connected to the longitudinal end thereof by the one or more drive rolls along a transport path including one or more drive rolls;
Including
At least one of the first film and the second film is the optical film,
The method for producing an optical film, wherein the one or more drive rolls are all suction rolls.
[7] The manufacturing method according to [6], wherein the optical film is selected from the group consisting of a single-layer optical film, a multilayer optical film, a stretched optical film, and an optical film having a coating layer.
 [8] 第1光学フィルムから第2光学フィルムを作製する工程と、
 第1フィルム及びその長手方向終端に連結される第2フィルムを含む連結フィルムを、1以上の駆動ロールを含む搬送経路に沿って、前記1以上の駆動ロールにより連続的に搬送する工程と、
を含み、
 前記第1フィルム及び前記第2フィルムの少なくともいずれか一方は、シャルピー衝撃強さが200kJ/m2未満である前記第1光学フィルム又はシャルピー衝撃強さが200kJ/m2未満である前記第2光学フィルムであり、
 前記1以上の駆動ロールがすべてサクションロールである、光学フィルムの製造方法。
[8] producing a second optical film from the first optical film;
A step of continuously transporting the first film and a connecting film including the second film connected to the longitudinal end thereof by the one or more drive rolls along a transport path including one or more drive rolls;
Including
At least one of the first film and the second film has the Charpy impact strength of less than 200 kJ / m 2 or the first optical film or Charpy impact strength of less than 200 kJ / m 2 or the second optical film. A film,
The method for producing an optical film, wherein the one or more drive rolls are all suction rolls.
 [9] 前記第2光学フィルムは、単層光学フィルム、多層光学フィルム、延伸された光学フィルム、及びコーティング層を有する光学フィルムからなる群より選択される、[8]に記載の製造方法。 [9] The manufacturing method according to [8], wherein the second optical film is selected from the group consisting of a single-layer optical film, a multilayer optical film, a stretched optical film, and an optical film having a coating layer.
 本発明の方法によれば、靭性の比較的小さい、すなわち柔軟性が比較的小さくて脆い光学フィルムを含む連結フィルム、とりわけその連結部に割れ、亀裂、破断のような不具合を生じさせることなく連続的に連結フィルムを搬送することができる。これにより、当該連結フィルムを搬送する工程及び当該搬送工程を含む光学フィルムを用いた各種製造工程の安定性、製造効率及び作業効率を向上させることができるとともに、上記の不具合による光学フィルムの歩留まり低下を抑制し、光学フィルムを用いて製造する生産物の歩留まりを向上させることもできる。 According to the method of the present invention, a connecting film including an optical film having a relatively low toughness, that is, a relatively low flexibility and a brittleness, in particular, without causing problems such as cracks, cracks and fractures in the connecting portion. Thus, the connecting film can be conveyed. Thereby, while being able to improve the stability of various manufacturing processes using the optical film including the process which conveys the said connection film, and the said conveyance process, manufacturing efficiency, and work efficiency, the yield fall of the optical film by said malfunction And the yield of products manufactured using an optical film can be improved.
本発明に係るフィルムの搬送方法及び光学フィルムの製造方法に用いる搬送装置の一例を示す模式図である。It is a schematic diagram which shows an example of the conveying apparatus used for the conveying method of the film which concerns on this invention, and the manufacturing method of an optical film. 連結フィルムの一例を模式的に示す上面図である。It is a top view which shows an example of a connection film typically.
 <フィルムの搬送方法及び光学フィルムの製造方法>
 本発明のフィルムの搬送方法は、第1フィルム及びその長手方向終端に連結される第2フィルムを含む長尺の連結フィルムを、搬送装置によって構築された1以上の駆動ロールを含む搬送経路に沿って(搬送経路に通して)、当該1以上の駆動ロールにより連続的に搬送する方法に関する。第1フィルム及び第2フィルムの少なくともいずれか一方は、柔軟性が比較的小さくて脆い、シャルピー衝撃強さが200kJ/m2未満の光学フィルムである。
<Film Conveying Method and Optical Film Manufacturing Method>
In the film transport method of the present invention, a long connecting film including a first film and a second film connected to a longitudinal end thereof is moved along a transport path including one or more driving rolls constructed by a transport device. (Through a transport path) and a method of transporting continuously by the one or more drive rolls. At least one of the first film and the second film is an optical film having relatively small flexibility and being brittle and having a Charpy impact strength of less than 200 kJ / m 2 .
 駆動ロールとは、フィルム搬送のための駆動力を与える回転自在のロールを意味し、単に走行するフィルムを支持する役割を担い、フィルム搬送のための駆動力を与えることができないガイドロール(フリーロールともいう。)は駆動ロールに含まれない。駆動ロールとしては、上述のニップロールが代表的であるが、本発明では、上記1以上の駆動ロールのすべてにサクションロール(吸引ロール)を用い、上記搬送経路はニップロールを含まない。 The drive roll means a rotatable roll that gives a driving force for film conveyance, and simply plays a role of supporting a traveling film, and a guide roll (free roll) that cannot give a driving force for film conveyance. Is also not included in the drive roll. As the driving roll, the above-described nip roll is typical, but in the present invention, a suction roll (suction roll) is used for all of the one or more driving rolls, and the conveyance path does not include the nip roll.
 サクションロールとは、外周面に多数の吸引孔が形成されており、その吸引孔から空気を吸引することによって外周面に接触するフィルムを吸着することができる回転自在のロールである。サクションロールは、ニップロールと異なり、通過するフィルムの片面のみを支持するものであるが、上記吸着によってフィルムとロールとの滑りを防止することができるので、ロールの回転駆動力を吸着したフィルムに伝えることでき、これにより、適度なフィルム張力を保持しながらフィルムを搬送することができる。 The suction roll is a rotatable roll having a large number of suction holes formed on the outer peripheral surface and capable of adsorbing a film that contacts the outer peripheral surface by sucking air from the suction holes. Unlike the nip roll, the suction roll supports only one side of the passing film. However, since the above-described adsorption can prevent slippage between the film and the roll, the rotational driving force of the roll is transmitted to the adsorbed film. Thus, the film can be conveyed while maintaining an appropriate film tension.
 サクションロールとしては、特に制限されないが、例えばステンレス鋼のような金属やセラミック製のものなどを用いることができる。フィルム表面に傷や吸引痕が付くことを防止するために、ニッケルメッシュ、ゴム、ウレタン樹脂などでフィルムとの接触面を被覆したものを用いてもよい。 The suction roll is not particularly limited, but for example, a metal such as stainless steel or a ceramic one can be used. In order to prevent the film surface from being scratched or sucked, a film in which the contact surface with the film is coated with nickel mesh, rubber, urethane resin or the like may be used.
 上述のように、連結フィルムのフィルム連結部は多少の凹凸を有しているため、駆動ロールとしてフィルムを上下から押圧するニップロールを用いると、連結部がニップロール間を通過するときに凸部に圧力がかかって、連結部に割れ、亀裂(ヒビ)、破断を生じることがある。駆動ロールのすべてをサクションロールとすれば、連結部の凸部に押圧負荷がかからないため、上記のような不具合を効果的に防止することができる。 As described above, since the film connecting portion of the connecting film has some unevenness, when a nip roll that presses the film from above and below is used as a driving roll, pressure is applied to the convex portion when the connecting portion passes between the nip rolls. It may cause cracks, cracks (cracks), and breaks in the connecting part. If all of the drive rolls are suction rolls, no pressing load is applied to the convex portions of the connecting portions, so that the above-described problems can be effectively prevented.
 図1は、本発明に係るフィルムの搬送方法及び光学フィルムの製造方法に用いる搬送装置の一例を示す模式図である。図2は、連結フィルムの一例を模式的に示す上面図であり、図1に示される連結フィルムを拡大して示したものである。 FIG. 1 is a schematic diagram showing an example of a transport device used in a film transport method and an optical film manufacturing method according to the present invention. FIG. 2 is a top view schematically showing an example of the connection film, and shows the connection film shown in FIG. 1 in an enlarged manner.
 図1を参照して、本発明に係るフィルムの搬送方法の一実施形態について説明する。図1は、長尺の第1フィルム10と長尺の第2フィルム20とが連結された連結フィルムが搬送装置の搬送経路に沿って連続的に搬送されている様子を示している。図1に示される搬送装置において搬送経路は、フィルム(図1の例では第2フィルム20)をその回転によって連続的に繰り出す繰り出し装置50;走行するフィルムを片側から支持するガイドロール60;駆動ロールであるサクションロール40を含む。図示されていないが、搬送経路の下流末端には通常、フィルムを巻き取るための巻き取り装置が備えられており、搬送経路を通過し終えたフィルムは順次巻き取られ、フィルムロールとされる。図1において実線矢印は、フィルムの搬送方向又は繰り出し装置の回転方向を示す。 Referring to FIG. 1, an embodiment of a film transport method according to the present invention will be described. FIG. 1 shows a state in which a connecting film in which a long first film 10 and a long second film 20 are connected is continuously transported along a transport path of a transport device. In the transport apparatus shown in FIG. 1, the transport path is such that the film (second film 20 in the example of FIG. 1) is continuously fed out by its rotation; a guide roll 60 that supports the traveling film from one side; a drive roll The suction roll 40 is included. Although not shown in the drawing, a winding device for winding the film is usually provided at the downstream end of the transport path, and the film that has passed through the transport path is sequentially wound into a film roll. In FIG. 1, solid line arrows indicate the film conveyance direction or the rotation direction of the feeding device.
 連結フィルムの搬送は例えば次のようにして行うことができる。まず、先行して搬送される長尺の第1フィルム10を搬送経路に通し、サクションロール40の回転駆動力を利用して連続搬送を開始する。長尺の第1フィルム10は通常、ロール状に巻回されたフィルムロールとして用意される。このフィルムロールを繰り出し装置(繰り出し装置50又はこれとは別の繰り出し装置)にセットし、当該繰り出し装置から第1フィルム10を連続的に繰り出しつつ、連続搬送を行う。第1フィルム10は、シャルピー衝撃強さが200kJ/m2未満の光学フィルムであってもよいし、前述したリードフィルムのような他のフィルムであってもよい。 The connection film can be conveyed, for example, as follows. First, the long first film 10 conveyed in advance is passed through the conveyance path, and continuous conveyance is started using the rotational driving force of the suction roll 40. The long first film 10 is usually prepared as a film roll wound in a roll shape. The film roll is set in a feeding device (the feeding device 50 or another feeding device different from this), and the first film 10 is continuously fed out from the feeding device and is continuously conveyed. The first film 10 may be an optical film having a Charpy impact strength of less than 200 kJ / m 2 or may be another film such as the lead film described above.
 第1フィルム10の搬送が終わりに近づいてきたとき、このフィルムの長手方向終端と、予め準備し、繰り出し装置50にセットした別の第2フィルム20の長手方向始端とを連結してフィルム連結部を形成する。長尺の第2フィルム20も通常、ロール状に巻回されたフィルムロールとして用意される。第2フィルム20は、シャルピー衝撃強さが200kJ/m2未満の光学フィルムであってもよいし、前述したリードフィルムのような他のフィルムであってもよい。ただし、第1フィルム10が他のフィルムである場合、第2フィルム20は光学フィルムである。フィルムロールの切り替え(紙継ぎ)は、ターレットを用いて行うこともできる。 When the conveyance of the first film 10 is approaching the end, the longitudinal end of this film and the longitudinal start of another second film 20 prepared in advance and set in the feeding device 50 are connected to form a film connecting portion. Form. The long second film 20 is also usually prepared as a film roll wound in a roll shape. The second film 20 may be an optical film having a Charpy impact strength of less than 200 kJ / m 2 , or may be another film such as the lead film described above. However, when the first film 10 is another film, the second film 20 is an optical film. Switching between film rolls (paper splicing) can also be performed using a turret.
 第1フィルム10と第2フィルム20とを連結した後、引き続き、サクションロール40の回転駆動力を利用してフィルム(連結フィルム)の搬送を行う。 After connecting the 1st film 10 and the 2nd film 20, a film (connection film) is conveyed using the rotational driving force of the suction roll 40 continuously.
 また本発明は、上記フィルムの搬送方法を用いた光学フィルムの製造方法にも関連している。すなわち、図1を参照して、本発明に係る光学フィルムの製造方法は、1つの実施形態において、次の工程:
 シャルピー衝撃強さが200kJ/m2未満の光学フィルムを作製する工程と、
 第1フィルム及びその長手方向終端に連結される第2フィルムを含む連結フィルムを、1以上の駆動ロールを含む搬送経路に沿って、当該1以上の駆動ロールにより連続的に搬送する工程と、
を含む。
The present invention also relates to a method for producing an optical film using the film transport method. That is, with reference to FIG. 1, the manufacturing method of the optical film which concerns on this invention is the following process in one embodiment:
Producing an optical film having a Charpy impact strength of less than 200 kJ / m 2 ;
A step of continuously transporting the first film and the connection film including the second film connected to the longitudinal end thereof along the transport path including the one or more drive rolls by the one or more drive rolls;
including.
 ここで、上記搬送する工程における第1フィルム及び第2フィルムの少なくともいずれか一方は、上記作製する工程で作製されるシャルピー衝撃強さが200kJ/m2未満の光学フィルムである。上記搬送経路に含まれる1以上の駆動ロールは、本発明に係るフィルムの搬送方法と同じく、すべてサクションロール40である。 Here, at least one of the first film and the second film in the transporting step is an optical film having a Charpy impact strength of less than 200 kJ / m 2 manufactured in the manufacturing step. The one or more drive rolls included in the transport path are all suction rolls 40 as in the film transport method according to the present invention.
 上記光学フィルムは、後述するように、単層光学フィルム、多層光学フィルム、延伸された光学フィルム、コーティング層を有する光学フィルムなどであることができる。 The optical film can be a single layer optical film, a multilayer optical film, a stretched optical film, an optical film having a coating layer, etc., as will be described later.
 また、本発明に係る光学フィルムの製造方法は、他の実施形態において、次の工程:
 第1光学フィルムから第2光学フィルムを作製する工程と、
 第1フィルム及びその長手方向終端に連結される第2フィルムを含む連結フィルムを、1以上の駆動ロールを含む搬送経路に沿って、当該1以上の駆動ロールにより連続的に搬送する工程と、
を含む。
Moreover, the manufacturing method of the optical film which concerns on this invention is the following process in other embodiment:
Producing a second optical film from the first optical film;
A step of continuously transporting the first film and the connection film including the second film connected to the longitudinal end thereof along the transport path including the one or more drive rolls by the one or more drive rolls;
including.
 ここで、上記搬送する工程における第1フィルム及び第2フィルムの少なくともいずれか一方は、上記作製する工程で作製される第1光学フィルム又は第2光学フィルムであって、かつシャルピー衝撃強さが200kJ/m2未満である光学フィルムである。上記搬送経路に含まれる1以上の駆動ロールは、本発明に係るフィルムの搬送方法と同じく、すべてサクションロール40である。 Here, at least one of the first film and the second film in the transporting step is the first optical film or the second optical film manufactured in the manufacturing step and has a Charpy impact strength of 200 kJ. / M 2 is an optical film. The one or more drive rolls included in the transport path are all suction rolls 40 as in the film transport method according to the present invention.
 上記第1光学フィルム及び第2光学フィルムは、後述するように、それぞれ単層光学フィルム、多層光学フィルム、延伸された光学フィルム、コーティング層を有する光学フィルムなどであることができる。 The first optical film and the second optical film may be a single layer optical film, a multilayer optical film, a stretched optical film, an optical film having a coating layer, etc., as will be described later.
 本発明に係る光学フィルムの製造方法の1つの例において、第1光学フィルムはシャルピー衝撃強さが200kJ/m2未満であり、第2光学フィルムは多層光学フィルムである。本発明に係る光学フィルムの製造方法の他の例において、第2光学フィルムは延伸された光学フィルム又はコーティング層を有する光学フィルムであり、かつシャルピー衝撃強さが200kJ/m2未満である。 In one example of the method for producing an optical film according to the present invention, the first optical film has a Charpy impact strength of less than 200 kJ / m 2 and the second optical film is a multilayer optical film. In another example of the method for producing an optical film according to the present invention, the second optical film is a stretched optical film or an optical film having a coating layer, and has a Charpy impact strength of less than 200 kJ / m 2 .
 以下の記載は、本発明に係るフィルムの搬送方法及び光学フィルムの製造方法の双方に関連する。 The following description relates to both the film transport method and the optical film manufacturing method according to the present invention.
