JP2011206697A - Reactive oxygen species generation device - Google Patents

Reactive oxygen species generation device Download PDF

Info

Publication number
JP2011206697A
JP2011206697A JP2010077467A JP2010077467A JP2011206697A JP 2011206697 A JP2011206697 A JP 2011206697A JP 2010077467 A JP2010077467 A JP 2010077467A JP 2010077467 A JP2010077467 A JP 2010077467A JP 2011206697 A JP2011206697 A JP 2011206697A
Authority
JP
Japan
Prior art keywords
cathode
anode
oxygen species
active oxygen
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077467A
Other languages
Japanese (ja)
Other versions
JP5116793B2 (en
Inventor
Mari Orito
真理 折戸
Shiro Takeuchi
史朗 竹内
Junichiro Hoshizaki
潤一郎 星崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010077467A priority Critical patent/JP5116793B2/en
Publication of JP2011206697A publication Critical patent/JP2011206697A/en
Application granted granted Critical
Publication of JP5116793B2 publication Critical patent/JP5116793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactive oxygen species generation device capable of continuously generating a reactive oxygen species of a high concentration employing a simple configuration.SOLUTION: The reactive oxygen species generation device is for generating the reactive oxygen species by means of an electrode reaction, including a first cathode 2, a second cathode 3, an anode 4, a voltage application means 8 for passing a current between the cathodes 2, 3 and the anode 4 with the presence of a liquid such as water among these electrodes, and a liquid inlet 9 and a liquid outlet 10. The anode 4 is disposed parallel with and between the two cathodes 2, 3. The device further includes a structure 5 as a pressure loss unit between the first cathode 2 and the anode 4.

Description

本発明は、抗菌、抗ウイルス、防かび、脱臭に対して効果を有する活性酸素種を生成する装置に関するものである。なお、活性酸素種とは、スーパーオキシド(O2・−)、ヒドロキシラジカル(・OH)、過酸化水素(H22)、一重項酸素(12)、オゾン(O3)等、分子状酸素である三重項酸素(32)より活性化された酸素、及びその関連分子を総称する用語である。 The present invention relates to an apparatus for generating reactive oxygen species having an effect on antibacterial, antiviral, antifungal, and deodorization. The active oxygen species include superoxide (O 2 .−), hydroxy radical (.OH), hydrogen peroxide (H 2 O 2 ), singlet oxygen ( 1 O 2 ), ozone (O 3 ), etc. It is a generic term for oxygen activated by triplet oxygen ( 3 O 2 ), which is molecular oxygen, and related molecules.

従来、陰極と陽極との間に隔膜を有する殺菌水生成装置において、陽極側で次亜鉛素酸や次亜塩素酸ナトリウムを主成分とする殺菌水を生成し、陰極側の水と混合することでpH6.5以下に調製するという技術が提案されている(たとえば、特許文献1参照)。   Conventionally, in a sterilizing water generator having a diaphragm between a cathode and an anode, sterilizing water mainly composed of hypozinc acid or sodium hypochlorite is generated on the anode side and mixed with water on the cathode side. Has been proposed (see Patent Document 1, for example).

特公平7―8768号公報Japanese Patent Publication No. 7-8768

従来の方法では、有隔膜電解により高濃度の殺菌水を生成するにもかかわらず、隔膜を挟んで反対側の電極室の生成水と混合する流路構成であるため、殺菌成分の濃度が希釈されるという課題がある。また、前記反対側の電極室を流れる水は殺菌水のpHの調製度合いによるため、その度合いによっては水がほとんど流れず、前記反対側の電極反応により生成する生成物の濃度が増大し、電極表面での生成物の拡散速度が低下することで電極の反応効率が低下し、目的とする殺菌成分の生成効率が時間の経過と共に低下するという課題がある。   In the conventional method, although the high concentration sterilizing water is generated by diaphragm electrolysis, the flow path configuration mixes with the generated water in the opposite electrode chamber across the diaphragm, so the concentration of the sterilizing component is diluted. There is a problem of being done. In addition, since the water flowing through the electrode chamber on the opposite side depends on the pH adjustment degree of the sterilizing water, the water hardly flows depending on the degree, and the concentration of the product generated by the electrode reaction on the opposite side increases. There is a problem in that the reaction efficiency of the electrode decreases due to a decrease in the diffusion rate of the product on the surface, and the generation efficiency of the target sterilizing component decreases with time.

本発明は、上記のような課題に鑑み、簡単な構成により高濃度の活性酸素種を連続的に生成することができるようにした活性酸素種生成装置を得ることを目的としている。   In view of the above-described problems, an object of the present invention is to obtain an active oxygen species generating apparatus that can continuously generate high concentration active oxygen species with a simple configuration.

本発明に係る活性酸素種生成装置は、第一の陰極、第二の陰極、陽極と、これら電極間に水等の液体を介在させ、前記陰極と前記陽極間を通電させる電圧印加手段と、前記液体の供給口および排出口とを有し、電極反応により活性酸素種を生成する装置であって、
前記陽極が二つの陰極の間に挟まれて該陰極と並列に配置され、前記第一の陰極と前記陽極との間に圧損体となる構造物を配置したことを特徴とするものである。
The active oxygen species generating apparatus according to the present invention includes a first cathode, a second cathode, an anode, and a voltage applying means for interposing a liquid such as water between the electrodes and energizing the cathode and the anode, An apparatus for generating active oxygen species by an electrode reaction, comprising a supply port and a discharge port for the liquid;
The anode is sandwiched between two cathodes and arranged in parallel with the cathode, and a structure serving as a pressure loss body is arranged between the first cathode and the anode.

本発明では、活性酸素種の生成を行う第一の陰極と陽極との間に水等の液体の流れを仕切る圧損体となる構造物を設けたので、第一の陰極で生成した活性酸素種が陽極に接触するのを妨げるため、陽極側での活性酸素種の消失反応を抑制することができる。
また、陽極側に第二の陰極を配置したので、陽極の生成物濃度を一定濃度以下に抑制することができる。第二の陰極では陽極の生成物の消失反応が起きるためである。その結果、陽極反応が低下して第一の陰極で生成する活性酸素種生成能が低下することを抑制することができる。
よって、簡単な構成により高濃度の活性酸素種を連続的に生成することができるという効果がある。
In the present invention, since the structure serving as a pressure loss body that partitions the flow of liquid such as water is provided between the first cathode and the anode for generating the active oxygen species, the active oxygen species generated at the first cathode is provided. Prevents the active oxygen species from disappearing on the anode side.
Further, since the second cathode is arranged on the anode side, the product concentration of the anode can be suppressed to a certain concentration or less. This is because the anode product causes the disappearance reaction of the anode product. As a result, it is possible to suppress a decrease in the ability to generate active oxygen species generated at the first cathode due to a decrease in the anode reaction.
Therefore, there is an effect that a high concentration of active oxygen species can be continuously generated with a simple configuration.

本発明の実施の形態1に係る活性酸素種生成装置の概略構成図である。1 is a schematic configuration diagram of an active oxygen species generation device according to Embodiment 1 of the present invention. 酸化還元反応によるポリアニリンの構造変化を示した図である。It is the figure which showed the structural change of the polyaniline by oxidation-reduction reaction. 本発明の活性酸素種生成装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the active oxygen species production | generation apparatus of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る活性酸素種生成装置の一例を示す概略構成図である。
図において、活性酸素種生成槽1は、第一の陰極2、第二の陰極3、陽極4を備え、これらの電極間に水等の液体(以下では、「被処理水」と称する)を介在させ、第一の陰極2と陽極4との間に圧損体となる構造物5を配置して構成されている。陽極4は、第一の陰極2と第二の陰極3との間にあって、これらの陰極2、3に対して並列に配置されている。
ここで、圧損体となる構造物5に対して、第一の陰極2が配置された側を陰極部6、陽極4及び第二の陰極3が配置された側を陽極部7と称するものとする。そして、陰極部6側に被処理水の供給口9と排出口10とが設けられている。また、陰極2、3と陽極4との間を通電させる電圧印加手段8を設け、電極反応により活性酸素種を生成するようになっている。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram showing an example of an active oxygen species generating apparatus according to Embodiment 1 of the present invention.
In the figure, an active oxygen species generating tank 1 includes a first cathode 2, a second cathode 3, and an anode 4, and a liquid such as water (hereinafter referred to as “treated water”) between these electrodes. The structure 5 is disposed between the first cathode 2 and the anode 4 to be interposed between the first cathode 2 and the anode 4. The anode 4 is located between the first cathode 2 and the second cathode 3 and is arranged in parallel to these cathodes 2 and 3.
Here, the side on which the first cathode 2 is disposed with respect to the structure 5 serving as a pressure loss body is referred to as a cathode portion 6, and the side on which the anode 4 and the second cathode 3 are disposed is referred to as an anode portion 7. To do. And the supply port 9 and the discharge port 10 of to-be-processed water are provided in the cathode part 6 side. Further, voltage application means 8 for energizing the cathodes 2 and 3 and the anode 4 is provided to generate active oxygen species by an electrode reaction.

被処理水の流れを仕切る圧損体となる構造物5は、活性酸素種生成槽1を陰極部6と陽極部7に区分し、陰極と陽極の電極反応を阻害しないイオン交換膜や多孔質体といった構造物のことである。
図1では、陰極部6と陽極部7とを完全に仕切る状態で圧損体となる構造物5が配置されているが、必ずしも両者を完全分離するように配置する必要はない。これは、圧損体となる構造物5を設置する目的が、陽極部7側を流下する被処理水の流速が陰極部6側を流下する被処理水の流速に対して遅くすることを狙ったものだからである。
The structure 5 serving as a pressure loss body for partitioning the flow of water to be treated is divided into an active oxygen species generation tank 1 into a cathode portion 6 and an anode portion 7, and an ion exchange membrane or a porous body that does not inhibit the electrode reaction between the cathode and the anode. It is a structure.
In FIG. 1, the structure 5 serving as a pressure loss body is disposed in a state in which the cathode portion 6 and the anode portion 7 are completely partitioned, but it is not always necessary to dispose them so as to completely separate them. The purpose of installing the structure 5 serving as a pressure loss body was to reduce the flow rate of the water to be treated flowing down the anode part 7 side relative to the flow rate of the water to be treated flowing down the cathode part 6 side. Because it is a thing.

次に動作について説明する。
上記のように構成された活性酸素種生成槽1は、被処理水が供給口9より陰極部6側に入ってくる。圧損体となる構造物5に対して第一の陰極2が配置された陰極部6を大部分の被処理水が流下することで第一の陰極2で反応して活性酸素種を生成し、排出口10より活性酸素種含有水として流出する。
Next, the operation will be described.
In the active oxygen species generating tank 1 configured as described above, water to be treated enters the cathode portion 6 side from the supply port 9. Most of the water to be treated flows down the cathode part 6 in which the first cathode 2 is disposed with respect to the structure 5 that becomes the pressure loss body, thereby generating reactive oxygen species by reacting with the first cathode 2, It flows out from the discharge port 10 as active oxygen species-containing water.

圧損体となる構造体5に対して陽極4及び第二の陰極3が配置された陽極部7側に流入した被処理水は、圧損体となる構造物5が第一の陰極2と陽極4との間に配置されているため、陰極部6を流れる被処理水より流速が遅い。そのため、陽極4の表面には電極反応による生成物が溜まりやすい状態が存在する。陽極4で生成した物質の陽極部7での濃度が高くなりすぎると、その物質の溶液中での拡散速度が低下するため、電極反応の効率が低下する。ひいては、第一の陰極2での活性酸素種の生成効率も低下するため、陽極反応による生成物を一定濃度以下にする必要がある。
そこで陽極部7において、陽極反応による生成物の消失反応を生じさせるため、陽極部7に第二の陰極3を配置したものである。すなわち、第一の陰極2は活性酸素種を連続生成することを目的として配置した電極であり、第二の陰極3は陽極側の槽内での生成物濃度が増加しすぎることを抑制して、第一の陰極2と陽極4の電極反応効率が低下するのを防ぐことを目的として配置したものである。
The treated water that has flowed into the anode portion 7 side where the anode 4 and the second cathode 3 are disposed with respect to the structure 5 that becomes the pressure-loss body is the structure 5 that becomes the pressure-loss body is the first cathode 2 and the anode 4. The flow velocity is slower than that of the water to be treated flowing through the cathode portion 6. For this reason, there is a state where the product of the electrode reaction tends to accumulate on the surface of the anode 4. If the concentration of the substance generated at the anode 4 at the anode portion 7 becomes too high, the diffusion rate of the substance in the solution decreases, and the efficiency of the electrode reaction decreases. As a result, since the production efficiency of active oxygen species at the first cathode 2 is also reduced, it is necessary to keep the product of the anodic reaction below a certain concentration.
Therefore, the second cathode 3 is disposed on the anode portion 7 in order to cause the disappearance reaction of the product due to the anode reaction in the anode portion 7. That is, the first cathode 2 is an electrode arranged for the purpose of continuously generating active oxygen species, and the second cathode 3 suppresses an excessive increase in the product concentration in the anode side tank. The first cathode 2 and the anode 4 are arranged for the purpose of preventing the electrode reaction efficiency from being lowered.

上記のように構成された活性酸素種生成槽1を被処理水が通過することにより排出口10で活性酸素種含有水が得られることから、水流が形成される必要がある。形成された水流により、電極表面で生成した物質の拡散を促進させるため、活性酸素種の生成効率が向上する。   Since the water to be treated passes through the active oxygen species generating tank 1 configured as described above, the active oxygen species-containing water is obtained at the discharge port 10, so that a water flow needs to be formed. Since the formed water stream promotes the diffusion of the substance generated on the electrode surface, the generation efficiency of the active oxygen species is improved.

活性酸素種の生成に主に寄与するのは、第一の陰極2である。排出口10での活性酸素種濃度を向上させる手段として、以下の三つが挙げられる。   It is the first cathode 2 that mainly contributes to the generation of active oxygen species. As means for improving the concentration of active oxygen species at the discharge port 10, the following three may be mentioned.

一つ目は、第二の陰極3と陽極4との極間距離に比べて、第一の陰極2と陽極4との極間距離が短くなるように各々の電極を配置することである。
極間距離が短いほど電界強度が増加するため、活性酸素種生成能が向上する。したがって、単位時間当たりに生成する活性酸素種濃度が向上する効果がある。
The first is to arrange each electrode such that the distance between the first cathode 2 and the anode 4 is shorter than the distance between the second cathode 3 and the anode 4.
Since the electric field strength increases as the distance between the electrodes is shorter, the active oxygen species generating ability is improved. Therefore, there is an effect of improving the concentration of active oxygen species generated per unit time.

二つ目は、第一の陰極2と陽極4とが対向する側の面積が、第二の陰極3と陽極4とが対向する側の面積に比べて大きくなるように各々の電極を形成することである。例えば、図1において、陽極4の第二の陰極3と対向する側の面積の方が小さくなるように、陽極4の端面にテーパーを形成する方法などが挙げられる。
第一の陰極2の陽極4と対向する側の面積が大きいほど活性酸素種生成能が向上するため、単位時間当たりに生成する活性酸素種濃度が向上する効果がある。
Secondly, each electrode is formed so that the area on the side where the first cathode 2 and the anode 4 face each other is larger than the area on the side where the second cathode 3 and the anode 4 face each other. That is. For example, in FIG. 1, a method of forming a taper on the end face of the anode 4 such that the area of the anode 4 facing the second cathode 3 becomes smaller can be mentioned.
As the area of the first cathode 2 on the side facing the anode 4 is larger, the active oxygen species generating ability is improved, so that the concentration of active oxygen species generated per unit time is improved.

三つ目は、陰極にレドックスポリマーを担持することである。レドックスポリマーとして、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセン等があるが、特にポリアニリンを陰極に担持する構成が好ましい。
レドックスポリマーとは、化学的重合、及び電気的重合と重合方法にかかわらず生成され、電子の授受により酸化状態、あるいは還元状態を可逆的に変化する物質のことである。図2に示すようにポリアニリンの場合、還元型から酸化型へ構造変化する際にポリアニリンの触媒的作用により、電子と水中の酸素が反応してスーパーオキシド(O2 -)等の活性酸素種を生成する(式[1])。この反応は主として陰極表面で生じる。
2+PAn(red)→O2 -+PAn(ox) 式[1]
The third is to support a redox polymer on the cathode. Examples of redox polymers include polyaniline, polythiophene, polypyrrole, polyacene, and the like, and a configuration in which polyaniline is supported on the cathode is particularly preferable.
A redox polymer refers to a substance that is produced regardless of chemical polymerization, electrical polymerization, and polymerization method, and that reversibly changes its oxidation state or reduction state by the transfer of electrons. As shown in FIG. 2, in the case of polyaniline, when the structure changes from the reduced form to the oxidized form, the catalytic action of polyaniline causes the reaction of oxygen with oxygen in the water, thereby changing the active oxygen species such as superoxide (O 2 ). (Formula [1]). This reaction occurs mainly on the cathode surface.
O 2 + PAn (red) → O 2 + PAn (ox) Formula [1]

以下、レドックスポリマーとしてポリアニリンを例に説明する。
ポリアニリンは通常、絶縁性の基材上に塗布すると103Ω/□以上の表面抵抗値となり、電極基材として使用するためには電圧の入力値を高くしなければならない。しかしそれでは、水の電気分解によって生じる水素や酸素が活性酸素種の生成を阻害する。
導電性、あるいはカーボンや金属等の通電補助材を分散添加した導電性の基材にポリアニリンを担持することで電極基材の表面抵抗値を10-3〜103Ω/□程度とすることができる。これにより水素や酸素の副生成物が発生しない低電圧域においても活性酸素種を生成することができる。
Hereinafter, polyaniline will be described as an example of the redox polymer.
Polyaniline usually has a surface resistance value of 10 3 Ω / □ or more when applied on an insulating substrate, and the voltage input value must be increased in order to use it as an electrode substrate. However, hydrogen and oxygen generated by electrolysis of water inhibit generation of reactive oxygen species.
The surface resistance value of the electrode base material may be about 10 −3 to 10 3 Ω / □ by supporting polyaniline on a conductive base material that is conductive or dispersed and added with a current-carrying auxiliary material such as carbon or metal. it can. As a result, active oxygen species can be generated even in a low voltage region where hydrogen or oxygen by-products are not generated.

通電による時間の経過と共に、陰極のポリアニリンは還元反応により還元型へと構造変化する。さらに通電を続けると、陰極のポリアニリンは図2に示すような完全還元型となり、活性酸素種生成能を失う。そのため、電圧印加手段8が、例えば図3に示すように、電圧極性切換手段11を具備する構成とすることができる。電圧極性切換手段11により、陰極に担持されたポリアニリンが完全還元型に構造変化する前に極性を反転させたり、あるいは、ポリアニリンを担持した陰極基材より酸化還元電位が大きな基材を連結させることにより、電圧印加手段8が動作していないときにポリアニリン構造を回復させることが好ましい。なお、電圧極性切換手段11により、それまでの陰極が陽極に、陽極が陰極に反転するが、これはポリアニリンの機能を回復させるための措置であり、機能回復のための運転時間は、通常の活性酸素種生成のための運転時間に比べて非常に短い。   With the passage of time due to energization, the structure of the polyaniline on the cathode changes to a reduced form by a reduction reaction. When energization is continued, the polyaniline on the cathode becomes a complete reduction type as shown in FIG. 2 and loses the ability to generate active oxygen species. Therefore, the voltage application means 8 can be configured to include the voltage polarity switching means 11 as shown in FIG. 3, for example. The voltage polarity switching means 11 reverses the polarity of the polyaniline supported on the cathode before the structure is changed to the fully reduced type, or the base material having a higher redox potential than the cathode base material supporting the polyaniline is connected. Thus, it is preferable to restore the polyaniline structure when the voltage applying means 8 is not operating. The voltage polarity switching means 11 reverses the previous cathode to the anode and the anode to the cathode. This is a measure for restoring the function of polyaniline, and the operation time for restoring the function is normal. It is very short compared to the operation time for generating reactive oxygen species.

以上のように、第一の陰極2、第二の陰極3、陽極4と、これら電極間に被処理水を介在させ、陰極2、3と陽極4間を通電させる電圧印加手段8と、被処理水の供給口9および排出口10とを有する活性酸素種生成装置であって、陽極4が二つの陰極の間に該陰極と並列に配置され、第一の陰極2と陽極4との間に挟まれて圧損体となる構造物5を配置することにより、第一の陰極2で生成した活性酸素種が陽極4と接触して消失することを抑制するため、また、陰極部6と陽極部7の流速の違いから陽極表面に滞留する陽極反応生成物を消失させるために配置した第二の陰極3の作用により第一の陰極2の活性酸素種生成能の低下を抑制するため、排出口10での活性酸素種濃度を向上させることができ、かつ連続的に高濃度の活性酸素種含有水を排出することができるという効果がある。   As described above, the first cathode 2, the second cathode 3, and the anode 4, the voltage application means 8 for energizing the cathodes 2, 3 and the anode 4 by interposing the water to be treated between these electrodes, An active oxygen species generating apparatus having a treated water supply port 9 and a discharge port 10, wherein an anode 4 is disposed between two cathodes in parallel, and between the first cathode 2 and the anode 4. In order to prevent the active oxygen species generated in the first cathode 2 from disappearing in contact with the anode 4 by disposing the structure 5 that is sandwiched between the cathode portion 6 and the anode, the cathode portion 6 and the anode In order to suppress the reduction of the active oxygen species generating ability of the first cathode 2 due to the action of the second cathode 3 arranged to eliminate the anode reaction product staying on the anode surface due to the difference in the flow velocity of the part 7, The concentration of active oxygen species at the outlet 10 can be improved, and the concentration of active oxygen is continuously high. There is an effect that it is possible to discharge the water containing.

なお、本明細書において使用するその他の主な用語の定義は以下の通りである。   The definitions of other main terms used in this specification are as follows.

被処理水とは、水道水、地下水、工業用水等であり、飲料水、プール、浴場、海水、種々の工業施設などに供される水である。   Water to be treated includes tap water, ground water, industrial water, and the like, and is water used for drinking water, pools, baths, seawater, various industrial facilities, and the like.

抗菌とは、滅菌、消毒、殺菌、除菌、抗菌を含むもので、微生物やある物質の発生、生育、増殖を抑制、あるいは死滅させることである。   Antibacterial includes sterilization, disinfection, sterilization, sterilization, and antibacterial, and refers to inhibiting or killing the generation, growth, and proliferation of microorganisms and certain substances.

抗ウイルスとは、ウイルスの活動を抑制することをいう。   Anti-virus means suppression of virus activity.

防かびとは、かびの発生、生育、増殖を抑制することをいう。   Antifungal means to suppress the occurrence, growth and proliferation of fungi.

脱臭とは、臭いを発生する化学物質を吸着、洗浄、科学的に分解することで空間から除去することをいう。   Deodorization means removing chemical substances that generate odors from space by adsorption, washing, and scientific decomposition.

また、本発明において、各電極は活性酸素種生成槽1内に複数配置してもよい。   In the present invention, a plurality of electrodes may be arranged in the active oxygen species generation tank 1.

電圧極性切換手段11は、電極に印加する電圧の極性を瞬間的に反転したり、あるいは段階的に電圧を増減後に反転させる手段であり、電圧極性反転方法は、押しボタン式、スライド式、ロータリー式を問わない。   The voltage polarity switching means 11 is means for instantaneously reversing the polarity of the voltage applied to the electrode or reversing the voltage after increasing or decreasing in stages. The voltage polarity reversing method can be a push button type, a slide type, or a rotary type. Regardless of the formula.

本発明は、第一の陰極、第二の陰極、陽極、圧損体となる構造体の配置が同じであれば、図1に示すような構造のみでなく、例えば配管の内壁にレドックスポリマーを担持して第一の陰極とすれば、配管内を流下する水の殺菌だけでなく、管内壁への細菌の繁殖の付着を抑制できるため、配管内のぬめりや悪臭を抑制することも可能である。また、第一の陰極2が配置された陰極部6を第一槽、第二の陰極3と陽極4が配置された陽極部7を第二槽として、両槽の間に圧損体となる構造体5を設けてもよい。   In the present invention, if the arrangement of the first cathode, the second cathode, the anode, and the pressure loss structure is the same, not only the structure shown in FIG. 1 but also the redox polymer is supported on the inner wall of the pipe, for example. If the first cathode is used, it is possible not only to sterilize water flowing down the pipe, but also to prevent bacterial growth from adhering to the inner wall of the pipe. . Also, the cathode part 6 in which the first cathode 2 is disposed is a first tank, and the anode part 7 in which the second cathode 3 and the anode 4 are disposed is a second tank. Body 5 may be provided.

本発明の活用例として、エアコン、加湿機、空清機、除湿機、加湿空清機等の各種空調機器、下水や汚水の水処理機器、風呂給湯装置の配管や貯水部、水分含有物を保持する部位があり、その部位においてかびやウイルスを含む微生物の繁殖、臭いを発生する化学物質を吸着、あるいは含有する水周り機器へ利用し、抗菌、抗ウイルス、防かび、脱臭を行うことが可能である。   As examples of use of the present invention, air conditioners such as air conditioners, humidifiers, air cleaners, dehumidifiers, humidifier air cleaners, sewage and sewage water treatment equipment, pipes and water storage units for bath water heaters, and moisture contents are retained. It is possible to use antibacterial, antiviral, antifungal, and deodorizing by using a watering device that adsorbs or contains chemical substances that generate odors and that propagates microorganisms including molds and viruses. is there.

1 活性酸素種生成槽、2 第一の陰極、3 第二の陰極、4 陽極、5 圧損体となる構造物、6 陰極部、7 陽極部、8 電圧印加手段、9 供給口、10 排出口、11 電圧極性切換手段。   DESCRIPTION OF SYMBOLS 1 Active oxygen seed production | generation tank, 2 1st cathode, 2nd cathode, 4 anode, 5 Structure used as a pressure-loss body, 6 cathode part, 7 anode part, 8 voltage application means, 9 supply port, 10 discharge port 11 Voltage polarity switching means.

Claims (7)

第一の陰極、第二の陰極、陽極と、これら電極間に水等の液体を介在させ、前記陰極と前記陽極間を通電させる電圧印加手段と、前記液体の供給口および排出口とを有し、電極反応により活性酸素種を生成する装置であって、
前記陽極が二つの陰極の間に挟まれて該陰極と並列に配置され、前記第一の陰極と前記陽極との間に圧損体となる構造物を配置したことを特徴とする活性酸素種生成装置。
A first cathode, a second cathode, and an anode; a voltage applying means for interposing a liquid such as water between the electrodes and energizing the cathode and the anode; and a supply port and a discharge port for the liquid. And an apparatus for generating reactive oxygen species by electrode reaction,
Reactive oxygen species generation characterized in that the anode is sandwiched between two cathodes and arranged in parallel with the cathode, and a structure serving as a pressure loss body is disposed between the first cathode and the anode. apparatus.
前記第一の陰極と前記圧損体との間に液体の流れが形成されていることを特徴とする請求項1記載の活性酸素種生成装置。   2. The active oxygen species generating apparatus according to claim 1, wherein a liquid flow is formed between the first cathode and the pressure loss body. 流速の速い部分に前記第一の陰極を配置し、流速の遅い部分に前記第二の陰極と前記陽極とを配置したことを特徴とする請求項1または2記載の活性酸素種生成装置。   3. The active oxygen species generating apparatus according to claim 1, wherein the first cathode is disposed in a portion having a high flow rate, and the second cathode and the anode are disposed in a portion having a slow flow rate. 前記第一の陰極と前記陽極との極間距離が、前記第二の陰極と前記陽極との極間距離に比べて短いことを特徴とする請求項1〜3のいずれかに記載の活性酸素種生成装置。   4. The active oxygen according to claim 1, wherein an interelectrode distance between the first cathode and the anode is shorter than an interelectrode distance between the second cathode and the anode. Seed generator. 前記第一の陰極と前記陽極とが対向する側の面積が、前記第二の陰極と前記陽極とが対向する側の面積に比べて大きいことを特徴とする請求項1〜4のいずれかに記載の活性酸素種生成装置。   The area on the side where the first cathode and the anode face each other is larger than the area on the side where the second cathode and the anode face each other. The active oxygen species generator described. 前記第一の陰極にレドックスポリマーが担持されていることを特徴とする請求項1〜5のいずれかに記載の活性酸素種生成装置。   The active oxygen species generating apparatus according to claim 1, wherein a redox polymer is supported on the first cathode. 前記電圧印加手段が、電圧極性切換手段を具備することを特徴とする請求項1〜6のいずれかに記載の活性酸素種生成装置。   The active oxygen species generating apparatus according to any one of claims 1 to 6, wherein the voltage applying unit includes a voltage polarity switching unit.
JP2010077467A 2010-03-30 2010-03-30 Reactive oxygen species generator Expired - Fee Related JP5116793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077467A JP5116793B2 (en) 2010-03-30 2010-03-30 Reactive oxygen species generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077467A JP5116793B2 (en) 2010-03-30 2010-03-30 Reactive oxygen species generator

Publications (2)

Publication Number Publication Date
JP2011206697A true JP2011206697A (en) 2011-10-20
JP5116793B2 JP5116793B2 (en) 2013-01-09

Family

ID=44938398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077467A Expired - Fee Related JP5116793B2 (en) 2010-03-30 2010-03-30 Reactive oxygen species generator

Country Status (1)

Country Link
JP (1) JP5116793B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122653A (en) * 1995-11-01 1997-05-13 Hoshizaki Electric Co Ltd Apparatus for producing electrolytic water
JPH1157720A (en) * 1996-11-07 1999-03-02 Honda Motor Co Ltd Electrolytic functional water, its production method and device
JPH1179708A (en) * 1997-09-02 1999-03-23 Touin Gakuen Active oxygen generating device
JPH11169856A (en) * 1996-06-04 1999-06-29 Mizu Kk Electrolytic water producing device
JP2003181471A (en) * 2001-12-14 2003-07-02 Sanden Corp Functional soft drink making device
JP2006283081A (en) * 2005-03-31 2006-10-19 Jokoh Co Ltd Deposition method of redox polymer, and active oxygen generation system using the same
JP2007283180A (en) * 2006-04-14 2007-11-01 Ozotech:Kk Ozone water generator and ozone water generation method
JP2009052105A (en) * 2007-08-28 2009-03-12 Nikka Micron Kk Ozone water production apparatus
WO2010013519A1 (en) * 2008-07-31 2010-02-04 三菱電機株式会社 Sterilizing/antibacterializing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122653A (en) * 1995-11-01 1997-05-13 Hoshizaki Electric Co Ltd Apparatus for producing electrolytic water
JPH11169856A (en) * 1996-06-04 1999-06-29 Mizu Kk Electrolytic water producing device
JPH1157720A (en) * 1996-11-07 1999-03-02 Honda Motor Co Ltd Electrolytic functional water, its production method and device
JPH1179708A (en) * 1997-09-02 1999-03-23 Touin Gakuen Active oxygen generating device
JP2003181471A (en) * 2001-12-14 2003-07-02 Sanden Corp Functional soft drink making device
JP2006283081A (en) * 2005-03-31 2006-10-19 Jokoh Co Ltd Deposition method of redox polymer, and active oxygen generation system using the same
JP2007283180A (en) * 2006-04-14 2007-11-01 Ozotech:Kk Ozone water generator and ozone water generation method
JP2009052105A (en) * 2007-08-28 2009-03-12 Nikka Micron Kk Ozone water production apparatus
WO2010013519A1 (en) * 2008-07-31 2010-02-04 三菱電機株式会社 Sterilizing/antibacterializing device

Also Published As

Publication number Publication date
JP5116793B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4392354B2 (en) High electrolysis cell
CA2468856C (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
JP6008359B2 (en) In-liquid plasma generation apparatus, liquid to be treated purification apparatus, and ion-containing liquid generation apparatus
US8431008B2 (en) Electrolytic disinfection system and method for purifying water
EP1640343A1 (en) Photocatalyst water treating apparatus
CA2599846A1 (en) System for the disinfection of low-conductivity liquids
US20180319680A1 (en) Apparatus and Method for Electrodisinfection
JP2004143519A (en) Water treatment method and water treatment device
JP2009190016A (en) Method for preventing and removing biofilm in electrolytic capacitor for water purification
CN110461080A (en) A kind of low temperature plasma generating device and its method for preparing activated water
KR20140069935A (en) Apparatus for treating water using discharge in reactor
KR100621937B1 (en) Water purifying apparatus having function of electrolytic disinfection and its disinfection method
KR20060007369A (en) High electric field electrolysis cell
CN105664525A (en) Adsorption of contaminants from liquid and electrochemichal regeneration of adsorbent
JP5116793B2 (en) Reactive oxygen species generator
KR20160002488U (en) a device making sterilizable water using electrolysis
CN108911057A (en) A kind of high-frequency electromagnetic catalyst reaction device administered for trade effluent
KR100233775B1 (en) Apparatus for producing sterilized water
JP2011162838A (en) Active oxygen species generator
JP6636790B2 (en) Hydrogen peroxide generator
JP5212486B2 (en) Reactive oxygen species generator
JP2005270788A (en) Flowing water purifying apparatus
CN110921795A (en) Method for sterilizing hospital wastewater and synchronously removing PPCPs (pentatricopeptide repeats) by electrochemically activated water
CN213569931U (en) Sterilizing and water purifying integrated machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Ref document number: 5116793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees