JP2011207651A - Smart materialized artificial lightweight aggregate, method for producing the same and concrete-kneaded matter - Google Patents

Smart materialized artificial lightweight aggregate, method for producing the same and concrete-kneaded matter Download PDF

Info

Publication number
JP2011207651A
JP2011207651A JP2010076284A JP2010076284A JP2011207651A JP 2011207651 A JP2011207651 A JP 2011207651A JP 2010076284 A JP2010076284 A JP 2010076284A JP 2010076284 A JP2010076284 A JP 2010076284A JP 2011207651 A JP2011207651 A JP 2011207651A
Authority
JP
Japan
Prior art keywords
artificial
aggregate
concrete
lightweight aggregate
smart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010076284A
Other languages
Japanese (ja)
Other versions
JP5404496B2 (en
Inventor
Hirozo Mihashi
博三 三橋
Shinkan Zen
振煥 全
Tetsushi Kanda
徹志 閑田
Harumoto Momose
晴基 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2010076284A priority Critical patent/JP5404496B2/en
Publication of JP2011207651A publication Critical patent/JP2011207651A/en
Application granted granted Critical
Publication of JP5404496B2 publication Critical patent/JP5404496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide the technique by which the drying of a cement matrix is suppressed, and the increase of the durability in a concrete structure is brought out by using a porous artificial lightweight coarse aggregate which can be substituted for the whole or most of coarse aggregate to be blended into concrete.SOLUTION: The smart materialized artificial lightweight aggregate is obtained by storing water and a silicate-based chemical reacted with the hydration product of cement into the internal voids of a porous artificial aggregate obtained by firing with coal ash and shale fine powder as the main raw material. Particularly, as the chemical, the one present in a gelled state at least at the part exposed to the surface is a suitable object.

Description

本発明は、多孔質の人工軽量骨材の空隙に水及び薬剤を含浸して格納することによりスマートマテリアル化(SLA;Smart Lightweight Aggregate)した人工軽量骨材、及びその製造法、並びにそのスマートマテリアル化人工軽量骨材を使用したコンクリート混練物に関する。   The present invention relates to an artificial lightweight aggregate that has been made into a smart material (SLA) by impregnating and storing water and a drug in a void of a porous artificial lightweight aggregate, a manufacturing method thereof, and a smart material thereof The present invention relates to a concrete kneaded material using modified artificial lightweight aggregate.

構造物のコンクリートは乾燥と経年劣化の進行に伴い、耐久性が低下することが懸念される。近年、コンクリート構造物の耐久性を向上させるために、水セメント比の低下及び混和材の添加などを利用してコンクリートを高強度化及び高耐久化する技術が種々開発されている。一方、コンクリートは養生条件及び外部の環境条件により、内部からの水分移動による乾燥現象が生じ、可視ひび割れやマイクロレベルの微細空隙と微細ひび割れ(以下マイクロクラック)が発生する。このようなコンクリートの微細空隙やマイクロクラックを抑制するためには、打設後の十分な養生が要求されるが、実用上長期の養生は困難な場合が多い。   There is a concern that the durability of concrete in the structure will decrease as drying and aging progress. In recent years, in order to improve the durability of concrete structures, various techniques have been developed to increase the strength and durability of concrete by using a reduction in water-cement ratio and the addition of admixtures. On the other hand, concrete undergoes a drying phenomenon due to moisture movement from the inside depending on curing conditions and external environmental conditions, and generates visible cracks, micro-level micro voids and micro cracks (hereinafter referred to as micro cracks). In order to suppress such fine voids and microcracks in concrete, sufficient curing after placing is required, but in practice, long-term curing is often difficult.

コンクリートの内部から、水分をセメントマトリクス中に徐々に安定して供給することができれば、上記の乾燥現象に起因するトラブルを抑制することが可能になると考えられる。また同時にコンクリートの内部から、セメントマトリクス中の物質と反応して緻密な反応生成物を形成する薬剤を徐々に安定して供給することができれば、コンクリート構造物の耐久性向上に有効であると考えられる。   If moisture can be gradually and stably supplied from the inside of the concrete into the cement matrix, it is considered that the trouble caused by the drying phenomenon can be suppressed. At the same time, if a chemical that reacts with the substances in the cement matrix to form a dense reaction product can be gradually and stably supplied from inside the concrete, it is considered effective for improving the durability of the concrete structure. It is done.

特許文献1には、多孔質の軽量骨材の表層部にゲル物質を生成させる技術が開示されている。このゲル物質は「防水栓」(特許文献1の3頁左欄17行)として機能するものであり、軽量骨材の内部に凍害要因となる水分が入らないように、軽量骨材に耐吸水性を付与するものである。したがって、この技術ではコンクリート内部からセメントマトリクス中に水分やその他の物質を供給することはできない。   Patent Document 1 discloses a technique for generating a gel substance on the surface layer portion of a porous lightweight aggregate. This gel substance functions as a “waterproof plug” (page 3, left column, line 17 of Patent Document 1), and the lightweight aggregate is resistant to water absorption so that moisture that causes frost damage does not enter the lightweight aggregate. It imparts sex. Therefore, this technique cannot supply moisture and other substances into the cement matrix from inside the concrete.

特許文献2には、多孔質の骨材本体に、コンクリートに生じた亀裂を塞ぐ補修液を含浸させる技術が記載されている。この骨材はコーティング膜に覆われており、コンクリートの亀裂が生じた際に、その亀裂部分に位置する骨材のコーティング膜が破壊され、水ガラスや各種樹脂の補修液が亀裂内部に放出されるようになっている(特許文献2の段落0015、図2)。したがって、この技術では水分や薬剤をセメントマトリクス中に徐々に供給することはできない。   Patent Document 2 describes a technique in which a porous aggregate body is impregnated with a repair liquid that closes a crack generated in concrete. This aggregate is covered with a coating film. When a crack occurs in the concrete, the aggregate coating film located at the crack is destroyed, and water glass and various resin repair solutions are released into the crack. (Patent Document 2, paragraph 0015, FIG. 2). Therefore, this technique cannot gradually supply moisture and chemicals into the cement matrix.

特許文献3には、骨材に、セメント硬化体中の水酸化カルシウムと反応して水不溶物質を生成する薬剤を含ませる技術が開示されている。その手法の1つとして、多孔質体の骨材中に薬剤を含浸させることが記載されており、その例が実施例1として示されている。しかし、コンクリート1m3に対しこの薬剤含有骨材は150個加えられているにすぎず(同段落0028参照)、当該薬剤含有骨材の粒子はコンクリート硬化体中において他の骨材粒子よりも低密度で分散しているものと考えられる。特許文献3の技術によれば、自癒作用物質が徐々に放出されて、主としてセメント成分の硬化後析出する水酸化カルシウムと永続的に反応するため初期の目的(水和反応の阻害、大型ミキサーの汚染等を回避してセメント硬化体に自癒作用をもたせる)が達成できるとされる。しかしながら特許文献3には、コンクリート中に配合する粗骨材の大部分を薬剤含有骨材で置換することが可能で、かつ長期にわたってセメントマトリクスの乾燥を抑制しうる技術は開示されていない。 Patent Document 3 discloses a technique in which an aggregate includes a chemical that reacts with calcium hydroxide in a hardened cement body to generate a water-insoluble substance. As one of the techniques, it is described that a drug is impregnated into an aggregate of a porous body, and an example thereof is shown as Example 1. However, only 150 of this drug-containing aggregate is added to 1 m 3 of concrete (see the same paragraph 0028), and the particles of the drug-containing aggregate are lower than the other aggregate particles in the hardened concrete. It is thought that it is dispersed by density. According to the technique of Patent Document 3, since the self-healing substance is gradually released and mainly reacts with calcium hydroxide precipitated after the cement component is hardened, the initial purpose (inhibition of hydration reaction, large mixer) It is said that self-healing action can be achieved in the hardened cement body by avoiding contamination of the cement. However, Patent Document 3 does not disclose a technique that can replace most of the coarse aggregate blended in the concrete with a drug-containing aggregate and can suppress the drying of the cement matrix over a long period of time.