 図1及び図2に示される例においては、連結用テープ30を用いてフィルムの連結を行っているが、これに限定されず、ヒートシールによる連結のような他の方法を用いることも勿論可能である。連結用テープ30を用いると、ヒートシールによる連結と比較してフィルム連結部に生じる凸部が大きくなりやすい。従って本発明の方法は、連結用テープ30を用いた連結フィルムに適用する場合にとりわけ有効である。 In the example shown in FIGS. 1 and 2, the films are connected using the connecting tape 30, but the present invention is not limited to this, and other methods such as heat sealing can be used as a matter of course. It is. When the connecting tape 30 is used, the convex portion generated in the film connecting portion is likely to be larger than the connection by heat sealing. Therefore, the method of the present invention is particularly effective when applied to a connecting film using the connecting tape 30.
 連結用テープ30は、片面粘着テープであることができる。片面粘着テープの基材は、例えば、ポリエチレンテレフタラートのようなポリエステル系樹脂;セルロースのようなセルロース系樹脂;紙(和紙等);アルミニウム;不織布;ポリテトラフルオロエチレン、ポリ塩化ビニル、ポリ塩化ビニリデンのような塩素含有樹脂;ポリカーボネート系樹脂;ポリウレタン系樹脂;ABS樹脂;ポリスチレン系樹脂;ポリエチレン、ポリプロピレンのようなポリオレフィン系樹脂;ポリアセタール系樹脂;ポリ乳酸;ポリイミド系樹脂;ポリアミド系樹脂などで構成することができる。片面粘着テープの粘着剤層は、アクリル系、エポキシ系、ポリウレタン系、合成ゴム系、EVA系、シリコーン系、塩化ビニル系、クロロプレンゴム系、シアノアクリレート系、イソシアネート系、ポリビニルアルコール系、メラミン樹脂系などからなることができる。 The connecting tape 30 can be a single-sided adhesive tape. The base material of the single-sided adhesive tape is, for example, a polyester resin such as polyethylene terephthalate; a cellulose resin such as cellulose; paper (Japanese paper or the like); aluminum; a nonwoven fabric; polytetrafluoroethylene, polyvinyl chloride, or polyvinylidene chloride. Such as chlorine-containing resin, polycarbonate resin, polyurethane resin, ABS resin, polystyrene resin, polyolefin resin such as polyethylene and polypropylene, polyacetal resin, polylactic acid, polyimide resin, polyamide resin, etc. be able to. Adhesive layer of single-sided adhesive tape is acrylic, epoxy, polyurethane, synthetic rubber, EVA, silicone, vinyl chloride, chloroprene rubber, cyanoacrylate, isocyanate, polyvinyl alcohol, melamine resin It can consist of
 連結用テープ30を用いてフィルム連結部を形成する際には、第1フィルム10の終端における端面と第2フィルム20の始端における端面とが平行になるように各フィルムの端部を切断した後、連結用テープ30による貼合を行うことが好ましい。端部の切断及びこれに続く貼合は、手動であってもよいし、装置を用いて自動で行ってもよい。後者の場合、例えば特開2011-154371号公報に記載の装置及び方法を採用することができる。 When forming the film connecting portion using the connecting tape 30, after cutting the end portion of each film so that the end surface of the first film 10 and the end surface of the second film 20 are parallel to each other. It is preferable to perform bonding with the connecting tape 30. Manual cutting may be sufficient as the cutting | disconnection of an edge part, and the subsequent bonding, and you may carry out automatically using an apparatus. In the latter case, for example, the apparatus and method described in JP2011-154371A can be employed.
 連結フィルムを搬送する搬送経路は、2以上のサクションロール40を含んでいてもよい。連結フィルムを搬送経路に沿って連続的に搬送するときのフィルム搬送速度は、例えば2~120m/minの範囲であり、好ましくは10~50m/minの範囲である。 The transport path for transporting the connecting film may include two or more suction rolls 40. The film transport speed when the connected film is continuously transported along the transport path is, for example, in the range of 2 to 120 m / min, and preferably in the range of 10 to 50 m / min.
 サクションロール40の回転駆動力をこれに吸着した連結フィルムに効果的に伝えるためには、サクションロール40の外周面と連結フィルムとの接触面積を大きくすることが好ましい。このために、連結フィルムの搬送方向は、サクションロール40を通過するときに、10°以上、さらには30°以上、なおさらには40°以上変化することが好ましい。当該角度は、図1を参照して、サクションロール40によってフィルム搬送方向が変化する前の搬送方向(サクションロール40を通過する直前の搬送方向)と、サクションロール40によってフィルム搬送方向が変化した後の搬送方向(サクションロール40を通過した直後の搬送方向)とがなす角度θを意味する。 In order to effectively transmit the rotational driving force of the suction roll 40 to the connection film adsorbed thereto, it is preferable to increase the contact area between the outer peripheral surface of the suction roll 40 and the connection film. For this reason, it is preferable that the conveyance direction of a connection film changes 10 degrees or more, further 30 degrees or more, and still more 40 degrees or more, when passing the suction roll 40. FIG. With reference to FIG. 1, the angle refers to the conveyance direction before the film conveyance direction is changed by the suction roll 40 (the conveyance direction immediately before passing through the suction roll 40), and after the film conveyance direction is changed by the suction roll 40. Means the angle θ formed by the transport direction (the transport direction immediately after passing through the suction roll 40).
 先行して搬送される第1フィルム10を搬送経路に沿って連続的に搬送するときのフィルムの張力、及び連結フィルムを搬送経路に沿って連続的に搬送するときのフィルムの張力は、例えば20~1500N/mであり、好ましくは50~1000N/mであり、より好ましくは70~700N/mである。フィルムの張力がこのような範囲であることにより、フィルムの搬送を安定させることができ、これにより、フィルムの滑りによるシワ又は擦り傷の発生等や、当該シワ又は擦り傷の発生に起因して生じ得るフィルムの破断等を防止することができる。本発明に係る方法に供される連結フィルムを構成する第1フィルム及び第2フィルムの少なくともいずれか一方は、柔軟性が比較的小さくて脆いフィルムであるため、フィルムの張力を上記範囲とすることは、シワ又は擦り傷の発生、及びフィルムの破断等を防止するうえで有効である。 The tension of the film when the first film 10 transported in advance is continuously transported along the transport path, and the tension of the film when the connected film is transported continuously along the transport path are, for example, 20 -1500 N / m, preferably 50-1000 N / m, more preferably 70-700 N / m. When the tension of the film is in such a range, it is possible to stabilize the conveyance of the film, and this may occur due to the occurrence of wrinkles or scratches due to the sliding of the film or the occurrence of the wrinkles or scratches. Breakage of the film can be prevented. Since at least one of the first film and the second film constituting the connection film provided for the method according to the present invention is a film having relatively small flexibility and brittleness, the tension of the film is set in the above range. Is effective in preventing the occurrence of wrinkles or scratches and the breakage of the film.
 サクションロール40の直径は、例えば100~900mmであり、好ましくは200~400mmである。サクションロール40の直径がこのような範囲であることにより、フィルムの張力を適切に調整することができ、これにより、フィルムの滑りによるシワ又は擦り傷の発生等や、当該シワ又は擦り傷の発生に起因して生じ得るフィルムの破断等を防止することができる。本発明に係る方法に供される連結フィルムを構成する第1フィルム及び第2フィルムの少なくともいずれか一方は、柔軟性が比較的小さくて脆いフィルムであるため、サクションロール40の直径を上記範囲とすることは、シワ又は擦り傷の発生、及びフィルムの破断等を防止するうえで有効である。 The diameter of the suction roll 40 is, for example, 100 to 900 mm, and preferably 200 to 400 mm. When the diameter of the suction roll 40 is in such a range, the tension of the film can be adjusted appropriately, thereby causing wrinkles or scratches due to slipping of the film, or the occurrence of wrinkles or scratches. Thus, breakage of the film that may occur can be prevented. Since at least one of the first film and the second film constituting the connecting film provided for the method according to the present invention is a film having a relatively small flexibility and a brittleness, the diameter of the suction roll 40 is within the above range. It is effective to prevent the generation of wrinkles or scratches and the breakage of the film.
 サクションロール40が有する吸引孔の直径は、例えば0.1~10mmであり、好ましくは0.5~5mmである。吸引孔の直径がこのような範囲であることにより、フィルムの張力を適切に調整することができ、これにより、フィルムの滑りによるシワ又は擦り傷の発生等や、当該シワ又は擦り傷の発生に起因して生じ得るフィルムの破断等を防止することができる。本発明に係る方法に供される連結フィルムを構成する第1フィルム及び第2フィルムの少なくともいずれか一方は、柔軟性が比較的小さくて脆いフィルムであるため、吸引孔の直径を上記範囲とすることは、シワ又は擦り傷の発生、及びフィルムの破断等を防止するうえで有効である。また、吸引孔の直径が上記範囲であることにより、搬送されるフィルムの表面に吸引孔の跡が付くことを防止することもできる。 The diameter of the suction hole of the suction roll 40 is, for example, 0.1 to 10 mm, preferably 0.5 to 5 mm. When the diameter of the suction hole is in such a range, the tension of the film can be adjusted appropriately, which may be caused by the occurrence of wrinkles or scratches due to the sliding of the film or the occurrence of the wrinkles or scratches. It is possible to prevent the film from being broken. Since at least one of the first film and the second film constituting the connection film provided for the method according to the present invention is a film having relatively small flexibility and brittleness, the diameter of the suction hole is in the above range. This is effective in preventing the occurrence of wrinkles or scratches and the breakage of the film. Moreover, when the diameter of the suction hole is in the above range, it is possible to prevent the suction hole from being left on the surface of the film to be conveyed.
 サクションロール40の吸引圧は、例えば1~100kPaであり、好ましくは2~30kPaである。サクションロール40の吸引圧がこのような範囲であることにより、フィルムの張力を適切に調整することができ、これにより、フィルムの滑りによるシワ又は擦り傷の発生等や、当該シワ又は擦り傷の発生に起因して生じ得るフィルムの破断等を防止することができる。本発明に係る方法に供される連結フィルムを構成する第1フィルム及び第2フィルムの少なくともいずれか一方は、柔軟性が比較的小さくて脆いフィルムであるため、サクションロール40の吸引圧を上記範囲とすることは、シワ又は擦り傷の発生、及びフィルムの破断等を防止するうえで有効である。また、サクションロール40の吸引圧が上記範囲であることにより、搬送されるフィルムの表面に吸引孔の跡が付くことを防止することもできる。 The suction pressure of the suction roll 40 is, for example, 1 to 100 kPa, preferably 2 to 30 kPa. When the suction pressure of the suction roll 40 is within such a range, the tension of the film can be adjusted appropriately, thereby causing wrinkles or scratches due to slipping of the film, and the occurrence of the wrinkles or scratches. It is possible to prevent breakage of the film that may be caused. Since at least one of the first film and the second film constituting the connection film provided for the method according to the present invention is a film having relatively small flexibility and brittleness, the suction pressure of the suction roll 40 is in the above range. It is effective in preventing the occurrence of wrinkles or scratches and the breakage of the film. Moreover, when the suction pressure of the suction roll 40 is within the above range, it is possible to prevent the suction holes from being left on the surface of the film being conveyed.
 本発明のフィルムの搬送方法は、光学フィルムを少なくとも一部に含む連結フィルムを連続的に搬送する工程及び当該搬送工程を含む光学フィルムを用いたあらゆる製造工程に適用することができる。具体例を挙げれば、光学フィルムを単に搬送する工程、光学フィルムに何らかの処理(例えばコーティング処理や延伸処理)を施す工程、光学フィルムを他の部材(フィルム等)に貼合する工程などである。また、上記特許文献4、上記特許文献5、特開2011-154371号公報、国際公開第09/128384号、国際公開第12/160966号、特開2009-276754号公報、特開2012-061837号公報に記載の工程などにも適用することができる。 The film transport method of the present invention can be applied to a process of continuously transporting a connecting film including at least a part of an optical film and any manufacturing process using an optical film including the transport process. Specific examples include a step of simply transporting the optical film, a step of applying some kind of treatment (for example, coating treatment or stretching treatment) to the optical film, and a step of bonding the optical film to another member (film or the like). In addition, Patent Document 4, Patent Document 5, JP 2011-154371 A, International Publication No. 09/128384, International Publication No. 12/160966, JP 2009-276754 A, JP 2012-061837 A. It can also be applied to the processes described in the publication.
 <連結フィルム>
 上述のように連結フィルムは、第1フィルム10及びその長手方向終端に連結される第2フィルム20を含むものである。連結フィルムは、必要に応じて、第2フィルム20の長手方向終端に連結される第3フィルム、第3フィルムの長手方向終端に連結される第4フィルム、・・・を含むことができる。
<Connecting film>
As described above, the connection film includes the first film 10 and the second film 20 connected to the end in the longitudinal direction. The connection film may include a third film connected to the end of the second film 20 in the longitudinal direction, a fourth film connected to the end of the third film in the longitudinal direction, if necessary.
 第1フィルム10及び第2フィルム20の少なくともいずれか一方は、シャルピー衝撃強さが200kJ/m2未満の光学フィルムである。一方のフィルムにのみ光学フィルムを用いる場合、他方のフィルムは、前述のリードフィルムであることができる。第1フィルム10がリードフィルムであり、第2フィルム20が光学フィルムである場合とは、例えば、まずリードフィルムを搬送経路に通し(又は予め搬送経路内に通しておき)、その終端に光学フィルムを連結して引き続きフィルムを搬送する場合などである。第1フィルム10が光学フィルムであり、第2フィルム20がリードフィルムである場合とは、例えば、搬送工程を一旦停止する際に、後の再稼動に備えて、光学フィルムの終端にリードフィルムを連結し、このリードフィルムが搬送経路内に存在する状態で搬送工程を停止する場合などである。この場合、リードフィルムの終端に新たな光学フィルムを連結して搬送工程を再稼働する。 At least one of the first film 10 and the second film 20 is an optical film having a Charpy impact strength of less than 200 kJ / m 2 . When an optical film is used for only one film, the other film can be the lead film described above. When the first film 10 is a lead film and the second film 20 is an optical film, for example, the lead film is first passed through the transport path (or previously passed through the transport path), and the optical film is terminated at the end. For example, when the film is continuously conveyed. When the first film 10 is an optical film and the second film 20 is a lead film, for example, when the transport process is temporarily stopped, the lead film is placed at the end of the optical film in preparation for a subsequent restart. For example, when the lead film is connected and the transport process is stopped in a state where the lead film exists in the transport path. In this case, a new optical film is connected to the end of the lead film and the transport process is restarted.
 第1フィルム10及び第2フィルム20の双方が光学フィルムであってもよい。この場合、これらの光学フィルムは異種の光学フィルムであってもよいし、同種の光学フィルムであってもよい。光学フィルムが同種であるとは、搬送に際して準備されるフィルムロールが別であること以外は同じ(機能、構成、スペックが同じ)であることを意味する。 Both the first film 10 and the second film 20 may be optical films. In this case, these optical films may be different optical films or the same kind of optical films. The same kind of optical film means the same (functions, configurations, and specifications are the same) except that the film rolls prepared for conveyance are different.
 連結フィルムが第3フィルムを含む場合の具体的構成としては、第1フィルム/第2フィルム/第3フィルムが、リードフィルム/光学フィルム/リードフィルム、リードフィルム/光学フィルム/光学フィルム、光学フィルム/光学フィルム/リードフィルム、光学フィルム/光学フィルム/光学フィルムである場合などを挙げることができる。 As a specific configuration in the case where the connecting film includes the third film, the first film / second film / third film are lead film / optical film / lead film, lead film / optical film / optical film, optical film / Examples thereof include an optical film / lead film and an optical film / optical film / optical film.
 本発明における「シャルピー衝撃強さ」とは、JIS K 7111:2006「プラスチック-シャルピー衝撃特性の求め方-第1部:非計装化衝撃試験」に規定されているプラスチックの衝撃吸収エネルギーを測定するためのシャルピー衝撃試験に準拠して測定される衝撃吸収エネルギーの値である。このシャルピー衝撃試験では、試験片を打ち抜くハンマー(振り子)が、試験片をその長さ方向に直交する幅方向に打ち抜く(破断する)のに要するエネルギーを衝撃吸収エネルギーとする。上記JIS規格には、ノッチ付き試験片を用いる場合とノッチなし試験片を用いる場合について規定されているが、本発明ではフィルムを対象とするので、ノッチなし試験片を採用する。 “Charpy impact strength” in the present invention refers to the impact absorption energy of plastics stipulated in JIS K 7111: 2006 “Plastics-Determination of Charpy impact properties-Part 1: Uninstrumented impact test” It is a value of shock absorption energy measured in accordance with a Charpy impact test. In this Charpy impact test, the energy required for a hammer (pendulum) for punching a test piece to punch (break) the test piece in the width direction perpendicular to its length direction is taken as shock absorption energy. The JIS standard defines a case where a notched test piece is used and a case where a notched test piece is used, but since the present invention is intended for a film, the notched test piece is adopted.
