JP2011208686A - Flexible synthetic resin pipe - Google Patents

Flexible synthetic resin pipe Download PDF

Info

Publication number
JP2011208686A
JP2011208686A JP2010075156A JP2010075156A JP2011208686A JP 2011208686 A JP2011208686 A JP 2011208686A JP 2010075156 A JP2010075156 A JP 2010075156A JP 2010075156 A JP2010075156 A JP 2010075156A JP 2011208686 A JP2011208686 A JP 2011208686A
Authority
JP
Japan
Prior art keywords
protrusion
engagement portion
tube
engaging portion
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010075156A
Other languages
Japanese (ja)
Other versions
JP5572436B2 (en
Inventor
Hiroyuki Sawada
浩幸 沢田
Toru Kurita
亨 栗田
Tomokazu Iwashita
智和 岩下
Shinichi Takeda
慎一 武田
Seiichi Hitomi
誠一 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010075156A priority Critical patent/JP5572436B2/en
Publication of JP2011208686A publication Critical patent/JP2011208686A/en
Application granted granted Critical
Publication of JP5572436B2 publication Critical patent/JP5572436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flexible synthetic resin pipe for smoothly holding the winding structure of a pipe body while preventing the separation of a first engaging portion side protruded strip from the confronting face of a second engaging portion side protruded strip on the outer periphery side of the pipe body when curved.SOLUTION: The flexible synthetic resin pipe includes the pipe body 11 formed by spirally winding a strip 15 having a first engaging portion 13 formed on one side in the axial direction and a second engaging portion 14 formed on the other side in the axial direction while spirally winding the first engaging portion 13 engaging with the second engaging portion 14 from the outside in the radial direction of the pipe body 11. On both engaging portions 13, 14, the first and second engaging portion side protruded strips 173, 183 are provided, respectively, which are protruded confronting each other in the axial direction of the pipe body 11 and which abut on each other on the outer periphery side of the pipe body 11 when curved. The confronting face 183a of the second engaging portion side protruded strip 183 is gradually inclined to the orthogonal face orthogonal thereto in the axial direction of the pipe body 11 as tending toward the front end side to come closer to the first engaging portion side protruded strip 173.

Description

本発明は、例えば、地中に埋設される電線、電力ケーブル、通信ケーブルなどの保護管として用いられる可撓性合成樹脂管に関する。   The present invention relates to a flexible synthetic resin tube used as a protective tube for, for example, an electric wire, a power cable, or a communication cable buried in the ground.

例えば、地中に埋設される電線、電力ケーブル、通信ケーブルなどの保護管として用いられる可撓性合成樹脂管として、図30に示すように、軸線方向の一側に沿って第1係合部210が形成されかつ前記第1係合部と連結状として軸線方向の他側に沿って第2係合部220が形成された硬質塩化ビニル樹脂などの硬質な合成樹脂よりなる帯状体200が螺旋状に巻き回され、前記第1係合部210とこれに隣接する第2係合部220とが互いに軸線方向へ摺動自在となるように非接着状態で係合されて螺旋状に捲回して形成された管本体110を有し、この管本体110の内周面に沿って軟質合成樹脂よりなる内層材120が貼着された可撓性合成樹脂管100が既に提案されている(特許文献1)。   For example, as a flexible synthetic resin tube used as a protective tube for electric wires, power cables, communication cables, etc. buried in the ground, as shown in FIG. 30, the first engaging portion along one side in the axial direction A belt-like body 200 made of a hard synthetic resin such as a hard vinyl chloride resin having 210 formed therein and a second engagement portion 220 formed along the other side in the axial direction as a connection with the first engagement portion is spiral. The first engagement portion 210 and the second engagement portion 220 adjacent to the first engagement portion 210 are engaged with each other in a non-adhered state so as to be slidable in the axial direction. There has already been proposed a flexible synthetic resin tube 100 having a tube body 110 formed by attaching an inner layer material 120 made of a soft synthetic resin along the inner peripheral surface of the tube body 110 (patent). Reference 1).

すなわち、この可撓性合成樹脂管100は、内層材120が軟質な合成樹脂で形成されているので、可撓性に優れている。
一方、管本体110は、硬質な合成樹脂で形成されているので、強度的に優れ、しかも、第1係合部210と第2係合部220とが互いに軸線方向へ摺動自在となるように非接着状態で係合されているだけであるので、管本体110を湾曲させた際にその外周側では、第1係合部210と第2係合部220とが離れる方向に摺動する一方、内周側では第1係合部210と第2係合部220とが近づく方向に摺動し、実質的に管本体110も内層材120の撓みに追従するようになっている。この場合、第1係合部210は、これに隣接する第2係合部220に対し管本体110の半径方向外方から係合している。
That is, the flexible synthetic resin tube 100 is excellent in flexibility because the inner layer material 120 is formed of a soft synthetic resin.
On the other hand, since the tube body 110 is formed of a hard synthetic resin, it is excellent in strength, and the first engagement portion 210 and the second engagement portion 220 are slidable in the axial direction. Therefore, when the tube main body 110 is bent, the first engagement portion 210 and the second engagement portion 220 slide in a direction away from each other on the outer peripheral side of the tube main body 110 when it is bent. On the other hand, on the inner peripheral side, the first engaging portion 210 and the second engaging portion 220 slide in the approaching direction, and the tube main body 110 substantially follows the bending of the inner layer material 120. In this case, the first engaging portion 210 is engaged with the second engaging portion 220 adjacent thereto from the outside in the radial direction of the tube main body 110.

特開平9−229247号公報Japanese Patent Laid-Open No. 9-229247

ところで、前記可撓性合成樹脂管100の各係合部210,220には、管本体110の軸線方向で互いに対峙するように突設された突条211,221が設けられ、この突条211,221は、管本体110を湾曲させた際にその外周側において互いの係合部210,220内を軸線方向へ摺動して互いに当接する。つまり、管本体110を湾曲させた際にその外周側では、第1係合部210と第2係合部220とが離れる方向に摺動して突条211,221同士が互いに当接する。
その場合、管本体110を湾曲させた際の湾曲度合いによっては、第1係合部210の突条211が第2係合部220の突条221の対峙面221aに沿って管本体110の半径方向外方に移動することがある。このとき、第1係合部210の突条211が管本体110の半径方向外方に移動して第2係合部220の突条221の対峙面221aから離脱すると、双方の係合部210,220による係合が解除されてしまい、管本体110の巻き構造が保持できなくなる。
By the way, the engaging portions 210 and 220 of the flexible synthetic resin tube 100 are provided with protrusions 211 and 221 protruding so as to face each other in the axial direction of the tube main body 110, and this protrusion 211 , 221 slide in the axial direction in the engaging portions 210, 220 on the outer peripheral side when the tube body 110 is bent, and come into contact with each other. That is, when the tube main body 110 is bent, on the outer peripheral side, the first engaging portion 210 and the second engaging portion 220 slide in a direction away from each other, and the protrusions 211 and 221 contact each other.
In that case, depending on the degree of bending when the tube main body 110 is bent, the radius of the tube main body 110 is changed along the opposite surface 221a of the protrusion 221 of the second engagement portion 220. May move out of direction. At this time, when the protrusion 211 of the first engagement portion 210 moves outward in the radial direction of the pipe main body 110 and separates from the facing surface 221 a of the protrusion 221 of the second engagement portion 220, both engagement portions 210 are formed. , 220 is released, and the winding structure of the tube body 110 cannot be maintained.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、管本体を湾曲させた際にその外周側での第2係合部の突条の対峙面からの第1係合部の突条の離脱を防止して、管本体の巻き構造を円滑に保持することができる可撓性合成樹脂管を提供することにある。   The present invention has been made in view of such points, and the object of the present invention is to provide a first from the opposite surface of the protrusion of the second engaging portion on the outer peripheral side when the tube body is curved. An object of the present invention is to provide a flexible synthetic resin tube that can prevent the protrusion of the engaging portion from being detached and can smoothly hold the winding structure of the tube body.

上記目的を達成するため、本発明が講じた解決手段では、合成樹脂よりなり、軸線方向の一側に沿って第1係合部が形成されかつ前記第1係合部と連結状として軸線方向の他側に沿って第2係合部が形成された帯状体が螺旋状に巻き回され、前記第1係合部とこれに隣接する第2係合部とが互いに軸線方向へ摺動自在となるように非接着状態で係合されて螺旋状に捲回して形成された管本体を有し、この管本体の内周面に沿って軟質合成樹脂よりなる内層材が貼着された可撓性合成樹脂管を前提とする。更に、前記第1係合部はこれに隣接する第2係合部に対し前記管本体の半径方向外方から係合つまり管本体の半径方向外方から半径方向内方に向かって係合しているとともに、その両係合部に、前記管本体の軸線方向で互いに対峙するように突設され、かつ当該管本体を湾曲させた際に互いに軸線方向へ摺動して当接する突条がそれぞれ設けられている。そして、前記第2係合部の突条の対峙面を、その突条の先端側になるに従い前記第1係合部の突条に近付くように傾斜させている。
この特定事項により、第2係合部の突条の対峙面が、その突条の先端側になるに従い第1係合部の突条に近付くように傾斜しているので、管本体を湾曲させた際にその外周側において第2係合部の突条に当接した第1係合部の突条は、前記第2係合部の突条の先端側になるに従い当該第2係合部の突条の対峙面に対する掛かりが強くなって管本体の半径方向外方へ移動し難くなる。これにより、管本体を湾曲させた際にその外周側での第2係合部の突条の対峙面からの第1係合部の突条の離脱が防止され、管本体の巻き構造を円滑に保持することが可能となる。
しかも、地震などの地盤の変動によって管本体に軸線方向の大きな力が作用して当該管本体が伸びた際に、第1係合部の突条の対峙面が、先端側になるに従い掛かりが強くなる方向に傾斜つまり先端側が第1係合部の突条寄りとなるように傾斜している第2係合部の突条の対峙面に対し、強く当接する。このとき、第1係合部の突条の当接により第2係合部の突条の先端が第1係合部の反突条側に撓んでも、先端側が第1係合部の突条寄りに傾斜している第2係合部の突条の対峙面との当接によって、第1係合部の突条が第2係合部の突条を軸線方向に乗り越えることなく持ち堪えられる。これにより、地震などの地盤の変動によって管本体が伸びても、管本体の巻き構造を円滑に保持することが可能となる。
In order to achieve the above object, according to the solution provided by the present invention, the first engaging portion is formed along one side in the axial direction and made of synthetic resin, and connected to the first engaging portion in the axial direction. A belt-like body in which a second engagement portion is formed along the other side is spirally wound, and the first engagement portion and a second engagement portion adjacent thereto are slidable in the axial direction. It is possible to have a tube body which is engaged in a non-adhered state and wound in a spiral shape so that an inner layer material made of a soft synthetic resin is attached along the inner peripheral surface of the tube body. A flexible synthetic resin pipe is assumed. Further, the first engaging portion engages with the second engaging portion adjacent thereto from the radially outer side of the tube body, that is, from the radially outer side of the tube body toward the radially inner side. In addition, there are protrusions that project from both engaging portions so as to face each other in the axial direction of the tube main body, and slide and contact each other in the axial direction when the tube main body is curved. Each is provided. And the opposing surface of the protrusion of the said 2nd engagement part is inclined so that it may approach the protrusion of the said 1st engagement part as it becomes the front end side of the protrusion.
Due to this specific matter, the opposite surface of the protrusion of the second engagement portion is inclined so as to approach the protrusion of the first engagement portion as it comes to the tip side of the protrusion, so that the pipe body is bent. The protrusion of the first engagement portion that comes into contact with the protrusion of the second engagement portion on the outer peripheral side of the second engagement portion becomes closer to the distal end side of the protrusion of the second engagement portion. The protrusion on the opposite surface of the protrusion becomes stronger and it becomes difficult to move outward in the radial direction of the pipe body. As a result, when the tube body is bent, the protrusion of the first engagement portion from the opposing surface of the protrusion of the second engagement portion on the outer peripheral side is prevented, and the winding structure of the tube body is smoothed. It is possible to hold it.
Moreover, when a large axial force acts on the pipe body due to ground fluctuations such as an earthquake, and the pipe body extends, the protrusions of the first engaging portion protrude toward the tip side. It is strongly abutted against the opposing surface of the ridge of the second engaging portion that is inclined in the direction of strengthening, that is, the tip side is inclined so as to be closer to the ridge of the first engaging portion. At this time, even if the tip of the protrusion of the second engagement portion is bent toward the opposite protrusion of the first engagement portion by the contact of the protrusion of the first engagement portion, the tip side is a protrusion of the first engagement portion. The abutment of the second engaging portion that is inclined toward the ridge is brought into contact with the opposite surface of the ridge, so that the ridge of the first engaging portion can be held without overriding the ridge of the second engaging portion in the axial direction. . Thereby, even if the pipe body is extended due to ground fluctuation such as an earthquake, the winding structure of the pipe body can be held smoothly.