特許文献4には、膨張性頁岩を焼成して得られる多孔質骨材中に薬剤を保持した薬品保持材が開示されている。この薬品保持材をコンクリート用骨材に使用する例として、低級アルコール化合物、グリコールエーテル等、収縮性作用のある表面張力緩和剤を含浸させた人工骨材を従来の砂や細骨材に混入してコンクリートを製造することが記載されており、それにより、硬化に伴うコンクリート製品の収縮を低減させることができるという(特許文献4の段落0016)。しかし、セメントマトリクスの乾燥抑制や組織の緻密化を実現する手法は示されていない。   Patent Document 4 discloses a chemical holding material in which a drug is held in a porous aggregate obtained by firing expansive shale. As an example of using this chemical retaining material for aggregates for concrete, artificial aggregates impregnated with surface tension relaxants such as lower alcohol compounds and glycol ethers are mixed into conventional sand and fine aggregates. It is described that the concrete can be manufactured, thereby reducing the shrinkage of the concrete product due to hardening (paragraph 0016 of Patent Document 4). However, no method has been shown to realize the suppression of drying of the cement matrix and the densification of the structure.

特公平6−88853号公報Japanese Patent Publication No. 6-88853 特開平10−194801号公報JP-A-10-194801 特開2002−97045号公報JP 2002-97045 A 特開2004−224728号公報JP 2004-224728 A

笠井浩、外3名、「石炭灰人工骨材(Jライト)を用いた高性能コンクリートの諸性質」、鹿島技研年報、Vol.53、(2005)、p.157−166Hiroshi Kasai, 3 others, “Properties of high-performance concrete using coal ash artificial aggregate (J-light)”, Kashima Giken annual report, Vol.53, (2005), p.157-166

本発明は、コンクリートに配合する粗骨材の全部または大部分を置換することが可能な多孔質の人工軽量粗骨材を用いて、セメントマトリクスの乾燥を抑制し、コンクリート構造物の高耐久化をもたらす技術を提供しようというものである。   The present invention uses a porous artificial lightweight coarse aggregate that can replace all or most of the coarse aggregate to be blended in concrete, thereby suppressing the drying of the cement matrix and increasing the durability of the concrete structure. Is to provide technology that brings

上記目的は、石炭灰と頁岩微粉末を主原料として焼成された多孔質人工骨材の内部空隙に、水、及びセメントの水和生成物と反応する珪酸系薬剤を格納したスマートマテリアル化人工軽量骨材によって達成される。特に、前記薬剤が、少なくとも表面に露出している部分でゲル化した状態となって存在するものが提供される。内部まで完全にゲル化していても構わない。   The above-mentioned purpose is a smart material-made artificial light weight that contains water and silicic acid-based chemicals that react with hydrated products of cement in the internal voids of porous artificial aggregates fired with coal ash and shale fine powder as the main raw materials. Achieved by aggregate. In particular, there is provided a drug that exists in a gelled state at least at a portion exposed on the surface. The inside may be completely gelled.

薬剤を格納する多孔質人工骨材(素材)は、含水率30%以下、絶乾密度2.5g/cm3以下であり、かつ断面に観察される空隙の最大径が2.0mm以下のものが好適な対象として例示される。空隙の最大径は、断面画像に現れている個々の空隙の面積を求めて円相当径を算出し、その最大値を採用することにより定められる。 The porous artificial bone (material) for storing the drug has a moisture content of 30% or less, an absolute dry density of 2.5 g / cm 3 or less, and a maximum diameter of voids observed in the cross section of 2.0 mm or less. Is exemplified as a suitable target. The maximum diameter of the void is determined by calculating the equivalent circle diameter by obtaining the area of each void appearing in the cross-sectional image and adopting the maximum value.

上記のスマートマテリアル化人工軽量骨材の製造法として、石炭灰と頁岩微粉末を主原料として焼成された多孔質人工骨材を凍結真空乾燥させたのち、前記薬剤を水溶媒とともに減圧下で当該人工骨材の内部空隙に最大含浸率まで含浸させる手法が提供される。薬液をゲル化させる場合は、薬剤含浸後の人工骨材をゲル化剤と接触させる手法が採用される。   As a manufacturing method of the above-mentioned smart materialized artificial lightweight aggregate, after freeze-drying the porous artificial aggregate calcined with coal ash and shale fine powder as the main raw material, the drug is added under reduced pressure together with an aqueous solvent. A technique is provided for impregnating the internal voids of the artificial aggregate to the maximum impregnation rate. In the case of gelling the chemical solution, a technique of bringing the artificial bone material impregnated with the drug into contact with the gelling agent is employed.

上記のスマートマテリアル化人工軽量骨材を使用してコンクリート混練物を得る場合、全粗骨材の80〜100質量%に当該スマートマテリアル化人工軽量骨材を使用することが好ましい。   When a concrete kneaded material is obtained using the above-mentioned smart materialized artificial lightweight aggregate, it is preferable to use the smart materialized artificial lightweight aggregate in 80 to 100% by mass of the total coarse aggregate.

本発明によれば、コンクリート構造物の経年劣化によるマイクロクラックの発生を抑制することができ、種々の用途のコンクリート構造物において比較的低コストで高耐久化を図ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the micro crack by aged deterioration of a concrete structure can be suppressed, and it becomes possible to achieve high durability at a comparatively low cost in the concrete structure of various uses.

スマートマテリアル化人工軽量骨材によりコンクリート構造物が高耐久化されるメカニズムを示す概念図。The conceptual diagram which shows the mechanism in which a concrete structure is made highly durable by the smart material-ized artificial lightweight aggregate. 等温放湿装置の構成を示す図。The figure which shows the structure of an isothermal moisture release apparatus. 真空含浸方法を用いた含浸率測定結果を示すグラフ。The graph which shows the impregnation rate measurement result using a vacuum impregnation method. 水分放湿率の経時変化を例示するグラフ。The graph which illustrates the time-dependent change of a moisture moisture release rate. 相対湿度と平衡含浸率の関係を示すグラフ。The graph which shows the relationship between relative humidity and an equilibrium impregnation rate. 相対湿度と拡散係数(計算結果)の関係を示すグラフ。The graph which shows the relationship between relative humidity and a diffusion coefficient (calculation result). 相対湿度及び乾燥ひずみ測定用の試験体作製状況を示す図。The figure which shows the test body preparation condition for relative humidity and a dry strain measurement. マイクロクラック観察の一例を示すSEMの反射電子像。SEM reflected electron image showing an example of microcrack observation. 試験体内部の相対湿度の分布を示すグラフ。The graph which shows distribution of the relative humidity inside a test body. 乾燥面から深さ10mmの乾燥ひずみの測定結果を示すグラフ。The graph which shows the measurement result of the dry distortion of 10 mm in depth from a dry surface. 圧縮強度の測定結果を示すグラフ。The graph which shows the measurement result of compressive strength. 微細空隙及びマイクロクラックの測定結果を示すグラフ。The graph which shows the measurement result of a micro space | gap and a micro crack. 透気性試験結果を示すグラフ。The graph which shows a gas permeability test result. 促進中性化試験結果を示すグラフ。The graph which shows a promotion neutralization test result. 促進中性化深さと試験体の深さ10mmにおける微細空隙及びマイクロクラックの関係を示すグラフ。The graph which shows the relationship between the acceleration | stimulation neutralization depth and the fine space | gap and microcrack in the depth of 10 mm of a test body. 本発明に適用する多孔性人工骨材(素材)の断面SEM写真の一例。An example of the cross-sectional SEM photograph of the porous artificial bone material (raw material) applied to this invention.