 上記JIS規格に準拠した具体的な測定手順について述べると、まずフィルムから幅10mm程度、長さ82mm程度の試験片を打ち抜くか又は切り出す。この際、試験片として、フィルムの機械的な押出し方向(MD)を長さ方向(一辺82mmの方向)とする第1試験片、及びMDと直交する方向(TD)を長さ方向(一辺82mmの方向)とする第2試験片の2種類を、フィルムの一方の面からハンマーを打ち当てる場合と、他方の面から打ち当てる場合とで試験を行うためにそれぞれ2片ずつ用意する。次に、ハンマーで打ち抜くときの衝撃により試験片が動かないように、試験片の長辺方向両端を支持台に固定し、シャルピー衝撃試験機にて試験片の破断に要するエネルギー(衝撃吸収エネルギー)を測定する。この衝撃吸収エネルギーが大きいほど、試験片、すなわちフィルムが割れにくいことを意味する。このとき、フィルムのMDを長さ方向とする第1試験片は、MDと直交する方向、すなわちTDに沿って破断するので、TDの衝撃吸収エネルギーを与え、フィルムのTDを長さ方向とする第2試験片は、MDに沿って破断するので、MDの衝撃吸収エネルギーを与える。 Describing a specific measurement procedure based on the JIS standard, first, a test piece having a width of about 10 mm and a length of about 82 mm is punched or cut out from the film. At this time, as a test piece, a first test piece having a length direction (direction of 82 mm on one side) as a mechanical extrusion direction (MD) of the film and a length direction (82 mm on a side) perpendicular to MD (TD). Two types of second test specimens, each having a direction of 2), are prepared in order to test each of a case in which a hammer is hit from one side of the film and a case in which it is hit from the other side. Next, to prevent the specimen from moving due to the impact of punching with a hammer, both ends of the specimen in the long side direction are fixed to the support base, and the energy required to break the specimen with the Charpy impact tester (impact absorption energy) Measure. It means that a test piece, ie, a film, is hard to break, so that this shock absorption energy is large. At this time, since the first test piece having the MD of the film in the length direction is broken along the direction orthogonal to the MD, that is, along the TD, the impact absorption energy of TD is given and the TD of the film is set to the length direction. Since the 2nd test piece fractures along MD, it gives impact absorption energy of MD.
 本発明において「シャルピー衝撃強さが200kJ/m2未満の光学フィルム」とは、上の方法によって測定される、フィルムの一方の面からハンマーを打ち当てた場合のMD及びTDにおける衝撃吸収エネルギーの値、並びにフィルムの他方の面からハンマーを打ち当てた場合のMD及びTDにおける衝撃吸収エネルギーの値のうち少なくとも一つが200kJ/m2未満である光学フィルムと定義される。勿論、フィルムの一方の面からハンマーを打ち当てた場合のMD及びTDの衝撃吸収エネルギーの値、並びにフィルムの他方の面からハンマーを打ち当てた場合のMD及びTDの衝撃吸収エネルギーの値の全てが200kJ/m2未満である光学フィルムも、有利に対象とすることができる。光学フィルムのシャルピー衝撃強さが小さいほど、割れ、亀裂、破断が生じやすいため、本発明の方法を適用するメリットは大きいといえる。光学フィルムのシャルピー衝撃強さは、190kJ/m2未満であれば本発明の効果がより大きく、180kJ/m2未満であれば効果がさらに大きい。 In the present invention, “an optical film having a Charpy impact strength of less than 200 kJ / m 2 ” means the impact absorption energy in MD and TD when a hammer is hit from one side of the film, measured by the above method. It is defined as an optical film in which at least one of the value and the value of impact absorption energy in MD and TD when a hammer is hit from the other side of the film is less than 200 kJ / m 2 . Of course, all the values of the impact absorption energy of MD and TD when the hammer is hit from one side of the film, and the values of the impact absorption energy of MD and TD when the hammer is hit from the other side of the film Optical films having a <200 kJ / m 2 can also be advantageously targeted. As the Charpy impact strength of the optical film is smaller, cracks, cracks, and breaks are more likely to occur, so the merit of applying the method of the present invention is great. If the Charpy impact strength of the optical film is less than 190 kJ / m 2 , the effect of the present invention is greater, and if it is less than 180 kJ / m 2 , the effect is even greater.
 リードフィルムを構成する材料としては、従来公知のものを使用することができるが、リードフィルムは、シャルピー衝撃強さが200kJ/m2以上である強靭性のフィルムであることが好ましい。シャルピー衝撃強さが200kJ/m2以上であるリードフィルムを用いると、割れにくいため、それ自体及び連結フィルムとしたときの取扱性が向上する。また、連結フィルムの割れ、亀裂、破断をより生じにくくすることができる。ここでいう「シャルピー衝撃強さが200kJ/m2以上」とは、上の方法によって測定される、フィルムの一方の面からハンマーを打ち当てた場合のMD及びTDにおける衝撃吸収エネルギーの値、並びにフィルムの他方の面からハンマーを打ち当てた場合のMD及びTDにおける衝撃吸収エネルギーの値の全てが200kJ/m2以上であることを意味する。 As a material constituting the lead film, conventionally known materials can be used, but the lead film is preferably a tough film having a Charpy impact strength of 200 kJ / m 2 or more. When a lead film having a Charpy impact strength of 200 kJ / m 2 or more is used, it is difficult to break, so that handling properties when used as a connecting film itself are improved. In addition, the connection film can be made less susceptible to cracks, cracks and breaks. Here, “Charpy impact strength is 200 kJ / m 2 or more” means the value of impact absorption energy in MD and TD when a hammer is hit from one side of the film, measured by the above method, and It means that all the values of the impact absorption energy in MD and TD when hitting a hammer from the other side of the film are 200 kJ / m 2 or more.
 リードフィルムは樹脂フィルムであることができ、上記範囲のシャルピー衝撃強さを達成し得る樹脂材料として、例えば、ポリエチレンテレフタラートのようなポリエステル系樹脂;ポリ塩化ビニルのようなポリ塩化ビニル系樹脂;ポリエチレン、ポリプロピレンのようなポリオレフィン系樹脂などを挙げることができる。リードフィルムのシャルピー衝撃強さは、より好ましくは250kJ/m2以上であり、さらに好ましくは300kJ/m2以上である。 The lead film can be a resin film, and as a resin material capable of achieving the Charpy impact strength in the above range, for example, a polyester resin such as polyethylene terephthalate; a polyvinyl chloride resin such as polyvinyl chloride; Examples thereof include polyolefin resins such as polyethylene and polypropylene. The Charpy impact strength of the lead film is more preferably 250 kJ / m 2 or more, and further preferably 300 kJ / m 2 or more.
 <光学フィルム>
 次に、本発明において使用し得る光学フィルムについて説明する。
<Optical film>
Next, optical films that can be used in the present invention will be described.
 (1)単層光学フィルム及びその作製方法
 単層光学フィルムは、透光性(好ましくは透明性)を有する限り特に限定されず、有機材料からなるフィルムであってもよいし、無機材料からなるフィルムであってもよい。無機材料からなるフィルムの好適な例は、透明性の観点から、ガラス材料からなるフィルムである。ガラス材料からなるフィルムとしては、特開2012-247785号公報、国際公開第12/090693号、特開平08-283041号公報などに記載されているガラスフィルムが例示される。
(1) Single-layer optical film and production method thereof The single-layer optical film is not particularly limited as long as it has translucency (preferably transparency), and may be a film made of an organic material or an inorganic material. It may be a film. A suitable example of a film made of an inorganic material is a film made of a glass material from the viewpoint of transparency. Examples of the film made of a glass material include glass films described in JP 2012-247785 A, International Publication No. 12/090693, JP 08-283041 A, and the like.
 有機材料からなるフィルムとしては、各種の熱可塑性樹脂フィルムを挙げることができる。熱可塑性樹脂の具体例は、例えば、鎖状ポリオレフィン系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂など)のようなポリオレフィン系樹脂;ポリエチレンテレフタレートのようなポリエステル系樹脂;メタクリル酸メチル系樹脂のような(メタ)アクリル系樹脂;セルローストリアセテート、セルロースジアセテートのようなセルロース系樹脂;ポリカーボネート系樹脂;ポリビニルアルコール系樹脂;ポリ酢酸ビニル系樹脂;ポリアリレート系樹脂;ポリスチレン系樹脂;ポリエーテルスルホン系樹脂;ポリスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;及びこれらの混合物、共重合物などを含む。 Examples of the film made of an organic material include various thermoplastic resin films. Specific examples of the thermoplastic resin include, for example, a polyolefin resin such as a chain polyolefin resin and a cyclic polyolefin resin (such as a norbornene resin); a polyester resin such as polyethylene terephthalate; and a methyl methacrylate resin. (Meth) acrylic resins; cellulose resins such as cellulose triacetate and cellulose diacetate; polycarbonate resins; polyvinyl alcohol resins; polyvinyl acetate resins; polyarylate resins; polystyrene resins; Polysulfone resins; polyamide resins; polyimide resins; and mixtures and copolymers thereof.
 なお、本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリロイル」や「(メタ)アクリレート」などというときについても同様である。 In this specification, “(meth) acryl” means at least one selected from acrylic and methacrylic. The same applies to cases such as “(meth) acryloyl” and “(meth) acrylate”.
 光学フィルムは、必要に応じて、各種の添加剤を含有することができる。添加剤の具体例は、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、赤外線吸収剤、帯電防止剤、酸化防止剤、ゴム弾性体粒子、滑剤等を含む。 The optical film can contain various additives as required. Specific examples of additives include fluorescent brighteners, dispersants, heat stabilizers, light stabilizers, ultraviolet absorbers, infrared absorbers, antistatic agents, antioxidants, rubber elastic particles, lubricants, and the like.
 紫外線吸収剤は、波長400nm以下の紫外線を吸収する化合物である。例えば、光学フィルムをポリビニルアルコール系偏光フィルムの保護フィルムとして用いる場合、紫外線吸収剤を配合することで、偏光フィルムにこの保護フィルムが貼合された偏光板の耐久性を向上させることができる。 The ultraviolet absorber is a compound that absorbs ultraviolet rays having a wavelength of 400 nm or less. For example, when the optical film is used as a protective film for a polyvinyl alcohol polarizing film, the durability of the polarizing plate in which the protective film is bonded to the polarizing film can be improved by adding an ultraviolet absorber.
 紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤などを使用することができ、具体例を挙げれば、2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕;2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール;2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール;2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン;2,2’,4,4’-テトラヒドロキシベンゾフェノンなどである。これらのなかでも、2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕は、好ましい紫外線吸収剤の一つである。 As the UV absorber, a benzophenone UV absorber, a benzotriazole UV absorber, an acrylonitrile UV absorber, or the like can be used. As a specific example, 2,2′-methylenebis [4- (1, 1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol]; 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol; 2,2′-dihydroxy-4,4′-dimethoxybenzophenone; 2,2 ′, 4 4,4'-tetrahydroxybenzophenone. Among these, 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol] is one of preferable ultraviolet absorbers. One.
 紫外線吸収剤の配合量は、光学フィルムの波長370nm以下における光線透過率が、好ましくは10%以下、より好ましくは5%以下、さらに好ましくは2%以下となるように選択することが好ましい。紫外線吸収剤を含有させる方法としては、例えば、紫外線吸収剤を予め樹脂中に配合してペレット化しておき、これを溶融押出などによってフィルムに成形する方法、樹脂の溶融押出成形時に直接、紫外線吸収剤を添加する方法などが挙げられる。 The blending amount of the ultraviolet absorber is preferably selected so that the light transmittance at a wavelength of 370 nm or less of the optical film is preferably 10% or less, more preferably 5% or less, and further preferably 2% or less. Examples of the method of containing the ultraviolet absorber include a method in which the ultraviolet absorber is pre-blended into a resin and pelletized, and this is molded into a film by melt extrusion or the like. And a method of adding an agent.
 赤外線吸収剤は、波長800nm以上の赤外線を吸収する化合物である。例えば、ニトロソ化合物及びその金属錯塩;シアニン系化合物;スクワリリウム系化合物;チオールニッケル錯塩系化合物;フタロシアニン系化合物;ナフタロシアニン系化合物;トリアリールメタン系化合物;イモニウム系化合物;ジイモニウム系化合物;ナフトキノン系化合物;アントラキノン系化合物;アミノ化合物;アミニウム塩系化合物;カーボンブラック;酸化インジウムスズ;酸化アンチモンスズ;周期律表の4A族、5A族若しくは6A族に属する金属の酸化物、炭化物又はホウ化物などを挙げることができる。赤外線吸収剤は、赤外線(波長約800~1100nmの範囲の光)全体を吸収できるように選択することが好ましく、2種類以上を併用してもよい。赤外線吸収剤の配合量は、例えば、光学フィルムの波長800nm以上における光線透過率が10%以下となるように選択することが好ましい。 An infrared absorber is a compound that absorbs infrared rays having a wavelength of 800 nm or more. For example, a nitroso compound and a metal complex thereof; a cyanine compound; a squarylium compound; a thiol nickel complex compound; a phthalocyanine compound; a naphthalocyanine compound; a triarylmethane compound; an imonium compound; Anthraquinone compounds; amino compounds; aminium salt compounds; carbon blacks; indium tin oxide; antimony tin oxides; oxides, carbides or borides of metals belonging to groups 4A, 5A or 6A of the periodic table Can do. The infrared absorber is preferably selected so that it can absorb the entire infrared ray (light having a wavelength in the range of about 800 to 1100 nm), and two or more types may be used in combination. The blending amount of the infrared absorber is preferably selected so that, for example, the light transmittance at a wavelength of 800 nm or more of the optical film is 10% or less.
 光学フィルムが熱可塑性樹脂フィルム、とりわけ(メタ)アクリル系樹脂フィルムである場合、ゴム弾性体粒子を配合することが、その製膜性を向上させるうえで好ましい。ゴム弾性体粒子とは、ゴム弾性を示す層を含む粒子である。ゴム弾性体粒子は、ゴム弾性を示す層のみからなる粒子であってもよいし、ゴム弾性を示す層とともに他の層を有する多層構造の粒子であってもよい。ゴム弾性体としては、例えば、オレフィン系弾性重合体、ジエン系弾性重合体、スチレン-ジエン系弾性共重合体、アクリル系弾性重合体などが挙げられる。なかでも、光学フィルムの表面硬度、耐光性及び透明性の観点から、アクリル系弾性重合体が好ましく用いられる。 When the optical film is a thermoplastic resin film, particularly a (meth) acrylic resin film, it is preferable to add rubber elastic particles in order to improve the film forming property. Rubber elastic particles are particles including a layer exhibiting rubber elasticity. The rubber elastic particles may be particles composed of only a layer exhibiting rubber elasticity, or may be particles having a multilayer structure having other layers together with a layer exhibiting rubber elasticity. Examples of rubber elastic bodies include olefin-based elastic polymers, diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers. Of these, acrylic elastic polymers are preferably used from the viewpoints of surface hardness, light resistance and transparency of the optical film.
