JP2011209034A - Measurement method by laser displacement gauge, and circuit for controlling the method - Google Patents

Measurement method by laser displacement gauge, and circuit for controlling the method Download PDF

Info

Publication number
JP2011209034A
JP2011209034A JP2010075640A JP2010075640A JP2011209034A JP 2011209034 A JP2011209034 A JP 2011209034A JP 2010075640 A JP2010075640 A JP 2010075640A JP 2010075640 A JP2010075640 A JP 2010075640A JP 2011209034 A JP2011209034 A JP 2011209034A
Authority
JP
Japan
Prior art keywords
laser displacement
displacement meter
measurement
signal
linear encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010075640A
Other languages
Japanese (ja)
Inventor
Masayuki Hasegawa
雅之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOHZU PREC CO Ltd
KOHZU PRECISION CO Ltd
Original Assignee
KOHZU PREC CO Ltd
KOHZU PRECISION CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOHZU PREC CO Ltd, KOHZU PRECISION CO Ltd filed Critical KOHZU PREC CO Ltd
Priority to JP2010075640A priority Critical patent/JP2011209034A/en
Publication of JP2011209034A publication Critical patent/JP2011209034A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply and accurately inspect a surface condition of a target of measurement by means of a laser displacement gauge, without presetting measurement information.SOLUTION: There are disclosed a measurement method by a laser displacement gauge for inspecting the surface condition of a target 1 of measurement includes steps of placing the laser displacement gauge 3 on a moving stage 4, in a Z-direction having a linear encoder 5 mounted; and moving the moving stage 4 in the Z-direction via the linear encoder 5 so that the voltage output at a position level of d/2 in a length measuring range d is always 0 V so that the distance D between the surface of the target 1 and the laser displacement gauge 3 is kept constant. A circuit for controlling the method is also disclosed.

Description

本発明は、或る種の試料の表面状態を検査するレーザー変位計に関するものである。   The present invention relates to a laser displacement meter for inspecting the surface condition of a certain sample.

例えば、曲率の高いレンズ等表面に形成される0.1mmでの高さ凹凸を測定するには、従来は干渉計の如きが用いられてきたが、極めて高価であることからレーザー変位計が採用されるようになってきている。レーザー変位計は、測長分解能が高いこと、非接触で行えること、といった利点により、多くの工業製品の表面状態の検査に使用されているのである。 For example, in order to measure the height unevenness at 0.1 mm formed on the surface of a lens with high curvature, an interferometer has been used in the past, but a laser displacement meter is used because it is extremely expensive. It is becoming. Laser displacement meters are used for inspection of the surface condition of many industrial products because of their advantages such as high measurement resolution and non-contact.

周知のように、レーザー変位計は、半導体レーザーからのレーザービームを測定物に走査し、反射ビームの強弱を受光素子で電圧数値として測定することにより測長するものであり、測長範囲はレーザー変位計個々に依存し、測長分解能を高く求めようとすると側長範囲が狭くなり、側長範囲を広くとろうとすると側長分解能が低くなる。 As is well known, a laser displacement meter measures a length by scanning a laser beam from a semiconductor laser on a measurement object and measuring the intensity of the reflected beam as a voltage value with a light receiving element. Depending on the displacement meter, if the length measurement resolution is to be obtained high, the side length range is narrowed, and if the side length range is to be widened, the side length resolution is lowered.

即ち或る装置Aでは、側長範囲は±0.3mmであるが測長分解能は0.01μmまで求められるのに対し、或る装置Bでは、側長範囲は±5.3mmであるものの測長分解能は0.05μmとなるが如きであり、更には測定物の厚さが側長範囲を超えてしまうと測定できない。 That is, in some apparatus A, the side length range is ± 0.3 mm, but the length measurement resolution is required to 0.01 μm, whereas in some apparatus B, the side length range is ± 5.3 mm, but the length measurement resolution is However, it cannot be measured when the thickness of the measured object exceeds the lateral length range.

図1は、測定物1表面の凸部2を極端に表現したものであり、レーザー変位計3から測定物1までの間隔Dが固定されていて、図1(a)の状態では測定物1のレベルa位置でレーザービームは反射する。ここでのレーザー変位計3の測長範囲dはレベルaからレベルbまでであり、レベルaの形態を測定することができる。 FIG. 1 is an extreme representation of the convex portion 2 on the surface of the measuring object 1, and the distance D from the laser displacement meter 3 to the measuring object 1 is fixed. In the state of FIG. The laser beam is reflected at the level a position. The measurement range d of the laser displacement meter 3 here is from level a to level b, and the form of level a can be measured.