また、前記第1係合部の突条の対峙面を、その突条の先端側になるに従い前記管本体の軸線方向で前記第2係合部の突条に近付くように傾斜させることが好ましい。
この場合には、第1係合部の突条の対峙面が、その突条の先端側になるに従い第2係合部の突条に近付くように傾斜しているので、管本体を湾曲させた際にその外周側において第2係合部の突条に当接した第1係合部の突条は、前記第2係合部の突条の先端側になるに従い当該第2係合部の突条の対峙面に対する掛かりが強くなって管本体の半径方向外方へさらに移動し難くなる。これにより、管本体を湾曲させた際にその外周側での第2係合部の突条の対峙面からの第1係合部の突条の離脱がさらに防止され、管本体の巻き構造をより円滑に保持することができる。
しかも、地震などの地盤の変動によって管本体に軸線方向の大きな力が作用して当該管本体が伸びた際に、先端側になるに従い掛かりが強くなる方向に傾斜つまり先端側が第1係合部の突条寄りとなるように傾斜している第1係合部の突条の対峙面が、先端側が第1係合部の突条寄りとなるように傾斜している第2係合部の突条の対峙面に対し、強く当接する。このとき、両係合部の突条同士の当接により、第1係合部の突条の先端が第2係合部の反突条側に、第2係合部の突条の先端が第1係合部の反突条側にそれぞれ撓んでも、先端側が第2係合部の突条寄りに傾斜している第1係合部の突条の対峙面と先端側が第1係合部の突条寄りに傾斜している第2係合部の突条の対峙面との当接によって、第1係合部の突条が第2係合部の突条を軸線方向に乗り越えることなく円滑に持ち堪えられる。これにより、地震などの地盤の変動によって管本体が伸びても、管本体の巻き構造をより円滑に保持することができる。
Moreover, it is preferable to incline the opposing surface of the ridge of the first engaging portion so as to approach the ridge of the second engaging portion in the axial direction of the pipe body as it becomes the tip side of the ridge. .
In this case, since the opposing surface of the protrusion of the first engaging portion is inclined so as to approach the protrusion of the second engaging portion as it comes to the tip side of the protrusion, the tube body is bent. The protrusion of the first engagement portion that comes into contact with the protrusion of the second engagement portion on the outer peripheral side of the second engagement portion becomes closer to the distal end side of the protrusion of the second engagement portion. The protrusion on the opposite surface of the ridge becomes stronger and it becomes more difficult to move outward in the radial direction of the pipe body. As a result, when the tube body is bent, the protrusion of the first engagement portion from the opposing surface of the protrusion of the second engagement portion on the outer peripheral side thereof is further prevented, and the winding structure of the tube body is reduced. It can be held more smoothly.
In addition, when a large axial force acts on the pipe body due to ground fluctuations such as an earthquake and the pipe body extends, the first engaging portion is inclined in the direction in which the hook becomes stronger as it becomes the tip side, that is, the tip side is the first engaging portion. The opposing surface of the ridge of the first engaging portion inclined so as to be closer to the ridge of the second engaging portion is inclined so that the tip side is closer to the ridge of the first engaging portion. Strongly abuts against the opposite surface of the ridge. At this time, due to the abutment of the protrusions of both engaging portions, the tip of the protrusion of the first engagement portion is opposite to the protrusion of the second engagement portion, and the tip of the protrusion of the second engagement portion is Even if each of the first engaging portions bends to the opposite side of the ridge, the tip side of the first engaging portion is inclined toward the ridge of the second engaging portion. The ridge of the first engagement portion rides over the ridge of the second engagement portion in the axial direction due to the contact with the opposite surface of the ridge of the second engagement portion that is inclined toward the ridge of the portion. It can be endured smoothly. Thereby, even if a pipe body is extended by ground changes, such as an earthquake, the winding structure of a pipe body can be held more smoothly.

また、前記両係合部の突条に、その互いの対峙面の先端部位よりそれぞれ軸線方向に突出し、かつ前記各突条の当接時に当該各突条同士を内外径方向から係合する係合片を設けていてもよい。
この場合には、両係合部の突条同士が互いの係合片によって内外径方向から係合されているので、管本体を湾曲させた際にその外周側において第2係合部の突条に当接した第1係合部の突条は、その係合片が第2係合部の突条の係合片と係合し、第2係合部の突条の対峙面に沿って管本体の半径方向外方へ移動することが防止される。これにより、管本体を湾曲させた際にその外周側での第2係合部の突条の対峙面からの第1係合部の突条の離脱が確実に防止され、管本体の巻き構造を効果的に保持することができる。
しかも、地震などの地盤の変動によって管本体に軸線方向の大きな力が作用して当該管本体が伸びた際に、第1係合部の突条の対峙面が、先端側が第1係合部の突条寄りとなるように傾斜している第2係合部の突条の対峙面に対し、強く当接する。このとき、両係合部の突条同士の当接により、第1係合部の突条の先端が第2係合部の反突条側に、第2係合部の突条の先端が第1係合部の反突条側にそれぞれ撓んでも、両係合部の突条の係合片同士の係合によって、第1係合部の突条が第2係合部の突条を軸線方向に乗り越えることなく確実に持ち堪えられる。これにより、地震などの地盤の変動によって管本体が伸びても、管本体の巻き構造を確実に保持することができる。
Further, the protrusions projecting in the axial direction from the tip portions of the opposing surfaces of the protrusions of the both engaging portions, and engaging the protrusions from the inner and outer diameter directions when the protrusions are in contact with each other. A piece may be provided.
In this case, since the protrusions of both engaging portions are engaged with each other by the engaging pieces from the inner and outer diameter directions, the protrusion of the second engaging portion is formed on the outer peripheral side when the tube body is bent. The protrusion of the first engaging portion that is in contact with the stripe engages with the engagement piece of the protrusion of the second engaging portion along the opposite surface of the protrusion of the second engaging portion. This prevents the pipe body from moving radially outward. Accordingly, when the tube body is bent, the protrusion of the first engagement portion from the facing surface of the protrusion of the second engagement portion on the outer peripheral side is reliably prevented, and the winding structure of the tube body is prevented. Can be effectively retained.
Moreover, when a large axial force acts on the pipe body due to ground fluctuations such as an earthquake, the pipe body extends, and the opposite surface of the protrusion of the first engagement portion is the first engagement portion on the tip side. It strongly abuts against the opposing surface of the ridge of the second engaging portion inclined so as to be closer to the ridge. At this time, due to the abutment of the protrusions of both engaging portions, the tip of the protrusion of the first engagement portion is opposite to the protrusion of the second engagement portion, and the tip of the protrusion of the second engagement portion is Even if each of the first engaging portions bends to the opposite side of the protrusions, the protrusions of the first engaging portions are engaged with the protrusions of the second engaging portions by the engagement of the engaging pieces of the protrusions of both engaging portions. Can endure without having to get over the axis. Thereby, even if a pipe main body expands by ground changes, such as an earthquake, the winding structure of a pipe main body can be held reliably.

また、前記第2係合部の突条を、前記第1係合部の突条よりも前記管本体の軸線方向に厚肉に形成していてもよい。この場合には、第1係合部を第2係合部の厚肉な突条により内側から支え、管本体の扁平を効果的に防止することができる。   Further, the protrusion of the second engagement portion may be formed thicker in the axial direction of the tube body than the protrusion of the first engagement portion. In this case, the first engaging portion can be supported from the inside by the thick protrusion of the second engaging portion, and the flatness of the tube body can be effectively prevented.

また、前記第2係合部の突条に、その先端向きに開口する凹部と、この凹部によって前記管本体の軸線方向に分割された複数の突条部とを設けていてもよい。
この場合には、前記第2係合部の厚肉な突条が凹部によって管本体の軸線方向で複数の突条部に分割されているので、その分割された複数の突条部により第1係合部が内側から満遍なく支えられ、管本体の扁平を効率よく防止することができる。しかも、凹部によって厚肉な突条の材料が削減されて、可撓性合成樹脂管(管本体)のコストの低廉化を図ることもできる。
Further, the protrusion of the second engagement portion may be provided with a recess opening toward the tip thereof and a plurality of protrusions divided by the recess in the axial direction of the tube main body.
In this case, since the thick protrusion of the second engaging portion is divided into a plurality of protrusions in the axial direction of the tube main body by the recess, the first protrusion is formed by the divided protrusions. The engaging portion is uniformly supported from the inside, and the flatness of the tube body can be efficiently prevented. In addition, the material of the thick protrusion is reduced by the recess, and the cost of the flexible synthetic resin tube (tube body) can be reduced.

更に、前記管本体を湾曲させた際にその内周側において互いに当接する,前記第1係合部の突条の反対峙面と、この第1係合部に隣接する第2係合部の縦面との少なくとも一方を、当該両面間に前記第1係合部の突条の基端側になるに従い管本体の軸線方向に漸増する空間を形成するように傾斜させていてもよい。
この場合には、前記第1係合部の突条の反対峙面とこの第1係合部に隣接する第2係合部の縦面との少なくとも一方が、当該両面間に前記第1係合部の突条の基端側になるに従い管本体の軸線方向に漸増する空間が形成されるように傾斜しているので、管本体を湾曲させた際にその内周側において前記両面同士が前記空間を閉ざすように当接する。このため、許容曲げ半径(例えば、0.3mR程度)が規定される光ファイバーケーブルなどの通信ケーブルを可撓性合成樹脂管の内部に収容している場合には、管本体を湾曲させた際にその内周側において前記両面同士を当接させることによってそれ以上の曲げが規制される。これにより、通信ケーブルの断線などによる不具合を確実に防止することができる。
Further, when the tube main body is bent, the inner surfaces of the tube main body come into contact with each other on the opposite side surfaces of the protrusions of the first engaging portion, and the second engaging portion adjacent to the first engaging portion. At least one of the vertical surfaces may be inclined so as to form a space between the both surfaces that gradually increases in the axial direction of the tube main body toward the proximal end side of the protrusion of the first engaging portion.
In this case, at least one of the opposite flange surface of the protrusion of the first engagement portion and the vertical surface of the second engagement portion adjacent to the first engagement portion is the first engagement between both surfaces. Since it is inclined so as to form a space that gradually increases in the axial direction of the tube body as it becomes the proximal end side of the protrusion of the joint portion, when the tube body is curved, the both surfaces are on the inner peripheral side thereof It abuts so as to close the space. For this reason, when a communication cable such as an optical fiber cable in which an allowable bending radius (for example, about 0.3 mR) is accommodated inside the flexible synthetic resin tube, when the tube body is bent, Further bending is regulated by bringing the two surfaces into contact with each other on the inner peripheral side. Thereby, the malfunction by the disconnection etc. of a communication cable can be prevented reliably.

また、上記目的を達成するため、本発明が講じたその他の解決手段では、合成樹脂よりなり、軸線方向の一側に沿って第1係合部が形成されかつ前記第1係合部と連結状として軸線方向の他側に沿って第2係合部が形成された帯状体が螺旋状に巻き回され、前記第1係合部とこれに隣接する第2係合部とが互いに軸線方向へ摺動自在となるように非接着状態で係合されて螺旋状に捲回して形成された管本体を有し、この管本体の内周面に沿って軟質合成樹脂よりなる内層材が貼着された可撓性合成樹脂管を同様に前提とする。更に、 前記第1係合部はこれに隣接する第2係合部に対し前記管本体の半径方向外方から係合されているとともに、その両係合部に、前記管本体の軸線方向で互いに対峙するように突設され、かつ当該管本体を湾曲させた際に互いに軸線方向へ摺動して当接する突条がそれぞれ設けられている。そして、前記両係合部の突条に、その互いの対峙面の先端部位よりそれぞれ軸線方向に突出させ、かつ前記各突条の当接時に当該各突条同士を内外径方向から係合する係合片を設けている。
この特定事項により、両係合部の突条同士が互いの係合片によって内外径方向から係合されるので、管本体を湾曲させた際にその外周側において第2係合部の突条に当接した第1係合部の突条は、その係合片が第2係合部の突条の係合片と係合し、第2係合部の突条の対峙面に沿って管本体の半径方向外方へ移動することが防止される。これにより、管本体を湾曲させた際にその外周側での第2係合部の突条の対峙面からの第1係合部の突条の離脱が確実に防止され、管本体の巻き構造を効果的に保持することが可能となる。
In order to achieve the above object, according to another solution provided by the present invention, the first engagement portion is formed along one side in the axial direction and is connected to the first engagement portion. A belt-like body having a second engagement portion formed along the other side in the axial direction is spirally wound, and the first engagement portion and the second engagement portion adjacent thereto are axially connected to each other. The pipe body is formed by being wound in a non-adhered state so as to be slidable and spirally wound, and an inner layer material made of a soft synthetic resin is attached along the inner peripheral surface of the pipe body. The same applies to the attached flexible synthetic resin tube. Further, the first engaging portion is engaged with the second engaging portion adjacent thereto from the radially outer side of the tube main body, and both the engaging portions are engaged with each other in the axial direction of the tube main body. Projections are provided so as to be opposed to each other, and when the tube body is bent, the projections slide and contact each other in the axial direction. Then, the protrusions of both the engaging portions are protruded in the axial direction from the tip portions of the opposing surfaces, and the protrusions are engaged with each other from the inner and outer diameter directions when the protrusions are in contact with each other. An engagement piece is provided.
Due to this specific matter, the protrusions of the two engaging portions are engaged with each other by the engaging pieces from the inner and outer diameter directions. Therefore, when the tube main body is bent, the protrusions of the second engaging portion on the outer peripheral side thereof. The protrusion of the first engagement portion that is in contact with the engagement portion of the protrusion engages with the engagement piece of the protrusion of the second engagement portion, along the opposite surface of the protrusion of the second engagement portion. It is prevented that the pipe body moves outward in the radial direction. Accordingly, when the tube body is bent, the protrusion of the first engagement portion from the facing surface of the protrusion of the second engagement portion on the outer peripheral side is reliably prevented, and the winding structure of the tube body is prevented. Can be effectively retained.

以上、要するに、第2係合部の突条の対峙面をその突条の先端側になるに従い第1係合部の突条に近付くように傾斜させたり、両係合部の突条同士を互いの係合片によって内外径方向から係合することで、管本体を湾曲させた際にその外周側での第2係合部の突条の対峙面に対する管本体の半径方向外方への第1係合部の突条の移動をし難いものにして、第2係合部の突条の対峙面からの第1係合部の突条の離脱を防止し、管本体の巻き構造を円滑に保持することができる。しかも、地震などの地盤の変動によって管本体が伸びた際に第1係合部の突条の対峙面が第2係合部の突条の対峙面に強く当接して第2係合部の突条の先端が第1係合部の反突条側に撓んでも、先端側が第1係合部の突条寄りに傾斜している第2係合部の突条の対峙面との当接によって第1係合部の突条が第2係合部の突条を軸線方向に乗り越えることなく持ち堪えられ、管本体の巻き構造を円滑に保持することができる。   In short, in short, the opposing surfaces of the ridges of the second engaging portion are inclined so as to approach the ridges of the first engaging portion as they become the tip side of the ridges, or the ridges of both engaging portions are By engaging with each other from the inner and outer diameter directions by the engagement pieces, when the tube body is bent, the tube body radially outwards with respect to the opposing surface of the protrusion of the second engagement portion on the outer peripheral side. It is difficult to move the ridge of the first engaging portion, and the detachment of the ridge of the first engaging portion from the facing surface of the ridge of the second engaging portion is prevented. It can be held smoothly. In addition, when the pipe body is extended due to ground fluctuation such as an earthquake, the opposing surface of the first engaging portion protrudes strongly against the opposing surface of the second engaging portion, and the second engaging portion Even if the tip of the ridge is bent toward the opposite ridge of the first engagement portion, the tip of the ridge is in contact with the opposite surface of the ridge of the second engagement portion inclined toward the ridge of the first engagement portion. By contact, the protrusion of the first engagement portion can be held without overriding the protrusion of the second engagement portion in the axial direction, and the winding structure of the tube body can be smoothly held.