 アクリル系弾性重合体は、アクリル酸アルキルを主体とする重合体で構成することができる。アクリル酸アルキルを主体とする重合体は、アクリル酸アルキルの単独重合体であってもよいし、アクリル酸アルキル50重量%以上とそれ以外の単量体50重量%以下との共重合体であってもよい。アクリル酸アルキルとしては通常、そのアルキル基の炭素数が4~8のものが用いられる。アクリル酸アルキル以外の単量体を共重合させる場合、その例としては、メタクリル酸メチルやメタクリル酸エチルのようなメタクリル酸アルキル;スチレンやアルキルスチレンのようなスチレン系単量体;アクリロニトリルやメタクリロニトリルのような不飽和ニトリルなどの単官能単量体、また、(メタ)アクリル酸アリルや(メタ)アクリル酸メタリルのような不飽和カルボン酸のアルケニルエステル;マレイン酸ジアリルのような二塩基酸のジアルケニルエステル;アルキレングリコールジ(メタ)アクリレートのようなグリコール類の不飽和カルボン酸ジエステルなどの多官能単量体が挙げられる。 The acrylic elastic polymer can be composed of a polymer mainly composed of alkyl acrylate. The polymer mainly composed of alkyl acrylate may be a homopolymer of alkyl acrylate, or a copolymer of 50% by weight or more of alkyl acrylate and 50% by weight or less of other monomers. May be. As the alkyl acrylate, an alkyl acrylate having 4 to 8 carbon atoms is usually used. Examples of copolymerization of monomers other than alkyl acrylate include alkyl methacrylates such as methyl methacrylate and ethyl methacrylate; styrene monomers such as styrene and alkyl styrene; acrylonitrile and methacrylo Monofunctional monomers such as unsaturated nitriles such as nitriles, and alkenyl esters of unsaturated carboxylic acids such as allyl (meth) acrylate and methallyl (meth) acrylate; dibasic acids such as diallyl maleate And polyfunctional monomers such as unsaturated carboxylic acid diesters of glycols such as alkylene glycol di (meth) acrylate.
 アクリル系弾性重合体を含むゴム弾性体粒子は、アクリル系弾性重合体の層を有する多層構造の粒子であることが好ましい。具体的には、アクリル系弾性体の外側にメタクリル酸アルキルを主体とする硬質の重合体層を有する2層構造のものや、さらにアクリル系弾性体の内側にメタクリル酸アルキルを主体とする硬質の重合体層を有する3層構造のものが挙げられる。アクリル系弾性体の外側又は内側に形成される硬質の重合体層を構成するメタクリル酸アルキルを主体とする重合体は、好ましくはメタクリル酸メチルを主体とする重合体である。多層構造のアクリル系ゴム弾性体粒子は、例えば特公昭55-027576号公報に記載の方法によって製造することができる。 The rubber elastic particles containing the acrylic elastic polymer are preferably multi-layered particles having an acrylic elastic polymer layer. Specifically, a two-layer structure having a hard polymer layer mainly composed of alkyl methacrylate on the outside of the acrylic elastic body, or a hard body mainly composed of alkyl methacrylate inside the acrylic elastic body. The thing of the 3 layer structure which has a polymer layer is mentioned. The polymer mainly composed of alkyl methacrylate constituting the hard polymer layer formed outside or inside the acrylic elastic body is preferably a polymer mainly composed of methyl methacrylate. Acrylic rubber elastic particles having a multilayer structure can be produced by a method described in, for example, Japanese Patent Publication No. 55-027576.
 光学フィルムに滑剤を配合すると、とりわけ(メタ)アクリル系樹脂フィルムである場合においては、光学フィルム表面の滑り性を向上させ、フィルムロールとしたときの巻き締まり、ひいてはフィルムロールとした状態での荷姿を改善することができる。滑剤と上記ゴム弾性体粒子とを併用すると滑り性向上効果をさらに高めることができる。滑剤としては、ステアリン酸系化合物、(メタ)アクリル系化合物、エステル系化合物などがあり、なかでも、ステアリン酸系化合物が好ましく用いられる。 When a lubricant is added to the optical film, especially in the case of a (meth) acrylic resin film, the slipperiness of the surface of the optical film is improved, and the film roll is tightened. The appearance can be improved. When the lubricant and the rubber elastic body particles are used in combination, the effect of improving slipperiness can be further enhanced. As the lubricant, there are a stearic acid compound, a (meth) acrylic compound, an ester compound, etc. Among them, a stearic acid compound is preferably used.
 単層光学フィルムの厚みは、通常2~300μm程度であり、好ましくは200μm以下、より好ましくは150μm以下である。 The thickness of the single-layer optical film is usually about 2 to 300 μm, preferably 200 μm or less, more preferably 150 μm or less.
 単層光学フィルムは、溶融押出法、溶剤キャスト法など、任意の方法で作製することができる。例えば溶融押出法の場合、溶融押出しされた樹脂(熱可塑性樹脂)を2本の金属製ロールで挟み込んだ状態で製膜する方法が好ましく採用される。この場合、金属製ロールは、鏡面ロールであることが好ましく、これにより、表面平滑性に優れる光学フィルムを得ることができる。 The single-layer optical film can be produced by an arbitrary method such as a melt extrusion method or a solvent casting method. For example, in the case of the melt extrusion method, a method of forming a film in a state in which a melt-extruded resin (thermoplastic resin) is sandwiched between two metal rolls is preferably employed. In this case, the metal roll is preferably a mirror roll, whereby an optical film having excellent surface smoothness can be obtained.
 (2)多層光学フィルム及びその作製方法
 光学フィルムは、2層、3層又はそれ以上の多層構造からなる多層光学フィルムであってもよい。多層光学フィルムの構成は特に制限されないが、例えば、次のような実施形態を例示することができる。
(2) Multilayer optical film and method for producing the same The optical film may be a multilayer optical film having a multilayer structure of two layers, three layers or more. Although the structure of a multilayer optical film is not specifically limited, For example, the following embodiment can be illustrated.
 〔a〕同種であるが、互いに異なる樹脂からなる層を組み合わせて共押出しした多層光学フィルム(例えば、(メタ)アクリル系樹脂からなる第1層と、これとは異なる(メタ)アクリル系樹脂からなる第2層とを含む多層光学フィルム)、
 〔b〕異種の樹脂からなる層を組み合わせて共押出しした多層光学フィルム(例えば、(メタ)アクリル系樹脂からなる第1層と、ポリスチレン系樹脂からなる第2層とを含む多層光学フィルム)、
 〔c〕同種の(又は同じ)樹脂からなるが、添加剤の種類や含有量が互いに異なる層を組み合わせて共押出しした多層光学フィルム、
 〔d〕上述の単層光学フィルムや多層光学フィルムを押出ラミネーションによって重ね合わせた多層光学フィルム、
 〔e〕上述の単層光学フィルムを接着剤や粘着剤を介して貼合した多層光学フィルム、あるいは、単層光学フィルムと多層光学フィルム、多層光学フィルムと多層光学フィルムを接着剤や粘着剤を介して貼合した多層光学フィルム。
[A] A multilayer optical film of the same type, but coextruded by combining layers made of different resins (for example, a first layer made of (meth) acrylic resin and a different (meth) acrylic resin) A multilayer optical film comprising a second layer,
[B] A multilayer optical film (for example, a multilayer optical film including a first layer made of (meth) acrylic resin and a second layer made of polystyrene resin) coextruded by combining layers made of different resins.
[C] A multilayer optical film made of the same type (or the same) resin but coextruded by combining layers having different types and contents of additives,
[D] a multilayer optical film in which the above-mentioned single-layer optical film or multilayer optical film is laminated by extrusion lamination,
[E] A multilayer optical film obtained by laminating the above-described single-layer optical film via an adhesive or a pressure-sensitive adhesive, or a single-layer optical film and a multilayer optical film, or a multilayer optical film and a multilayer optical film with an adhesive or pressure-sensitive adhesive. Multi-layer optical film bonded through.
 上記〔a〕~〔c〕の共押出しした多層光学フィルムは、各層を形成する樹脂組成物を多層共押出しすること以外は、単層光学フィルムと同様にして作製することができる。 The multilayer optical film co-extruded in the above [a] to [c] can be produced in the same manner as the single-layer optical film except that the resin composition forming each layer is multilayer co-extruded.
 上記〔d〕の多層光学フィルムは、同種のフィルムを重ね合わせたものであってもよいし、異種のフィルムを重ね合わせたものであってもよい。上記〔d〕の多層光学フィルムは、溶融押出しした光学フィルムに、工程中のある側より別の光学フィルムを繰出して積層し、加圧して貼り合わせ、冷却を行い、巻き取り機によってロール状に巻き取ることで作製することができる。あるいは、工程中の一方の側から光学フィルムを繰出し、その上に樹脂層を溶融押出し、さらに工程中の他方の側より別の光学フィルムを繰出して上記樹脂層の上に積層し、同様に加圧して貼り合わせ、冷却を行い、巻き取り機によってロール状に巻き取ることで作製することができる。ラミネートする各フィルム間の貼り合わせ接着強度を向上させるために、ラミネーションに先立って又はラミネーションと同時に、ラミネートする層のいずれか一方又は全てにコロナ処理、オゾン処理、アンカーコート剤処理、接着剤コーティング処理等の方法により、適宜接着性改善処理を行うことが好ましい場合がある。また、積層される層の数は特に制限されず、適宜必要な層を積層したり、ラミネート時に必要に応じて上述の処理を施してもよい。 The multilayer optical film of [d] may be a laminate of the same type of film, or may be a laminate of different types of films. The multilayer optical film of [d] above is obtained by laminating and laminating another optical film from a certain side in the process on the melt-extruded optical film, pressing and bonding, cooling, and rolling it with a winder It can be produced by winding. Alternatively, the optical film is fed out from one side in the process, the resin layer is melt-extruded thereon, and another optical film is fed out from the other side in the process, laminated on the resin layer, and added in the same manner. It can be produced by pressing and bonding, cooling, and winding into a roll with a winder. Corona treatment, ozone treatment, anchor coating treatment, adhesive coating treatment on any or all of the layers to be laminated prior to or simultaneously with the lamination in order to improve the adhesion strength between the laminated films. In some cases, it is preferable to appropriately perform the adhesion improving treatment by such a method. The number of layers to be laminated is not particularly limited, and a necessary layer may be appropriately laminated, or the above-described treatment may be performed as necessary at the time of lamination.
 上記〔e〕の多層光学フィルムは、単層光学フィルム同士を貼合する場合、同種の樹脂(同一の樹脂である場合、及び異なる樹脂である場合を含む。)からなる層の組み合わせであってもよいし、異種の樹脂からなる層を組み合わせであってもよい。また、単層光学フィルムと多層光学フィルムの組み合わせや、多層光学フィルムと多層光学フィルムの組み合わせであってもよいことは上述のとおりである。〔e〕の多層光学フィルムの一例は、偏光フィルムの少なくとも一方の面に接着剤又は粘着剤を介して熱可塑性樹脂フィルムを貼合したものである。偏光フィルムは、ポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させ、所定の偏光特性を付与したフィルムであることができる。 The multilayer optical film of [e] above is a combination of layers made of the same type of resin (including the same resin and different resins) when single-layer optical films are bonded together. Alternatively, a combination of different resin layers may be used. Moreover, as above-mentioned, the combination of a single layer optical film and a multilayer optical film, and the combination of a multilayer optical film and a multilayer optical film may be sufficient. An example of the multilayer optical film of [e] is one in which a thermoplastic resin film is bonded to at least one surface of a polarizing film via an adhesive or a pressure-sensitive adhesive. The polarizing film can be a film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film to give a predetermined polarizing property.
 接着剤としては、水系接着剤や無溶剤型接着剤を用いることができる。水系接着剤は、例えば、水溶性の架橋性エポキシ系樹脂又は親水性のウレタン系樹脂のような接着剤成分を水に溶解したもの、又は当該接着剤成分を水に分散させたものであることができる。 As the adhesive, a water-based adhesive or a solventless adhesive can be used. The water-based adhesive is, for example, an adhesive component such as a water-soluble crosslinkable epoxy resin or a hydrophilic urethane resin dissolved in water, or the adhesive component dispersed in water. Can do.
 無溶剤型接着剤は、有意量の溶剤を含まず、加熱又は活性エネルギー線(例えば、紫外線、可視光、電子線、X線等)の照射により反応硬化する硬化性成分(モノマー又はオリゴマー)を含み、当該硬化性成分の硬化により接着剤層を形成するものであり、典型的には、上記硬化性成分と重合開始剤とを含むものであり得る。 Solventless adhesives do not contain a significant amount of solvent, and contain a curable component (monomer or oligomer) that is reactively cured by heating or irradiation with active energy rays (eg, ultraviolet rays, visible light, electron beams, X-rays, etc.). And an adhesive layer is formed by curing the curable component, and typically includes the curable component and a polymerization initiator.
 上記硬化性成分としては、エポキシ系樹脂、ウレタン系樹脂、シアノアクリレート系樹脂、(メタ)アクリルアミド系樹脂などを挙げることができる。 Examples of the curable component include epoxy resins, urethane resins, cyanoacrylate resins, (meth) acrylamide resins, and the like.
 また、粘着剤としては、例えば、(メタ)アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂又はポリエーテル系樹脂などのベースポリマーと、架橋剤とを含む粘着剤組成物を用いることができる。粘着剤組成物は、例えば帯電防止剤などの添加剤をさらに含むことができる。粘着剤組成物は、熟成によって架橋剤による反応を十分に進行させたものであることが好ましい。熟成条件は特に制限されないが、例えば、温度23℃、相対湿度65%の環境下において数時間~数日熟成させることができる。 Further, as the pressure-sensitive adhesive, for example, a pressure-sensitive adhesive composition containing a base polymer such as a (meth) acrylic resin, a silicone-based resin, a polyester-based resin, a polyurethane-based resin, or a polyether-based resin, and a crosslinking agent is used. Can do. The pressure-sensitive adhesive composition can further contain an additive such as an antistatic agent. The pressure-sensitive adhesive composition is preferably one in which the reaction with the crosslinking agent has sufficiently progressed by aging. The aging conditions are not particularly limited. For example, aging can be performed for several hours to several days in an environment of a temperature of 23 ° C. and a relative humidity of 65%.
 光学フィルムは、以上のようにして作製された熱可塑性樹脂フィルムに対して延伸処理を施したものであってもよい。所望の光学特性を有する光学フィルムを得るために延伸処理を要することがある。延伸処理としては、一軸延伸や二軸延伸などが挙げられる。延伸方向としては、未延伸フィルムの機械流れ方向(MD)、これに直交する方向(TD)、機械流れ方向(MD)に斜交する方向などが挙げられる。二軸延伸は、2つの延伸方向に同時に延伸する同時二軸延伸でもよく、所定方向に延伸した後で他の方向に延伸する逐次二軸延伸であってもよい。 The optical film may be obtained by subjecting the thermoplastic resin film produced as described above to a stretching treatment. A stretching process may be required to obtain an optical film having desired optical properties. Examples of the stretching treatment include uniaxial stretching and biaxial stretching. Examples of the stretching direction include a machine flow direction (MD) of an unstretched film, a direction orthogonal to the machine flow direction (TD), and a direction oblique to the machine flow direction (MD). Biaxial stretching may be simultaneous biaxial stretching in which stretching is performed simultaneously in two stretching directions, or sequential biaxial stretching in which stretching is performed in a predetermined direction and then stretching in another direction.
 延伸処理は、例えば出口側の周速を大きくした2対以上のニップロールを用いて、長手方向(機械流れ方向:MD)に延伸したり、未延伸フィルムの両側端をチャックで把持して機械流れ方向に直交する方向(TD)に広げたりすることで行う。 For the stretching process, for example, two or more pairs of nip rolls with increased peripheral speed on the outlet side are used to stretch in the longitudinal direction (machine flow direction: MD), or the both ends of the unstretched film are gripped with a chuck and machine flow is performed. It is performed by spreading in a direction (TD) orthogonal to the direction.
 延伸処理による延伸倍率は、0超~300%が好ましく、より好ましくは100~250%である。延伸倍率が300%を上回ると、膜厚が薄くなりすぎて破断しやすくなったり、取扱性が低下したりする。延伸倍率は、下記式:
延伸倍率(%)=100×{(延伸後の長さ)-(延伸前の長さ)}/(延伸前の長さ)
より求められる。
The draw ratio by the drawing treatment is preferably more than 0 to 300%, more preferably 100 to 250%. If the draw ratio exceeds 300%, the film thickness becomes too thin and breaks easily, or the handleability decreases. The draw ratio is the following formula:
Stretch ratio (%) = 100 × {(Length after stretching) − (Length before stretching)} / (Length before stretching)
More demanded.
 また、所望の光学特性を付与するために、延伸処理に代えて、又はこれとともに、熱収縮性フィルムを熱可塑性樹脂フィルムに貼合し、熱可塑性樹脂フィルムを収縮させる処理を行ってもよい。 Further, in order to impart desired optical properties, a heat shrinkable film may be bonded to a thermoplastic resin film in place of or along with the stretching process, and a process of shrinking the thermoplastic resin film may be performed.