〔多孔質人工骨材〕
本発明では、石炭灰と頁岩微粉末を主原料として焼成された多孔質人工骨材を、後述の薬剤を格納するための素材として使用する。石炭灰は産業副産物が利用できる。上記原料を高温焼成した後、常温まで徐冷して得られる人工骨材は化学的に安定であり、軽量骨材として使用できる強度を有している。特に、含水率30%以下(好ましくは10〜25%)、絶乾密度2.5g/cm3以下(好ましくは1.0〜2.0g/cm3)であり、かつ断面に観察される空隙の最大径が2.0mm以下のものが好適な対象として例示される。特に、空隙の最大径が0.5mm未満のものがより好適であり、0.3mm以下のものを使用するように管理してもよい。この種の人工骨材としては、例えば出願人らによって開発された商品名;Jライト(非特許文献1)が適用できる。
(Porous artificial aggregate)
In the present invention, a porous artificial bone material fired using coal ash and shale fine powder as main raw materials is used as a material for storing a drug described later. Coal ash can be used as an industrial by-product. An artificial aggregate obtained by baking the above raw material at a high temperature and then slowly cooling it to room temperature is chemically stable and has a strength that can be used as a lightweight aggregate. In particular, the water content is 30% or less (preferably 10 to 25%), the absolute dry density is 2.5 g / cm 3 or less (preferably 1.0 to 2.0 g / cm 3 ), and the voids observed in the cross section The thing with the largest diameter of 2.0 mm or less is illustrated as a suitable object. In particular, the gap having a maximum diameter of less than 0.5 mm is more suitable, and the gap may be managed so as to be 0.3 mm or less. As this type of artificial aggregate, for example, a trade name developed by the applicants; J Lite (Non-patent Document 1) can be applied.

図16に、本発明で適用できる人工軽量骨材の断面SEM写真を例示する。左右の写真は種類の異なる人工軽量骨材である。多くの空隙を有しており、断面に観察される空隙の最大径は2.0mm以下であり、特に左のもの(Jライト)は極めて微細である。   FIG. 16 illustrates a cross-sectional SEM photograph of an artificial lightweight aggregate applicable in the present invention. The left and right pictures are different types of artificial lightweight aggregates. It has many voids, and the maximum diameter of the voids observed in the cross section is 2.0 mm or less, and especially the left one (J light) is extremely fine.

〔薬剤〕
上記の人工骨材(素材)の空隙に格納する薬剤はセメントの水和生成物と反応する珪酸系のものが採用される。例えば、地盤改良材やグラウト材からアルカリを除去した活性シリカやコロイドシリカ、あるいはコンクリートの表面強化剤などを利用することができる。水溶媒中の珪酸(SiO2)濃度が40%以下(好ましくは10〜35%)で粘性が低く、上記の人工骨材への含浸が容易である薬液として使用することが好ましい。薬剤を随伴して骨材内部に含浸される水溶媒中の水分が、セメントマトリクスの保水性を維持するための給水源となる。珪酸成分はセメントの水和生成物と反応して、その反応生成物によってセメントマトリクスが緻密化される。また、初期に反応していない反応性薬剤は長期間に渡って反応の持続に寄与する。
[Drug]
Silica-based chemicals that react with cement hydration products are used as the chemicals stored in the gaps in the artificial aggregate (material). For example, active silica or colloidal silica from which alkali has been removed from a ground improvement material or a grout material, or a surface reinforcing agent for concrete can be used. It is preferably used as a chemical solution having a silicic acid (SiO 2 ) concentration in an aqueous solvent of 40% or less (preferably 10 to 35%), low viscosity, and easy to impregnate the artificial bone. The water in the aqueous solvent impregnated into the aggregate with the chemical becomes a water supply source for maintaining the water retention of the cement matrix. The silicic acid component reacts with the hydrated product of the cement, and the cement matrix is densified by the reaction product. In addition, a reactive drug that has not reacted in the initial stage contributes to the persistence of the reaction over a long period of time.

その他の薬剤として、高保水性剤を添加することができる。高保水性剤としては水と反応する1液成分系または2液成分系の特殊増粘剤が挙げられ、例えばアルキルアリルスルフォン酸塩とアルキルアンモニウム塩の2液成分系の増粘剤などが例示できる。   As other chemicals, a high water retention agent can be added. Examples of the high water retention agent include one-component or two-component special thickeners that react with water, and examples include two-component thickeners of alkylallylsulfonate and alkylammonium salts. .

〔スマートマテリアル化人工軽量骨材の製造法〕
薬剤を多孔質人工骨材の内部空隙に含浸させる際には、多孔質人工骨材(素材)を加熱するか、あるいは凍結真空乾燥(F−Dry)したのち、常温絶乾状態で減圧しながら、薬剤を水溶媒とともに多孔質人工骨材の粒子に供給する手法を採用することが好ましい。含浸時には粘性が低いことが好ましいが、スマートマテリアル化人工軽量骨材の製品としては含浸物質がゲル化している方が取扱い性に優れ、好ましい。ゲル化の処理としては、薬剤含浸後の人工骨材をゲル化剤と接触させる手法が好適に採用できる。これにより、少なくとも骨材粒子表面に露出している薬剤がゲル化した状態で存在するスマートマテリアル化人工軽量骨材を得ることができる。ゲル化剤としては、炭酸水素ナトリウム(NaHCO3)、アルカリ土類金属(Be、Mg、Ca、Sr、Ba、Ra)、炭酸ガス(CO2)などが挙げられる。これらのゲル化剤の濃度は極薄いことが好ましい。
[Manufacturing method of smart material-made artificial lightweight aggregate]
When impregnating the internal space of the porous artificial bone with the drug, heat the porous artificial bone (raw material) or freeze-dry it (F-Dry), It is preferable to employ a method of supplying the drug to the particles of the porous artificial aggregate together with the water solvent. It is preferable that the viscosity is low at the time of impregnation, but as a product of a smart material-made artificial lightweight aggregate, it is preferable that the impregnated material is gelled because it is easy to handle. As the gelation treatment, a technique of bringing the artificial bone material impregnated with the drug into contact with the gelling agent can be suitably employed. Thereby, the smart material-ized artificial lightweight aggregate which exists in the state which the chemical | medical agent exposed to the aggregate particle surface at least gelatinized can be obtained. Examples of the gelling agent include sodium hydrogen carbonate (NaHCO 3 ), alkaline earth metals (Be, Mg, Ca, Sr, Ba, Ra), carbon dioxide (CO 2 ), and the like. The concentration of these gelling agents is preferably extremely thin.