本発明の第1の実施の形態に係る可撓性合成樹脂管のレイアウト図である。It is a layout figure of the flexible synthetic resin pipe | tube which concerns on the 1st Embodiment of this invention. 図1の可撓性合成樹脂管の直線部分を管軸に沿って切断した断面図である。It is sectional drawing which cut | disconnected the linear part of the flexible synthetic resin pipe | tube of FIG. 1 along the pipe axis. 図2のA部拡大図である。It is the A section enlarged view of FIG. 図1の可撓性合成樹脂管の湾曲部分を管軸に沿って切断した断面図である。It is sectional drawing which cut | disconnected the curved part of the flexible synthetic resin pipe | tube of FIG. 1 along the pipe axis. 図4のB部拡大図である。It is the B section enlarged view of FIG. 図4のC部拡大図である。It is the C section enlarged view of FIG. 図1の継手を管軸に沿って切断した断面図である。It is sectional drawing which cut | disconnected the coupling of FIG. 1 along the pipe axis. 図1の可撓性合成樹脂管の継手部分を継手と共に管軸に沿って切断した断面図である。It is sectional drawing which cut | disconnected the joint part of the flexible synthetic resin pipe | tube of FIG. 1 along the pipe axis with the joint. 可撓性合成樹脂管の内部での摺動試験Sliding test inside flexible plastic tube 第1の実施の形態の変形例に係る可撓性合成樹脂管の直線部分を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is a partially expanded view which expands and shows the cross section which notched the linear part of the flexible synthetic resin pipe | tube which concerns on the modification of 1st Embodiment along the pipe axis. 本発明の第2の実施の形態に係る可撓性合成樹脂管の直線部分を管軸に沿って切断した断面図である。It is sectional drawing which cut | disconnected the linear part of the flexible synthetic resin pipe | tube which concerns on the 2nd Embodiment of this invention along the pipe axis. 図11のD部拡大図である。It is the D section enlarged view of FIG. 本発明の第2の実施の形態に係る可撓性合成樹脂管の湾曲部分を管軸に沿って切断した断面図である。It is sectional drawing which cut | disconnected the curved part of the flexible synthetic resin pipe | tube which concerns on the 2nd Embodiment of this invention along the pipe axis. 図13のE部拡大図である。It is the E section enlarged view of FIG. 図13のF部拡大図である。It is the F section enlarged view of FIG. 第2の実施の形態の変形例に係る可撓性合成樹脂管の直線部分を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is a partially expanded view which expands and shows the cross section which notched the linear part of the flexible synthetic resin pipe | tube which concerns on the modification of 2nd Embodiment along the pipe axis. 同じく可撓性合成樹脂管の湾曲部分の外周側を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is the partially expanded view which expands and shows the cross section which notched the outer peripheral side of the curved part of the flexible synthetic resin pipe | tube along the pipe axis similarly. 第2の実施の形態のその他の変形例に係る可撓性合成樹脂管の直線部分を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is a partially expanded view which expands and shows the cross section which notched the linear part of the flexible synthetic resin pipe | tube which concerns on the other modification of 2nd Embodiment along the pipe axis. 同じく可撓性合成樹脂管の湾曲部分の外周側を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is the partially expanded view which expands and shows the cross section which notched the outer peripheral side of the curved part of the flexible synthetic resin pipe | tube along the pipe axis similarly. 本発明の第3の実施の形態に係る可撓性合成樹脂管の直線部分を管軸に沿って切断した断面図である。It is sectional drawing which cut | disconnected the linear part of the flexible synthetic resin pipe | tube which concerns on the 3rd Embodiment of this invention along the pipe axis. 図20のG部拡大図である。It is the G section enlarged view of FIG. 本発明の第3の実施の形態に係る可撓性合成樹脂管の湾曲部分を管軸に沿って切断した断面図である。It is sectional drawing which cut | disconnected the curved part of the flexible synthetic resin pipe | tube which concerns on the 3rd Embodiment of this invention along the pipe axis. 図22のH部拡大図である。It is the H section enlarged view of FIG. 図22のI部拡大図である。It is the I section enlarged view of FIG. 第3の実施の形態の変形例に係る可撓性合成樹脂管の直線部分を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is a partially expanded view which expands and shows the cross section which notched the linear part of the flexible synthetic resin pipe | tube which concerns on the modification of 3rd Embodiment along the pipe axis. 同じく可撓性合成樹脂管の湾曲部分の外周側を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is the partially expanded view which expands and shows the cross section which notched the outer peripheral side of the curved part of the flexible synthetic resin pipe | tube along the pipe axis similarly. 同じく可撓性合成樹脂管の湾曲部分の内周側を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is the partially expanded view which expands and shows the cross section which similarly cut out the inner peripheral side of the curved part of a flexible synthetic resin pipe | tube along a pipe axis. 本発明の第4の実施の形態に係る可撓性合成樹脂管の直線部分を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is the partially expanded view which expands and shows the cross section which notched the linear part of the flexible synthetic resin pipe | tube which concerns on the 4th Embodiment of this invention along the pipe axis. 第4の実施の形態の変形例に係る可撓性合成樹脂管の直線部分を管軸に沿って切り欠いた断面を拡大して示す一部拡大図である。It is a partially expanded view which expands and shows the cross section which notched the linear part of the flexible synthetic resin pipe | tube which concerns on the modification of 4th Embodiment along the pipe axis. 従来例に係る可撓性合成樹脂管の一部を示す断面図である。It is sectional drawing which shows a part of flexible synthetic resin pipe | tube which concerns on a prior art example.

以下添付図面を参照しながら、本発明の実施の形態について説明し、本発明の理解に供する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings for understanding of the present invention. In addition, the following embodiment is an example which actualized this invention, Comprising: The thing of the character which limits the technical scope of this invention is not.

図1において、1は本発明の第1の実施の形態に係る可撓性合成樹脂管を示し、この可撓性合成樹脂管1は、供給系や引込系などの本管Xから導出させた光ファイバーケーブル(図示せず)を湾曲させた部位において保護するために供される。つまり、可撓性合成樹脂管1は、光ファイバーケーブルを所望する方向に湾曲させる都度(図1では2箇所のみ示す)用いられ、光ファイバーケーブルの直線部分を保護する硬質塩化ビニル樹脂製の複数の直管21,21(図1では2つのみ示す)と組み合わされる。具体的には、可撓性合成樹脂管1は、前記ボディ管Xに取り付けられた分岐管X1に対し継手22を介して一端(図1では左端)が接続されているとともに、その他端(図1では右端)が直管21の一端(図1では左端)に対し継手22を介して接続されている。また、この直管21の他端(図1では右端)にも、同一構成となる別の可撓性合成樹脂管1の一端(図1では左端)が継手22を介して接続され、その可撓性合成樹脂管1の他端(図1では下端)が、同一構成となる別の直管21の一端(図1では上端)に継手22を介して接続されている。   In FIG. 1, 1 shows the flexible synthetic resin pipe | tube which concerns on the 1st Embodiment of this invention, and this flexible synthetic resin pipe | tube 1 was derived | led-out from main pipes X, such as a supply system and a drawing-in system. It serves to protect the fiber optic cable (not shown) at the curved site. In other words, the flexible synthetic resin tube 1 is used each time the optical fiber cable is bent in a desired direction (only two locations are shown in FIG. 1), and a plurality of straight polyvinyl chloride resins that protect the straight portion of the optical fiber cable are used. Combined with tubes 21 and 21 (only two are shown in FIG. 1). Specifically, the flexible synthetic resin pipe 1 has one end (left end in FIG. 1) connected to the branch pipe X1 attached to the body pipe X via a joint 22 and the other end (see FIG. 1 is connected to one end of the straight pipe 21 (the left end in FIG. 1) via a joint 22. In addition, one end (left end in FIG. 1) of another flexible synthetic resin pipe 1 having the same configuration is connected to the other end (right end in FIG. 1) of the straight pipe 21 via a joint 22, The other end (lower end in FIG. 1) of the flexible synthetic resin tube 1 is connected to one end (upper end in FIG. 1) of another straight pipe 21 having the same configuration via a joint 22.

また、図2及び図3に示すように、各可撓性合成樹脂管1は、管本体11と、内層材12とを備えている。
管本体11は、硬質塩化ビニル樹脂よりなり、その軸線方向の一側(図2及び図3では左側)に沿って第1係合部13を備えているとともにこの第1係合部13と連結状として軸線方向の他側(図2及び図3では右側)に沿って第2係合部14を備えた帯状体15を螺旋状に巻き回し、前記第1係合部13とこれに隣接する第2係合部14とが互いに軸線方向へ摺動自在となるように非接着状態で係合されて螺旋状に捲回することによって、成形されている。前記帯状体15は、硬質塩化ビニル樹脂を射出成形して得られ、垂直壁部16を挟んで一側(図2及び図3では左側)が第1係合部本体17、他側(図2及び図3では右側)が第2係合部本体18となっている。この場合、第1係合部本体17(第1係合部13)は、これに隣接する第2係合部本体18(第2係合部14)に対し前記管本体11の半径方向外方から半径方向内方に向かって係合している。
As shown in FIGS. 2 and 3, each flexible synthetic resin tube 1 includes a tube body 11 and an inner layer material 12.
The tube body 11 is made of hard polyvinyl chloride resin, and includes a first engagement portion 13 along one side in the axial direction (left side in FIGS. 2 and 3) and is connected to the first engagement portion 13. A belt-like body 15 having a second engagement portion 14 is spirally wound along the other side in the axial direction (the right side in FIGS. 2 and 3) as a shape, and is adjacent to the first engagement portion 13. The second engaging portion 14 is formed by being wound in a non-adhered state and spirally wound so as to be slidable in the axial direction. The belt-like body 15 is obtained by injection molding of a hard vinyl chloride resin, one side (the left side in FIGS. 2 and 3) sandwiching the vertical wall part 16 is the first engaging part main body 17 and the other side (FIG. 2). And the right side in FIG. 3 is the second engaging portion main body 18. In this case, the first engaging portion main body 17 (first engaging portion 13) is radially outward of the tube main body 11 with respect to the second engaging portion main body 18 (second engaging portion 14) adjacent thereto. Is engaged radially inward.

前記第2係合部本体18は、内壁部181と、第2係合部側突条183(突条)とを備えている。
前記内壁部181は、前記垂直壁部16の内方端(管本体11の半径方向内方端)から当該垂直壁部16に直交するように一側方向(図3では右方向)に延出していて、前記管本体11の内壁を形成するようになっている。また、前記第2係合部側突条183は、前記内壁部181の先端部(図3では右端部)より管本体11の半径方向外方向き(図3では上方)に突設されている。
The second engagement portion main body 18 includes an inner wall portion 181 and a second engagement portion side protrusion 183 (protrusion).
The inner wall portion 181 extends in one direction (rightward in FIG. 3) from the inner end of the vertical wall portion 16 (radially inner end of the pipe body 11) so as to be orthogonal to the vertical wall portion 16. In addition, the inner wall of the tube body 11 is formed. Further, the second engaging portion side protrusion 183 protrudes radially outward (upward in FIG. 3) from the distal end portion (right end portion in FIG. 3) of the inner wall portion 181. .

前記第1係合部本体17は、外壁部171と、第1係合部側突条173(突条)とを備えている。
前記外壁部171は、前記垂直壁部16の外方端(管本体11の半径方向外方端)から当該垂直壁部16に直交するように内壁部181とは反対方向となる他側方向(図3では左方向)に延出していて、管本体11の外壁を形成するようになっている。また、前記第1係合部側突条173は、前記外壁部171の先端(図3では左端)より管本体11の半径方向内方向き(図3では下方)に突設されている。また、図4〜図6にも示すように、前記第1係合部側突条173と前記第2係合部側突条183とは、管本体11の軸線方向で互いに対峙している。そして、前記第1係合部側突条173と前記第2係合部側突条183とは、管本体11を湾曲させた際にその外周側において互いに管本体11の軸線方向に摺動して互いの対峙面173a,183a同士の当接を可能とするようにしている。
The first engagement portion main body 17 includes an outer wall portion 171 and a first engagement portion side protrusion 173 (protrusion).
The outer wall portion 171 has an opposite side direction opposite to the inner wall portion 181 so as to be orthogonal to the vertical wall portion 16 from the outer end of the vertical wall portion 16 (the radially outer end of the pipe body 11). 3 (to the left in FIG. 3), the outer wall of the tube body 11 is formed. The first engaging portion side protrusion 173 protrudes radially inward (downward in FIG. 3) of the pipe body 11 from the tip (left end in FIG. 3) of the outer wall portion 171. As shown in FIGS. 4 to 6, the first engaging portion side protrusion 173 and the second engaging portion side protrusion 183 are opposed to each other in the axial direction of the pipe body 11. The first engaging portion side protrusion 173 and the second engaging portion side protrusion 183 slide in the axial direction of the tube main body 11 on the outer peripheral side when the tube main body 11 is bent. The opposing surfaces 173a and 183a can be brought into contact with each other.

前記第2係合部側突条183の先端は、前記第1係合部本体17の外壁部171の内側面(図3では下側面)に対し管本体11の軸線方向へ摺動自在に接している。一方、前記第1係合部側突条173の先端は、前記第2係合部本体18の内壁部181の外側面(図3では上側面)に対し管本体11の軸線方向へ摺動自在に接している。そして、前記第2係合部側突条183は、前記第1係合部側突条173よりも管本体11の軸線方向に厚肉に形成され、その先端向き(図3では上向き)に開口する凹部180を存して第1突条部184と第2突条部185とに管本体11の軸線方向で2分割されている。
この場合、第1突条部184及び第2突条部185の先端は、いずれも第1係合部本体17の外壁部171の内側面に対し摺接している。また、第1突条部184は、第1係合部側突条173側(図3では左側)に位置し、その第1係合部側突条173側の面が第2係合部側突条183の対峙面183aとなっている。
The distal end of the second engaging portion side protrusion 183 is slidably contacted with the inner side surface (lower side surface in FIG. 3) of the outer wall portion 171 of the first engaging portion main body 17 in the axial direction of the tube main body 11. ing. On the other hand, the tip of the first engaging portion side protrusion 173 is slidable in the axial direction of the tube main body 11 with respect to the outer side surface (upper side surface in FIG. 3) of the inner wall portion 181 of the second engaging portion main body 18. Is in contact with The second engaging portion side protrusion 183 is formed thicker in the axial direction of the tube body 11 than the first engaging portion side protrusion 173, and opens toward the tip (upward in FIG. 3). The first ridge portion 184 and the second ridge portion 185 are divided into two in the axial direction of the tube main body 11 with the recessed portion 180 formed.
In this case, the tips of the first protrusion 184 and the second protrusion 185 are in sliding contact with the inner side surface of the outer wall 171 of the first engaging portion main body 17. Moreover, the 1st protrusion part 184 is located in the 1st engagement part side protrusion 173 side (left side in FIG. 3), and the surface of the 1st engagement part side protrusion 173 side is the 2nd engagement part side. It is the opposite surface 183a of the protrusion 183.