 (3)コーティング層を有する光学フィルム
 光学フィルムにコーティング層を付与することで、コーティング層の種類に応じた特定の機能を付与することができる。コーティング層を有する光学フィルムの例を挙げれば、例えば
 〔a〕表面の擦り傷防止のためのハードコート層を有する光学フィルム、
 〔b〕帯電防止層を有する光学フィルム、
 〔c〕反射防止層を有する光学フィルム、
 〔d〕防汚層を有する光学フィルム、
 〔e〕視認性向上、外光の映り込み防止、プリズムシートとカラーフィルターの干渉によるモアレ低減などを担う防眩層を有する光学フィルム、
である。以上のようなコーティング層を積層させる基材フィルムとしては、上述の熱可塑性樹脂フィルムのような単層光学フィルムや多層光学フィルムを用いることができる。
(3) Optical film which has a coating layer By providing a coating layer to an optical film, the specific function according to the kind of coating layer can be provided. Examples of an optical film having a coating layer include, for example: [a] an optical film having a hard coat layer for preventing scratches on the surface,
[B] an optical film having an antistatic layer,
[C] an optical film having an antireflection layer,
[D] an optical film having an antifouling layer;
[E] an optical film having an antiglare layer for improving visibility, preventing reflection of external light, and reducing moire due to interference between a prism sheet and a color filter,
It is. As the base film on which the coating layer as described above is laminated, a single-layer optical film or a multilayer optical film such as the above-described thermoplastic resin film can be used.
 また、基材フィルムとして、単層又は多層光学フィルムにコーティング層を積層した光学フィルムを、他の単層光学フィルムや多層光学フィルムと貼合したコーティング層を有する多層光学フィルムを用いることもできる。 Also, as the base film, a multilayer optical film having a coating layer obtained by laminating an optical film obtained by laminating a coating layer on a single layer or a multilayer optical film with another single layer optical film or a multilayer optical film can also be used.
 特に(メタ)アクリル系樹脂フィルムにコーティング層を設けると、光学フィルムのシャルピー衝撃強さがコーティング層を設ける前に比べて極端に小さくなることがあり、このようにシャルピー衝撃強さが小さい光学フィルムに対して、本発明は好適に適用される。 In particular, when a coating layer is provided on a (meth) acrylic resin film, the Charpy impact strength of the optical film may be extremely smaller than before the coating layer is provided, and thus an optical film having a small Charpy impact strength. On the other hand, the present invention is preferably applied.
 (ハードコート層)
 ハードコート層は、光学フィルムの表面硬度を高める機能を有し、表面の擦り傷防止などの目的で設けられる。ハードコート層は、JIS K 5600-5-4:1999「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に規定される鉛筆硬度試験(ハードコート層を有する光学フィルムをガラス板の上に置いて測定する)で2H又はそれより硬い値を示すことが好ましい。ハードコート層を形成する材料は、一般に、熱や光によって硬化するものである。例えば、有機シリコーン系、メラミン系、エポキシ系、(メタ)アクリル系、ウレタン(メタ)アクリレート系などの有機ハードコート材料や、二酸化ケイ素などの無機ハードコート材料を挙げることができる。これらのなかでも、ハードコート層が積層される基材フィルムが(メタ)アクリル系樹脂フィルムである場合には、それに対する接着力が良好であり、生産性に優れることから、ウレタン(メタ)アクリレート系又は多官能(メタ)アクリレート系ハードコート材料が好ましい。
(Hard coat layer)
The hard coat layer has a function of increasing the surface hardness of the optical film and is provided for the purpose of preventing scratches on the surface. The hard coat layer is a pencil hardness test as defined in JIS K 5600-5-4: 1999 “Paint General Test Method—Part 5: Mechanical Properties of Coating Film—Section 4: Scratch Hardness (Pencil Method)” An optical film having a hard coat layer is measured by placing it on a glass plate), and it is preferable to show a value of 2H or higher. The material for forming the hard coat layer is generally cured by heat or light. For example, organic hard coat materials such as organic silicone, melamine, epoxy, (meth) acrylic, urethane (meth) acrylate, and inorganic hardcoat materials such as silicon dioxide can be used. Among these, when the base film on which the hard coat layer is laminated is a (meth) acrylic resin film, the adhesive strength to the film is good and the productivity is excellent. A polyfunctional or polyfunctional (meth) acrylate hard coat material is preferred.
 ハードコート層は、所望により、屈折率の調整、曲げ弾性率の向上、体積収縮率の安定化、さらには耐熱性、帯電防止性、防眩性などの向上を図る目的で、各種フィラーを含有することができる。またハードコート層は、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、レベリング剤、消泡剤などの添加剤を含有することもできる。 The hard coat layer contains various fillers for the purpose of adjusting the refractive index, improving the flexural modulus, stabilizing the volume shrinkage, and improving heat resistance, antistatic properties, antiglare properties, etc., if desired. can do. The hard coat layer can also contain additives such as an antioxidant, an ultraviolet absorber, a light stabilizer, an antistatic agent, a leveling agent, and an antifoaming agent.
 (帯電防止層)
 帯電防止層は、光学フィルムの表面に導電性を付与し、静電気による影響を抑制するなどの目的で設けられる。帯電防止層の形成には、例えば、導電性物質(帯電防止剤)を含有する樹脂組成物を基材フィルムに塗布する方法が採用できる。例えば、上述したハードコート層の形成に用いるハードコート材料に帯電防止剤を共存させておくことにより、帯電防止性のハードコート層を形成することができる。
(Antistatic layer)
The antistatic layer is provided for the purpose of imparting conductivity to the surface of the optical film and suppressing the influence of static electricity. For the formation of the antistatic layer, for example, a method of applying a resin composition containing a conductive substance (antistatic agent) to the base film can be employed. For example, an antistatic hard coat layer can be formed by allowing an antistatic agent to coexist in the hard coat material used for forming the hard coat layer described above.
 (反射防止層)
 反射防止層は、外光の反射を防止するための層であり、光学フィルムの表面(外部に露出する面)に直接、又はハードコート層などの他の層を介して設けられる。反射防止層を有する光学フィルムは、波長430~700nmの光に対する入射角5°での反射率が2%以下であることが好ましく、とりわけ、波長550nmの光に対する同じ入射角での反射率が1%以下であることが好ましい。
(Antireflection layer)
The antireflection layer is a layer for preventing reflection of external light, and is provided directly on the surface (surface exposed to the outside) of the optical film or via another layer such as a hard coat layer. The optical film having the antireflection layer preferably has a reflectance of 2% or less at an incident angle of 5 ° with respect to light having a wavelength of 430 to 700 nm, and particularly has a reflectance of 1 at the same incident angle with respect to light having a wavelength of 550 nm. % Or less is preferable.
 反射防止層の厚みは、0.01~1μm程度とすることができるが、好ましくは0.02~0.5μmである。反射防止層は、それが設けられる層(基材フィルムやハードコート層など)の屈折率よりも小さい屈折率、具体的には1.30~1.45の屈折率を有する低屈折率層からなるもの、無機化合物からなる薄膜の低屈折率層と無機化合物からなる薄膜の高屈折率層とを交互に複数積層したものなどであることができる。 The thickness of the antireflection layer can be about 0.01 to 1 μm, preferably 0.02 to 0.5 μm. The antireflection layer is formed from a low refractive index layer having a refractive index smaller than the refractive index of the layer (base film, hard coat layer, etc.) on which it is provided, specifically a refractive index of 1.30 to 1.45. Or a plurality of low refractive index layers made of inorganic compounds and high refractive index layers made of inorganic compounds alternately stacked.
 上記の低屈折率層を形成する材料は、屈折率の小さいものであれば特に制限されない。例えば、紫外線硬化性(メタ)アクリル樹脂のような樹脂材料;樹脂中にコロイダルシリカのような無機微粒子を分散させたハイブリッド材料;アルコキシシランを含むゾル-ゲル材料などを挙げることができる。このような低屈折率層は、重合済みのポリマーを塗布することによって形成してもよいし、前駆体となるモノマー又はオリゴマーの状態で塗布し、その後重合硬化させることによって形成してもよい。また、それぞれの材料は、防汚性を付与するために、分子内にフッ素原子を有する化合物を含むことが好ましい。 The material for forming the low refractive index layer is not particularly limited as long as it has a low refractive index. For example, a resin material such as an ultraviolet curable (meth) acrylic resin; a hybrid material in which inorganic fine particles such as colloidal silica are dispersed in the resin; a sol-gel material containing an alkoxysilane can be used. Such a low refractive index layer may be formed by applying a polymer that has been polymerized, or may be formed by applying in the state of a monomer or oligomer that becomes a precursor, and then polymerizing and curing. Moreover, it is preferable that each material contains the compound which has a fluorine atom in a molecule | numerator, in order to provide antifouling property.
 低屈折率層を形成するためのゾル-ゲル材料としては、分子中にフッ素原子を有するものが好適に用いられる。分子内にフッ素原子を有するゾル-ゲル材料の典型的な例を挙げると、パーフルオロアルキルアルコキシシランがある。パーフルオロアルキルアルコキシシランは、例えば、下記式:
  CF3(CF2nCH2CH2Si(OR)3
で示される化合物であることができ、ここで、Rは炭素数1~5のアルキル基を表し、nは0~12の整数を表す。なかでも、上記式中のnが2~6である化合物が好ましい。
As the sol-gel material for forming the low refractive index layer, a material having a fluorine atom in the molecule is preferably used. A typical example of a sol-gel material having a fluorine atom in the molecule is perfluoroalkylalkoxysilane. The perfluoroalkylalkoxysilane is, for example, the following formula:
CF 3 (CF 2 ) n CH 2 CH 2 Si (OR) 3
Wherein R represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 12. Of these, compounds in which n is 2 to 6 in the above formula are preferred.
 パーフルオロアルキルアルコキシシランの具体例として、次のような化合物を挙げることができる。 Specific examples of perfluoroalkylalkoxysilanes include the following compounds.
 3,3,3-トリフルオロプロピルトリメトキシシラン、
 3,3,3-トリフルオロプロピルトリエトキシシラン、
 3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルトリメトキシシラン、
 3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルトリエトキシシラン、
 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルトリメトキシシラン、
 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルトリエトキシシランなど。
3,3,3-trifluoropropyltrimethoxysilane,
3,3,3-trifluoropropyltriethoxysilane,
3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyltrimethoxysilane,
3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyltriethoxysilane,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyltrimethoxysilane,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyltriethoxysilane and the like.
 低屈折率層は、熱硬化性含フッ素化合物又は活性エネルギー線硬化性含フッ素化合物の硬化物で構成することもできる。この硬化物は、その動摩擦係数が0.03~0.15の範囲にあることが好ましく、水に対する接触角が90~120°の範囲にあることが好ましい。硬化性含フッ素化合物として、ポリフルオロアルキル基含有シラン化合物(例えば、上記した3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルトリエトキシシランなど)のほか、架橋性官能基を有する含フッ素重合体を挙げることができる。 The low refractive index layer can be composed of a cured product of a thermosetting fluorine-containing compound or an active energy ray-curable fluorine-containing compound. This cured product preferably has a dynamic friction coefficient in the range of 0.03 to 0.15, and preferably has a contact angle with water in the range of 90 to 120 °. As the curable fluorine-containing compound, a polyfluoroalkyl group-containing silane compound (for example, the above-mentioned 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10) , 10-heptadecafluorodecyltriethoxysilane, etc.), and fluorine-containing polymers having a crosslinkable functional group.
 架橋性官能基を有する含フッ素重合体は、フッ素含有モノマーと架橋性官能基を有するモノマーとを共重合する方法によって、又はフッ素含有モノマーと官能基を有するモノマーとを共重合し、次いで重合体中の官能基に架橋性官能基を有する化合物を付加させる方法によって、製造することができる。 The fluorine-containing polymer having a crosslinkable functional group is obtained by copolymerizing a fluorine-containing monomer and a monomer having a crosslinkable functional group, or by copolymerizing a fluorine-containing monomer and a monomer having a functional group, and then polymer. It can be produced by a method of adding a compound having a crosslinkable functional group to the functional group therein.
 ここで用いるフッ素含有モノマーとしては、例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソールのようなフルオロオレフィン類、その他、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類や、完全又は部分フッ素化ビニルエーテル類などが挙げられる。 Examples of the fluorine-containing monomer used here include fluoroolefins such as fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, and others ( Examples thereof include partially or fully fluorinated alkyl ester derivatives of (meth) acrylic acid and completely or partially fluorinated vinyl ethers.
 架橋性官能基を有するモノマー又は架橋性官能基を有する化合物としては、グリシジルアクリレートやグリシジルメタクリレートのようなグリシジル基を有するモノマー;アクリル酸やメタクリル酸のようなカルボキシル基を有するモノマー;ヒドロキシアルキルアクリレートやヒドロキシアルキルメタクリレートのような水酸基を有するモノマー;アリルアクリレートやアリルメタクリレートのようなアルケニル基を有するモノマー;アミノ基を有するモノマー;スルホン酸基を有するモノマーなどを挙げることができる。 Monomers having a crosslinkable functional group or compounds having a crosslinkable functional group include monomers having a glycidyl group such as glycidyl acrylate and glycidyl methacrylate; monomers having a carboxyl group such as acrylic acid and methacrylic acid; Examples thereof include monomers having a hydroxyl group such as hydroxyalkyl methacrylate; monomers having an alkenyl group such as allyl acrylate and allyl methacrylate; monomers having an amino group; monomers having a sulfonic acid group.
 低屈折率層を形成するための材料は、耐擦傷性を向上させ得ることから、シリカ、アルミナ、チタニア、ジルコニア、フッ化マグネシウムなどの無機化合物微粒子がアルコール溶媒に分散しているゾルが含まれるもので構成することもできる。このために用いる無機化合物微粒子は、反射防止性の観点から屈折率の小さいものほど好ましい。かかる無機化合物微粒子は、空隙を有するものであってもよく、特にシリカの中空微粒子が好ましい。中空微粒子の平均粒径は、5~2000nmの範囲にあることが好ましく、とりわけ20~100nmの範囲にあることがより好ましい。ここでいう平均粒径は、透過型電子顕微鏡観察によって求められる数平均粒径である。 The material for forming the low refractive index layer can improve scratch resistance, and therefore includes a sol in which fine particles of inorganic compounds such as silica, alumina, titania, zirconia, and magnesium fluoride are dispersed in an alcohol solvent. It can also consist of things. The inorganic compound fine particles used for this purpose are preferably those having a smaller refractive index from the viewpoint of antireflection properties. Such inorganic compound fine particles may have voids, and silica hollow fine particles are particularly preferable. The average particle size of the hollow fine particles is preferably in the range of 5 to 2000 nm, and more preferably in the range of 20 to 100 nm. The average particle diameter here is a number average particle diameter obtained by observation with a transmission electron microscope.
 (防汚層)
 防汚層は、撥水性、撥油性、耐汗性、防汚性などを付与するために設けられる。防汚層を形成するための好適な材料は、フッ素含有有機化合物である。フッ素含有有機化合物としては、フルオロカーボン、パーフルオロシラン、これらの高分子化合物などを挙げることができる。防汚層の形成方法は、形成する材料に応じて、蒸着やスパッタリングを代表例とする物理的気相成長法、化学的気相成長法、湿式コーティング法などを用いることができる。防汚層の平均厚みは、通常1~50nm程度、好ましくは3~35nmである。
(Anti-fouling layer)
The antifouling layer is provided for imparting water repellency, oil repellency, sweat resistance, antifouling properties and the like. A suitable material for forming the antifouling layer is a fluorine-containing organic compound. Examples of the fluorine-containing organic compound include fluorocarbon, perfluorosilane, and high molecular compounds thereof. As a method for forming the antifouling layer, a physical vapor deposition method, a chemical vapor deposition method, a wet coating method, or the like typified by vapor deposition or sputtering can be used depending on the material to be formed. The average thickness of the antifouling layer is usually about 1 to 50 nm, preferably 3 to 35 nm.
 (防眩層)
 基材フィルム上に防眩層を積層した光学フィルムを防眩フィルムという。すなわち防眩フィルムは、基材フィルムと防眩層とからなる。防眩層は、表面に微細な凹凸形状を有する層であり、好ましくは、上述したハードコート材料を用いて形成される。
(Anti-glare layer)
An optical film in which an antiglare layer is laminated on a base film is called an antiglare film. That is, the antiglare film consists of a base film and an antiglare layer. The antiglare layer is a layer having a fine uneven shape on the surface, and is preferably formed using the hard coat material described above.