〔コンクリート混練物〕
上記のようにして得られるスマートマテリアル化人工軽量骨材は、本来的に人工軽量骨材としての特性を有していることから、種々のコンクリートにおいて粗骨材の全部または大部分(例えば80質量%以上)を当該スマートマテリアル化人工軽量骨材で置換することができる。当該スマートマテリアル化人工軽量骨材は、通常の人工軽量骨材と同様の手法により混練し、コンクリート混練物とすればよい。粉体成分としては産業副産物であるフライアッシュ、シリカヒューム、高炉スラグなどをセメントの置換材として配合させてもよい。
[Concrete mix]
The smart material-made artificial lightweight aggregate obtained as described above inherently has characteristics as an artificial lightweight aggregate. Therefore, all or most of coarse aggregate (for example, 80 mass) in various concretes. % Or more) can be replaced with the artificial material lightweight aggregate. The smart materialized artificial lightweight aggregate may be kneaded by the same technique as that of a normal artificial lightweight aggregate to obtain a concrete kneaded product. As powder components, fly ash, silica fume, blast furnace slag, and the like, which are industrial by-products, may be blended as cement substitutes.

図1に、本発明によりコンクリート構造物が高耐久化されるメカニズムを概念的に示す。   FIG. 1 conceptually shows the mechanism by which a concrete structure is made highly durable according to the present invention.

スマートマテリアル化人工軽量骨材を作製し、特性を調べた。
1.実験計画
実験要素と水準を表1に示す。人工軽量骨材は1種類、含浸溶液は3種類とした。薬液Aは、濃度30%の超微粒子の珪酸系溶液、薬液Bは、薬液Aを含浸した後に炭酸水素ナトリウム(NaHCO3)水溶液(濃度0.2%)に浸漬して接触させることによりゲル化を図ったものである。
We made an artificial lightweight aggregate made into a smart material and investigated its characteristics.
1. Experimental design Table 1 shows the experimental elements and levels. One type of artificial lightweight aggregate and three types of impregnation solutions were used. Chemical solution A is an ultrafine silicic acid solution with a concentration of 30%, and chemical solution B is impregnated with chemical solution A and then immersed in an aqueous solution of sodium hydrogencarbonate (NaHCO 3 ) (concentration 0.2%) for gelation. Is intended.

2.使用材料及び各種試験方法
人工軽量骨材は、石炭灰と頁岩微粉末を主原料とした絶乾密度1.53g/cm3の人工軽量骨材(Jライト)を用いた。
(1)含浸率試験(真空含浸法)
含浸率試験は人工軽量骨材の内部のすべての空隙へ溶液を含浸させるため、真空含浸法を用いた。人工軽量骨材は凍結乾燥(F−Dry)を24時間行い、絶乾状態の約500gの試料3つを容器に入れて真空を保持した状態で溶液を供給し、試料の質量が一定となるまで含浸を行った。含浸率は含浸状態の試料の表乾質量を絶乾質量で除した比率とした。
2. Materials Used and Various Test Methods Artificial lightweight aggregates used were artificial lightweight aggregates (J-light) with an absolute dry density of 1.53 g / cm 3 made mainly of coal ash and shale fine powder.
(1) Impregnation rate test (vacuum impregnation method)
In the impregnation rate test, a vacuum impregnation method was used to impregnate all the voids inside the artificial lightweight aggregate with the solution. Artificial lightweight aggregate is freeze-dried (F-Dry) for 24 hours. Three dry samples of about 500 g are put in a container and the solution is supplied in a vacuum state, and the mass of the sample becomes constant. Until impregnation. The impregnation rate was a ratio obtained by dividing the surface dry mass of the impregnated sample by the absolute dry mass.

(2)等温放湿試験
等温放湿試験は、分流式相対湿度発生装置と電子天秤及びパソコンにより構成された装置を用いて行った。試験装置の構成図を図2に示す。上記の真空含浸法を用いて作製した試料50gをステンレス製のかごに入れて試料室の雰囲気温度を20℃とし、所定の相対湿度の空気を精度±1%で10L/分で供給した。相対湿度は95%、90%、80%、70%、60%、50%、40%、30%、20%、10%、0%とした。また、試験中、溶液を含浸した人工軽量骨材の水分放湿による質量の変化を連続的に測定した。
(2) Isothermal moisture release test The isothermal moisture release test was performed using a device composed of a shunt-type relative humidity generator, an electronic balance, and a personal computer. A block diagram of the test apparatus is shown in FIG. A sample of 50 g prepared using the vacuum impregnation method was placed in a stainless steel basket, the atmosphere temperature in the sample chamber was set to 20 ° C., and air with a predetermined relative humidity was supplied at an accuracy of ± 1% at 10 L / min. The relative humidity was 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 0%. During the test, the change in mass due to moisture desorption of the artificial lightweight aggregate impregnated with the solution was continuously measured.

3.実験結果と考察
(1)含浸率
真空含浸方法を用いた水と薬液の含浸率の結果を図3に示す。各試料の含浸率は18%(wt/%)程度でほぼ同等を示した。真空含浸法を用いることで18%程度の含浸率まで含浸が可能であることが確認できた。
3. Experimental results and discussion (1) Impregnation rate The results of the impregnation rate of water and chemicals using the vacuum impregnation method are shown in FIG. The impregnation rate of each sample was approximately equal at about 18% (wt /%). It was confirmed that impregnation was possible up to an impregnation rate of about 18% by using the vacuum impregnation method.

(2)等温放湿試験
水及び薬液を含浸した人工軽量骨材試料の水分放湿率の変化を図4に例示する。水分放湿率は含浸状態の試料から水分が逸散した量を表乾質量で除した比率である。水分放湿率は経過時間に伴い徐々に増えて行く傾向を示すが、薬液を含浸した人工軽量骨材は水含浸の人工軽量骨材と比べて保水性に優れることが確認できた。
(2) Isothermal moisture release test FIG. 4 illustrates the change in moisture moisture release rate of an artificial lightweight aggregate sample impregnated with water and a chemical solution. The moisture moisture release rate is a ratio obtained by dividing the amount of moisture dissipated from the impregnated sample by the surface dry mass. Although the moisture moisture release rate showed a tendency to gradually increase with the passage of time, it was confirmed that the artificial lightweight aggregate impregnated with the chemical solution is superior in water retention as compared with the artificial lightweight aggregate impregnated with water.

各試料の水分放湿率の結果から次式(1)を用いてカーブフィットを行い、平衡含浸率と水分拡散係数を求めた。平衡含浸率は、含浸溶液が水以外の薬液であることから定義し、平衡含水率に対応するものである。
m(t)=a〔1−bexp(−ct)〕 …(1)
ここで、m(t)は経過時間t後における水分放湿率の推定値(wt/%)、aは無限時間経過後における水分放湿率の推定値(wt/%)、bは試料の形状(球状)と関係する係数、cは水分拡散係数(Dθ)をc=Dθπ2/A2(Aは試料の半径、mm)式より求まる係数である。係数aは放湿により推定した平衡含浸率(θe)を表すため、人工軽量骨材の中に残留した平衡含浸率(θr)は次式(2)を用いて算出した。
θr=Mcmax−θe …(2)
ここで、Mcmaxは真空含浸法による含浸率、θeは放湿により推定した平衡含浸率である。
Curve fitting was performed using the following equation (1) from the result of the moisture moisture release rate of each sample, and the equilibrium impregnation rate and the moisture diffusion coefficient were obtained. The equilibrium impregnation rate is defined since the impregnation solution is a chemical solution other than water, and corresponds to the equilibrium water content.
m (t) = a [1-bexp (−ct)] (1)
Here, m (t) is an estimated value (wt /%) of the moisture desorption rate after the elapsed time t, a is an estimated value (wt /%) of the moisture desorption rate after an infinite time has elapsed, and b is the sample The coefficient relating to the shape (spherical), c is a coefficient obtained by the equation of c = D θ π 2 / A 2 (A is the radius of the sample, mm), the moisture diffusion coefficient (D θ ). Since the coefficient a represents the equilibrium impregnation rate (θe) estimated by moisture release, the equilibrium impregnation rate (θr) remaining in the artificial lightweight aggregate was calculated using the following equation (2).
θr = Mc max −θe (2)
Here, Mc max is an impregnation rate by a vacuum impregnation method, and θe is an equilibrium impregnation rate estimated by moisture release.