しかしながら図1(a)の状態から測定物1が乗載するXYステージ(図示省略)を動作させて例えばX方向に走査し、図1(b)の状態になると、凸部2に於けるレベルbを超える高さ(厚さ)の範囲については測長範囲d外なので測定不能である。 However, from the state of FIG. 1A, an XY stage (not shown) on which the measurement object 1 is mounted is operated to scan in the X direction, for example, and when the state of FIG. The range of height (thickness) exceeding b cannot be measured because it is outside the measurement range d.

そこで従来は、レーザー変位計3をZ方向に移動可能な移動ステージ4に装着し、測長範囲を補う手段が採られていた。即ち図2(a)にあって、レーザー変位計3から測定物1までの間隔Dが固定されているので測定物1のレベルa位置を測定することができる。そして測定物1をX方向に走査して、図2(b)の状態になって凸部2に対向したならば、先ず、上位位置のレベルa´を仮設定すると共にレベルaの位置を測定し、レベルaからレベルa´までの間隔だけ移動ステージ4を上昇させ、ここでのレーザー変位計3の測長範囲dをレベルa´からレベルb´に設定して測定するのである。 Therefore, conventionally, a means has been adopted in which the laser displacement meter 3 is mounted on a movable stage 4 that can move in the Z direction to compensate for the length measurement range. That is, in FIG. 2A, since the distance D from the laser displacement meter 3 to the measurement object 1 is fixed, the level a position of the measurement object 1 can be measured. Then, when the measuring object 1 is scanned in the X direction and is in the state of FIG. 2B and faces the convex portion 2, first, the level a ′ of the upper position is temporarily set and the position of the level a is measured. Then, the movable stage 4 is raised by an interval from level a to level a ′, and the measurement range d of the laser displacement meter 3 here is set from level a ′ to level b ′ and measured.

しかしながらこの手段では、予め測定物1表面の凸部2の形状を調べなければならないことになるので、測定情報の設定や測定の点で極めて効率の悪いものになる。 However, with this means, the shape of the convex portion 2 on the surface of the measurement object 1 has to be examined in advance, so that it is extremely inefficient in terms of setting measurement information and measuring.

特開平10−318703号公報Japanese Patent Laid-Open No. 10-318703 特開2006−138673号公報JP 2006-138673 A

特許文献1の発明「寸法測定装置」に於ける図2の説明では、レーザー変位計を用いて非接触による測定手段が開示されているが、上記した図1で明らかにした問題が解決されていない。   In the description of FIG. 2 in the invention “dimension measuring apparatus” of Patent Document 1, a non-contact measuring means is disclosed using a laser displacement meter, but the problem clarified in FIG. 1 described above has been solved. Absent.

また、特許文献2の発明「表面形状測定方法及び測定システム」は、凹凸の発生する以前と以後の被測定物の表面形状を夫々測定して比較する構成で、上記した図2で明らかにした不都合と同様の欠点がある。   In addition, the invention “surface shape measuring method and measuring system” of Patent Document 2 is a configuration for measuring and comparing the surface shape of an object to be measured before and after the occurrence of unevenness, and is clarified in FIG. 2 described above. There are similar disadvantages as inconveniences.

よって本発明は、上述した従来技術の欠点、不都合、不満を解消するべく発明されたものであって、レーザー変位計を用い、予めの測定情報の設定を行うことなく、簡便且つ精度高く測定物の表面状態を検査できるようにすることを目的とする。   Therefore, the present invention has been invented to eliminate the above-mentioned drawbacks, disadvantages, and dissatisfactions of the prior art, and uses a laser displacement meter to easily and accurately measure an object without setting measurement information in advance. It is intended to be able to inspect the surface condition of the.

上記課題を解決するため、本発明は、測定物の表面状態を検査するレーザー変位計による計測方法であって、レーザー変位計をリニアエンコーダーを実装したZ方向への移動ステージに装着し、測長範囲dのd/2の位置レベルの電圧出力が常に0Vとなるようにリニアエンコーダーを介して前記した移動ステージをZ方向に移動させることにより、測定物の表面とレーザー変位計との距離を一定に維持することを特徴とする。 In order to solve the above-described problems, the present invention provides a measurement method using a laser displacement meter that inspects the surface state of a measurement object. The laser displacement meter is mounted on a moving stage in the Z direction on which a linear encoder is mounted, and a length measurement is performed. The distance between the surface of the object to be measured and the laser displacement meter is fixed by moving the moving stage in the Z direction via a linear encoder so that the voltage output at the position d / 2 in the range d is always 0V. It is characterized by maintaining to.