 表面に微細な凹凸形状を有する防眩層は、1)基材フィルム上に微粒子を含有する塗膜を形成し、その微粒子に基づく凹凸を設ける方法、2)微粒子を含有するか、又は含有しない塗膜を基材フィルム上に形成した後、表面に凹凸形状が付与されたロールに押し当てて凹凸形状を転写する方法(エンボス法とも呼ばれる)などによって形成することができる。 The antiglare layer having a fine uneven shape on the surface is 1) a method of forming a coating film containing fine particles on a base film and providing unevenness based on the fine particles, and 2) containing or not containing fine particles. After the coating film is formed on the base film, it can be formed by a method (also called an embossing method) of transferring the uneven shape by pressing against a roll having an uneven shape on the surface.
 上記1)の方法においては、硬化性透明樹脂と微粒子とを含む硬化性樹脂組成物を基材フィルム上に塗布し、紫外線等の光照射又は加熱によって塗布層を硬化させることにより防眩層を形成することができる。硬化性透明樹脂は、高硬度(ハードコート)となる材料から選定されることが好ましい。かかる硬化性透明樹脂としては、紫外線硬化性樹脂のような光硬化性樹脂、熱硬化性樹脂、電子線硬化性樹脂などを用いることができるが、生産性や得られる防眩層の硬度などの観点から、光硬化性樹脂が好ましく使用される。より好ましくは紫外線硬化性樹脂である。光硬化性樹脂を使用する場合、硬化性樹脂組成物は、光重合開始剤をさらに含む。 In the above method 1), an antiglare layer is formed by applying a curable resin composition containing a curable transparent resin and fine particles on a substrate film, and curing the coating layer by irradiation with light such as ultraviolet rays or heating. Can be formed. The curable transparent resin is preferably selected from materials that have high hardness (hard coat). As such a curable transparent resin, a photocurable resin such as an ultraviolet curable resin, a thermosetting resin, an electron beam curable resin, and the like can be used. However, productivity, hardness of the obtained antiglare layer, etc. From the viewpoint, a photocurable resin is preferably used. More preferred is an ultraviolet curable resin. When using a photocurable resin, the curable resin composition further includes a photopolymerization initiator.
 光硬化性樹脂としては、一般に多官能(メタ)アクリレートが用いられる。その具体例は、トリメチロールプロパンのジ-又はトリ-(メタ)アクリレート;ペンタエリスリトールのトリ-又はテトラ-(メタ)アクリレート;分子内に水酸基を少なくとも1個有する(メタ)アクリレートとジイソシアネートとの反応生成物である多官能ウレタン(メタ)アクリレートなどを含む。これらの多官能(メタ)アクリレートは、それぞれ単独で、又は必要に応じて2種以上組み合わせて用いることができる。 As the photocurable resin, polyfunctional (meth) acrylate is generally used. Specific examples thereof include tri-methylolpropane di- or tri- (meth) acrylate; pentaerythritol tri- or tetra- (meth) acrylate; reaction of (meth) acrylate having at least one hydroxyl group in the molecule with diisocyanate. The product includes polyfunctional urethane (meth) acrylate and the like. These polyfunctional (meth) acrylates can be used alone or in combination of two or more as required.
 また、多官能ウレタン(メタ)アクリレート、ポリオール(メタ)アクリレート、及び水酸基を2個以上含むアルキル基を有する(メタ)アクリルポリマーの混合物を光硬化性樹脂とすることもできる。この光硬化性樹脂を構成する多官能ウレタン(メタ)アクリレートは、例えば、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル、ポリオール、並びにジイソシアネートを用いて製造される。具体的には、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステルとポリオールから、分子内に水酸基を少なくとも1個有するヒドロキシ(メタ)アクリレートを調製し、これをジイソシアネートと反応させることにより、多官能ウレタン(メタ)アクリレートを製造することができる。このようにして製造される多官能ウレタン(メタ)アクリレートは、先に掲げた光硬化性樹脂自体ともなるものである。その製造にあたっては、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステルは、それぞれ1種を用いてもよいし、2種以上を組み合わせて用いてもよく、ポリオール及びジイソシアネートも同様に、それぞれ1種を用いてもよいし、2種以上を組み合わせて用いてもよい。 Also, a mixture of polyfunctional urethane (meth) acrylate, polyol (meth) acrylate, and (meth) acrylic polymer having an alkyl group containing two or more hydroxyl groups can be used as the photocurable resin. The polyfunctional urethane (meth) acrylate constituting this photocurable resin is produced using, for example, (meth) acrylic acid and / or (meth) acrylic acid ester, polyol, and diisocyanate. Specifically, by preparing hydroxy (meth) acrylate having at least one hydroxyl group in the molecule from (meth) acrylic acid and / or (meth) acrylic acid ester and polyol, and reacting it with diisocyanate, A polyfunctional urethane (meth) acrylate can be produced. The polyfunctional urethane (meth) acrylate thus produced is also the photocurable resin itself listed above. In the production thereof, (meth) acrylic acid and / or (meth) acrylic acid ester may be used singly or in combination of two or more, respectively, and polyol and diisocyanate are similarly used. One type may be used, or two or more types may be used in combination.
 多官能ウレタン(メタ)アクリレートの一つの原料となる(メタ)アクリル酸エステルは、(メタ)アクリル酸の鎖状又は環状アルキルエステルであることができる。その具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレートのようなアルキル(メタ)アクリレート、及び、シクロヘキシル(メタ)アクリレートのようなシクロアルキル(メタ)アクリレートが挙げられる。 (Meth) acrylic acid ester which is one raw material of polyfunctional urethane (meth) acrylate can be a linear or cyclic alkyl ester of (meth) acrylic acid. Specific examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, alkyl (meth) acrylate such as butyl (meth) acrylate, and cyclohexyl (meth). Examples include cycloalkyl (meth) acrylates such as acrylates.
 多官能ウレタン(メタ)アクリレートのもう一つの原料となるポリオールは、分子内に水酸基を少なくとも2個有する化合物である。例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ヒドロキシピバリン酸のネオペンチルグリコールエステル、シクロヘキサンジメチロール、1,4-シクロヘキサンジオール、スピログリコール、トリシクロデカンジメチロール、水添ビスフェノールA、エチレンオキサイド付加ビスフェノールA、プロピレンオキサイド付加ビスフェノールA、トリメチロールエタン、トリメチロールプロパン、グリセリン、3-メチルペンタン-1,3,5-トリオール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グルコース類などを挙げることができる。 Polyol, which is another raw material for polyfunctional urethane (meth) acrylate, is a compound having at least two hydroxyl groups in the molecule. For example, ethylene glycol, propylene glycol, 1,3-propanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 1,9- Nonanediol, 1,10-decanediol, 2,2,4-trimethyl-1,3-pentanediol, 3-methyl-1,5-pentanediol, neopentyl glycol ester of hydroxypivalic acid, cyclohexanedimethylol, , 4-cyclohexanediol, spiroglycol, tricyclodecane dimethylol, hydrogenated bisphenol A, ethylene oxide-added bisphenol A, propylene oxide-added bisphenol A, trimethylol ethane, trimethylol propylene , Glycerin, 3-methylpentane-1,3,5-triol, pentaerythritol, can be exemplified dipentaerythritol, tripentaerythritol, and the like glucose compound.
 多官能ウレタン(メタ)アクリレートのさらにもう一つの原料となるジイソシアネートは、分子内に2個のイソシアナト基(-NCO)を有する化合物であり、芳香族、脂肪族又は脂環式の各種ジイソシアネートを用いることができる。具体例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、3,3’-ジメチル-4,4’-ジフェニルジイソシアネート、キシレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、及びこれらのうち芳香環を有するジイソシアネートの核水添物などを挙げることができる。 Diisocyanate, which is yet another raw material of polyfunctional urethane (meth) acrylate, is a compound having two isocyanato groups (—NCO) in the molecule, and uses various aromatic, aliphatic or alicyclic diisocyanates. be able to. Specific examples include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 3,3′-dimethyl-4,4 ′. -Diphenyl diisocyanate, xylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and of these, a nuclear hydrogenated diisocyanate having an aromatic ring.
 多官能ウレタン(メタ)アクリレートとともに上記した光硬化性樹脂を構成するポリオール(メタ)アクリレートは、分子内に少なくとも2個の水酸基を有する化合物(すなわち、ポリオール)の(メタ)アクリレートである。その具体例としては、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートなどが挙げられる。ポリオール(メタ)アクリレートは、1種のみを単独で用いてもよいし、2種以上を併用してもよい。ポリオール(メタ)アクリレートは、好ましくは、ペンタエリスリトールトリアクリレート及び/又はペンタエリスリトールテトラアクリレートを含む。 The polyol (meth) acrylate constituting the above-described photocurable resin together with the polyfunctional urethane (meth) acrylate is a (meth) acrylate of a compound having at least two hydroxyl groups in the molecule (that is, polyol). Specific examples thereof include pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,6-hexanediol di (meth) acrylate. Etc. A polyol (meth) acrylate may be used individually by 1 type, and may use 2 or more types together. The polyol (meth) acrylate preferably comprises pentaerythritol triacrylate and / or pentaerythritol tetraacrylate.
 さらに、これらの多官能ウレタン(メタ)アクリレート及びポリオール(メタ)アクリレートとともに光硬化性樹脂を構成する、水酸基を2個以上含むアルキル基を有する(メタ)アクリルポリマーは、一つの構成単位中に水酸基を2個以上含むアルキル基を有するものである。例えば、2,3-ジヒドロキシプロピル(メタ)アクリレートを構成単位として含むポリマーや、2,3-ジヒドロキシプロピル(メタ)アクリレートとともに、2-ヒドロキシエチル(メタ)アクリレートを構成単位として含むポリマーなどが挙げられる。 Furthermore, the (meth) acrylic polymer having an alkyl group containing two or more hydroxyl groups, which constitutes a photocurable resin together with these polyfunctional urethane (meth) acrylates and polyol (meth) acrylates, has hydroxyl groups in one constituent unit. It has an alkyl group containing 2 or more. Examples thereof include a polymer containing 2,3-dihydroxypropyl (meth) acrylate as a constituent unit, and a polymer containing 2-hydroxyethyl (meth) acrylate as a constituent unit together with 2,3-dihydroxypropyl (meth) acrylate. .
 以上、例示したような(メタ)アクリル系の光硬化性樹脂を用いることにより、基材フィルムとの密着性が向上するとともに、機械的強度が向上し、表面の傷付きを効果的に防止できる防眩フィルムを得ることができる。 As described above, by using a (meth) acrylic photocurable resin as exemplified, adhesion to the base film is improved, mechanical strength is improved, and surface scratches can be effectively prevented. An antiglare film can be obtained.
 上記微粒子としては、平均粒径が0.5~5μmで、硬化後の硬化性透明樹脂との屈折率差が0.02~0.2であるものを用いることが好ましい。平均粒径及び屈折率差がこの範囲にある微粒子を用いることにより、効果的にヘイズを発現させることができる。この微粒子の平均粒径は、動的光散乱法などによって求めることができる。この場合の平均粒径は、重量平均粒径となる。 As the fine particles, those having an average particle size of 0.5 to 5 μm and a refractive index difference from the curable transparent resin after curing of 0.02 to 0.2 are preferably used. By using fine particles having an average particle diameter and a refractive index difference within these ranges, haze can be effectively expressed. The average particle diameter of the fine particles can be obtained by a dynamic light scattering method or the like. The average particle diameter in this case is a weight average particle diameter.
 微粒子は有機微粒子又は無機微粒子であることができる。有機微粒子としては、一般に樹脂粒子が用いられ、例えば、架橋ポリ(メタ)アクリル酸粒子、メタクリル酸メチル/スチレン共重合体樹脂粒子、架橋ポリスチレン粒子、架橋ポリメチルメタクリレート粒子、シリコーン樹脂粒子、ポリイミド粒子などが挙げられる。また、無機微粒子としては、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、アルミノシリケート、アルミナ-シリカ複合酸化物、カオリン、タルク、マイカ、炭酸カルシウム、リン酸カルシウムなどを用いることができる。 The fine particles can be organic fine particles or inorganic fine particles. As the organic fine particles, resin particles are generally used. For example, crosslinked poly (meth) acrylic acid particles, methyl methacrylate / styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, polyimide particles. Etc. As the inorganic fine particles, silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, calcium carbonate, calcium phosphate and the like can be used.
 上記光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、ベンゾインエーテル系、アミン系、ホスフィンオキサイド系など、各種のものを用いることができる。アセトフェノン系光重合開始剤に分類される化合物の例を挙げると、2,2-ジメトキシ-2-フェニルアセトフェノン(別名ベンジルジメチルケタール)、2,2-ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシル フェニル ケトン、2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オンなどがある。ベンゾフェノン系光重合開始剤に分類される化合物の例を挙げると、ベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノンなどがある。ベンゾインエーテル系光重合開始剤に分類される化合物の例を挙げると、ベンゾインメチルエーテル、ベンゾインプロピルエーテルなどがある。アミン系光重合開始剤に分類される化合物の例を挙げると、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(別名ミヒラーズケトン)などがある。ホスフィンオキサイド系光重合開始剤の例を挙げると、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドなどがある。ほかに、キサントン系化合物やチオキサント系化合物なども、光重合開始剤として用いることができる。 As the photopolymerization initiator, various types such as acetophenone series, benzophenone series, benzoin ether series, amine series, and phosphine oxide series can be used. Examples of compounds classified as acetophenone photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone (also known as benzyldimethyl ketal), 2,2-diethoxyacetophenone, 1- (4-isopropylphenyl) There are -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, and the like. Examples of compounds classified as benzophenone photopolymerization initiators include benzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, and the like. Examples of compounds classified as benzoin ether photopolymerization initiators include benzoin methyl ether and benzoin propyl ether. Examples of compounds classified as amine photopolymerization initiators include N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone (also known as Michler's ketone). Examples of phosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide. In addition, xanthone compounds and thioxant compounds can also be used as photopolymerization initiators.
 これらの光重合開始剤は市販されている。代表的な市販品の例を商品名で挙げると、スイスのチバ社から販売されている「イルガキュアー 907」及び「イルガキュアー 184」、ドイツのBASF社から販売されている「ルシリン TPO」などがある。 These photopolymerization initiators are commercially available. Examples of typical commercial products are "Irgacure 907" and "Irgacure 184" sold by Swiss Ciba, and "Lucirin TPO" sold by BASF Germany. is there.
 硬化性樹脂組成物は、必要に応じて溶媒を含むことができる。溶媒としては、例えば、酢酸エチル、酢酸ブチルなど、硬化性樹脂組成物を構成する各成分を溶解し得る任意の有機溶媒を用いることができる。2種以上の有機溶媒を混合して用いることもできる。 The curable resin composition can contain a solvent as needed. As a solvent, arbitrary organic solvents which can melt | dissolve each component which comprises curable resin composition, such as ethyl acetate and butyl acetate, for example can be used. Two or more organic solvents can be mixed and used.
 また硬化性樹脂組成物は、レベリング剤を含有してもよく、例えば、フッ素系又はシリコーン系のレベリング剤を挙げることができる。シリコーン系のレベリング剤には、反応性シリコーン、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサンなどがある。シリコーン系レベリング剤のなかでも好ましいものは、反応性シリコーン及びシロキサン系のレベリング剤である。反応性シリコーンからなるレベリング剤を用いれば、防眩層表面に滑り性が付与され、優れた耐擦傷性を長期間持続させることができる。また、シロキサン系のレベリング剤を用いれば、膜成形性を向上させることができる。 Moreover, the curable resin composition may contain a leveling agent, and examples thereof include a fluorine-based or silicone-based leveling agent. Examples of silicone leveling agents include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane. Among the silicone leveling agents, preferred are reactive silicone and siloxane leveling agents. When a leveling agent made of reactive silicone is used, slipperiness is imparted to the surface of the antiglare layer, and excellent scratch resistance can be maintained for a long period of time. Further, if a siloxane leveling agent is used, film formability can be improved.