平衡含浸率の結果を図5に示す。いずれの試料も相対湿度が低くなると平衡含浸率が低下する傾向であるが、薬液を含浸した人工軽量骨材の平衡含浸率は、水を含浸した人工軽量骨材と比べて、相対湿度80%以下の領域において2倍程度多く、水分の保持性に優れることがわかる。   The result of the equilibrium impregnation rate is shown in FIG. In any sample, the equilibrium impregnation rate tends to decrease as the relative humidity decreases, but the equilibrium impregnation rate of the artificial lightweight aggregate impregnated with the chemical solution is 80% relative humidity compared to the artificial lightweight aggregate impregnated with water. It can be seen that it is about twice as large in the following regions and is excellent in moisture retention.

拡散係数の計算結果を図6に示す。いずれの試料も拡散係数に大きな差はないことから、薬液を含浸した人工軽量骨材が保水性に優れるのは、主として平衡含浸率が高いことに起因するものと考えられる。   The calculation result of the diffusion coefficient is shown in FIG. Since there is no great difference in the diffusion coefficient of any of the samples, it is considered that the artificial lightweight aggregate impregnated with the chemical solution has excellent water retention mainly due to the high equilibrium impregnation rate.

スマートマテリアル化人工軽量骨材を用いたコンクリート混練物を作製し、それを打設して得られたコンクリートについて特性を調べた。
1.実験計画
実験の要因と水準を表2に示す。水セメント比は50%とし、コンクリートは、天然骨材を用いた普通コンクリート、水含浸の人工軽量骨材を用いた軽量コンクリート、前述の薬液A及び薬液Bを含浸した人工軽量骨材(SLA)を用いたコンクリート、SLAを用いて細骨材の容積の10%をフライアッシュで置換したコンクリートの計5種類とした。ここで、SLAを用いたコンクリートはSLAコンクリートと呼ぶ。表2中に記載した記号JC、JCV、JCFの3種類が本発明例に相当する。試験項目はフレッシュ試験、相対湿度、乾燥ひずみ、圧縮強度、微細空隙とマイクロクラック、透気性、促進中性化試験とした。
We made a concrete kneaded material using artificial lightweight aggregate made of smart material and investigated the properties of the concrete obtained by placing it.
1. Experimental design Table 2 shows the experimental factors and levels. The water-cement ratio is 50%, and concrete is natural concrete using natural aggregate, lightweight concrete using water-impregnated artificial lightweight aggregate, artificial lightweight aggregate (SLA) impregnated with the above chemicals A and B A total of five types of concrete were used: concrete using SLA, and concrete in which 10% of the volume of fine aggregate was replaced with fly ash using SLA. Here, the concrete using SLA is called SLA concrete. Three types of symbols JC, JCV, and JCF described in Table 2 correspond to examples of the present invention. Test items were fresh test, relative humidity, dry strain, compressive strength, fine voids and microcracks, air permeability, and accelerated neutralization test.

2.調合と使用材料
コンクリートの調合を表3に、使用材料の物性を表4に示す。天然骨材を用いた普通コンクリートの調合をベースに、単位水量と単位セメント量及び細骨材量を固定し、粗骨材の容積を人工軽量骨材で置換した。
2. Mixing and materials used Table 3 shows the concrete mixing and Table 4 shows the physical properties of the materials used. Based on the mix of ordinary concrete using natural aggregate, the unit water amount, unit cement amount and fine aggregate amount were fixed, and the volume of coarse aggregate was replaced with artificial lightweight aggregate.

3.試験項目と方法
(1)練り混ぜと各種フレッシュ試験
コンクリートの練り混ぜは各調合において100L用のパン型ミキサーを用い、材料を一括投入して90秒間練り混ぜた。練り上り後、スランプと空気量及びコンクリート温度などのフレッシュ試験を実施し、各試験に用いる試験体を作製した。以下の各試験項目における試験体寸法と養生条件を表5に示す。
3. Test Items and Methods (1) Kneading and Various Fresh Tests For mixing of concrete, a 100 L pan mixer was used for each preparation, and the materials were all added and kneaded for 90 seconds. After kneading, fresh tests such as slump, air volume, and concrete temperature were performed, and test specimens used for each test were prepared. Table 5 shows the test body dimensions and curing conditions in the following test items.

(2)相対湿度及び乾燥ひずみ
相対湿度及び乾燥ひずみ測定用の試験体は100×100×100mmとした。両者の試験体作製の状況を図7に示す。相対湿度測定用の試験体は型枠に真鍮棒(φ7mm×100m)を固定し、コンクリート打設後硬化する直前に真鍮棒を抜き出し、材齢7日まで20℃封かん養生を行った。その後、高精度超小型湿度センサー(神栄社製、高分子抵抗式、THP−B6、φ6mm、±3%RH)を装着してアルミニウム箔テープを用いて試験体6面のうち5面を密封し、20℃・相対湿度60%の条件で一面気乾養生を行った。乾燥ひずみ測定用試験体は型枠に乾燥ひずみゲージ(共和電業社製、単軸2線式、KM−30−120−H1−11、長さ30mm)を装着してコンクリートを打設し、材齢7日まで20℃封かん養生を行った後、20℃・相対湿度60%の条件で一面気乾養生を実施した。両者とも乾燥面から深さ10、50、90mm位置の相対湿度及びひずみを所定材齢で測定した。
(2) Relative humidity and dry strain The test body for measuring relative humidity and dry strain was 100 × 100 × 100 mm. FIG. 7 shows the status of the preparation of both specimens. A test specimen for measuring relative humidity was a brass bar (φ7 mm × 100 m) fixed to the mold, and the brass bar was extracted just before being hardened after placing the concrete and sealed at 20 ° C. until the age of 7 days. After that, a high-precision ultra-small humidity sensor (manufactured by Shineisha, polymer resistance type, THP-B6, φ6 mm, ± 3% RH) is attached, and five of the six specimens are sealed using aluminum foil tape. The whole surface was air-dried under the conditions of 20 ° C. and 60% relative humidity. The test piece for dry strain measurement was equipped with a dry strain gauge (manufactured by Kyowa Dengyo Co., Ltd., single-shaft 2-wire type, KM-30-120-H1-11, length 30 mm) and cast concrete. After performing sealing curing at 20 ° C. until 7th day, one-sided air drying curing was performed under the conditions of 20 ° C. and 60% relative humidity. In both cases, relative humidity and strain at a depth of 10, 50, and 90 mm from the dry surface were measured at a predetermined age.