ここで、管本体11の耐衝撃性強度について説明する。
光ファイバーケーブルなどの通信ケーブルを収容する可撓性合成樹脂管1として必要とされる耐衝撃性の評価方法としては、電線共同溝試験実施マニュアル(案)で規定される試験方法がある。これは、管本体11の材料の重量(kg)に係数「3.246」をかけて算出される値を落下高さ(cm)として、重さ15kgの先端ツルハシ形状の重錘を落下させて割れ等の有無を確認するものである。このとき、想定される可撓性合成樹脂管1の使用長さは2m程度であり、これに継手22の重量を加味すると、その重量は4.5kg程度であり、これより重錘の落下高さを算出すれば、約15cmとなる。
通常の硬質塩化ビニル樹脂(VP管と同等材料)により同様の可撓性合成樹脂管を製作した場合、この高さから上述の15kg重錘を落下させると、割れが生じ、この程度の耐衝撃強度では、道路下の埋設での使用に不安がある。このため、耐衝撃性硬質塩化ビニル樹脂を用いることで、上述の耐衝撃性試験でも割れ等発生しないものとなる。
本発明で用いる管本体11(帯状体15)の材料は耐衝撃性改質剤を含む塩化ビニル樹脂組成物である。トータルの改質剤量は塩化ビニル系樹脂100に対し、2〜15phrの範囲であり、2phr未満だと耐衝撃性が悪く、15phrを超えると成形性が困難となる。
本発明で用いる改質剤には、アクリルゴム、メチルメタクリレート−ブタジエン−スチレン共重合ゴム(MBS)、アクリロニトリル−ブタジエン共重合ゴム、塩素化ポリエチレンなどが挙げられる。なお、本発明で用いる改質剤は、いずれかのうちの一つ、或いは2つ以上の組み合わせであってもよい。
Here, the impact resistance strength of the tube body 11 will be described.
As an evaluation method of impact resistance required for the flexible synthetic resin tube 1 that accommodates a communication cable such as an optical fiber cable, there is a test method defined in the Electric Wire Joint Groove Test Implementation Manual (Draft). This is because a weight calculated by multiplying the weight (kg) of the material of the tube main body 11 by a coefficient “3.246” is used as the drop height (cm), and a weight of 15 kg at the tip is dropped. This is to confirm the presence or absence of cracks. At this time, the assumed use length of the flexible synthetic resin tube 1 is about 2 m, and when the weight of the joint 22 is added to this, the weight is about 4.5 kg. If it is calculated, it will be about 15 cm.
When the same flexible synthetic resin tube is manufactured with normal hard vinyl chloride resin (equivalent material to VP tube), if the above 15 kg weight is dropped from this height, cracking occurs and this level of impact resistance In terms of strength, there is anxiety about use when buried under the road. For this reason, by using an impact-resistant hard vinyl chloride resin, cracks and the like do not occur even in the above-described impact resistance test.
The material of the tube body 11 (strip 15) used in the present invention is a vinyl chloride resin composition containing an impact resistance modifier. The total amount of the modifier is in the range of 2 to 15 phr with respect to the vinyl chloride resin 100. If it is less than 2 phr, the impact resistance is poor, and if it exceeds 15 phr, the moldability becomes difficult.
Examples of the modifier used in the present invention include acrylic rubber, methyl methacrylate-butadiene-styrene copolymer rubber (MBS), acrylonitrile-butadiene copolymer rubber, and chlorinated polyethylene. In addition, the modifier used by this invention may be one of these, or a combination of two or more.

そして、前記第1突条部184は、その先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し前記第1係合部側突条173に近付くように傾斜しており、これによって、対峙面183aも同様に傾斜している。また、前記第2突条部185は、その先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し前記垂直壁部16の外方端に近付くように傾斜している。この場合、第2係合部側突条183は、第1突条部184と第2突条部185とで、それぞれの先端側になるにしたがって離間するように外方に開放する断面略V字状に成形されている。   The first ridge portion 184 is inclined so as to approach the first engagement portion-side ridge 173 with respect to an orthogonal plane orthogonal to the axial direction of the tube main body 11 as it comes to the distal end side. Thereby, the facing surface 183a is similarly inclined. Further, the second ridge portion 185 is inclined so as to approach the outer end of the vertical wall portion 16 with respect to an orthogonal plane orthogonal to the axial direction of the tube main body 11 as it comes to the tip side. In this case, the second engaging portion side ridge 183 is the first ridge portion 184 and the second ridge portion 185, and has a substantially V cross-section that opens outward so as to be separated toward the tip side. Shaped in a letter shape.

また、前記第1係合部側突条173の対峙面173aは、その第1係合部側突条173の先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し前記第2係合部側突条183の第1突条部184に近付くように傾斜している。   Further, the facing surface 173a of the first engaging portion side ridge 173 is in the axial direction of the tube body 11 as the tip surface side of the first engaging portion side ridge 173 becomes perpendicular to the orthogonal surface. It inclines so that it may approach the 1st protrusion part 184 of the 2nd engaging part side protrusion 183. As shown in FIG.

更に、図7及び図8に示すように、前記継手22は、その一端(図7及び図8では左端)が直管21又は分岐管X1に接続され、他端(図7及び図8では右端)に前記可撓性合成樹脂管1(管本体11)の端部を挿通させる挿通部221を有している。この挿通部221の内側には、管本体11を挿通させた際にその管本体11の内周面つまり第2係合部本体18の内壁部181に沿うように継手内コア223が一体的に設けられ、この継手内コア223と前記内層材12との間の隙間を埋めるように充填された接合剤又は接着剤によって水密状態で接続されている。また、前記挿通部221の内周面には雌ねじ部222が設けられている。この雌ねじ部222には、可撓性合成樹脂管1の直線部分の端、つまり直線部分における第1係合部本体17の外壁部171が接着材(図示せず)を介して螺着されている。この場合、挿通部221の雌ねじ部222は、可撓性合成樹脂管1の直線部分における垂直壁部16の外方端とこれに隣接する第1係合部側突条173の外方端との間の間隔と略一致している。   Further, as shown in FIGS. 7 and 8, the joint 22 has one end (left end in FIGS. 7 and 8) connected to the straight pipe 21 or the branch pipe X1, and the other end (right end in FIGS. 7 and 8). ) Has an insertion portion 221 through which the end of the flexible synthetic resin tube 1 (tube body 11) is inserted. Inside the insertion portion 221, a joint inner core 223 is integrally formed along the inner peripheral surface of the tube main body 11, that is, the inner wall portion 181 of the second engagement portion main body 18 when the tube main body 11 is inserted. It is provided and connected in a watertight state by a bonding agent or an adhesive filled so as to fill a gap between the joint inner core 223 and the inner layer material 12. In addition, a female screw portion 222 is provided on the inner peripheral surface of the insertion portion 221. An end of the straight portion of the flexible synthetic resin tube 1, that is, the outer wall portion 171 of the first engaging portion main body 17 in the straight portion is screwed to the female screw portion 222 via an adhesive (not shown). Yes. In this case, the female threaded portion 222 of the insertion portion 221 includes an outer end of the vertical wall portion 16 in the straight portion of the flexible synthetic resin tube 1 and an outer end of the first engaging portion side protrusion 173 adjacent thereto. The interval between is almost the same.

また、前記第1係合部側突条173の反対峙面173bと、この第1係合部側突条173に隣接する第2係合部14の縦面としての垂直壁部16の第1係合部側面16a(図6では右側面)とは、前記管本体11を湾曲させた際にその内周側において互いに当接するようになっている。そして、前記第1係合部側突条173の反対峙面173bは、前記垂直壁部16の第1係合部側面16aとの間に前記第1係合部側突条173の基端側(図6では)になるに従い管本体11の軸線方向に漸増する空間(図示せず)を形成するように傾斜している。
この場合、管本体11を湾曲させた際にその内周側において垂直壁部16の第1係合部側面16aと第1係合部側突条173の反対峙面173bとがその両面間の空間を閉ざすように当接し、可撓性合成樹脂管1(管本体11)の内周側での許容曲げ半径を0.3mR(これは、光ファイバーケーブルの敷設許容曲率である)に規制している。つまり、可撓性合成樹脂管1は、管本体11を湾曲させた際に杭などの曲げ規制部材を別途用いることなく、管本体11を螺旋状に捲回することによって内周側での許容曲げ半径を0.3mRに規制する断面形状としている。
Also, the first flange of the vertical wall 16 as the vertical surface of the second engaging portion 14 adjacent to the opposite flange surface 173b of the first engaging portion side protrusion 173 and the first engaging portion side protrusion 173 is provided. The engagement portion side surface 16a (the right side surface in FIG. 6) comes into contact with each other on the inner peripheral side when the tube body 11 is bent. The opposite flange surface 173b of the first engaging portion side protrusion 173 is between the first engaging portion side surface 16a of the vertical wall portion 16 and the base end side of the first engaging portion side protrusion 173. As shown in FIG. 6, the tube body 11 is inclined so as to form a space (not shown) that gradually increases in the axial direction of the tube body 11.
In this case, when the tube main body 11 is bent, the first engagement portion side surface 16a of the vertical wall portion 16 and the opposite flange surface 173b of the first engagement portion side protrusion 173 are formed between the both surfaces on the inner peripheral side. Abutting to close the space, the allowable bending radius on the inner peripheral side of the flexible synthetic resin tube 1 (tube body 11) is restricted to 0.3 mR (this is the allowable curvature for laying the optical fiber cable). Yes. In other words, the flexible synthetic resin pipe 1 is allowed to be allowed on the inner peripheral side by winding the pipe body 11 in a spiral shape without using a bending restricting member such as a pile when the pipe body 11 is bent. The cross-sectional shape restricts the bending radius to 0.3 mR.

ここで、管本体11を湾曲させた際の内周側での許容曲げ半径を0.3mRに規制する場合の可撓性合成樹脂管1の断面形状について説明する。
管本体11の許容曲げ半径は、第1係合部本体17(第1係合部13)と第2係合部本体18(第2係合部14)との係合状態での互いのスライド量Sにより求められるが、これを以下の式で求められる値とし、内層材12の変形性を加味した範囲で設定する。
Here, the cross-sectional shape of the flexible synthetic resin tube 1 when the allowable bending radius on the inner peripheral side when the tube body 11 is bent is regulated to 0.3 mR will be described.
The allowable bending radius of the tube main body 11 is such that the first engagement portion main body 17 (first engagement portion 13) and the second engagement portion main body 18 (second engagement portion 14) slide in the engaged state. Although calculated | required by the quantity S, this is made into the value calculated | required with the following formula | equation, and it sets in the range which considered the deformability of the inner-layer material 12.

つまり、前記スライド量Sを求めるに当たり、可撓性合成樹脂管1の湾曲部分の外周側での円周長Coを、
2×(Ri+D)×πにより算出する。このとき、Riは管本体11を湾曲させた際の内周側での第1係合部本体17の外壁部171の外面の許容曲げ半径、Dは管本体11の外径とする。
次いで、可撓性合成樹脂管1の湾曲部分の内周側での円周長Ciを、
2×(R−t)×πにより算出する。このとき、Rは管本体11を湾曲させた際の内周側での第2係合部本体18の内壁部181の内面の許容曲げ半径、tは管本体11の半径方向の厚みとする。
そして、前記外周側での円周長Co、及び前記内周側での円周長Ciに基づいて、下記の式よりスライド量Sを求める。
S=(Co−Ci)×P1/Ci
このとき、P1は第1係合部本体17の外壁部171の軸線方向の長さとする。
例えば、管本体11の外径Dが75mmの可撓性合成樹脂管1を製作するための帯状体15の断面としては、第1係合部本体17の外壁部171の軸線方向の長さP1を12mm、管本体11の半径方向の厚みtを7mmとし、スライド量Sを3mmとすればよい。
That is, in obtaining the slide amount S, the circumferential length Co on the outer peripheral side of the curved portion of the flexible synthetic resin tube 1 is
Calculated by 2 × (Ri + D) × π. At this time, Ri is an allowable bending radius of the outer surface of the outer wall portion 171 of the first engaging portion main body 17 on the inner peripheral side when the tube main body 11 is bent, and D is an outer diameter of the tube main body 11.
Next, the circumferential length Ci on the inner peripheral side of the curved portion of the flexible synthetic resin tube 1 is
Calculated by 2 × (R−t) × π. At this time, R is an allowable bending radius of the inner surface of the inner wall portion 181 of the second engaging portion main body 18 on the inner peripheral side when the tube main body 11 is bent, and t is a thickness in the radial direction of the tube main body 11.
Then, based on the circumferential length Co on the outer peripheral side and the circumferential length Ci on the inner peripheral side, the slide amount S is obtained from the following equation.
S = (Co−Ci) × P1 / Ci
At this time, P <b> 1 is the length in the axial direction of the outer wall portion 171 of the first engagement portion main body 17.
For example, as a cross-section of the strip-like body 15 for manufacturing the flexible synthetic resin pipe 1 having an outer diameter D of the pipe body 11 of 75 mm, the length P1 in the axial direction of the outer wall part 171 of the first engagement part body 17 is used. Is 12 mm, the radial thickness t of the tube body 11 is 7 mm, and the slide amount S is 3 mm.

また、前記内層材12は、管本体11の内周面に沿って熱融着されている。この内層材12としては、外水圧に対する剥離を防止する上で0.2MPa以上の融着強度が望ましく、内面摩擦抵抗を図る上で硬度50〜90の範囲が望ましい。このとき、硬度90を超えると柔軟性がなくなって曲がり難くなる一方、硬度50以下では内面摩擦抵抗が大きくなって施工後に通信ケーブルを通線できない。
そのため、本発明では、内層材12として無可塑系軟質塩化ビニル樹脂(軟質合成樹脂)が用いられており、この無可塑系軟質塩化ビニル樹脂を軟化させるために可塑剤でなく、熱可塑性エラストマで軟質化させた軟質塩化ビニル樹脂組成物が適用される。この塩化ビニル樹脂の重合度は400〜2400の範囲が好ましく、400未満では高温成形が困難であり、3000を超えると固くなり、表面性が悪化する。
かかる点から、本発明の熱可塑性エラストマとしては、酢酸ビニル系エラストマ、ポリエステル系エラストマやポリウレタン系エラストマを含む軟質塩化ビニル樹脂組成物が望ましい。その比率は20%〜80%が望ましく、20%未満では硬くなり柔軟性が損なわれる一方、比率が80%を超えれば成形が困難になる。この製造方法は反応押出あるいはコンパウンドによる混合等、方法によって規定するものではない。
なお、内面摩擦抵抗低減を図る上では、上記以外に、架橋ゴムとして、ブタジエンゴム、スチレンブタジエンスチレンゴム、スチレンイソプレンスチレンゴム、或いは熱可塑性エラストマとして、スチレン系エラストマ、ポリアミド系エラストマ、テフロン系エラストマ(テフロンは登録商標)、ポリエーテル系エラストマなどでも本発明の効果を阻害しない範囲で使用できる。また、炭酸カルシウム、タルク、マイカ、シリカ等のフィラーを混合してもかまわない。更に、その他の添加材として、安定剤、着色剤、滑剤などを添加してもかまわない。
The inner layer material 12 is heat-sealed along the inner peripheral surface of the tube body 11. The inner layer material 12 desirably has a fusion strength of 0.2 MPa or more in order to prevent delamination against external water pressure, and desirably has a hardness in the range of 50 to 90 in order to achieve internal friction resistance. At this time, when the hardness exceeds 90, the flexibility is lost and it is difficult to bend. On the other hand, when the hardness is 50 or less, the internal friction resistance is increased and the communication cable cannot be passed after the construction.
Therefore, in the present invention, a non-plastic soft vinyl chloride resin (soft synthetic resin) is used as the inner layer material 12, and not a plasticizer but a thermoplastic elastomer to soften the non-plastic soft vinyl chloride resin. The softened soft vinyl chloride resin composition is applied. The degree of polymerization of the vinyl chloride resin is preferably in the range of 400 to 2400. If it is less than 400, high temperature molding is difficult, and if it exceeds 3000, it becomes hard and the surface properties deteriorate.
In view of this, the thermoplastic elastomer of the present invention is preferably a soft vinyl chloride resin composition containing a vinyl acetate elastomer, a polyester elastomer or a polyurethane elastomer. The ratio is preferably 20% to 80%, and if it is less than 20%, it becomes hard and the flexibility is impaired. On the other hand, if the ratio exceeds 80%, molding becomes difficult. This production method is not specified by a method such as reactive extrusion or mixing by a compound.
In order to reduce the internal frictional resistance, in addition to the above, as the crosslinked rubber, butadiene rubber, styrene butadiene styrene rubber, styrene isoprene styrene rubber, or thermoplastic elastomer, styrene elastomer, polyamide elastomer, Teflon elastomer ( Teflon can also be used as long as it does not impair the effects of the present invention, such as registered trademark) and polyether elastomers. In addition, fillers such as calcium carbonate, talc, mica and silica may be mixed. Further, stabilizers, colorants, lubricants and the like may be added as other additives.

ここで、内層材12の内面静摩擦係数について説明する。
本実施の形態では、可撓性合成樹脂管1の内部に通信ケーブルを挿通するため、内層材12の内面と通信ケーブルの摩擦抵抗が小さいことが求められる。実際の多様な配管状況等を鑑み、通信ケーブルの許容張力以下で安全に通信ケーブルを引込むためには、内層材12の内面の静摩擦係数が0.5以下であることが望ましく、この値以下となる内層材12(エラストマ)を選定している。この場合、図9に示すように、内層材12として、酢酸ビニル系エラストマ(含有比率:50%)を含んだ軟質塩化ビニル樹脂組成物を使用した実験例(硬度:68)では、この内層材12の内面に対し試験棒Zを矢印方向に引張ると、荷重計Z1により0.35〜0.45の内面静摩擦係数が計測され、良好な内層材12であることが確認された。なお、試験棒Zとしては、長さ250mm、外径34mm、重さ1kgのポリエチレン製のものを使用した。
Here, the inner surface static friction coefficient of the inner layer material 12 will be described.
In the present embodiment, since the communication cable is inserted into the flexible synthetic resin tube 1, the friction resistance between the inner surface of the inner layer material 12 and the communication cable is required to be small. In view of various actual piping conditions and the like, in order to draw the communication cable safely below the allowable tension of the communication cable, it is desirable that the static friction coefficient of the inner surface of the inner layer material 12 is 0.5 or less, and this value or less. The inner layer material 12 (elastomer) is selected. In this case, as shown in FIG. 9, in the experimental example (hardness: 68) using a soft vinyl chloride resin composition containing a vinyl acetate elastomer (content ratio: 50%) as the inner layer material 12, When the test rod Z was pulled in the direction of the arrow with respect to the inner surface of 12, an inner surface static friction coefficient of 0.35 to 0.45 was measured by the load meter Z1, and it was confirmed that the inner layer material 12 was satisfactory. The test bar Z was made of polyethylene having a length of 250 mm, an outer diameter of 34 mm, and a weight of 1 kg.

したがって、本実施の形態では、第2係合部側突条183の第1突条部184の対峙面183aが、その第1突条部184の先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し第1係合部側突条173に近付くように傾斜している。その上、第1係合部側突条173の対峙面173aも、その第1係合部側突条173の先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し第2係合部側突条183の第1突条部184に近付くように傾斜している。このため、管本体11を湾曲させた際にその外周側において第2係合部側突条183の第1突条部184に当接した第1係合部側突条173は、前記第2係合部側突条183の第1突条部184の先端側になるに従い当該第1突条部184の対峙面183aに対する掛かりが強くなって管本体11の半径方向外方に移動し難くなる。これにより、管本体11を湾曲させた際にその外周側での第2係合部側突条183の第1突条部184の対峙面183aからの第1係合部側突条173の離脱が防止され、管本体11の巻き構造を円滑に保持することができる。   Therefore, in the present embodiment, the opposing surface 183a of the first protrusion 184 of the second engagement part-side protrusion 183 becomes the tip side of the first protrusion 184 in the axial direction of the tube body 11. It inclines so that it may approach the 1st engaging part side protrusion 173 with respect to the orthogonal surface orthogonal to this. In addition, the facing surface 173a of the first engaging portion side ridge 173 is also more than the orthogonal surface orthogonal to this in the axial direction of the tube body 11 as it becomes the tip side of the first engaging portion side ridge 173. The second engaging portion side protrusion 183 is inclined so as to approach the first protrusion 184. For this reason, when the pipe body 11 is bent, the first engaging portion side protrusion 173 that contacts the first protruding portion 184 of the second engaging portion side protrusion 183 on the outer peripheral side thereof is As the engagement portion-side protrusion 183 becomes closer to the distal end side of the first protrusion 184, the engagement of the first protrusion 184 with respect to the facing surface 183a becomes stronger and it becomes difficult to move outward in the radial direction of the tube body 11. . Thereby, when the pipe body 11 is bent, the first engaging portion side protrusion 173 is disengaged from the facing surface 183a of the first protruding portion 184 of the second engaging portion side protrusion 183 on the outer peripheral side thereof. Is prevented, and the winding structure of the tube body 11 can be held smoothly.

また、第2係合部側突条183は、第1係合部側突条173よりも管本体11の軸線方向に厚肉に形成されているものの、その先端向きに開口する凹部180を存して管本体11の軸線方向に第1突条部184と第2突条部185とに分割されて外方に開放する略V字状に成形されているので、第1突条部184及び第2突条部185により第1係合部13(第1係合部本体17)が内側から満遍なく支えられ、管本体11の扁平を効率よく防止することができる。しかも、凹部180によって第2係合部側突条183の材料が削減されて、可撓性合成樹脂管1(管本体11)のコストの低廉化を図ることもできる。
また、第2係合部側突条183が第1突条部184と第2突条部185とに分割されていることにより、厚肉となる第2係合部側突条183の余熱が迅速に放熱され、射出成形された帯状体15を螺旋状に巻き回して管本体11を形成した際に、第1係合部本体17の外壁部171に対し摺接する第2係合部側突条183の第1突条部184及び第2突条部185の先端での融着が緩和されて、第1係合部13と第2係合部14との互いに軸線方向への摺動が円滑に行われることになり、管本体11の成形が容易に行える。
In addition, the second engaging portion side protrusion 183 is formed thicker in the axial direction of the tube body 11 than the first engaging portion side protrusion 173, but there is a recess 180 that opens toward the tip. Since the first ridge 184 and the second ridge 185 are divided in the axial direction of the tube body 11 and are formed in a substantially V shape that opens outward, the first ridge 184 and The 1st engaging part 13 (1st engaging part main body 17) is uniformly supported from the inner side by the 2nd protrusion part 185, and the flatness of the pipe main body 11 can be prevented efficiently. And the material of the 2nd engaging part side protrusion 183 is reduced by the recessed part 180, and the cost reduction of the flexible synthetic resin pipe | tube 1 (pipe main body 11) can also be achieved.
Further, since the second engaging portion side ridge 183 is divided into the first protruding portion 184 and the second protruding portion 185, the remaining heat of the second engaging portion side ridge 183 which is thick is increased. When the tube body 11 is formed by spirally winding the injection-molded belt-like body 15 and forming the pipe body 11, the second engaging portion side protrusion that slides on the outer wall portion 171 of the first engaging portion main body 17 is formed. The fusion at the tips of the first protrusion 184 and the second protrusion 185 of the stripe 183 is alleviated, and the first engagement portion 13 and the second engagement portion 14 slide in the axial direction. As a result, the tube main body 11 can be easily formed.

更に、管本体11を湾曲させた際にその内周側において垂直壁部16の第1係合部側面16a(図6では右側面)と当接する第1係合部側突条173の反対峙面173bは、垂直壁部16の第1係合部側面16aとの間に第1係合部側突条173の基端側になるに従い管本体11の軸線方向に漸増する空間を形成するように傾斜しているので、管本体11を湾曲させた際にその内周側において前記垂直壁部16の第1係合部側面16aと前記第1係合部側突条173の反対峙面173bとが前記空間を閉ざすように当接する。このため、許容曲げ半径(例えば、0.3mR程度)が規定される光ファイバーケーブルなどの通信ケーブルを可撓性合成樹脂管1の内部に収容していても、管本体11を湾曲させた際にその内周側において前記両面16a,173b同士を当接させることによってそれ以上の曲げが規制される。これにより、通信ケーブルの断線などによる不具合を確実に防止することができる。   Further, when the tube main body 11 is bent, the opposite side of the first engaging portion side protrusion 173 that contacts the first engaging portion side surface 16a (the right side surface in FIG. 6) of the vertical wall portion 16 on the inner peripheral side thereof. The surface 173b forms a space that gradually increases in the axial direction of the tube main body 11 as it becomes the proximal end side of the first engaging portion side protrusion 173 between the vertical wall portion 16 and the first engaging portion side surface 16a. Therefore, when the tube body 11 is bent, the first engagement portion side surface 16a of the vertical wall portion 16 and the opposite flange surface 173b of the first engagement portion side protrusion 173 are formed on the inner peripheral side thereof. And abut so as to close the space. For this reason, even when a communication cable such as an optical fiber cable in which an allowable bending radius (for example, about 0.3 mR) is defined is accommodated inside the flexible synthetic resin tube 1, Further bending is restricted by bringing the both surfaces 16a and 173b into contact with each other on the inner peripheral side. Thereby, the malfunction by the disconnection etc. of a communication cable can be prevented reliably.

しかも、地震などの地盤の変動によって管本体11に軸線方向の大きな力が作用して当該管本体11が伸びた際に、先端側になるに従い掛かりが強くなる方向に傾斜つまり先端側が第1係合部の突条寄りとなるように傾斜している第1係合部側突条173の対峙面173aが、先端側になるに従い掛かりが強くなる方向に傾斜つまり先端側が第1係合部側突条173寄りとなるように傾斜している第2係合部側突条183の第1突条部184の対峙面183aに対し、強く当接する。このとき、第1係合部側突条173と第2係合部側突条183の第1突条部184との当接により、第2係合部側突条183の第1突条部184の先端が反第1係合部側突条173側に撓んでも、先端側が第2係合部側突条183の第1突条部184寄りに傾斜している第1係合部側突条173の対峙面173aと先端側が第1係合部側突条173寄りに傾斜している第2係合部側突条183の第1突条部184の対峙面183aとの当接によって、第1係合部側突条173が第2係合部側突条183の第1突条部184を軸線方向に乗り越えることなく円滑に持ち堪えられる。これにより、地震などの地盤の変動によって管本体11が伸びても、管本体11の巻き構造を円滑に保持することができる。   Moreover, when a large axial force acts on the pipe body 11 due to ground fluctuations such as an earthquake, the pipe body 11 extends, and the inclination is increased in the direction in which the hook becomes stronger as it approaches the tip side, that is, the tip side is the first engagement. The facing surface 173a of the first engaging portion side ridge 173 inclined so as to be closer to the ridge of the joint portion is inclined in a direction in which the hook becomes stronger as it becomes the distal end side, that is, the distal end side is the first engaging portion side. The second engaging portion side protrusion 183 that is inclined so as to be closer to the protrusion 173 strongly contacts the facing surface 183a of the first protrusion 184. At this time, the first ridge portion of the second engagement portion side ridge 183 is brought into contact with the first engagement portion side ridge 173 and the first protrusion 184 of the second engagement portion side ridge 183. Even if the tip end of 184 is bent toward the side opposite to the first engaging portion side ridge 173, the tip end side is inclined closer to the first ridge portion 184 of the second engaging portion side ridge 183. By contact of the facing surface 173a of the protrusion 173 and the facing surface 183a of the first protrusion 184 of the second engaging portion-side protrusion 183 whose tip end is inclined closer to the first engaging portion-side protrusion 173. The first engaging portion side protrusion 173 can be smoothly held without going over the first protrusion 184 of the second engaging portion side protrusion 183 in the axial direction. Thereby, even if the pipe main body 11 extends due to ground fluctuation such as an earthquake, the winding structure of the pipe main body 11 can be held smoothly.

なお、前記第1の実施の形態では、第1係合部側突条173の対峙面173aも、その第1係合部側突条173の先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し第2係合部側突条183の第1突条部184に近付くように傾斜させたが、図10に示すように、第1係合部側突条173の対峙面173aが、管本体11の軸線と直交する直交面と平行に延びていてもよい。この場合においても、管本体11を湾曲させた際にその外周側において第1係合部側突条173は、第2係合部側突条183の第1突条部184の先端側になるに従い当該第1突条部184の対峙面183aに対する掛かりが強くなって管本体11の半径方向外方に移動し難くなる。これにより、管本体11を湾曲させた際にその外周側での第2係合部側突条183の第1突条部184の対峙面183aからの第1係合部側突条173の離脱が防止され、管本体11の巻き構造を円滑に保持することが可能となる。   In the first embodiment, the facing surface 173a of the first engaging portion side protrusion 173 is also moved in the axial direction of the tube main body 11 as it becomes the distal end side of the first engaging portion side protrusion 173. As shown in FIG. 10, the first engaging portion side protrusion 173 is opposed to the first engaging portion side protrusion 183. The surface 173a may extend in parallel with an orthogonal surface orthogonal to the axis of the tube body 11. Also in this case, when the tube main body 11 is bent, the first engaging portion side protrusion 173 becomes the distal end side of the first protruding portion 184 of the second engaging portion side protrusion 183 on the outer peripheral side thereof. Accordingly, the hook of the first protrusion 184 on the facing surface 183a is strengthened and it is difficult to move the pipe body 11 outward in the radial direction. Thereby, when the pipe body 11 is bent, the first engaging portion side protrusion 173 is disengaged from the facing surface 183a of the first protruding portion 184 of the second engaging portion side protrusion 183 on the outer peripheral side thereof. Is prevented, and the winding structure of the tube body 11 can be held smoothly.

次に、本発明の第2の実施の形態を図11〜図15に基づいて説明する。
この実施の形態では、第1係合部側突条及び第2係合部側突条の第1突条部の先端にそれぞれ係合片を設けている。なお、係合片を除くその他の構成は、前記第1の実施の形態と同じであり、同一部分については同じ符号を付してその詳細な説明は省略する。
すなわち、本実施の形態では、図11〜図15に示すように、第1係合部側突条173及び第2係合部側突条183の第1突条部184は、その互いの対峙面173a,183aの先端部位よりそれぞれ管本体11の軸線方向に突出する係合片177,187を備えている。この各係合片177,187は、前記第1係合部側突条173と前記第2係合部側突条183の第1突条部184との当接時に当該第1係合部側突条173及び第2係合部側突条183の第1突条部184同士を内外径方向から係合し離脱防止できる。
この場合、各係合片177,187の突出面は、それぞれ垂直壁部16の第1係合部側面16aと平行な面に形成されている。また、第2係合部側突条183の第1突条部184における対峙面183aは、係合片187を除く基端側のみが傾斜している。
Next, a second embodiment of the present invention will be described with reference to FIGS.
In this embodiment, the engagement pieces are provided at the tips of the first protrusions of the first engagement part side protrusions and the second engagement part side protrusions, respectively. The rest of the configuration excluding the engagement pieces is the same as in the first embodiment, and the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
That is, in the present embodiment, as shown in FIGS. 11 to 15, the first protrusions 184 of the first engagement part side protrusions 173 and the second engagement part side protrusions 183 are opposed to each other. Engagement pieces 177 and 187 projecting in the axial direction of the tube main body 11 from the tip portions of the surfaces 173a and 183a are provided. The engagement pieces 177 and 187 are arranged on the first engagement portion side when the first engagement portion side protrusion 173 and the first protrusion 184 of the second engagement portion side protrusion 183 come into contact with each other. The first protrusions 184 of the protrusions 173 and the second engagement part side protrusions 183 can be engaged with each other from the inner and outer diameter directions to prevent separation.
In this case, the projecting surfaces of the engagement pieces 177 and 187 are formed on surfaces parallel to the first engagement portion side surface 16a of the vertical wall portion 16, respectively. Further, the opposing surface 183a of the first protrusion 184 of the second engagement part side protrusion 183 is inclined only on the base end side excluding the engagement piece 187.

この場合には、第1係合部側突条173と第2係合部側突条183の第1突条部184とが互いの係合片177,187によって内外径方向から係合されているので、管本体11を湾曲させた際にその外周側において第2係合部側突条183の第1突条部184に当接した第1係合部側突条173の係合片177が第2係合部側突条183の第1突条部184の係合片187と係合し、第2係合部側突条183(第1突条部184)の対峙面183aに沿って管本体11の半径方向外方に移動することがより一層防止される。これにより、管本体11を湾曲させた際にその外周側での第2係合部側突条183の第1突条部184の対峙面183aからの第1係合部側突条173の離脱が確実に防止され、管本体11の巻き構造を効果的に保持することができる。   In this case, the first engagement portion side protrusion 173 and the first engagement portion side protrusion 183 of the first protrusion 184 are engaged from the inner and outer diameter directions by the respective engagement pieces 177 and 187. Therefore, when the pipe body 11 is bent, the engagement piece 177 of the first engagement portion side protrusion 173 that contacts the first protrusion 184 of the second engagement portion side protrusion 183 on the outer peripheral side thereof. Engages with the engaging piece 187 of the first protruding portion 184 of the second engaging portion side protrusion 183, along the opposing surface 183a of the second engaging portion side protrusion 183 (first protruding portion 184). This further prevents the pipe body 11 from moving outward in the radial direction. Thereby, when the pipe body 11 is bent, the first engaging portion side protrusion 173 is disengaged from the facing surface 183a of the first protruding portion 184 of the second engaging portion side protrusion 183 on the outer peripheral side thereof. Is reliably prevented, and the winding structure of the tube body 11 can be effectively retained.

しかも、地震などの地盤の変動によって管本体11に軸線方向の大きな力が作用して当該管本体11が伸びた際に、先端側が第1係合部の突条寄りとなるように傾斜している第1係合部側突条173の対峙面173aが、先端側が第1係合部側突条173寄りとなるように傾斜している第2係合部側突条183の第1突条部184の対峙面183aに対し、強く当接する。このとき、第1係合部側突条173と第2係合部側突条183の第1突条部184との当接により、第1係合部側突条173の先端が反第2係合部側突条183側に、第2係合部側突条183の第1突条部184の先端が反第1係合部側突条173側にそれぞれ撓んでも、互いの係合片177,187同士の係合によって、第1係合部側突条173が第2係合部側突条183の第1突条部184を軸線方向に乗り越えることなく確実に持ち堪えられる。これにより、地震などの地盤の変動によって管本体11が伸びても、管本体11の巻き構造を確実に保持することができる。   Moreover, when a large axial force acts on the pipe body 11 due to ground fluctuation such as an earthquake and the pipe body 11 extends, the tip side is inclined so as to be closer to the ridge of the first engaging portion. The first protrusion of the second engagement portion side protrusion 183 is inclined such that the opposite surface 173a of the first engagement portion side protrusion 173 is closer to the first engagement portion side protrusion 173. It strongly abuts against the facing surface 183a of the portion 184. At this time, due to the contact between the first engagement portion side protrusion 173 and the first engagement portion side protrusion 183 with the first protrusion 184, the tip of the first engagement portion side protrusion 173 is anti-second. Even if the tips of the first protrusions 184 of the second engagement part side protrusions 183 are bent toward the anti-first engagement part side protrusions 173 on the engagement part side protrusions 183 side, they are engaged with each other. By the engagement between the pieces 177 and 187, the first engagement portion side protrusion 173 can be reliably held without getting over the first protrusion 184 of the second engagement portion side protrusion 183 in the axial direction. Thereby, even if the pipe body 11 extends due to ground fluctuation such as an earthquake, the winding structure of the pipe body 11 can be reliably held.

なお、前記第2の実施の形態では、第1係合部側突条173及び第2係合部側突条183の第1突条部184の互いの対峙面173a,183aの先端部位にそれぞれ管本体11の軸線方向に突出する係合片177,187を設けたが、図16及び図17に示すように、第1係合部側突条173及び第2係合部側突条183の第1突条部184の互いの対峙面173a,183aに、それぞれ基端から先端に亘って連続的に突出する断面略三角形状の複数の係合片201,202が設けられていてもよい。この場合には、管本体11を湾曲させた際にその外周側において第1係合部側突条173と第2係合部側突条183の第1突条部184とが対峙面173a,183a同士の当接によって速やかに係合片201,202同士が係合し、第2係合部側突条183の第1突条部184の対峙面183aに対する第1係合部側突条173の対峙面173aの掛かりが強固になって管本体11の半径方向外方への移動が規制される。これにより、管本体11を湾曲させた際にその外周側での第2係合部側突条183の第1突条部184の対峙面183aからの第1係合部側突条173の離脱がより確実に防止され、管本体11の巻き構造を強固に保持することが可能となる。   In the second embodiment, the first engaging portion side protrusion 173 and the first engaging portion side protrusion 183 of the first protrusion 184 are respectively provided at the tip portions of the facing surfaces 173a and 183a. The engagement pieces 177 and 187 projecting in the axial direction of the tube main body 11 are provided. However, as shown in FIGS. 16 and 17, the first engagement portion side protrusion 173 and the second engagement portion side protrusion 183 are provided. A plurality of engaging pieces 201 and 202 having a substantially triangular cross section that continuously protrude from the proximal end to the distal end may be provided on the opposing surfaces 173a and 183a of the first protrusion 184, respectively. In this case, when the tube main body 11 is bent, the first engaging portion side protrusion 173 and the first engaging portion side protrusion 183 of the first engaging portion side protrusion 183 are opposed to each other on the outer peripheral side. The engagement pieces 201 and 202 are quickly engaged with each other by the contact of 183a, and the first engagement portion side protrusion 173 with respect to the facing surface 183a of the first protrusion 184 of the second engagement portion side protrusion 183. The engagement of the opposite surface 173a is strengthened and the movement of the pipe body 11 outward in the radial direction is restricted. Thereby, when the pipe body 11 is bent, the first engaging portion side protrusion 173 is disengaged from the facing surface 183a of the first protruding portion 184 of the second engaging portion side protrusion 183 on the outer peripheral side thereof. Is more reliably prevented, and the winding structure of the tube body 11 can be firmly held.

また、前記第2の実施の形態では、第2係合部側突条183を第1突条部184と第2突条部185とに分割して外方に開放する略V字状に成形したが、図18及び図19に示すように、第1係合部側突条173も、第2係合部側突条183と同様に管本体11の軸線方向に厚肉に形成し、その先端向きに開口する凹部203を存して管本体11の軸線方向に第1突条部204と第2突条部205とに分割されて内方に開放する略V字状に成形されていてもよい。そして、前記第1突条部204は、第2係合部側突条183側(図18及び図19では右側)に位置し、その第1係合部側突条183側の面が第2係合部側突条173の対峙面173aとなっている。また、前記第2突条部205の垂直壁部16側(図18及び図19では左側)の面が第2係合部側突条173の反対峙面173bとなっている。更に、前記第1係合部側突条173の第1突条部204及び第2係合部側突条183の第1突条部184の互いの対峙面173a,183aの先端部位に、それぞれ管本体11の軸線方向に突出する係合片177,187が設けられている。
この場合においても、第1係合部側突条173の第1突条部204と第2係合部側突条183の第1突条部184とが互いの係合片177,187によって内外径方向から係合されているので、管本体11を湾曲させた際にその外周側において第2係合部側突条183の第1突条部184に当接した第1係合部側突条173の第1突条部204の係合片177が第2係合部側突条183の第1突条部184の係合片187と係合し、第2係合部側突条183(第1突条部184)の対峙面183aに沿って管本体11の半径方向外方に移動することがより一層防止される。これにより、管本体11を湾曲させた際にその外周側での第2係合部側突条183の第1突条部184の対峙面183aからの第1係合部側突条173の第1突条部204の離脱が確実に防止され、管本体11の巻き構造を効果的に保持することが可能となる。しかも、第1係合部側突条173も、第2係合部側突条183と同様に管本体11の軸線方向に厚肉に形成されている上、その先端向きに開口する凹部203を存して管本体11の軸線方向に第1突条部204と第2突条部205とに分割されて内方に開放する略V字状に成形されているので、第1突条部204及び第2突条部205により第2係合部14(第2係合部本体18)が外側から満遍なく支えられ、管本体11の扁平をより効率よく防止することが可能となる上、凹部203によって第1係合部側突条173の材料が削減されて可撓性合成樹脂管1(管本体11)のコストの低廉化を図ることも可能となる。
In the second embodiment, the second engaging portion side ridge 183 is divided into a first ridge portion 184 and a second ridge portion 185 and is formed into a substantially V shape that opens outward. However, as shown in FIGS. 18 and 19, the first engaging portion side protrusion 173 is also formed thick in the axial direction of the pipe body 11 like the second engaging portion side protrusion 183. There is a recess 203 that opens toward the tip, and is divided into a first ridge 204 and a second ridge 205 in the axial direction of the tube body 11, and is formed into a substantially V shape that opens inward. Also good. The first protrusion 204 is located on the second engagement part side protrusion 183 side (right side in FIGS. 18 and 19), and the surface on the first engagement part side protrusion 183 side is the second. It is the opposing surface 173a of the engaging part side protrusion 173. Further, the surface on the vertical wall 16 side (the left side in FIGS. 18 and 19) of the second protrusion 205 is an opposite flange surface 173 b of the second engagement part-side protrusion 173. Furthermore, the first projecting portion 204 of the first engaging portion side ridge 173 and the tip portions of the opposing surfaces 173a and 183a of the first projecting portion 184 of the second engaging portion side ridge 183, respectively. Engagement pieces 177 and 187 projecting in the axial direction of the tube body 11 are provided.
Also in this case, the first protrusion 204 of the first engagement portion side protrusion 173 and the first protrusion 184 of the second engagement portion side protrusion 183 are connected to each other by the engagement pieces 177 and 187. Since it is engaged from the radial direction, when the tube body 11 is bent, the first engaging portion side protrusion that abuts the first protruding portion 184 of the second engaging portion side protrusion 183 on the outer peripheral side thereof. The engagement piece 177 of the first protrusion 204 of the line 173 engages with the engagement piece 187 of the first protrusion 184 of the second engagement part-side protrusion 183, and the second engagement part-side protrusion 183. It is further prevented that the pipe body 11 moves outward in the radial direction along the facing surface 183a of the (first protrusion 184). Thereby, when the pipe body 11 is bent, the first engagement portion side protrusion 173 of the first engagement portion side protrusion 173 from the facing surface 183a of the first protrusion portion 184 of the second engagement portion side protrusion 183 on the outer peripheral side thereof is obtained. The detachment of the first protrusion 204 is reliably prevented, and the winding structure of the pipe body 11 can be effectively held. Moreover, the first engaging portion side protrusion 173 is also formed thick in the axial direction of the tube main body 11 similarly to the second engaging portion side protrusion 183, and has a recess 203 that opens toward the tip. In the axial direction of the pipe body 11, the first ridge 204 is divided into the first ridge 204 and the second ridge 205, and is formed in a substantially V shape that opens inward. In addition, the second engaging portion 14 (second engaging portion main body 18) is uniformly supported from the outside by the second protrusions 205, and the flatness of the tube main body 11 can be prevented more efficiently. Accordingly, the material of the first engaging portion side protrusion 173 can be reduced, and the cost of the flexible synthetic resin tube 1 (tube body 11) can be reduced.

次に、本発明の第3の実施の形態を図20〜図24に基づいて説明する。
この実施の形態では、第2係合部側突条の形状を変更している。なお、第2係合部側突条を除くその他の構成は、前記第1の実施の形態と同じであり、同一部分については同じ符号を付してその詳細な説明は省略する。
すなわち、本実施の形態では、図20〜図24に示すように、第2係合部本体18は、内壁部181の略中央部から先端(図21では右端)に至る広い範囲から管本体11の半径方向外方向き(図21では上方)に突設された第2係合部側突条188(突条)を備えている。この第2係合部側突条188は、第1係合部側突条173よりも前記管本体11の軸線方向に厚肉(例えば2〜3倍程度の厚肉)に形成されている。
Next, a third embodiment of the present invention will be described with reference to FIGS.
In this embodiment, the shape of the second engaging portion side protrusion is changed. In addition, the structure other than the 2nd engaging part side protrusion is the same as that of the said 1st Embodiment, The same code | symbol is attached | subjected about the same part and the detailed description is abbreviate | omitted.
That is, in the present embodiment, as shown in FIGS. 20 to 24, the second engagement portion main body 18 has a tube main body 11 from a wide range from the substantially central portion of the inner wall portion 181 to the tip (right end in FIG. 21). The second engaging portion side protrusion 188 (protrusion) projecting outward in the radial direction (upward in FIG. 21). The second engaging portion side protrusion 188 is formed to be thicker (for example, about 2 to 3 times thicker) in the axial direction of the tube body 11 than the first engaging portion side protrusion 173.

また、前記第2係合部側突条188の対峙面188aは、その第2係合部側突条188の先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し第1係合部側突条173に近付くように傾斜している。   Further, the facing surface 188a of the second engaging portion side ridge 188 is formed in a direction that is perpendicular to the orthogonal surface perpendicular to the axial direction of the tube body 11 as it becomes the tip side of the second engaging portion side ridge 188. It inclines so that the 1 engaging part side protrusion 173 may approach.

したがって、本実施の形態では、第2係合部側突条188の対峙面188aが、その第2係合部側突条188の先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し第1係合部側突条173に近付くように傾斜しているので、第1係合部側突条173の対峙面173aの傾斜と相俟って、管本体11を湾曲させた際にその外周側において第2係合部側突条188に当接した第1係合部側突条173は、前記第2係合部側突条188の先端側になるに従い当該第2係合部側突条188の対峙面188aに対する掛かりが強くなって管本体11の半径方向外方に移動し難くなる。これにより、管本体11を湾曲させた際にその外周側での第2係合部側突条188の対峙面188aからの第1係合部側突条173の離脱が防止され、管本体11の巻き構造を円滑に保持することができる。   Therefore, in the present embodiment, the facing surface 188a of the second engaging portion side protrusion 188 is orthogonal to the axial direction of the tube main body 11 as it becomes the tip side of the second engaging portion side protrusion 188. Since it is inclined to approach the first engaging portion side protrusion 173 with respect to the orthogonal surface, the tube main body 11 is curved in combination with the inclination of the facing surface 173a of the first engaging portion side protrusion 173. The first engagement portion side protrusion 173 that contacts the second engagement portion side protrusion 188 on the outer peripheral side of the second engagement portion side protrusion 188 becomes the second end as the second engagement portion side protrusion 188 becomes the front end side. Engagement of the engaging portion side protrusion 188 with respect to the facing surface 188a becomes strong, making it difficult to move outward in the radial direction of the tube body 11. Thus, when the tube body 11 is bent, the first engagement portion side protrusion 173 is prevented from being detached from the facing surface 188a of the second engagement portion side protrusion 188 on the outer peripheral side thereof. The winding structure can be held smoothly.

また、第2係合部側突条188が、第1係合部側突条173よりも管本体11の軸線方向に厚肉に形成されているので、第2係合部側突条188により第1係合部13が内側から支えられ、管本体11の扁平を防止することができる。   Further, since the second engaging portion side protrusion 188 is formed thicker in the axial direction of the pipe body 11 than the first engaging portion side protrusion 173, the second engaging portion side protrusion 188 is The first engaging portion 13 is supported from the inside, and the flatness of the tube body 11 can be prevented.

次に、本発明の第4の実施の形態を図25〜図27に基づいて説明する。
この実施の形態では、前記第3の実施の形態の第1係合部側突条及び第2係合部側突条の先端にそれぞれ係合片を設けている。なお、係合片を除くその他の構成は、前記第3の実施の形態と同じであり、同一部分については同じ符号を付してその詳細な説明は省略する。
すなわち、本実施の形態では、図25〜図27に示すように、第1係合部側突条173及び第2係合部側突条188は、その互いの対峙面173a,188aの先端部位よりそれぞれ管本体11の軸線方向に突出する係合片177,187を備えている。この各係合片177,187は、前記第1係合部側突条173と前記第2係合部側突条188との当接時に当該第1係合部側突条173及び第2係合部側突条188同士を内外径方向から係合している。この場合、各係合片177,187の突出面は、それぞれ管本体11の軸線方向と直交する直交面と平行に形成されている。また、第2係合部側突条188における対峙面188aは、係合片187を除く基端側のみが傾斜している。
Next, a fourth embodiment of the present invention will be described with reference to FIGS.
In this embodiment, engagement pieces are provided at the tips of the first engagement portion side protrusions and the second engagement portion side protrusions of the third embodiment. The rest of the configuration excluding the engagement pieces is the same as that of the third embodiment, and the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
That is, in this embodiment, as shown in FIGS. 25 to 27, the first engaging portion side protrusion 173 and the second engaging portion side protrusion 188 are provided at the tip portions of the opposing surfaces 173 a and 188 a. Further, engagement pieces 177 and 187 projecting in the axial direction of the tube body 11 are provided. Each of the engagement pieces 177 and 187 has the first engagement portion side protrusion 173 and the second engagement when the first engagement portion side protrusion 173 and the second engagement portion side protrusion 188 come into contact with each other. The joint-side protrusions 188 are engaged with each other from the inner and outer diameter directions. In this case, the projecting surfaces of the engagement pieces 177 and 187 are formed in parallel with orthogonal surfaces orthogonal to the axial direction of the tube body 11. Further, the opposing surface 188 a of the second engaging portion side protrusion 188 is inclined only on the base end side excluding the engaging piece 187.

この場合には、第1係合部側突条173と第2係合部側突条188とが互いの係合片177,187によって内外径方向から係合されているので、管本体11を湾曲させた際にその外周側において第2係合部側突条188に当接した第1係合部側突条173は、その係合片177が第2係合部側突条188の係合片187と係合し、第2係合部側突条188の対峙面188aに沿って管本体11の半径方向外方に移動することが防止される。これにより、管本体11を湾曲させた際にその外周側での第2係合部側突条188の対峙面188aからの第1係合部側突条173の離脱が確実に防止され、管本体11の巻き構造を効果的に保持することができる。   In this case, the first engagement portion side protrusion 173 and the second engagement portion side protrusion 188 are engaged from each other by the engagement pieces 177 and 187 from the inner and outer diameter directions. When the first engaging portion side protrusion 173 is in contact with the second engaging portion side protrusion 188 on the outer peripheral side when bent, the engaging piece 177 is engaged with the second engaging portion side protrusion 188. It engages with the joint piece 187 and is prevented from moving outward in the radial direction of the tube body 11 along the opposing surface 188a of the second engaging portion side protrusion 188. Thus, when the tube main body 11 is bent, the first engagement portion side protrusion 173 is reliably prevented from being detached from the facing surface 188a of the second engagement portion side protrusion 188 on the outer peripheral side thereof. The winding structure of the main body 11 can be effectively retained.

なお、本発明は、前記各実施の形態に限定されるものではなく、その他種々の変形例を包含している。例えば、前記各実施の形態では、第2係合部側突条183,188を第1係合部側突条173よりも管本体11の軸線方向に厚肉に形成したが、外周側での円周長Co、及び内周側での円周長Ci、第1係合部本体17の外壁部171の軸線方向の長さP1に基づいて、スライド量Sを前述した式(S=(Co−Ci)×P1/Ci)の関係を満たす帯状体の断面であれば、図28に示すように、第2係合部側突条189が第1係合部側突条173とほぼ同等の管本体11の軸線方向の厚さに形成されていてもよい。加えて、この変形例では、第2係合部側突条189の対峙面189aをその第2係合部側突条188の先端側になるに従い管本体11の軸線方向でこれと直交する直交面に対し第1係合部側突条173に近付くように傾斜させる一方、第1係合部側突条173の対峙面173aを管本体11の軸線と直交する直交面と平行に延ばしたが、第1係合部側突条の対峙面については、その第1係合部側突条の先端側になるに従い管本体の軸線方向でこれと直交する直交面に対し第2係合部側突条に近付くように傾斜させていてもよいのはいうまでもない。
また、図29に示すように、前記変形例で述べた第2係合部側突条189及び第1係合部側突条173に、その互いの対峙面173a,189aの先端部位よりそれぞれ管本体11の軸線方向に突出する係合片177,187が設けられていてもよい。この場合には、第1係合部側突条173の対峙面173a及び第2係合部側突条189の対峙面189aがそれぞれ傾斜しているので、管本体11を湾曲させた際にその外周側において第2係合部側突条189に当接した第1係合部側突条173の係合片177が第2係合部側突条189の係合片187と係合すると、第2係合部側突条189の対峙面189aからの第1係合部側突条173の離脱を確実に防止して、管本体11の巻き構造を効果的に保持することができる。
The present invention is not limited to the above-described embodiments, and includes other various modifications. For example, in each of the embodiments described above, the second engaging portion side protrusions 183 and 188 are formed thicker in the axial direction of the tube body 11 than the first engaging portion side protrusions 173. Based on the circumferential length Co, the circumferential length Ci on the inner circumferential side, and the length P1 in the axial direction of the outer wall portion 171 of the first engaging portion main body 17, the slide amount S is calculated using the above-described equation (S = (Co -Ci) × P1 / Ci), the second engagement portion side protrusion 189 is substantially equivalent to the first engagement portion side protrusion 173 as shown in FIG. The tube body 11 may be formed to have a thickness in the axial direction. In addition, in this modification, the opposing surface 189a of the second engaging portion side protrusion 189 becomes orthogonal to the axial direction of the tube main body 11 as it becomes the tip side of the second engaging portion side protrusion 188. While the surface is inclined so as to approach the first engaging portion side protrusion 173, the facing surface 173a of the first engaging portion side protrusion 173 is extended in parallel with an orthogonal surface orthogonal to the axis of the tube body 11. The opposing surface of the first engaging portion side ridge is on the second engaging portion side with respect to the orthogonal surface perpendicular to the axial direction of the tube body as it becomes the tip side of the first engaging portion side ridge. Needless to say, it may be inclined so as to approach the ridge.
Further, as shown in FIG. 29, the second engaging portion side protrusion 189 and the first engaging portion side protrusion 173 described in the above modification are respectively connected to the pipes from the tip portions of the facing surfaces 173a and 189a. Engagement pieces 177 and 187 protruding in the axial direction of the main body 11 may be provided. In this case, since the opposing surface 173a of the first engaging portion side protrusion 173 and the opposing surface 189a of the second engaging portion side protrusion 189 are inclined, when the pipe body 11 is bent, When the engagement piece 177 of the first engagement portion side protrusion 173 that contacts the second engagement portion side protrusion 189 on the outer peripheral side engages with the engagement piece 187 of the second engagement portion side protrusion 189, The detachment of the first engaging portion side protrusion 173 from the facing surface 189a of the second engaging portion side protrusion 189 can be reliably prevented, and the winding structure of the pipe body 11 can be effectively retained.

また、前記各実施の形態では、第1係合部側突条173の反対峙面173bを、垂直壁部16の第1係合部側面16aとの間に第1係合部側突条173の基端側になるに従い管本体11の軸線方向に漸増する空間を形成するように傾斜させたが、垂直壁部の第1係合部側面を、第1係合部側突条の反対峙面との間に垂直壁部の外方端(管本体の半径方向外方端)側になるに従い管本体の軸線方向に漸増する空間を形成するように傾斜させたり、垂直壁部の第1係合部側面及び第1係合部側突条の反対峙面の双方を傾斜させていてもよい。   In each of the above embodiments, the first engagement portion side protrusion 173 is disposed between the opposite flange surface 173 b of the first engagement portion side protrusion 173 and the first engagement portion side surface 16 a of the vertical wall portion 16. As the base end side of the tube body 11 is inclined, a slope is formed so as to form a space that gradually increases in the axial direction of the tube body 11, but the first engagement portion side surface of the vertical wall portion is opposite to the first engagement portion side protrusion. It is inclined so as to form a space that gradually increases in the axial direction of the pipe body as it goes to the outer end (radially outer end of the pipe body) side of the vertical wall part, or the first of the vertical wall part Both the engaging portion side surface and the opposite flange surface of the first engaging portion side protrusion may be inclined.

また、前記各実施の形態では、第2係合部側突条183の第1突条部184の対峙面183a又は第2係合部側突条188,189の対峙面188a,189a、及び第1係合部側突条173の対峙面173aを管本体11の軸線方向でこれと直交する直交面に対しそれぞれ傾斜させたが、第2係合部側突条の第1突条部の対峙面又は第2係合部側突条の対峙面、及び第1係合部側突条の対峙面が管本体の軸線方向でこれと直交する直交面と平行にし、この第1係合部側突条及び第2係合部側突条の互いの対峙面にその先端部位よりそれぞれ管本体の軸線方向に突出する係合片が設けられていてもよい。この場合には、管本体を湾曲させた際にその外周側での第2係合部の突条の対峙面からの第1係合部の突条の離脱が確実に防止され、管本体の巻き構造を効果的に保持することが可能となる。   Further, in each of the above embodiments, the facing surface 183a of the first protruding portion 184 of the second engaging portion side protrusion 183 or the facing surfaces 188a, 189a of the second engaging portion side protrusion 188, 189, and the first The opposing surface 173a of the first engaging portion side protrusion 173 is inclined with respect to the orthogonal surface orthogonal to the axial direction of the tube main body 11, but the first engaging portion side protrusion of the first engaging portion side protrusion 173 is opposed to the first engaging portion side protrusion 173. The opposing surface of the surface or the second engaging portion side ridge and the opposing surface of the first engaging portion side ridge are parallel to an orthogonal surface orthogonal to the axial direction of the pipe body, and this first engaging portion side Engagement pieces that protrude in the axial direction of the tube main body from the tip portion may be provided on the opposing surfaces of the protrusion and the second engagement portion side protrusion, respectively. In this case, when the tube main body is bent, the protrusion of the first engagement portion from the opposite surface of the protrusion of the second engagement portion on the outer peripheral side is reliably prevented, and the tube main body The winding structure can be effectively held.

1 可撓性合成樹脂管
11 管本体
12 内層材
13 第1係合部
14 第2係合部
15 帯状体
16a 垂直壁部の第1係合部側面(第2係合部の縦面)
173 第1係合部側突条(突条)
173a 対峙面
173b 反対峙面
177,187,201,202 係合片
180,203 凹部
183,188,189 第2係合部側突条(突条)
183a,188a,189a 対峙面
DESCRIPTION OF SYMBOLS 1 Flexible synthetic resin pipe | tube 11 Pipe | tube main body 12 Inner layer material 13 1st engaging part 14 2nd engaging part 15 Strip | belt-shaped body 16a The 1st engaging part side surface (vertical surface of a 2nd engaging part) of a vertical wall part
173 1st engaging part side protrusion (protrusion)
173a Opposite face 173b Opposite face 177, 187, 201, 202 Engagement piece 180, 203 Recess 183, 188, 189 Second engagement part side ridge (protrusion)
183a, 188a, 189a

Claims (7)

合成樹脂よりなり、軸線方向の一側に沿って第1係合部が形成されかつ前記第1係合部と連結状として軸線方向の他側に沿って第2係合部が形成された帯状体が螺旋状に巻き回され、前記第1係合部とこれに隣接する第2係合部とが互いに軸線方向へ摺動自在となるように非接着状態で係合されて螺旋状に捲回して形成された管本体を有し、
この管本体の内周面に沿って軟質合成樹脂よりなる内層材が貼着された可撓性合成樹脂管において、
前記第1係合部はこれに隣接する第2係合部に対し前記管本体の半径方向外方から係合するとともに、その両係合部には、前記管本体の軸線方向で互いに対峙するように突設され、かつ当該管本体を湾曲させた際に互いに軸線方向へ摺動して当接する突条がそれぞれ設けられており、
前記第2係合部の突条の対峙面が、その突条の先端側になるに従い前記第1係合部の突条に近付くように傾斜していることを特徴とする可撓性合成樹脂管。
It is made of synthetic resin, a first engagement portion is formed along one side in the axial direction, and a second engagement portion is formed along the other side in the axial direction as a connection with the first engagement portion. The body is wound in a spiral shape, and the first engagement portion and the second engagement portion adjacent to the first engagement portion are engaged with each other in a non-bonded state so as to be slidable in the axial direction. Having a tube body formed by turning,
In a flexible synthetic resin tube in which an inner layer material made of a soft synthetic resin is adhered along the inner peripheral surface of the tube main body,
The first engaging portion engages with a second engaging portion adjacent thereto from the outside in the radial direction of the tube main body, and the both engaging portions face each other in the axial direction of the tube main body. And are provided with protrusions that slide and contact each other in the axial direction when the tube body is curved,
A flexible synthetic resin characterized in that the opposing surface of the protrusion of the second engaging portion is inclined so as to approach the protrusion of the first engaging portion as it comes to the tip side of the protrusion. tube.
前記第1係合部の突条の対峙面が、その突条の先端側になるに従い前記第2係合部の突条に近付くように傾斜している請求項1に記載の可撓性合成樹脂管。   2. The flexible composition according to claim 1, wherein the opposing surface of the protrusion of the first engagement portion is inclined so as to approach the protrusion of the second engagement portion as it comes to the tip side of the protrusion. Resin tube. 前記両係合部の突条は、その互いの対峙面の先端部位よりそれぞれ軸線方向に突出し、かつ前記各突条の当接時に当該各突条同士を内外径方向から係合する係合片を備えている請求項1又は請求項2に記載の可撓性合成樹脂管。   The protrusions of the two engaging portions protrude in the axial direction from the tip portions of the opposing surfaces of the engaging portions, and engage pieces that engage the protrusions from the inner and outer diameter directions when the protrusions abut. The flexible synthetic resin pipe according to claim 1 or 2, further comprising: 前記第2係合部の突条が、前記第1係合部の突条よりも前記管本体の軸線方向に厚肉に形成されている請求項1〜請求項3のいずれか1つに記載の可撓性合成樹脂管。   4. The protrusion according to claim 1, wherein the protrusion of the second engagement portion is formed thicker in the axial direction of the pipe body than the protrusion of the first engagement portion. 5. Flexible plastic tube. 前記第2係合部の突条が、その先端向きに開口する凹部と、この凹部によって前記管本体の軸線方向に分割された複数の突条部とを備えている請求項4に記載の可撓性合成樹脂管。   The protrusion of the said 2nd engaging part is provided with the recessed part opened toward the front-end | tip, and several protrusions divided | segmented into the axial direction of the said pipe | tube main body by this recessed part. Flexible plastic tube. 前記第1係合部の突条の反対峙面と、この第1係合部に隣接する第2係合部の縦面とは、前記管本体を湾曲させた際にその内周側において互いに当接しており、
前記第1係合部の突条の反対峙面及び前記第2係合部の縦面のうちの少なくとも一方が、当該両面間に前記第1係合部の突条の基端側になるに従い管本体の軸線方向に漸増する空間を形成するように傾斜している請求項1〜請求項5のいずれか1つに記載の可撓性合成樹脂管。
The opposite flange surface of the protrusion of the first engagement portion and the vertical surface of the second engagement portion adjacent to the first engagement portion are mutually on the inner peripheral side when the tube body is curved. Abut,
As at least one of the opposite flange surface of the protrusion of the first engagement portion and the vertical surface of the second engagement portion becomes the base end side of the protrusion of the first engagement portion between the both surfaces. The flexible synthetic resin pipe according to any one of claims 1 to 5, which is inclined so as to form a space that gradually increases in the axial direction of the pipe body.
合成樹脂よりなり、軸線方向の一側に沿って第1係合部が形成されかつ前記第1係合部と連結状として軸線方向の他側に沿って第2係合部が形成された帯状体が螺旋状に巻き回され、前記第1係合部とこれに隣接する第2係合部とが互いに軸線方向へ摺動自在となるように非接着状態で係合されて螺旋状に捲回して形成された管本体を有し、
この管本体の内周面に沿って軟質合成樹脂よりなる内層材が貼着された可撓性合成樹脂管において、
前記第1係合部はこれに隣接する第2係合部に対し前記管本体の半径方向外方から係合するとともに、その両係合部には、前記管本体の軸線方向で互いに対峙するように突設され、かつ当該管本体を湾曲させた際に互いに軸線方向へ摺動して当接する突条がそれぞれ設けられており、
前記両係合部の突条は、その互いの対峙面の先端部位よりそれぞれ軸線方向に突出し、かつ前記各突条の当接時に当該各突条同士を内外径方向から係合する係合片を備えていることを特徴とする可撓性合成樹脂管。
It is made of synthetic resin, a first engagement portion is formed along one side in the axial direction, and a second engagement portion is formed along the other side in the axial direction as a connection with the first engagement portion. The body is wound in a spiral shape, and the first engagement portion and the second engagement portion adjacent to the first engagement portion are engaged with each other in a non-bonded state so as to be slidable in the axial direction. Having a tube body formed by turning,
In a flexible synthetic resin tube in which an inner layer material made of a soft synthetic resin is adhered along the inner peripheral surface of the tube main body,
The first engaging portion engages with a second engaging portion adjacent thereto from the outside in the radial direction of the tube main body, and the both engaging portions face each other in the axial direction of the tube main body. And are provided with protrusions that slide and contact each other in the axial direction when the tube body is curved,
The protrusions of the two engaging portions protrude in the axial direction from the tip portions of the opposing surfaces of the engaging portions, and engage pieces that engage the protrusions from the inner and outer diameter directions when the protrusions abut. A flexible synthetic resin tube characterized by comprising:
JP2010075156A 2010-03-29 2010-03-29 Flexible synthetic resin tube Active JP5572436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075156A JP5572436B2 (en) 2010-03-29 2010-03-29 Flexible synthetic resin tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075156A JP5572436B2 (en) 2010-03-29 2010-03-29 Flexible synthetic resin tube

Publications (2)

Publication Number Publication Date
JP2011208686A true JP2011208686A (en) 2011-10-20
JP5572436B2 JP5572436B2 (en) 2014-08-13

Family

ID=44939965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075156A Active JP5572436B2 (en) 2010-03-29 2010-03-29 Flexible synthetic resin tube

Country Status (1)

Country Link
JP (1) JP5572436B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206566A (en) * 2012-03-27 2013-10-07 Sumitomo Electric Ind Ltd Heat exchanger for redox flow battery, and redox flow battery
JP2016152713A (en) * 2015-02-18 2016-08-22 矢崎総業株式会社 Exterior member and wire harness
JP2017057920A (en) * 2015-09-16 2017-03-23 積水化学工業株式会社 Member for pipe manufacturing
US20230251449A1 (en) * 2014-10-27 2023-08-10 Commscope Technologies Llc Fiber optic cable with flexible conduit
US11994733B2 (en) 2023-01-24 2024-05-28 Commscope Technologies Llc Fiber optic breakout transition assembly incorporating epoxy plug and cable strain relief

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355517A (en) * 1976-10-28 1978-05-20 Dayco Corp Hose structure
JPS60500389A (en) * 1982-12-28 1985-03-22 プラステイフレクス カンパニ− インタナシヨナル Combination of flexible hose and conductor
JPS62500287A (en) * 1984-10-02 1987-02-05 アクチボラゲツト・エレクトロラツクス vacuum cleaner tube
JPS62172886U (en) * 1986-04-23 1987-11-02
JPS63104783U (en) * 1986-12-26 1988-07-07
JPH08178139A (en) * 1994-12-26 1996-07-12 Tigers Polymer Corp Conductive hose
JPH08303652A (en) * 1995-04-28 1996-11-22 Tigers Polymer Corp Flexible pipe
JPH09229247A (en) * 1996-02-21 1997-09-05 Tigers Polymer Corp Synthetic resin pipe
JP2001221384A (en) * 2000-02-07 2001-08-17 Maezawa Kasei Ind Co Ltd Flexible pipe
JP2006283867A (en) * 2005-03-31 2006-10-19 Sekisui Chem Co Ltd Flexible pipe

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355517A (en) * 1976-10-28 1978-05-20 Dayco Corp Hose structure
JPS60500389A (en) * 1982-12-28 1985-03-22 プラステイフレクス カンパニ− インタナシヨナル Combination of flexible hose and conductor
JPS62500287A (en) * 1984-10-02 1987-02-05 アクチボラゲツト・エレクトロラツクス vacuum cleaner tube
JPS62172886U (en) * 1986-04-23 1987-11-02
JPS63104783U (en) * 1986-12-26 1988-07-07
JPH08178139A (en) * 1994-12-26 1996-07-12 Tigers Polymer Corp Conductive hose
JPH08303652A (en) * 1995-04-28 1996-11-22 Tigers Polymer Corp Flexible pipe
JPH09229247A (en) * 1996-02-21 1997-09-05 Tigers Polymer Corp Synthetic resin pipe
JP2001221384A (en) * 2000-02-07 2001-08-17 Maezawa Kasei Ind Co Ltd Flexible pipe
JP2006283867A (en) * 2005-03-31 2006-10-19 Sekisui Chem Co Ltd Flexible pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206566A (en) * 2012-03-27 2013-10-07 Sumitomo Electric Ind Ltd Heat exchanger for redox flow battery, and redox flow battery
US20230251449A1 (en) * 2014-10-27 2023-08-10 Commscope Technologies Llc Fiber optic cable with flexible conduit
JP2016152713A (en) * 2015-02-18 2016-08-22 矢崎総業株式会社 Exterior member and wire harness
JP2017057920A (en) * 2015-09-16 2017-03-23 積水化学工業株式会社 Member for pipe manufacturing
US11994733B2 (en) 2023-01-24 2024-05-28 Commscope Technologies Llc Fiber optic breakout transition assembly incorporating epoxy plug and cable strain relief

Also Published As

Publication number Publication date
JP5572436B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
US10197198B2 (en) Flexible pipe
JP5572436B2 (en) Flexible synthetic resin tube
EP2290278A2 (en) Hybrid high pressure hose
EP1508737B1 (en) Hose for water and hot water supply
CN106102661B (en) Stent delivery system
US6244303B1 (en) Helically wound flexible hose
US20220316639A1 (en) Electrical Conduit, Connection Structure for Electrical Conduit, Bell Block, Method for Connecting Electrical Conduit, Method for Connecting Electrical Conduit and Bell Block, Pipe Coupling, Ring Member, Double-Wall Electrical Conduit, and Connection Structure and Conduit Line for Double-Wall Electrical Conduit
US4526410A (en) Plastic connector for hoses
JP5147377B2 (en) Method for manufacturing flexible pipe joint
JP2011033783A (en) Extruded molding and cable
JP6469938B2 (en) Conduit tube, Conduit connection structure, Bell block, Connection method between conduit tubes, Conduit tube and Bell block connection method, Pipe joint, Ring member
KR101169600B1 (en) Corrugated pipe having double wall
JP4503990B2 (en) Flexible hose
JP2007190769A (en) Hose for supplying water and hot water
CN104638594A (en) Buried enhanced and modified polypropylene ripple cable sleeve
JP2010255671A (en) Synthetic resin flexible tube
JP4562037B2 (en) Repair method of protective pipe with cable installed
KR102642253B1 (en) Flexible protection tube for protecting submarine cable
EP3775651A1 (en) Flexible pipe body and method
ITVI20110276A1 (en) THERMOPLASTIC COMPOUND FOR SINGLE LAYERED TUBES AND SINGLE LAYER TUBE INCLUDING THIS COMPOUND
JP7290252B2 (en) Pipe rehabilitation member
JP2008029176A (en) Corrugated synthetic-resin pipe and its pipe-joint structure
JPH11344166A (en) Synthetic resin protective pipe
JP2010263695A (en) Underground pipe
JP2003021280A (en) Packing for joint and pipe connecting structure using it

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250