 一方、上記2)の方法(エンボス法)により微細表面凹凸形状を有する防眩層を形成する場合には、微細凹凸形状が形成された金型を用いて、金型の形状を基材フィルム上に形成された樹脂層に転写すればよい。エンボス法により微細表面凹凸形状を形成する場合、凹凸形状が転写される樹脂層は、微粒子を含有していてもよいし、含有していなくてもよい。上記樹脂層を構成する樹脂は、好ましくは、上記1)の方法において例示したような光硬化性樹脂であり、より好ましくは紫外線硬化性樹脂である。ただし、紫外線硬化性樹脂の代わりに、光重合開始剤を適宜選択することにより、紫外線より波長の長い可視光で硬化が可能な可視光硬化性樹脂を用いることもできる。 On the other hand, in the case of forming an antiglare layer having a fine surface uneven shape by the above method 2) (embossing method), a mold having a fine uneven shape is used and the shape of the mold is set on the base film. It may be transferred to the resin layer formed in the above. In the case of forming a fine surface uneven shape by the embossing method, the resin layer to which the uneven shape is transferred may or may not contain fine particles. The resin constituting the resin layer is preferably a photocurable resin as exemplified in the method 1), and more preferably an ultraviolet curable resin. However, a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet rays can be used by appropriately selecting a photopolymerization initiator instead of the ultraviolet curable resin.
 エンボス法では、紫外線硬化性樹脂等の光硬化性樹脂を含む硬化性樹脂組成物を基材フィルム上に塗布し、その塗布層を金型の凹凸面に押し付けながら硬化させることで、金型の凹凸面が塗布層に転写される。より具体的には、硬化性樹脂組成物を基材フィルム上に塗布し、塗布層を金型の凹凸面に密着させた状態で、基材フィルム側から紫外線等の光を照射して塗布層を硬化させ、次に、硬化後の塗布層(防眩層)を有する光学フィルムを金型から剥離することにより、金型の凹凸形状を防眩層に転写する。 In the embossing method, a curable resin composition containing a photo-curable resin such as an ultraviolet curable resin is applied on a base film, and the applied layer is cured while being pressed against an uneven surface of the mold. The uneven surface is transferred to the coating layer. More specifically, in a state where the curable resin composition is applied onto the base film and the coating layer is in close contact with the uneven surface of the mold, the coating layer is irradiated with light such as ultraviolet rays from the base film side. Next, the uneven shape of the mold is transferred to the antiglare layer by peeling the optical film having the cured coating layer (antiglare layer) from the mold.
 防眩層の厚みは特に限定されないが、一般には2~30μmであり、好ましくは3μm以上、また好ましくは20μm以下である。防眩層が薄すぎると、十分な硬度が得られず、表面が傷付きやすくなる傾向にあり、一方で厚すぎると、割れやすくなったり、防眩層の硬化収縮によりフィルムがカールして生産性が低下したりする傾向にある。 The thickness of the antiglare layer is not particularly limited, but is generally 2 to 30 μm, preferably 3 μm or more, and preferably 20 μm or less. If the antiglare layer is too thin, sufficient hardness cannot be obtained, and the surface tends to be easily scratched. On the other hand, if it is too thick, the film is prone to cracking, or the film is curled due to curing shrinkage of the antiglare layer. Tend to decrease.
 防眩フィルムのヘイズ値は、1~50%の範囲にあることが好ましい。ヘイズ値が小さすぎると、十分な防眩性能が得られず、画像表示装置に適用したときに画面に外光の映り込みが生じやすくなる。一方、そのヘイズ値が大きすぎると、外光の映り込みは低減できるものの、黒表示の画面のしまりが低下してしまう。ヘイズ値は、全光線透過率に対する拡散透過率の割合であり、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」に準じて測定される。 The haze value of the antiglare film is preferably in the range of 1 to 50%. If the haze value is too small, sufficient antiglare performance cannot be obtained, and external light is likely to be reflected on the screen when applied to an image display device. On the other hand, if the haze value is too large, the reflection of external light can be reduced, but the black display screen is reduced. The haze value is a ratio of the diffuse transmittance to the total light transmittance, and is measured according to JIS K 7136: 2000 “How to determine haze of plastic-transparent material”.
 上記のように光学フィルム上にコーティング層を設ける場合、そのコーティング層の塗工幅は、光学フィルムの全幅であってもよいし、幅方向両端部に未塗工部を設けてもよい。それぞれの端部における未塗工部の幅は、フィルム全幅の0.05~20%程度であることができる。未塗工部の幅が0.05%以上であれば、塗工層の硬化収縮によるフィルム端部のカール(耳立ち)を抑制できるため、フィルム搬送やフィルム連結(紙継ぎ)が容易となる。一方、未塗工部の幅が0.05%未満のときには、フィルム端部にカールが生じやすく、場合によってはフィルム水平部からの高さが10mm以上のカールが生じてしまうこともある。ただし、このようなカールを生じた場合であっても、本発明によればフィルム割れ等を生じることなく搬送することが可能である。 When the coating layer is provided on the optical film as described above, the coating width of the coating layer may be the entire width of the optical film, or uncoated portions may be provided at both ends in the width direction. The width of the uncoated part at each end can be about 0.05 to 20% of the total film width. If the width of the uncoated portion is 0.05% or more, curling (ear standing) of the film end due to curing shrinkage of the coated layer can be suppressed, and film transport and film connection (paper splicing) are facilitated. On the other hand, when the width of the uncoated part is less than 0.05%, curling tends to occur at the film end, and in some cases, curling with a height of 10 mm or more from the horizontal part of the film may occur. However, even if such curling occurs, according to the present invention, it is possible to carry the film without causing film breakage or the like.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 <実施例1>
 (A)(メタ)アクリル系樹脂フィルムの作製
 (メタ)アクリル系樹脂として、メタクリル酸メチル/アクリル酸メチル(重量比96/4)の共重合体を用意した。また、ゴム弾性体粒子として、最内層がメタクリル酸メチルに少量のメタクリル酸アリルを共重合させた硬質の重合体からなり、中間層がアクリル酸ブチルを主成分とし、これにスチレン及び少量のメタクリル酸アリルを共重合させた軟質の弾性体からなり、最外層がメタクリル酸メチルに少量のアクリル酸エチルを共重合させた硬質の重合体からなる三層構造の弾性体粒子であって、最外層を有しないときの平均粒径が約250nmであるアクリル系弾性重合体粒子を用意した。
<Example 1>
(A) Preparation of (meth) acrylic resin film As a (meth) acrylic resin, a copolymer of methyl methacrylate / methyl acrylate (weight ratio 96/4) was prepared. As rubber elastic particles, the innermost layer is made of a hard polymer obtained by copolymerizing methyl methacrylate with a small amount of allyl methacrylate, and the intermediate layer is mainly composed of butyl acrylate. An elastic particle having a three-layer structure consisting of a soft polymer obtained by copolymerizing allyl acid, and an outermost layer comprising a hard polymer obtained by copolymerizing a small amount of ethyl acrylate with methyl methacrylate. Acrylic elastic polymer particles having an average particle diameter of about 250 nm when not having a particle diameter were prepared.
 上記の(メタ)アクリル系樹脂とゴム弾性体粒子とが70/30の重量比で配合され、さらにそれらの合計100重量部あたり、0.05重量部の滑剤(ステアリン酸)及び約1.0重量部のベンゾトリアゾール系紫外線吸収剤が配合されているペレットを65mmφの一軸押出機に投入し、設定温度275℃のT型ダイから押出した。押出されたフィルム状溶融樹脂の両面を、45℃に温度設定された鏡面を有する2本のポリシングロールで挟み込んで冷却し、厚み80μmの長尺の(メタ)アクリル系樹脂フィルムをフィルムロールとして得た。 The (meth) acrylic resin and rubber elastic particles are blended in a weight ratio of 70/30, and 0.05 parts by weight of a lubricant (stearic acid) and about 1.0 parts per 100 parts by weight in total. Pellets containing a part by weight of a benzotriazole-based ultraviolet absorber were put into a 65 mmφ single screw extruder and extruded from a T die having a set temperature of 275 ° C. Both sides of the extruded film-like molten resin are sandwiched and cooled by two polishing rolls having a mirror surface temperature set at 45 ° C., and a long (meth) acrylic resin film having a thickness of 80 μm is obtained as a film roll. It was.
 (B)防眩フィルムの作製
 上記(A)で作製した(メタ)アクリル系樹脂フィルムの片面に、(メタ)アクリレート系の紫外線硬化性樹脂、光重合開始剤、樹脂微粒子及び溶剤を含む防眩層形成用塗布液を塗布し、乾燥させた後、フィルムの塗布層側より紫外線を照射し、塗布層を硬化させて、(メタ)アクリル系樹脂フィルムの表面に凹凸を有する防眩層が形成された長尺の防眩フィルムを作製した。得られた防眩フィルムは、直径6インチ(約15cm)のコアに巻き取り、フィルムロールとした。ヘイズメータを用いて、この防眩フィルムのヘイズ値を測定したところ、1.5%であった。また、この防眩フィルムの厚みは89μmであった。
(B) Production of antiglare film Antiglare comprising (meth) acrylate ultraviolet curable resin, photopolymerization initiator, resin fine particles and solvent on one side of (meth) acrylic resin film produced in (A) above. After coating and drying the layer forming coating solution, the coating layer side is irradiated with ultraviolet rays to cure the coating layer, and an antiglare layer with irregularities is formed on the surface of the (meth) acrylic resin film A long antiglare film was prepared. The obtained anti-glare film was wound around a 6 inch (about 15 cm) diameter core to form a film roll. When the haze value of the antiglare film was measured using a haze meter, it was 1.5%. The antiglare film had a thickness of 89 μm.
 得られた防眩フィルムのシャルピー衝撃強さを次の手順で測定した。まず、防眩フィルムから、幅10mm×長さ82mmの長方形の試験片を切り出した。試験片として、MDにおける衝撃吸収エネルギーを測定するための試験片と、TDにおける衝撃吸収エネルギーを測定するための試験片を、防眩層側からハンマーを打ち当てる場合と、防眩層側とは反対側から打ち当てる場合とで試験を行うためにそれぞれ2片ずつ、計4片を切り出した。そして、ハンマーにより打ち抜くときの衝撃で試験片が動かないように試験片の長辺方向両端を支持台に固定し、上述の測定手順に従い、株式会社安田精機製作所製のシャルピー衝撃試験機(ハンマー秤量1.0J)にて、ハンマーをその刃先長手方向が試験片の長さ方向中央部で幅方向と平行になるように防眩層側から打ち当てて、フィルムの破断に要するエネルギー(衝撃吸収エネルギー)を測定した。その結果、TDの衝撃吸収エネルギーは17kJ/m2であり、MDの衝撃吸収エネルギーは19kJ/m2であった。なお、防眩層側とは反対側からハンマーを当てたときのTD及びMDの衝撃吸収エネルギーは、それぞれ8kJ/m2、11kJ/m2であった。また、防眩層側が凸となるよう防眩フィルムを指で二つ折りにしたところ、防眩フィルムが破断した。 The Charpy impact strength of the obtained antiglare film was measured by the following procedure. First, a rectangular test piece having a width of 10 mm and a length of 82 mm was cut out from the antiglare film. As a test piece, a test piece for measuring shock absorption energy in MD, and a test piece for measuring shock absorption energy in TD, when a hammer is hit from the antiglare layer side, A total of 4 pieces were cut out, 2 pieces each for testing with the case of hitting from the opposite side. Then, both ends in the long side direction of the test piece are fixed to the support so that the test piece does not move due to impact when punched with a hammer, and according to the above measurement procedure, a Charpy impact tester (Hammer Weighing) manufactured by Yasuda Seiki Seisakusho Co., Ltd. 1.0J), the hammer is struck from the antiglare layer side so that the longitudinal direction of the blade edge is parallel to the width direction at the center in the length direction of the test piece, and the energy required for breaking the film (impact absorption energy) ) Was measured. As a result, the impact absorption energy of TD was 17 kJ / m 2 , and the impact absorption energy of MD was 19 kJ / m 2 . Note that the antiglare layer side impact absorption energy of the TD and MD when irradiated with a hammer from the opposite side were respectively 8kJ / m 2, 11kJ / m 2. Moreover, when the antiglare film was folded in half with a finger so that the antiglare layer side was convex, the antiglare film was broken.
 (C)連結フィルムの搬送
 上記(B)で作製した防眩フィルムの長手方向終端にリードフィルム(厚み38μmのポリエチレンテレフタレートフィルム)を連結用テープ(厚み60μmのポリテトラフルオロエチレンからなるフィルムを基材とする片面粘着テープ)を用いて連結してなる連結フィルムを、サクションロールを含む搬送経路に通し、搬送速度1~40m/minでサクションロールの回転駆動力を利用して連続的に搬送させた。サクションロールは、直径が300mm、吸引孔の直径が3mmのものを使用した。また、サクションロールの吸引圧は5~25kPa、サクションロールをフィルムが通過する直前の搬送方向と通過した直後の搬送方向とがなす角度θ(図1参照)は90°以上、搬送時のフィルムの張力は70~500N/mの範囲で調整した。連結部がサクションロールを通過するときも含めて、連結フィルムに割れ、亀裂、破断は生じず、連結フィルムを連続的に問題なく搬送することができた。
(C) Transport of connecting film A lead film (polyethylene terephthalate film with a thickness of 38 μm) is connected to the end of the antiglare film prepared in (B) above in the longitudinal direction, and a film made of polytetrafluoroethylene with a thickness of 60 μm is used as a base material. The connecting film formed by using the single-sided adhesive tape is continuously conveyed using the rotational driving force of the suction roll at a conveying speed of 1 to 40 m / min through the conveying path including the suction roll. . A suction roll having a diameter of 300 mm and a suction hole diameter of 3 mm was used. The suction pressure of the suction roll is 5 to 25 kPa, and the angle θ (see FIG. 1) formed by the transport direction immediately before the film passes through the suction roll and the transport direction immediately after passing through the suction roll is 90 ° or more. The tension was adjusted in the range of 70 to 500 N / m. Even when the connecting portion passed through the suction roll, the connecting film was not cracked, cracked or broken, and the connecting film could be continuously conveyed without any problem.
 <比較例1>
 サクションロールの代わりにゴムロールからなるニップロールを含む搬送経路に連結フィルムを通したこと以外は実施例1の(C)と同様にして、連結フィルムの連続搬送を行ったところ、連結部がニップロールを通過するときに連結部に破断が生じた。
<Comparative Example 1>
When the connecting film was continuously transported in the same manner as in (C) of Example 1 except that the connecting film was passed through a transport path including a nip roll made of a rubber roll instead of a suction roll, the connecting portion passed through the nip roll. When this occurs, the connecting portion breaks.
 <実施例2>
 厚み25μmのトリアセチルセルロース上に、厚み4μmのハードコート層が積層された光学フィルムを用意した。この光学フィルムについて、上と同じ測定方法でシャルピー衝撃強さを測定した。その結果、ハードコート層側からハンマーを当てたときのTD及びMDの衝撃吸収エネルギーは、それぞれ145kJ/m2、138kJ/m2であった。なお、ハードコート層側とは反対側からハンマーを当てたときのTD及びMDの衝撃吸収エネルギーは、それぞれ186kJ/m2、134kJ/m2であった。また、ハードコート層側が凸となるよう光学フィルムを指で二つ折りにしたところ、光学フィルムが破断した。
<Example 2>
An optical film was prepared in which a hard coat layer having a thickness of 4 μm was laminated on a triacetyl cellulose having a thickness of 25 μm. About this optical film, Charpy impact strength was measured by the same measuring method as above. As a result, the impact absorption energy of TD and MD when irradiated with a hammer from the hard coat layer side, were respectively 145kJ / m 2, 138kJ / m 2. Note that the hard coat layer side impact absorption energy of the TD and MD when irradiated with a hammer from the opposite side were respectively 186kJ / m 2, 134kJ / m 2. Further, when the optical film was folded in half with a finger so that the hard coat layer side was convex, the optical film was broken.
 この光学フィルムを用いること以外は実施例1と同様にして、連結フィルムの連続搬送を行った。連結部がサクションロールを通過するときも含めて、連結フィルムに割れ、亀裂、破断は生じず、連結フィルムを連続的に問題なく搬送することができた。 The connected film was continuously conveyed in the same manner as in Example 1 except that this optical film was used. Even when the connecting portion passed through the suction roll, the connecting film was not cracked, cracked or broken, and the connecting film could be continuously conveyed without any problem.
 <比較例2>
 サクションロールの代わりにゴムロールからなるニップロールを含む搬送経路に連結フィルムを通したこと以外は実施例2と同様にして、連結フィルムの連続搬送を行ったところ、連結部がニップロールを通過するときに連結部に破断が生じた。
<Comparative example 2>
The connection film was continuously conveyed in the same manner as in Example 2 except that the connection film was passed through a conveyance path including a nip roll made of a rubber roll instead of the suction roll. When the connection portion passed through the nip roll, the connection film was connected. The part broke.
 <参考例1>
 上記実施例1の(A)で作製した(メタ)アクリル系樹脂フィルムについて、上と同じ測定方法でシャルピー衝撃強さを測定した。その結果、フィルムの一方の面からハンマーを打ち当てた場合と、他方の面から打ち当てた場合とで同様の結果であり、TD及びMDの衝撃吸収エネルギーは、それぞれ228kJ/m2、214kJ/m2であった。また、このフィルムを指で二つ折りにしても、フィルムは破断しなかった。
<Reference Example 1>
About the (meth) acrylic-type resin film produced by (A) of the said Example 1, the Charpy impact strength was measured with the same measuring method as the above. As a result, the same results were obtained when the hammer was hit from one side of the film and when hit from the other side, and the impact absorption energy of TD and MD were 228 kJ / m 2 and 214 kJ /, respectively. m 2 . Moreover, even if this film was folded in half with a finger, the film did not break.
 この(メタ)アクリル系樹脂フィルムを用いること以外は比較例1と同様にして、連結フィルムの連続搬送を行ったところ、連結部がニップロールを通過するときも含めて、連結フィルム(連結部を含む。)に割れ、亀裂、破断は生じなかった。 Except for using this (meth) acrylic resin film, the connection film was continuously conveyed in the same manner as in Comparative Example 1, and the connection film (including the connection part was included), including when the connection part passed through the nip roll. .) Was not cracked, cracked or broken.
 <参考例2>
 厚み25μmのトリアセチルセルロースフィルムについて、上と同じ測定方法でシャルピー衝撃強さを測定した。その結果、フィルムの一方の面からハンマーを打ち当てた場合と、他方の面から打ち当てた場合とで同様の結果であり、TD及びMDの衝撃吸収エネルギーは、それぞれ588kJ/m2、455kJ/m2であった。また、このフィルムを指で二つ折りにしても、フィルムは破断しなかった。
<Reference Example 2>
The Charpy impact strength of the triacetyl cellulose film having a thickness of 25 μm was measured by the same measurement method as above. As a result, the same results were obtained when the hammer was hit from one side of the film and when hit from the other side, and the impact absorption energy of TD and MD was 588 kJ / m 2 , 455 kJ / respectively. m 2 . Moreover, even if this film was folded in half with a finger, the film did not break.
 このトリアセチルセルロースフィルムを用いること以外は比較例1と同様にして、連結フィルムの連続搬送を行ったところ、連結部がニップロールを通過するときも含めて、連結フィルム(連結部を含む。)に割れ、亀裂、破断は生じなかった。 When the connection film was continuously conveyed in the same manner as in Comparative Example 1 except that this triacetylcellulose film was used, the connection film (including the connection part) was included even when the connection part passed through the nip roll. No cracks, cracks or breaks occurred.
 <参考例3>
 厚み38μmのポリエチレンテレフタレートフィルムについて、上と同じ測定方法でシャルピー衝撃強さを測定した。その結果、フィルムの一方の面からハンマーを打ち当てた場合と、他方の面から打ち当てた場合とで同様の結果であり、TD及びMDのいずれについても、衝撃吸収エネルギーは測定可能な上限(2593kJ/m2)を超えるものであった。また、このフィルムを指で二つ折りにしても、フィルムは破断しなかった。
<Reference Example 3>
For a polyethylene terephthalate film having a thickness of 38 μm, Charpy impact strength was measured by the same measurement method as above. As a result, the same result was obtained when the hammer was hit from one side of the film and when the hammer was hit from the other side. For both TD and MD, the impact absorption energy was the upper limit that can be measured ( 2593 kJ / m 2 ). Moreover, even if this film was folded in half with a finger, the film did not break.
 このポリエチレンテレフタレートフィルムを用いること以外は比較例1と同様にして、連結フィルムの連続搬送を行ったところ、連結部がニップロールを通過するときも含めて、連結フィルム(連結部を含む。)に割れ、亀裂、破断は生じなかった。 Except for using this polyethylene terephthalate film, the connection film was continuously conveyed in the same manner as in Comparative Example 1, and the connection film (including the connection part) was cracked even when the connection part passed through the nip roll. No cracks or breaks occurred.
 <参考例4>
 厚み60μmのポリプロピレンフィルムについて、上と同じ測定方法でシャルピー衝撃強さを測定した。その結果、フィルムの一方の面からハンマーを打ち当てた場合と、他方の面から打ち当てた場合とで同様の結果であり、TD及びMDのいずれについても、衝撃吸収エネルギーは測定可能な上限(1642kJ/m2)を超えるものであった。また、このフィルムを指で二つ折りにしても、フィルムは破断しなかった。
<Reference Example 4>
For a polypropylene film having a thickness of 60 μm, Charpy impact strength was measured by the same measurement method as above. As a result, the same result was obtained when the hammer was hit from one side of the film and when the hammer was hit from the other side. For both TD and MD, the impact absorption energy was the upper limit that can be measured ( 1642 kJ / m 2 ). Moreover, even if this film was folded in half with a finger, the film did not break.
 このポリプロピレンフィルムを用いること以外は比較例1と同様にして、連結フィルムの連続搬送を行ったところ、連結部がニップロールを通過するときも含めて、連結フィルム(連結部を含む。)に割れ、亀裂、破断は生じなかった。 When the connection film was continuously conveyed in the same manner as in Comparative Example 1 except that this polypropylene film was used, the connection film cracked into the connection film (including the connection part), including when the connection part passed through the nip roll. Cracks and fractures did not occur.
 10 第1フィルム、20 第2フィルム、30 連結用テープ、40 サクションロール、50 繰り出し装置、60 ガイドロール。 10 first film, 20 second film, 30 connecting tape, 40 suction roll, 50 feeding device, 60 guide roll.

Claims (9)

  1.  第1フィルム及びその長手方向終端に連結される第2フィルムを含む連結フィルムを、1以上の駆動ロールを含む搬送経路に沿って、前記1以上の駆動ロールにより連続的に搬送する方法であって、
     前記第1フィルム及び前記第2フィルムの少なくともいずれか一方は、シャルピー衝撃強さが200kJ/m2未満の光学フィルムであり、
     前記1以上の駆動ロールがすべてサクションロールである、搬送方法。
    A method of continuously transporting a connecting film including a first film and a second film connected to a longitudinal end thereof by the one or more driving rolls along a transport path including one or more driving rolls. ,
    At least one of the first film and the second film is an optical film having a Charpy impact strength of less than 200 kJ / m 2 ,
    The conveying method, wherein the one or more drive rolls are all suction rolls.
  2.  前記第1フィルム及び前記第2フィルムのいずれか一方は前記光学フィルムであり、他方はシャルピー衝撃強さが200kJ/m2以上のリードフィルムである、請求項1に記載の搬送方法。 2. The transport method according to claim 1, wherein one of the first film and the second film is the optical film, and the other is a lead film having a Charpy impact strength of 200 kJ / m 2 or more.
  3.  前記第1フィルム及び前記第2フィルムはともに前記光学フィルムであり、
     前記第1フィルムと前記第2フィルムとは同種の光学フィルムである、請求項1に記載の搬送方法。
    Both the first film and the second film are the optical films,
    The transport method according to claim 1, wherein the first film and the second film are the same type of optical film.
  4.  少なくとも前記第2フィルムは前記光学フィルムであり、
     前記連結フィルムは、前記第2フィルムの長手方向終端に連結される第3フィルムをさらに含む、請求項1~3のいずれか1項に記載の搬送方法。
    At least the second film is the optical film,
    The conveying method according to any one of claims 1 to 3, wherein the connection film further includes a third film connected to a longitudinal end of the second film.
  5.  前記光学フィルムは、基材フィルムと、その上に積層されるコーティング層とを備えるものである、請求項1~4のいずれか1項に記載の搬送方法。 The transport method according to any one of claims 1 to 4, wherein the optical film includes a base film and a coating layer laminated thereon.
  6.  シャルピー衝撃強さが200kJ/m2未満の光学フィルムを作製する工程と、
     第1フィルム及びその長手方向終端に連結される第2フィルムを含む連結フィルムを、1以上の駆動ロールを含む搬送経路に沿って、前記1以上の駆動ロールにより連続的に搬送する工程と、
    を含み、
     前記第1フィルム及び前記第2フィルムの少なくともいずれか一方は、前記光学フィルムであり、
     前記1以上の駆動ロールがすべてサクションロールである、光学フィルムの製造方法。
    Producing an optical film having a Charpy impact strength of less than 200 kJ / m 2 ;
    A step of continuously transporting the first film and a connecting film including the second film connected to the longitudinal end thereof by the one or more drive rolls along a transport path including one or more drive rolls;
    Including
    At least one of the first film and the second film is the optical film,
    The method for producing an optical film, wherein the one or more drive rolls are all suction rolls.
  7.  前記光学フィルムは、単層光学フィルム、多層光学フィルム、延伸された光学フィルム、及びコーティング層を有する光学フィルムからなる群より選択される、請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the optical film is selected from the group consisting of a single-layer optical film, a multilayer optical film, a stretched optical film, and an optical film having a coating layer.
  8.  第1光学フィルムから第2光学フィルムを作製する工程と、
     第1フィルム及びその長手方向終端に連結される第2フィルムを含む連結フィルムを、1以上の駆動ロールを含む搬送経路に沿って、前記1以上の駆動ロールにより連続的に搬送する工程と、
    を含み、
     前記第1フィルム及び前記第2フィルムの少なくともいずれか一方は、シャルピー衝撃強さが200kJ/m2未満である前記第1光学フィルム又はシャルピー衝撃強さが200kJ/m2未満である前記第2光学フィルムであり、
     前記1以上の駆動ロールがすべてサクションロールである、光学フィルムの製造方法。
    Producing a second optical film from the first optical film;
    A step of continuously transporting the first film and a connecting film including the second film connected to the longitudinal end thereof by the one or more drive rolls along a transport path including one or more drive rolls;
    Including
    At least one of the first film and the second film has the Charpy impact strength of less than 200 kJ / m 2 or the first optical film or Charpy impact strength of less than 200 kJ / m 2 or the second optical film. A film,
    The method for producing an optical film, wherein the one or more drive rolls are all suction rolls.
  9.  前記第2光学フィルムは、単層光学フィルム、多層光学フィルム、延伸された光学フィルム、及びコーティング層を有する光学フィルムからなる群より選択される、請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the second optical film is selected from the group consisting of a single-layer optical film, a multilayer optical film, a stretched optical film, and an optical film having a coating layer.
PCT/JP2015/052634 2014-02-05 2015-01-30 Method for conveying film and method for producing optical film WO2015119049A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015560963A JPWO2015119049A1 (en) 2014-02-05 2015-01-30 Film conveying method and optical film manufacturing method
CN201580007278.4A CN105980279B (en) 2014-02-05 2015-01-30 The carrying method of film and the manufacturing method of optical film
KR1020167022376A KR101983707B1 (en) 2014-02-05 2015-01-30 Method for conveying film and method for producing optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014020440 2014-02-05
JP2014-020440 2014-02-05

Publications (1)

Publication Number Publication Date
WO2015119049A1 true WO2015119049A1 (en) 2015-08-13

Family

ID=53777856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052634 WO2015119049A1 (en) 2014-02-05 2015-01-30 Method for conveying film and method for producing optical film

Country Status (5)

Country Link
JP (1) JPWO2015119049A1 (en)
KR (1) KR101983707B1 (en)
CN (1) CN105980279B (en)
TW (1) TW201539060A (en)
WO (1) WO2015119049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043579A (en) * 2017-07-31 2022-09-13 日本电气硝子株式会社 Method for producing glass film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113524702B (en) * 2016-02-08 2023-06-20 住友化学株式会社 Method for producing laminated optical film
JP6505877B1 (en) * 2018-01-04 2019-04-24 日東電工株式会社 Conveying apparatus for conveying a long optical film having incisions, and continuous production system of optical display panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101302A (en) * 1994-09-30 1996-04-16 Dainippon Printing Co Ltd Antireflection sheet and its production
JP2002036441A (en) * 2000-07-19 2002-02-05 Lintec Corp Hard coating film
JP2002248712A (en) * 2001-02-23 2002-09-03 Toppan Printing Co Ltd Anti-glaring sheet
GB2375527A (en) * 2001-05-17 2002-11-20 Ind Automation Systems Ltd Synchronising a printed image on an embossed web
WO2007026659A1 (en) * 2005-08-30 2007-03-08 Nitto Denko Corporation Polarizer protective film, polarizing plate and image display
JP2010058867A (en) * 2008-09-01 2010-03-18 Inoue Kinzoku Kogyo Co Ltd Lead sheet bonding method and bonding installation
JP2011225291A (en) * 2010-04-15 2011-11-10 Fujifilm Corp Method for manufacturing suction roll, and method for manufacturing optical film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747152A (en) * 1993-12-02 1998-05-05 Dai Nippon Printing Co., Ltd. Transparent functional membrane containing functional ultrafine particles, transparent functional film, and process for producing the same
JP3314559B2 (en) * 1994-11-01 2002-08-12 富士写真フイルム株式会社 Suction roll for film transport
JP3132324B2 (en) 1995-02-07 2001-02-05 凸版印刷株式会社 Turret splicing control method for roll material
JPH1148271A (en) 1997-08-08 1999-02-23 Konica Corp Manufacture of cellulose triacetate film
JP2005035147A (en) 2003-07-18 2005-02-10 Toray Ind Inc Polyolefin film for thermal press-bonding lamination and embossed laminate comprising it
CN100519129C (en) * 2004-05-28 2009-07-29 富士胶片株式会社 Solution casting method for producing polymer film and suction roller used therefor
JP2006339287A (en) 2005-05-31 2006-12-14 Fujifilm Holdings Corp Method and device for manufacturing conductive film, electromagnetic-wave shielding film and plasma display panel
JP2010008509A (en) 2008-06-24 2010-01-14 Sumitomo Chemical Co Ltd Method for producing polarizing film, polarizing plate, and optical laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101302A (en) * 1994-09-30 1996-04-16 Dainippon Printing Co Ltd Antireflection sheet and its production
JP2002036441A (en) * 2000-07-19 2002-02-05 Lintec Corp Hard coating film
JP2002248712A (en) * 2001-02-23 2002-09-03 Toppan Printing Co Ltd Anti-glaring sheet
GB2375527A (en) * 2001-05-17 2002-11-20 Ind Automation Systems Ltd Synchronising a printed image on an embossed web
WO2007026659A1 (en) * 2005-08-30 2007-03-08 Nitto Denko Corporation Polarizer protective film, polarizing plate and image display
JP2010058867A (en) * 2008-09-01 2010-03-18 Inoue Kinzoku Kogyo Co Ltd Lead sheet bonding method and bonding installation
JP2011225291A (en) * 2010-04-15 2011-11-10 Fujifilm Corp Method for manufacturing suction roll, and method for manufacturing optical film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043579A (en) * 2017-07-31 2022-09-13 日本电气硝子株式会社 Method for producing glass film

Also Published As

Publication number Publication date
CN105980279B (en) 2018-07-03
KR101983707B1 (en) 2019-05-29
JPWO2015119049A1 (en) 2017-03-23
KR20160118273A (en) 2016-10-11
CN105980279A (en) 2016-09-28
TW201539060A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
JP6935463B2 (en) Protective film for polarizing plate and polarizing plate using it
JP6689339B2 (en) (Meth) acrylic resin composition and (meth) acrylic resin film using the same
WO2012066743A1 (en) Hard coating film and image display device
WO2011155504A1 (en) Optical film, anti-glare film, and polarizing plate
KR101740072B1 (en) Acrylic resin film and method for producing the same, and polarizing plate made with the same
JP5884264B2 (en) Film with surface protection film, polarizing plate and method for producing the same
JP2010231016A (en) Polarizer protection film, polarizing plate, and liquid crystal display
KR102156445B1 (en) Surface-treated laminated film and polarising plate using it
WO2015119049A1 (en) Method for conveying film and method for producing optical film
JP6077428B2 (en) Film transport method
JP6065966B2 (en) Manufacturing method of polarizing plate
JP2012013848A (en) Set of rolled polarizing plates, method for manufacturing the same, and method for manufacturing liquid crystal panel
JP2012013849A (en) Set of rolled polarizing plates, method for manufacturing the same, and method for manufacturing liquid crystal panel
JP2024011326A (en) Method for manufacturing optical film and method for manufacturing polarizer
JP2024048862A (en) Anti-reflection film, its manufacturing method, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167022376

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15745957

Country of ref document: EP

Kind code of ref document: A1