(3)圧縮強度
圧縮強度用試験体はφ100×200mmの円柱試験体と100×l00×100mmの角柱試験体の2種類とした。円柱試験体はサミットモールドを用いて作製し、養生条件は標準水中養生及び材齢7日まで20℃封かん養生後20℃・相対湿度60%気乾養生の2種類とした。角柱試験体は銅製型枠を用いて作製し、標準水中養生及び材齢7日まで20℃封かん養生後20℃・相対湿度60%で一面気乾養生を行った。圧縮強度試験はJIS A1108に準じて実施した。
(3) Compressive strength Two types of specimens for compressive strength were used: a cylindrical specimen having a diameter of φ100 × 200 mm and a prismatic specimen having a size of 100 × 100 × 100 mm. Cylindrical test specimens were prepared using a summit mold, and the curing conditions were two types: standard water curing and air drying curing at 20 ° C. and 60% relative humidity after 20 ° C. sealing up to 7 days of age. A prismatic specimen was prepared using a copper mold, and was subjected to one-sided air-curing at 20 ° C. and 60% relative humidity after standard water curing and 20 ° C. sealing curing until the age of 7 days. The compressive strength test was performed according to JIS A1108.

(4)微細空隙とマイクロクラック
微細空隙とマイクロクラックの測定用試験体は100×100×100mmとし、材齢7日まで20℃封かん養生した後、20℃・相対湿度60%で一面気乾養生を行った。微細空隙とマイクロクラックの測定試料は、材齢28日において乾燥面から深さ10、50、90mmの位置でダイヤモンドカッターを用いて12×12×12mm程度の立方体試料を切断採取した後、エタノールに24時間浸漬し、窒素乾燥を施した。試料は低粘度のエポキシ樹脂に埋込み、観察面を耐水研磨紙#1000、#2000、#3000、#5000と0.25μmのダイアモンドペーストを用いて乾式研磨し、電気伝導性を与えるためのカーボン蒸着を実施した。測定は反射電子検出器を備えた走査電子顕微鏡(SEM)を用いて反射電子像(BEI)を観察して行った。反射電子像の観察条件は、加速電圧15keV、ワーキングディスクンス10mm、倍率500とした。観察範囲は、試料(12×12×12mm)のセメントマトリクス部分とし、材齢28日においてランダムに10箇所とした。1画像の大きさは245×184μmで2048×1536画素とし、1画素は0.12μmである。観察した反射電子像は原子番号の違いによる輝度の差を用いて画像処理を行い、未水和セメントと水和生成物及び空隙(直径10μm以下)に分離した。また、空隙画像に占める微細空隙とマイクロクラックの判別は粒子解析(分解能0.5μm)により行い、平均面積を算出した。SEMの反射電子像によるマイクロクラック観察の一例を図8に示す。
(4) Fine voids and microcracks Test specimens for measuring fine voids and microcracks were 100 x 100 x 100 mm, sealed and cured at 20 ° C until the age of 7 days, and then air-dried at 20 ° C and 60% relative humidity. Went. Samples for measurement of microscopic voids and microcracks were obtained by cutting and collecting a cubic sample of about 12 × 12 × 12 mm using a diamond cutter at a depth of 10, 50, 90 mm from the dry surface at the age of 28 days, It was immersed for 24 hours and subjected to nitrogen drying. The sample is embedded in a low-viscosity epoxy resin, and the observation surface is dry-polished using water-resistant abrasive paper # 1000, # 2000, # 3000, # 5000 and a diamond paste of 0.25 μm to give carbon conductivity to give electrical conductivity. Carried out. The measurement was performed by observing a backscattered electron image (BEI) using a scanning electron microscope (SEM) equipped with a backscattered electron detector. The observation conditions of the reflected electron image were an acceleration voltage of 15 keV, a working discrepancy of 10 mm, and a magnification of 500. The observation range was a cement matrix portion of the sample (12 × 12 × 12 mm), and was randomly set at 10 locations on the age of 28 days. The size of one image is 245 × 184 μm and 2048 × 1536 pixels, and one pixel is 0.12 μm. The observed backscattered electron image was subjected to image processing using the difference in luminance due to the difference in atomic number, and separated into unhydrated cement, hydrated product, and voids (diameter of 10 μm or less). In addition, the fine voids and microcracks in the void image were discriminated by particle analysis (resolution: 0.5 μm), and the average area was calculated. An example of microcrack observation by SEM reflected electron images is shown in FIG.

(5)透気性試験及び促進中性化試験
透気試験はRILEM TC116−PCDに準じ、φ150mm×50mmの塩ビ型枠を用いて試験体を作製し、ほかの試験における試験体の厚さ100mmに合わせるために脱型後2つの試験体の打設面と底面を積み重ねて密封し、材齢7日まで20℃封かん養生した。その後、20℃・相対湿度60%条件で一面乾燥(底面)を行った。試験は窒素ガスを用い、窒素ガスの流れが定常となった後の流量から透気係数を求めた。
促進中性化試験体は100×100×400mmとし、材齢7日まで20℃封かん養生した後、材齢28日まで20℃、相対湿度60%で側面の一面気乾養生を行った。試験条件は温度20±2℃・相対湿度60±5%、CO2濃度5±0.2%とした。促進中性化深さの測定方法はJIS A1152に準拠し、所定の材齢で測定した。
(5) Air permeability test and accelerated neutralization test The air permeability test was performed in accordance with RIREM TC116-PCD using a PVC mold of φ150 mm x 50 mm, and the thickness of the test body in other tests was 100 mm. In order to match them, the casting surface and bottom surface of the two specimens were stacked and sealed after demolding, and sealed at 20 ° C. until the age of 7 days. Then, one surface drying (bottom surface) was performed on 20 degreeC and 60% of relative humidity conditions. In the test, nitrogen gas was used, and the air permeability coefficient was obtained from the flow rate after the nitrogen gas flow became steady.
The accelerated neutralization test body was 100 × 100 × 400 mm, sealed and cured at 20 ° C. until the age of 7 days, and then subjected to side-surface air curing at 20 ° C. and a relative humidity of 60% until the age of 28 days. The test conditions were a temperature of 20 ± 2 ° C., a relative humidity of 60 ± 5%, and a CO 2 concentration of 5 ± 0.2%. The measuring method of the accelerated neutralization depth was based on JIS A1152, and was measured at a predetermined age.

4.実験結果と考察
(1)フレッシュ試験
コンクリートのフレッシュ試験の結果を表6に示す。高性能減水剤は同量添加した。全調合のスランプは20±1.5cmを示し、調合間の差は認められなかった。また、空気量は全ての調合で4.5±1.0%の範囲を示し、SLAコンクリートと普通コンクリートに大きな差は認められなかった。
4). Experimental results and discussion (1) Fresh test Table 6 shows the results of the fresh test of concrete. The same amount of high-performance water reducing agent was added. The slump for all formulations showed 20 ± 1.5 cm and no difference between the formulations was observed. In addition, the amount of air was in the range of 4.5 ± 1.0% for all formulations, and no significant difference was observed between SLA concrete and ordinary concrete.