また、本発明のレーザー変位計による計測方法の制御回路は、±10Vのレーザー変位計の電圧出力が入力される入力部と、この入力部からの信号をプラス側とマイナス側の2極信号に生成する比較部と、前記した入力部からの信号を0V近傍信号に生成するAD変換部と、前記した比較部の比較信号と前記したAD変換部の近傍信号との2信号を用いてリニアエンコーダを介し、ステージのZ方向移動を制御する制御部と、から構成されることを特徴とする。   In addition, the control circuit of the measuring method using the laser displacement meter according to the present invention includes an input unit to which a voltage output of a ± 10 V laser displacement meter is input, and a signal from this input unit is converted into a positive and negative two-pole signal. A linear encoder using two signals: a comparison unit to be generated, an AD conversion unit that generates a signal from the input unit as a 0 V neighborhood signal, and a comparison signal from the comparison unit and a neighborhood signal from the AD conversion unit And a control unit that controls the movement of the stage in the Z direction.

レーザー変位計は検出距離によって−10Vから+10Vの電圧を出力するが、この範囲は測長範囲dに相当し、d/2の位置レベルの電圧出力が0Vである。従って移動ステージのZ方向移動を電圧出力が常に0Vとなるようにリニアエンコーダーの値を変位情報として介して制御すれば、測定物の表面とレーザー変位計との距離が常に一定に固定維持できるので、個々のレーザー変位計の測長範囲の値に左右されることなく、測長が可能となるのである。 The laser displacement meter outputs a voltage of −10 V to +10 V depending on the detection distance. This range corresponds to the measurement range d, and the voltage output at the position level of d / 2 is 0V. Therefore, if the value of the linear encoder is controlled as displacement information so that the movement of the moving stage in the Z direction is always 0 V, the distance between the surface of the object to be measured and the laser displacement meter can always be kept constant. Therefore, length measurement is possible without being influenced by the value of the length measurement range of each laser displacement meter.

レーザー変位計の位置電圧情報の直線性は、0V近傍では高くて極めて正確であるが、−10Vや+10V近傍では低くて不正確である。この点本発明では、本来直線性の高い例えば0.1μmのリニアエンコーダーを位置電圧情報源とし、レーザー変位計の直線性の高い0V近傍で使用しているので、極めて正確である。   The linearity of the positional voltage information of the laser displacement meter is high and extremely accurate near 0V, but is low and inaccurate near -10V and + 10V. In this respect, in the present invention, a linear encoder having a high linearity, for example, 0.1 μm is used as a position voltage information source and is used in the vicinity of 0 V where the linearity of the laser displacement meter is high.

そして側長分解能の低いレーザー変位計、例えば側長分解能1μmの製品を使用したとしても、0Vを通過する点は1点だけであるから、本発明では0.1μmの分解能で測定できることになる等、多くの優れた作用効果を奏する。   Even if a laser displacement meter with a low side length resolution, for example, a product with a side length resolution of 1 μm is used, only one point passes 0 V, so that the present invention can measure with a resolution of 0.1 μm. There are many excellent effects.

従来のレーザー変位計による計測方法の一例を示す説明図である。It is explanatory drawing which shows an example of the measuring method by the conventional laser displacement meter. 同じく従来のレーザー変位計による計測方法の一例を示す説明図である。It is explanatory drawing which similarly shows an example of the measuring method by the conventional laser displacement meter. 本発明にかかるレーザー変位計による計測方法の一例を示す説明図である。It is explanatory drawing which shows an example of the measuring method by the laser displacement meter concerning this invention. 測定範囲内での電圧の変化を示すグラフである。It is a graph which shows the change of the voltage within a measurement range. 本発明にかかるレーザー変位計による計測方法の回路図である。It is a circuit diagram of the measuring method by the laser displacement meter concerning this invention.

レーザー変位計3はリニアエンコーダー5を実装したZ方向への移動ステージ4に装着され、測定物1はXYステージ(図示省略)に乗載されており、レーザー変位計3から測定物1までの固定された間隔Dは、図3(a)では測定物1の表面であるレベルa位置でレーザービームが反射するように設定される。この場合レーザー変位計3の測長範囲dはレベルaからレベルbまでであり、測長範囲dのd/2の位置レベルの電圧出力が0Vである。 The laser displacement meter 3 is mounted on a Z-direction moving stage 4 on which a linear encoder 5 is mounted, and the measurement object 1 is mounted on an XY stage (not shown), and is fixed from the laser displacement meter 3 to the measurement object 1. The distance D thus set is set so that the laser beam is reflected at the level a position which is the surface of the measurement object 1 in FIG. In this case, the measurement range d of the laser displacement meter 3 is from level a to level b, and the voltage output at the position level d / 2 of the measurement range d is 0V.

この状態でXYステージを動作させてX方向に走査し、測定物1表面の凸部2にレーザービームが照射されると(図3(b))、リニアエンコーダー5を介して測長範囲dのd/2の位置レベルの電圧出力が0Vとなるように移動ステージ4のモータコントローラを制御し、移動ステージ4をZ方向に上昇させて、測定物1の表面とレーザー変位計3との距離Dを一定に維持する。   In this state, the XY stage is operated to scan in the X direction, and when the convex portion 2 on the surface of the measurement object 1 is irradiated with the laser beam (FIG. 3B), the linear measurement range d through the linear encoder 5 is obtained. The distance D between the surface of the measuring object 1 and the laser displacement meter 3 is controlled by controlling the motor controller of the moving stage 4 so that the voltage output at the position level of d / 2 becomes 0V, and moving the moving stage 4 in the Z direction. Is kept constant.

図5は、本発明を達成するにあたっての回路図であり、入力部6に±10Vのレーザー変位計3の電圧出力が入力されると、比較部7でプラス側とマイナス側の2極信号が生成され、AD変換部8では0V近傍信号が生成される。そして、制御部9では、この比較信号と近傍信号の2信号を用いてリニアエンコーダ5を介し、ステージ4のZ方向移動を制御するのである。   FIG. 5 is a circuit diagram for achieving the present invention. When the voltage output of the laser displacement meter 3 of ± 10 V is input to the input unit 6, the comparison unit 7 generates a positive and negative bipolar signal. The AD conversion unit 8 generates a 0V neighborhood signal. Then, the control unit 9 controls the movement of the stage 4 in the Z direction via the linear encoder 5 using the comparison signal and the proximity signal.

図4にあって、測定範囲内での電圧の変化を示したが、−10Vや+10V近傍では直線性が不安定であるもの、0V近傍では直線であってレーザー変位計3の位置電圧情報は高く、その場合でも、±2Vまでの近傍が望ましい。但し、前述したように0Vを通過する1点だけでの計測である限り、誤差は生じない。   FIG. 4 shows the change in voltage within the measurement range. The linearity is unstable in the vicinity of −10 V and +10 V, and the linear voltage is in the vicinity of 0 V, and the position voltage information of the laser displacement meter 3 is Even in that case, the vicinity of ± 2 V is desirable. However, as described above, no error occurs as long as the measurement is performed at only one point passing 0V.

1 測定物
2 凸部
3 レーザー変位計
4 Z方向移動ステージ
5 リニアエンコーダー
6 入力部
7 比較部
8 AD変換部
9 制御部
DESCRIPTION OF SYMBOLS 1 Measuring object 2 Convex part 3 Laser displacement meter 4 Z direction moving stage 5 Linear encoder 6 Input part 7 Comparison part 8 AD conversion part 9 Control part

Claims (2)

測定物(1)の表面状態を検査するレーザー変位計による計測方法であって、前記レーザー変位計(3)をリニアエンコーダー(5)を実装したZ方向への移動ステージ(4)に装着し、測長範囲dのd/2の位置レベルの電圧出力が常に0Vとなるようにリニアエンコーダー(5)を介して前記移動ステージ(4)をZ方向に移動させることにより、測定物(1)の表面とレーザー変位計(3)との距離Dを一定に維持することを特徴とするレーザー変位計による計測方法。   A measurement method using a laser displacement meter that inspects the surface state of a measurement object (1), wherein the laser displacement meter (3) is mounted on a moving stage (4) in the Z direction on which a linear encoder (5) is mounted, By moving the moving stage (4) in the Z direction via the linear encoder (5) so that the voltage output at the position of d / 2 in the measuring range d is always 0 V, the measured object (1) A measurement method using a laser displacement meter, wherein a distance D between the surface and the laser displacement meter (3) is maintained constant. 請求項1にあって、±10Vのレーザー変位計(3)の電圧出力が入力される入力部(6)と、該入力部(6)からの信号をプラス側とマイナス側の2極信号に生成する比較部(7)と、前記入力部(6)からの信号を0V近傍信号に生成するAD変換部(8)と、前記比較部(7)の比較信号と前記AD変換部(8)の近傍信号との2信号を用いてリニアエンコーダ(5)を介し、ステージ(4)のZ方向移動を制御する制御部(9)と、から構成されることを特徴とするレーザー変位計による計測方法の制御回路。 The input part (6) to which the voltage output of the laser displacement meter (3) of ± 10 V is inputted, and the signal from the input part (6) is converted into a positive and negative bipolar signal. A comparison unit (7) to be generated, an AD conversion unit (8) that generates a signal from the input unit (6) as a signal near 0 V, a comparison signal from the comparison unit (7), and the AD conversion unit (8) And a control unit (9) for controlling the movement of the stage (4) in the Z direction via the linear encoder (5) using two signals of the vicinity signal of and a measurement by a laser displacement meter Method control circuit.
JP2010075640A 2010-03-29 2010-03-29 Measurement method by laser displacement gauge, and circuit for controlling the method Withdrawn JP2011209034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075640A JP2011209034A (en) 2010-03-29 2010-03-29 Measurement method by laser displacement gauge, and circuit for controlling the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075640A JP2011209034A (en) 2010-03-29 2010-03-29 Measurement method by laser displacement gauge, and circuit for controlling the method

Publications (1)

Publication Number Publication Date
JP2011209034A true JP2011209034A (en) 2011-10-20

Family

ID=44940265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075640A Withdrawn JP2011209034A (en) 2010-03-29 2010-03-29 Measurement method by laser displacement gauge, and circuit for controlling the method

Country Status (1)

Country Link
JP (1) JP2011209034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292732A (en) * 2013-05-20 2013-09-11 华中科技大学 Method and telescopic device for measuring large free-form surfaces in on-machine manner
JP2016099221A (en) * 2014-11-21 2016-05-30 株式会社小野測器 Probe device, laser measurement device, and laser measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292732A (en) * 2013-05-20 2013-09-11 华中科技大学 Method and telescopic device for measuring large free-form surfaces in on-machine manner
JP2016099221A (en) * 2014-11-21 2016-05-30 株式会社小野測器 Probe device, laser measurement device, and laser measurement system

Similar Documents

Publication Publication Date Title
Schulz et al. Scanning deflectometric form measurement avoiding path-dependent angle measurement errors
JP6488073B2 (en) Stage apparatus and charged particle beam apparatus using the same
CN104412062A (en) Film thickness measurement device
KR101798322B1 (en) shape measuring device, processing device and reforming method of shape measuring device
US9689892B2 (en) Scanning probe microscope
CN101634547A (en) System and method for measuring double-laser noncontact thickness
JP2011209034A (en) Measurement method by laser displacement gauge, and circuit for controlling the method
US11342156B2 (en) Charged particle beam apparatus, sample alignment method of charged particle beam apparatus
JP6203502B2 (en) Structure and method for positioning a machining tool relative to a workpiece
JP2013164416A (en) Structure having plural scanning detection units in position measuring instrument
Rahimi et al. Improving measurement accuracy of position sensitive detector (PSD) for a new scanning PSD microscopy system
CN108732385A (en) Scan the drift correction device and auto-correction method of probe micro imaging system
CN103712553A (en) Interference method with phase method and vertical scanning method compatible
CN201041541Y (en) Tunnel current testing device of scanning tunnel microscope based on interconnected amplifier
US9581434B2 (en) Apparatus and method for measuring pattern of a grating device
US8225418B2 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
KR101566178B1 (en) Optical Atomic Force Microscope Using Absolute Displacement Sensor
Koops et al. A dedicated calibration standard for nanoscale areal surface texture measurements
TW201816360A (en) Flatness measurement device
JPH088167A (en) Method and device for deciding position of stage origin, and method and device for deciding origin of stage position detector
RU2783678C1 (en) Optoelectronic method for measuring the diameter of a cylindrical object
JP6706519B2 (en) Scanning probe microscope, measuring range adjusting method of scanning probe microscope, and measuring range adjusting program
US20190178641A1 (en) Distance sensor, alignment system and method
CN113029032B (en) High-precision surface shape measuring method and device based on spectrum confocal
JP5009560B2 (en) Apparatus for measuring the shape of a thin object to be measured

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604