(2)相対湿度及び乾燥ひずみ
試験体内部の相対湿度の分布を図9に示す。全調合のコンクリートにおける相対湿度分布は、試験体の内部から乾燥面に向けて材齢に伴い低下する傾向であった。普通コンクリートの相対湿度は乾燥を開始した材齢7日より乾燥面から急激に低下し、材齢28日以降では試験体の最深部も相対湿度100%以下となる傾向を示した。材齢91日におけるSLAコンクリート及び軽量コンクリートの相対湿度分布は、乾燥面から深さ10mmが80%、50mm以降の内部では100%を示し、普通コンクリートより10%以上大きい相対湿度を示した。SLAコンクリートは、軽量コンクリートと同様、普通コンクリートと比べて保水性に優れることが確認できた。
(2) Relative humidity and drying strain FIG. 9 shows the distribution of relative humidity inside the specimen. The relative humidity distribution in all the blended concrete tended to decrease with age, from the inside of the specimen toward the dry surface. The relative humidity of ordinary concrete decreased sharply from the dry surface from the age of 7 days when the drying was started, and the deepest part of the test specimen tended to be less than 100% relative humidity after the age of 28 days. The relative humidity distribution of SLA concrete and lightweight concrete at age 91 days was 80% at a depth of 10 mm from the dry surface, 100% in the interior after 50 mm, and a relative humidity of 10% or more larger than that of ordinary concrete. It was confirmed that SLA concrete was excellent in water retention compared to ordinary concrete, as was lightweight concrete.

乾燥面から深さ10mmの乾燥ひずみの測定結果を図10に示す。普通コンクリートの乾燥ひずみは乾燥開始の材齢7日から急激に増加し、材齢91日では−600μ程度であった。軽量コンクリートとSLAコンクリートの乾燥ひずみは材齢に伴い徐々に増加し、材齢91日では−200μ程度であり、普通コンクリートと比べて400μの差を示した。SLAコンクリートは、軽量コンクリートと同様、普通コンクリートと比べて保水性が高いため乾燥ひずみが低減されることが確認できた。   FIG. 10 shows the measurement results of the drying strain having a depth of 10 mm from the dry surface. The drying strain of ordinary concrete increased rapidly from the age of 7 days at the start of drying, and was about −600 μm at the age of 91 days. The dry strain of lightweight concrete and SLA concrete gradually increased with age, and was about −200 μ at the age of 91 days, showing a difference of 400 μ compared with ordinary concrete. SLA concrete, like lightweight concrete, was confirmed to have reduced drying strain because it has higher water retention than normal concrete.

(3)圧縮強度
圧縮強度の測定結果を図11に示す。円柱試験体の標準水中養生の圧縮強度は、全てのコンクリートにおいて材齢に伴い増加する傾向であり、SLAコンクリートのうちJCとJCVは普通コンクリートより10〜15%程度低下したが、JCFは5〜10%程度高かった。また、SLAコンクリートの圧縮強度は軽量コンクリートより上回る傾向であった。円柱試験体の20℃・相対湿度60%気乾養生の圧縮強度は、普通コンクリートが材齢に伴い若干低下する傾向であったが、軽量コンクリート及びSLAコンクリートは増加する傾向を示し、材齢91日では普通コンクリートより同等以上に増加した。これは、人工軽量骨材の水分が材齢に伴って放湿され、セメントの水和反応に寄与したと考えられる。また、角柱試験体の標準水中養生の圧縮強度は全てのコンクリートにおいて円柱試験体と同様な傾向であったが、角柱試験体における一面乾燥では材齢91日においてSLAコンクリートの圧縮強度が普通コンクリート及び軽量コンクリートと比べて、同等以上の結果を示した。これは、SLAコンクリートの高い保水性による持続的な水分供給とともに薬液が水和生成物と反応することにより微細組織が緻密化され、圧縮強度の増進を導いたと考えられる。
(3) Compressive strength The measurement result of the compressive strength is shown in FIG. The compressive strength of the standard underwater curing of the cylindrical specimens tends to increase with age in all the concretes. Among SLA concrete, JC and JCV are about 10-15% lower than ordinary concrete, but JCF is 5-5%. It was about 10% higher. Moreover, the compressive strength of SLA concrete tended to exceed that of lightweight concrete. The compressive strength of the air-cured curing at 20 ° C. and 60% relative humidity of the cylindrical specimen was slightly decreased with the age of ordinary concrete, but lighter concrete and SLA concrete showed a tendency to increase, and the age of 91 In the day, it increased more than equivalent to ordinary concrete. This is considered that the moisture of the artificial lightweight aggregate was released as the material ages and contributed to the hydration reaction of the cement. In addition, the compressive strength of the standard underwater curing of the prismatic specimens was the same tendency as that of the cylindrical specimens in all concretes. Compared to lightweight concrete, the results were equivalent or better. This is thought to be because the fine structure was densified by the chemical solution reacting with the hydrated product together with the continuous water supply due to the high water retention of SLA concrete, leading to an increase in compressive strength.

(4)微細空隙とマイクロクラック
材齢28日の微細空隙及びマイクロクラックの測定結果を図12に示す。微細空隙とマイクロクラックは試験体の内部より乾燥面の付近に多く存在し、乾燥に伴い多く発生する。SLAコンクリートは、普通コンクリートに比べ微細空隙とマイクロクラックが減少する傾向を示し、特に表面付近のマイクロクラック抑制性能は軽量コンクリートよりも勝っていた。
(4) Fine voids and microcracks The measurement results of fine voids and microcracks on the age of 28 days are shown in FIG. Many fine voids and microcracks are present in the vicinity of the dry surface from the inside of the test specimen, and many are generated with drying. SLA concrete showed a tendency to reduce fine voids and microcracks compared to ordinary concrete, and in particular, the microcrack suppression performance near the surface was superior to that of lightweight concrete.

(5)透気性試験及び促進中性化試験
透気性試験の結果を図13に示す。透気係数は材齢に伴って低下する傾向を示した。SLAコンクリートの透気係数は普通コンクリートと比べて一桁以上小さくなる傾向を示し、透気抵抗性に優れた結果が得られた。
促進中性化試験の結果を図14に示す。促進中性化深さは材齢に伴い深くなる傾向を示した。SLAコンクリートの促進中性化深さは普通コンクリートの1/2以下であり、軽量コンクリートよりも小さい結果を示した。これは、SLAコンクリートは高保水性であり、さらに薬液と水和生成物の反応により微細空隙やマイクロクラックの低減に寄与し、促進中性化深さが低下したと考えられる。ここで、中性化はコンクリートの表面から進むことから、促進中性化深さと試験体の深さ10mmにおける微細空隙及びマイクロクラックの関係を調べた。その結果を図15に示す。促進中性化深さは、微細空隙及びマイクロクラックとの関係から両者とも中性化速度に影響を及ぼすと考えられる。
(5) Air permeability test and accelerated neutralization test The results of the air permeability test are shown in FIG. The air permeability coefficient tended to decrease with age. The air permeability coefficient of SLA concrete tended to be an order of magnitude smaller than that of ordinary concrete, and a result excellent in air resistance was obtained.
The results of the accelerated neutralization test are shown in FIG. The accelerated neutralization depth tended to become deeper with age. The accelerated neutralization depth of SLA concrete was 1/2 or less that of ordinary concrete, which was smaller than that of lightweight concrete. This is because SLA concrete has high water retention, and further contributes to the reduction of fine voids and microcracks due to the reaction between the chemical solution and the hydrated product, and the accelerated neutralization depth is considered to have decreased. Here, since the neutralization proceeds from the surface of the concrete, the relationship between the accelerated neutralization depth and the fine voids and microcracks at a depth of 10 mm of the specimen was examined. The result is shown in FIG. The accelerated neutralization depth is considered to have an influence on the neutralization rate from the relationship with the fine voids and microcracks.

以上のように、SLAコンクリートは、普通コンクリートと比べて高い保水性を有し、薬液の反応により圧縮強度が徐々に増加することがわかった。また、乾燥に起因するマイクロクラックが低減し、透気係数の低下により促進中性化深さが低下するなど、コンクリート構造物の高耐久化をもたらすものであることが確認された。   As described above, it was found that SLA concrete has higher water retention than ordinary concrete, and the compressive strength gradually increases due to the reaction of the chemical solution. In addition, it was confirmed that the concrete structure is highly durable, for example, microcracks caused by drying are reduced, and the accelerated neutralization depth is reduced due to a decrease in the air permeability coefficient.

Claims (6)

石炭灰と頁岩微粉末を主原料として焼成された多孔質人工骨材の内部空隙に、水、及びセメントの水和生成物と反応する珪酸系薬剤を格納したスマートマテリアル化人工軽量骨材。   A smart materialized artificial lightweight aggregate that contains water and a silicic acid-based chemical that reacts with the hydrated product of cement in the internal voids of a porous artificial aggregate calcined using coal ash and shale fine powder as the main raw materials. 前記薬剤は、少なくとも表面に露出している部分がゲル化した状態で存在する請求項1に記載のスマートマテリアル化人工軽量骨材。   The artificial material lightweight aggregate according to claim 1, wherein the drug is present in a state where at least a portion exposed on the surface is gelled. 薬剤を格納する多孔質人工骨材(素材)は、含水率30%以下、絶乾密度2.5g/cm3以下であり、かつ断面に観察される空隙の最大径が2.0mm以下のものである請求項1または2に記載のスマートマテリアル化人工軽量骨材。 The porous artificial bone (material) for storing the drug has a moisture content of 30% or less, an absolute dry density of 2.5 g / cm 3 or less, and a maximum diameter of voids observed in the cross section of 2.0 mm or less. The artificial material lightweight lightweight aggregate according to claim 1 or 2. 石炭灰と頁岩微粉末を主原料として焼成された多孔質人工骨材を凍結真空乾燥させたのち、前記薬剤を水溶媒とともに減圧下で当該人工骨材の内部空隙に最大含浸率まで含浸させる、請求項1に記載のスマートマテリアル化人工軽量骨材の製造法。   After freeze-drying the porous artificial aggregate calcined with coal ash and shale fine powder as the main raw material, the agent is impregnated to the maximum impregnation rate in the internal void of the artificial aggregate under reduced pressure with an aqueous solvent, The manufacturing method of the smart material-ized artificial lightweight aggregate of Claim 1. 石炭灰と頁岩微粉末を主原料として焼成された多孔質人工骨材を凍結真空乾燥させたのち、前記薬剤を水溶媒とともに減圧下で当該人工骨材の内部空隙に最大含浸率まで含浸させ、薬剤含浸後の人工骨材をゲル化剤と接触させる、請求項2に記載のスマートマテリアル化人工軽量骨材の製造法。   After freeze-drying the porous artificial aggregate calcined with coal ash and shale fine powder as the main raw material, the above-mentioned agent is impregnated to the maximum impregnation rate in the internal void of the artificial aggregate under reduced pressure with an aqueous solvent, The method for producing a smart materialized artificial lightweight aggregate according to claim 2, wherein the artificial aggregate after impregnation with the drug is brought into contact with a gelling agent. 請求項1〜3のいずれかに記載のスマートマテリアル化人工軽量骨材を全粗骨材の80〜100質量%に使用したコンクリート混練物。   The concrete kneaded material which used the smart material-ized artificial lightweight aggregate in any one of Claims 1-3 for 80 to 100 mass% of the total coarse aggregate.
JP2010076284A 2010-03-29 2010-03-29 Artificial lightweight aggregate made into smart material, its manufacturing method and concrete kneaded material Expired - Fee Related JP5404496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076284A JP5404496B2 (en) 2010-03-29 2010-03-29 Artificial lightweight aggregate made into smart material, its manufacturing method and concrete kneaded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076284A JP5404496B2 (en) 2010-03-29 2010-03-29 Artificial lightweight aggregate made into smart material, its manufacturing method and concrete kneaded material

Publications (2)

Publication Number Publication Date
JP2011207651A true JP2011207651A (en) 2011-10-20
JP5404496B2 JP5404496B2 (en) 2014-01-29

Family

ID=44939142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076284A Expired - Fee Related JP5404496B2 (en) 2010-03-29 2010-03-29 Artificial lightweight aggregate made into smart material, its manufacturing method and concrete kneaded material

Country Status (1)

Country Link
JP (1) JP5404496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221779A (en) * 2012-04-13 2013-10-28 Taiheiyo Cement Corp Method of predicting drying shrinkage strain of concrete and method of predicting drying shrinkage stress of concrete

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097045A (en) * 2000-09-26 2002-04-02 Sintokogio Ltd Aggregate for cement hardened product and cement hardened product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097045A (en) * 2000-09-26 2002-04-02 Sintokogio Ltd Aggregate for cement hardened product and cement hardened product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221779A (en) * 2012-04-13 2013-10-28 Taiheiyo Cement Corp Method of predicting drying shrinkage strain of concrete and method of predicting drying shrinkage stress of concrete

Also Published As

Publication number Publication date
JP5404496B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
Lagazzo et al. Effect of fatty acid soap on microstructure of lime-cement mortar
Mydin Preliminary studies on the development of lime-based mortar with added egg white
Ha Effect of atmosphere type on gelcasting behavior of Al2O3 and evaluation of green strength
JP6940090B2 (en) Microorganism-encapsulated microcapsules, cement admixtures containing microbial-encapsulated microcapsules, and repair materials for cement-based structures
Maruyama et al. Action mechanisms of shrinkage reducing admixture in hardened cement paste
Van Der Putten et al. Transport properties of 3D printed cementitious materials with prolonged time gap between successive layers
Shabbar et al. Porosity and Water Absorption of Aerated Concrete with Varying Aluminium Powder Content
Xu et al. Improving the freeze-thaw resistance of mortar by a combined use of superabsorbent polymer and air entraining agent
Du et al. Using modified nano-silica to prevent bubble Ostwald ripening under low atmospheric pressure: From liquid foam to air-entrained cement mortar
JP5404496B2 (en) Artificial lightweight aggregate made into smart material, its manufacturing method and concrete kneaded material
WO2005082813A1 (en) Silicious concrete modifier
Alapour et al. Sulfate Resistance of Portland and Slag Cement Concretes Exposed to Sodium Sulfate for 38 Years.
CN1776399A (en) Ceramic powder true density measuring method
JPWO2006059809A1 (en) Sample processing system for pore measurement
Villani et al. Characterizing the pore structure of carbonated natural wollastonite
Stastny et al. High strength alumina tapes prepared by gel-tape casting method
Kushartomo et al. The application of sodium acetate as concrete permeability-reducing admixtures
Li et al. Determination of the apparent activation energy of concrete carbonation
Kraft et al. Early-age deformation, drying shrinkage and thermal dilation in a new type of dental restorative material based on calcium aluminate cement
Li et al. Experimental study on reinforcement and chloride extraction of concrete column with MPC-CFRP composite anode
Das et al. A comparative study for determining pore volume of concrete
US8133372B2 (en) Method for producing ceramic components
JP2018008849A (en) Cement composition
Jia et al. Effects of the sintering temperature on the structure and properties of the alumina foamed ceramics
JP6071169B2 (en) Gamma belite-containing cellular mortar kneaded material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees