JP2011206667A - Method and apparatus for treating organic waste water - Google Patents

Method and apparatus for treating organic waste water Download PDF

Info

Publication number
JP2011206667A
JP2011206667A JP2010076549A JP2010076549A JP2011206667A JP 2011206667 A JP2011206667 A JP 2011206667A JP 2010076549 A JP2010076549 A JP 2010076549A JP 2010076549 A JP2010076549 A JP 2010076549A JP 2011206667 A JP2011206667 A JP 2011206667A
Authority
JP
Japan
Prior art keywords
sludge
tank
treatment
heat
methane fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010076549A
Other languages
Japanese (ja)
Other versions
JP5441787B2 (en
Inventor
Soichiro Kimura
総一郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2010076549A priority Critical patent/JP5441787B2/en
Publication of JP2011206667A publication Critical patent/JP2011206667A/en
Application granted granted Critical
Publication of JP5441787B2 publication Critical patent/JP5441787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for treating organic waste water which can reduce the volume of sludge.SOLUTION: The organic waste water is treated by using an organic waste water treatment apparatus which includes: a first solid-liquid separation tank 1 for removing primary settled sludge from the organic waste water; an acid fermentation treatment tank 3 for performing acid fermentation treatment of the primary settled sludge; an aeration tank 5 for performing activated sludge treatment of the organic waste water from which the primary settled sludge has been removed; a second solid-liquid separation tank 6 for removing surplus sludge from the treated liquid obtained after the activated sludge treatment; a solubilization treatment tank 8 for heating the surplus sludge to perform solubilization treatment thereof; a boiler 11, heating means Q2, Q3 for heating the surplus sludge and the primary settled sludge using heat of the boiler 11; a sludge mixing tank 4 for mixing the primary settled sludge obtained after the acid fermentation treatment and the surplus sludge obtained after the solubilization treatment and supplying the mixture to the methane fermentation tank; and the methane fermentation tank 9.

Description

本発明は、下水等の有機性廃水を活性汚泥処理し、活性汚泥処理過程で排出される初沈汚泥と余剰汚泥とをメタン発酵処理する有機性廃水の処理方法及び処理装置に関する。   The present invention relates to an organic wastewater treatment method and treatment apparatus for treating organic wastewater such as sewage with activated sludge and treating methane fermentation of primary sludge and excess sludge discharged during the activated sludge treatment process.

下水等の有機性廃水の処理方法としては、従来より、有機性廃水から初沈汚泥を取り除いて活性汚泥処理を行い、活性汚泥処理後の処理液から余剰汚泥を取り除いて排水処理している。また、有機性廃水の活性汚泥処理過程で排出される、初沈汚泥や余剰汚泥をメタン発酵処理して、汚泥の減容化を図ることも行われている。   As a method for treating organic wastewater such as sewage, conventionally, the activated sludge treatment is performed by removing the first settling sludge from the organic wastewater, and the excess sludge is removed from the treated liquid after the activated sludge treatment. In addition, primary sludge and surplus sludge discharged in the activated sludge treatment process of organic wastewater is subjected to methane fermentation treatment to reduce the sludge volume.

例えば、下記特許文献1には、初沈汚泥と余剰汚泥とを必要に応じて濃縮し、次いで、加熱処理した後、メタン発酵処理することが開示されている。   For example, Patent Document 1 below discloses that primary sludge and excess sludge are concentrated as necessary, and then heat-treated and then subjected to methane fermentation.

特開2003−305498号公報(段落番号0030、図1参照)Japanese Patent Laying-Open No. 2003-305498 (see paragraph number 0030, FIG. 1)

初沈汚泥は、繊維などの難分解性成分を大量に含む汚泥であることから、初沈汚泥を加熱処理してもメタン発酵処理に適した状態に改質できず、メタン発酵処理効率を殆ど向上できなかった。   Since primary sludge is a sludge containing a large amount of hard-to-decompose components such as fibers, it cannot be modified to a state suitable for methane fermentation even if it is heat-treated. Could not improve.

このため、上記特許文献1のように、初沈汚泥と余剰汚泥との混合汚泥を加熱処理した場合、加熱処理効果の少ない成分(難分解性成分)も加熱処理を施すことになるので、加熱エネルギーを無駄に要し、熱エネルギーの利用効率が悪く、処理コストが嵩む問題があった。また、メタン発酵処理効率が十分ではなく、汚泥の減容化が十分ではなかった。   For this reason, when the mixed sludge of primary sludge and surplus sludge is heat-treated as in the above-mentioned Patent Document 1, a component having little heat treatment effect (hardly decomposable component) is also subjected to heat treatment. There was a problem that energy wasted, heat energy use efficiency was poor, and processing costs increased. Moreover, the methane fermentation treatment efficiency was not sufficient, and the volume reduction of sludge was not enough.

よって、本発明の目的は、有機性廃水を活性汚泥処理する過程で排出される初沈汚泥と余剰汚泥とを、効率よくメタン発酵処理して汚泥の減容化を図ることが可能な有機性廃水の処理方法及び処理装置を提供することにある。   Therefore, an object of the present invention is to provide an organic material that can efficiently reduce the volume of sludge by methane fermentation treatment of primary sludge and surplus sludge discharged during the process of treating organic wastewater with activated sludge. An object of the present invention is to provide a wastewater treatment method and a treatment apparatus.

上記目的を達成するにあたり、本発明の有機性廃水の処理方法は、有機性廃水から初沈汚泥を除去する初沈汚泥除去工程と、初沈汚泥が除去された有機性廃水を活性汚泥処理する活性汚泥処理工程と、活性汚泥処理後の処理液から余剰汚泥を除去する余剰汚泥除去工程と、前記初沈汚泥及び前記余剰汚泥をメタン発酵槽に導入してメタン発酵処理するメタン発酵処理工程とを有する有機性廃水の処理方法であって、前記初沈汚泥を30〜40℃で3〜4日酸発酵処理し、前記余剰汚泥を60〜90℃で可溶化処理した後、両者を混合して混合汚泥とし、該混合汚泥を前記メタン発酵槽に導入することを特徴とする。   In achieving the above object, the organic wastewater treatment method of the present invention includes a primary sludge removal step for removing primary sedimentation sludge from the organic wastewater, and an activated sludge treatment for organic wastewater from which primary sedimentation sludge has been removed. An activated sludge treatment step, a surplus sludge removal step for removing excess sludge from the treated liquid after the activated sludge treatment, and a methane fermentation treatment step for introducing the initial settling sludge and the excess sludge into a methane fermentation tank to perform methane fermentation. A method for treating organic wastewater having an initial fermentation sludge treatment at 30 to 40 ° C. for 3 to 4 days, solubilizing the excess sludge at 60 to 90 ° C., and then mixing the two. Mixed sludge, and the mixed sludge is introduced into the methane fermentation tank.

本発明における、初沈汚泥は、下水などの有機性廃水の処理施設の最初沈殿槽等における沈殿汚泥をいう。初沈汚泥は、繊維などの難分解性成分を主に含む汚泥であり、加熱処理しても殆ど分解しないが、30〜40℃で3〜4日酸発酵処理することにより、メタン発酵され易い性状に改質される。また、余剰汚泥は、微生物などの有機物を主に含む汚泥であり、加熱処理することで、微生物の細胞膜等が破壊されて、メタン発酵され易い性状に改質される。
本発明の有機性廃水の処理方法によれば、初沈汚泥、余剰汚泥をそれぞれ別々に、初沈汚泥に対しては酸発酵処理し、余剰汚泥に対しては60〜90℃で可溶化処理するので、各々の汚泥に適した処理が個別に行われ、初沈汚泥及び余剰汚泥を、効率よくメタン発酵処理され易い性状に改質でき、汚泥の改質処理に要する熱エネルギーや処理時間を低減できる。そして、メタン発酵槽には、メタン発酵処理され易い性状に改質された汚泥を供給できるので、汚泥のメタン発酵効率が向上して最終汚泥の排出量を低減でき、汚泥の減容化に優れている。
The initial settling sludge in the present invention refers to settling sludge in an initial settling tank or the like of a treatment facility for organic wastewater such as sewage. The primary sedimentation sludge is sludge mainly containing hardly decomposable components such as fibers, and hardly decomposes even when heat-treated, but it is easily methane-fermented by acid fermentation treatment at 30 to 40 ° C. for 3 to 4 days. Modified to properties. Further, surplus sludge is sludge mainly containing organic matter such as microorganisms, and by heat treatment, cell membranes of microorganisms are destroyed, and the sludge is reformed to be easily methane-fermented.
According to the organic wastewater treatment method of the present invention, primary sludge and excess sludge are separately subjected to acid fermentation treatment for primary sedimentation sludge and solubilization treatment at 60 to 90 ° C for excess sludge. Therefore, the treatment suitable for each sludge is performed individually, and the initial settling sludge and excess sludge can be reformed to a property that can be efficiently subjected to methane fermentation treatment, and the heat energy and treatment time required for sludge reforming treatment can be reduced. Can be reduced. And since the sludge modified to the property that is easily treated with methane fermentation can be supplied to the methane fermentation tank, the methane fermentation efficiency of sludge can be improved and the amount of final sludge discharged can be reduced, and the sludge volume reduction is excellent. ing.

本発明の有機性廃水の処理方法は、前記メタン発酵槽から発生したバイオガスを熱源として前記余剰汚泥を加熱し、次いでその余熱を利用して前記混合汚泥を加熱することが好ましい。   The organic wastewater treatment method of the present invention preferably heats the excess sludge using biogas generated from the methane fermentation tank as a heat source, and then heats the mixed sludge using the residual heat.

本発明の有機性廃水の処理方法は、前記可溶化処理された余剰汚泥の熱を利用して、直接的又は間接的に前記初沈汚泥を加熱して酸発酵処理することが好ましい。   In the method for treating organic wastewater according to the present invention, it is preferable to heat the primary sludge directly or indirectly using the heat of the solubilized surplus sludge to perform acid fermentation treatment.

上記各態様によれば、熱エネルギーの有効利用を図ることができ、より小さい熱エネルギーで有機性廃水を処理することができる。   According to each said aspect, effective utilization of a thermal energy can be aimed at, and organic waste water can be processed with a smaller thermal energy.

また、本発明の有機性廃水処理装置は、有機性廃水から初沈汚泥を除去する第1固液分離槽と、初沈汚泥が除去された有機性廃水を活性汚泥処理する曝気槽と、活性汚泥処理後の処理液から余剰汚泥を除去する第2固液分離槽と、前記初沈汚泥及び前記余剰汚泥をメタン発酵処理するメタン発酵槽と、前記メタン発酵槽から発生するバイオガスを燃焼して熱源を生成するボイラーとを備えた有機性廃水処理装置であって、前記初沈汚泥を酸発酵処理する酸発酵処理槽と、前記余剰汚泥を加熱して可溶化処理する可溶化処理槽と、前記ボイラーの熱を利用して前記余剰汚泥及び前記初沈汚泥を加熱する加熱手段と、酸発酵処理後の初沈汚泥及び可溶化処理後の余剰汚泥を混合して前記メタン発酵槽に供給する汚泥混合槽とを備えることを特徴とする。   Moreover, the organic wastewater treatment apparatus of the present invention includes a first solid-liquid separation tank that removes primary sedimentation sludge from the organic wastewater, an aeration tank that performs activated sludge treatment on organic wastewater from which primary sedimentation sludge has been removed, A second solid-liquid separation tank that removes excess sludge from the treated liquid after sludge treatment, a methane fermentation tank that performs methane fermentation treatment of the initial settling sludge and the excess sludge, and biogas generated from the methane fermentation tank An organic wastewater treatment apparatus comprising a boiler that generates a heat source, an acid fermentation treatment tank for acid fermentation treatment of the primary sedimentation sludge, and a solubilization treatment tank for heating and solubilizing the excess sludge The heating means for heating the excess sludge and the first settling sludge using the heat of the boiler, and the first settling sludge after the acid fermentation treatment and the excess sludge after the solubilization treatment are mixed and supplied to the methane fermentation tank Characterized by comprising a sludge mixing tank That.

本発明の有機性廃水処理装置によれば、初沈汚泥は酸発酵処理槽で酸発酵処理され、余剰汚泥は可溶化処理槽で可溶化処理された後、酸発酵処理後の初沈汚泥及び可溶化処理後の余剰汚泥が汚泥混合槽内で混合されてメタン発酵槽に供給される。このように、初沈汚泥及び余剰汚泥は、各々の汚泥に適した処理が、酸発酵処理槽、可溶化処理槽にて個別に行われるので、初沈汚泥及び余剰汚泥を、効率よくメタン発酵処理され易い性状に改質してメタン発酵槽に供給でき、汚泥の改質処理に要する熱エネルギーや処理時間を低減できる。そして、メタン発酵槽には、メタン発酵され易い性状に改質された汚泥を供給できるので、汚泥のメタン発酵効率が向上して最終汚泥の排出量を低減でき、汚泥の減容化に優れている。   According to the organic wastewater treatment apparatus of the present invention, the primary sedimentation sludge is subjected to an acid fermentation treatment in an acid fermentation treatment tank, and the excess sludge is solubilized in a solubilization treatment tank, and then the primary sedimentation sludge after the acid fermentation treatment and The surplus sludge after the solubilization treatment is mixed in the sludge mixing tank and supplied to the methane fermentation tank. In this way, the initial settling sludge and surplus sludge are treated separately for each sludge in the acid fermentation treatment tank and the solubilization treatment tank. It can be reformed to be easily treated and supplied to the methane fermentation tank, and the thermal energy and processing time required for sludge reforming can be reduced. And since the sludge modified to the property that is easily methane-fermented can be supplied to the methane fermentation tank, the methane fermentation efficiency of the sludge can be improved and the final sludge discharge can be reduced, and the sludge volume can be reduced. Yes.

本発明の有機性廃水処理装置は、前記加熱手段として、前記第1固液分離槽と前記酸発酵処理槽との間の経路又は前記酸発酵処理槽に設けられた第1熱交換器と、前記第2固液分離槽と前記可溶化処理槽との間の経路又は前記可溶化処理槽に設けられた第2熱交換器と、前記汚泥混合槽と前記メタン発酵槽との間の経路に設けられた第3熱交換器とを有し、前記ボイラーから生成した熱源の少なくとも一部が、前記第2熱交換器を経由して前記余剰汚泥と熱交換した後、前記第3熱交換器を通過して前記混合汚泥と熱交換するように構成され、前記可溶化処理後の余剰汚泥の少なくとも一部が、前記第1熱交換器を経由して前記初沈汚泥と熱交換した後、前記汚泥混合槽に導入するように構成されていることが好ましい。この態様によれば、熱の利用効率が高く、より小さい熱エネルギーで有機性廃水を処理することができる。   The organic wastewater treatment apparatus of the present invention, as the heating means, a path between the first solid-liquid separation tank and the acid fermentation treatment tank or a first heat exchanger provided in the acid fermentation treatment tank, In the path between the second solid-liquid separation tank and the solubilization tank or the second heat exchanger provided in the solubilization tank, and the path between the sludge mixing tank and the methane fermentation tank A third heat exchanger provided, and at least part of the heat source generated from the boiler exchanges heat with the surplus sludge via the second heat exchanger, and then the third heat exchanger. And at least a part of the excess sludge after the solubilization treatment exchanges heat with the first settling sludge via the first heat exchanger, It is preferable to be configured to be introduced into the sludge mixing tank. According to this aspect, heat utilization efficiency is high, and organic wastewater can be treated with smaller heat energy.

本発明によれば、初沈汚泥及び余剰汚泥に対して、各々の汚泥に適した処理を個別に行い、両者を混合してメタン発酵槽に供給するので、初沈汚泥及び余剰汚泥を効率よくメタン発酵処理され易い性状に改質でき、改質処理に要する熱エネルギーや処理時間を低減できる。そして、メタン発酵槽には、メタン発酵され易い性状に改質された汚泥を供給できるので、汚泥のメタン発酵効率が向上して最終汚泥の排出量を低減でき、汚泥の減容化に優れている。   According to the present invention, the initial settling sludge and the excess sludge are treated separately for each sludge, and both are mixed and supplied to the methane fermentation tank. It can be modified to a property that is easily treated with methane fermentation, and the heat energy and processing time required for the reforming process can be reduced. And since the sludge modified to the property that is easily methane-fermented can be supplied to the methane fermentation tank, the methane fermentation efficiency of the sludge can be improved and the final sludge discharge can be reduced, and the sludge volume can be reduced. Yes.

本発明の有機性廃水処理装置の概略図である。It is the schematic of the organic wastewater treatment apparatus of this invention.

本発明の有機性廃水処理装置の一実施形態について、図1を用いて説明する。   One embodiment of the organic wastewater treatment apparatus of the present invention will be described with reference to FIG.

図1に示すように、下水等の有機性廃水の供給源から伸びた配管L1が、第1固液分離槽1に接続している。   As shown in FIG. 1, a pipe L <b> 1 extending from a supply source of organic wastewater such as sewage is connected to the first solid-liquid separation tank 1.

本実施形態における第1固液分離槽1は、下水等の有機性廃水の処理装置における最初沈殿槽であって、有機性廃水中の繊維成分などの固形物を固液分離して、初沈汚泥と分離液とに分離する処理槽である。第1固液分離槽1としては、有機性廃水を固液分離できるような構成を有するものであれば特に限定はなく、重力沈澱槽等の固液分離装置を広く利用できる。   The first solid-liquid separation tank 1 in the present embodiment is an initial sedimentation tank in a treatment apparatus for organic wastewater such as sewage, and solid-liquid separates solids such as fiber components in the organic wastewater to perform initial sedimentation. This is a treatment tank that separates sludge and separated liquid. The first solid-liquid separation tank 1 is not particularly limited as long as it has a configuration capable of solid-liquid separation of organic waste water, and a solid-liquid separation apparatus such as a gravity precipitation tank can be widely used.

上記第1固液分離槽1の初沈汚泥の排出口からは、配管L2が伸びて初沈汚泥貯留槽2に接続している。初沈汚泥貯留槽2は、第1固液分離槽1から送られてくる初沈汚泥を貯留し、また、後段の酸発酵処理槽3への初沈汚泥の供給量を調整するための機能を有している。   A pipe L <b> 2 extends from the outlet of the first settling sludge in the first solid-liquid separation tank 1 and is connected to the first settling sludge storage tank 2. The initial sedimentation sludge storage tank 2 stores the initial sedimentation sludge sent from the first solid-liquid separation tank 1 and functions for adjusting the supply amount of the initial sedimentation sludge to the subsequent acid fermentation treatment tank 3 have.

初沈汚泥貯留槽2の後段には、酸発酵処理槽3が配置されており、熱交換器Q1が介装された配管L3を介して連結している。酸発酵処理槽3は、有機物を、槽内の嫌気性菌の作用により酸性発酵して、酢酸、酪酸、プロピオン酸などの有機酸を生成して酸発酵処理するための処理槽である。酸発酵処理槽3から配管L4が伸びて、後段の汚泥混合槽4に連結している。なお、熱交換器Q1を酸発酵処理槽3に設けて、酸発酵処理槽3内を加熱するようにしてもよい。熱交換器Q1としては、特に限定は無い。例えば、熱交換器の内部に構成されたらせん状の配管内を初沈汚泥が通過し、らせん状の配管外に加熱された余剰汚泥が通過して熱交換されるスパイラル式などの熱交換器を好ましく用いることができる。   An acid fermentation treatment tank 3 is disposed downstream of the initial settling sludge storage tank 2, and is connected via a pipe L3 in which a heat exchanger Q1 is interposed. The acid fermentation treatment tank 3 is a treatment tank for acid-fermenting an organic substance by the action of anaerobic bacteria in the tank to produce an organic acid such as acetic acid, butyric acid, and propionic acid. A pipe L4 extends from the acid fermentation treatment tank 3 and is connected to the subsequent sludge mixing tank 4. In addition, you may make it provide the heat exchanger Q1 in the acid fermentation processing tank 3, and heat the inside of the acid fermentation processing tank 3. FIG. There is no limitation in particular as heat exchanger Q1. For example, a heat exchanger such as a spiral type in which the first settling sludge passes through a spiral pipe configured inside the heat exchanger, and the excess sludge heated outside the spiral pipe passes to exchange heat. Can be preferably used.

また、上記第1固液分離槽1の分離液の排出口からは、配管L5が伸びて曝気槽5に連結している。曝気槽5は、初沈汚泥が除去された有機性廃水(分離液)を、槽内に存在する微生物の作用によって活性汚泥処理し、有機物や窒素成分などを除去する処理槽である。曝気槽5としては、槽内に微生物を含む活性汚泥が滞留し、微生物の作用によって下水の活性汚泥処理ができる処理槽であれば特に限定はない。   A pipe L5 extends from the separation liquid discharge port of the first solid-liquid separation tank 1 and is connected to the aeration tank 5. The aeration tank 5 is a treatment tank that removes organic substances, nitrogen components, and the like by treating the organic waste water (separated liquid) from which the initial settling sludge has been removed with the action of microorganisms present in the tank. The aeration tank 5 is not particularly limited as long as activated sludge containing microorganisms stays in the tank and the activated sludge treatment of sewage can be performed by the action of microorganisms.

曝気槽5の後段には、第2固液分離槽6が配置されており、配管L6を介して連結している。第2固液分離槽6は、曝気槽5にて活性汚泥処理された有機性廃水(以下、活性汚泥処理水という)を、余剰汚泥と分離処理液とに固液分離する処理槽である。第2固液分離槽6としては、活性汚泥処理水を固液分離できるような構成を有するものであれば特に限定はなく、重力沈降槽、膜分離装置、遠心分離装置等広く利用できる。   A second solid-liquid separation tank 6 is disposed downstream of the aeration tank 5, and is connected via a pipe L6. The second solid-liquid separation tank 6 is a treatment tank for solid-liquid separation of organic waste water (hereinafter referred to as activated sludge treated water) treated with activated sludge in the aeration tank 5 into excess sludge and separated treatment liquid. The second solid-liquid separation tank 6 is not particularly limited as long as it has a configuration capable of solid-liquid separation of activated sludge treated water, and can be widely used, such as a gravity sedimentation tank, a membrane separation apparatus, and a centrifugal separation apparatus.

上記第2固液分離槽6の分離処理液の排出口からは、配管L7が伸びて、図示しない排水系に連結している。また、余剰汚泥の排出口からは、配管L8が伸びて余剰汚泥貯留槽7に接続している。   A pipe L7 extends from the discharge port of the separation processing liquid in the second solid-liquid separation tank 6 and is connected to a drainage system (not shown). Further, a pipe L8 extends from the surplus sludge discharge port and is connected to the surplus sludge storage tank 7.

余剰汚泥貯留槽7は、第2固液分離槽6から送られてくる余剰汚泥を貯留する貯留槽であり、余剰汚泥貯留槽7に貯留された余剰汚泥の一部は、返送配管L16を通して曝気槽5へ返送汚泥として返送され、残部は後段の可溶化処理槽8に供給される。また、余剰汚泥貯留槽7は、後段の可溶化処理槽8への余剰汚泥の供給量を調整するための機能を有している。   The excess sludge storage tank 7 is a storage tank for storing excess sludge sent from the second solid-liquid separation tank 6, and a part of the excess sludge stored in the excess sludge storage tank 7 is aerated through the return pipe L16. It is returned to the tank 5 as return sludge, and the remainder is supplied to the subsequent solubilization tank 8. Moreover, the excess sludge storage tank 7 has a function for adjusting the supply amount of the excess sludge to the subsequent solubilization treatment tank 8.

余剰汚泥貯留槽7の後段には、可溶化処理槽8が配置されており、熱交換器Q2が介装された配管L9を介して連結している。可溶化処理槽8は、余剰汚泥を可溶化処理するための処理槽であって、断熱構造をなすものであればよく、特に限定は無い。また、攪拌機等を備えて、槽内の余剰汚泥に剪断力を加えることができるように構成されていてもよい。熱交換器Q2は、上述した熱交換器Q1と同様のものを用いることができる。なお、熱交換器Q2を可溶化処理槽8に設けて、可溶化処理槽8内を加熱するようにしてもよい。   A solubilization treatment tank 8 is disposed downstream of the excess sludge storage tank 7, and is connected via a pipe L9 provided with a heat exchanger Q2. The solubilization processing tank 8 is a processing tank for solubilizing surplus sludge, and may have any heat insulation structure, and is not particularly limited. Moreover, a stirrer etc. may be provided and it may be comprised so that a shearing force can be applied to the excess sludge in a tank. The heat exchanger Q2 can be the same as the heat exchanger Q1 described above. In addition, the heat exchanger Q2 may be provided in the solubilization processing tank 8, and the inside of the solubilization processing tank 8 may be heated.

可溶化処理槽8からは、配管L10が伸びて、上述した熱交換器Q1を通って可溶化処理槽8の後段に配置された汚泥混合槽4に連結している。   A pipe L10 extends from the solubilization treatment tank 8 and is connected to the sludge mixing tank 4 disposed at the subsequent stage of the solubilization treatment tank 8 through the heat exchanger Q1 described above.

汚泥混合槽4は、酸発酵処理槽3から送られてくる酸発酵処理された初沈汚泥(以下、改質初沈汚泥ともいう)と、可溶化処理槽8から送られてくる可溶化処理された余剰汚泥(以下、改質余剰汚泥ともいう)とを混合して貯留し、後段のメタン発酵槽9への混合汚泥の供給量を調整するための機能を有している。   The sludge mixing tank 4 includes an acid fermented primary sedimentation sludge (hereinafter also referred to as a modified primary sedimentation sludge) sent from the acid fermentation treatment tank 3 and a solubilization treatment sent from the solubilization treatment tank 8. The obtained excess sludge (hereinafter also referred to as reformed excess sludge) is mixed and stored, and has a function for adjusting the supply amount of the mixed sludge to the methane fermentation tank 9 at the subsequent stage.

汚泥混合槽4の後段には、熱交換器Q3が介装された配管L11を介して連結したメタン発酵槽9が配置されている。熱交換器Q3は、上述した熱交換器Q1と同様のものを用いることができる。   In the subsequent stage of the sludge mixing tank 4, a methane fermentation tank 9 connected via a pipe L11 provided with a heat exchanger Q3 is arranged. The heat exchanger Q3 can be the same as the heat exchanger Q1 described above.

メタン発酵槽9は、槽内に供給された混合汚泥をメタン菌等の嫌気性微生物の作用で嫌気処理し、メタンガス等のバイオガスに分解する処理槽である。メタン発酵槽9には、槽内の発酵液を攪拌する攪拌装置(図示しない)が配置されている。また、メタン発酵槽9の下方には、メタン発酵液の引き抜き配管L12が伸びて、図示しない汚泥処理系に連結している。また、メタン発酵槽9の上部からは、バイオガス取出し用の配管L13が伸びて、ガスホルダ10に接続している。   The methane fermentation tank 9 is a treatment tank in which the mixed sludge supplied into the tank is anaerobically treated by the action of anaerobic microorganisms such as methane bacteria and decomposed into biogas such as methane gas. The methane fermentation tank 9 is provided with a stirring device (not shown) for stirring the fermentation liquid in the tank. A methane fermentation liquid extraction pipe L12 extends below the methane fermentation tank 9 and is connected to a sludge treatment system (not shown). Further, from the upper part of the methane fermentation tank 9, a biogas extraction pipe L <b> 13 extends and is connected to the gas holder 10.

ガスホルダ10に貯留されたバイオガスは、配管L14を介して連結した蒸気ボイラー11に供給して燃焼し、循環経路L15内を流通する熱媒体を加熱する。そして、蒸気ボイラー11で加熱された熱媒体は、熱交換器Q2、熱交換器Q3の順に通って、余剰汚泥、混合汚泥の順にそれぞれ加熱した後、再び蒸気ボイラー11に返送される。   The biogas stored in the gas holder 10 is supplied to the steam boiler 11 connected via the pipe L14 and burned to heat the heat medium flowing in the circulation path L15. Then, the heat medium heated by the steam boiler 11 passes through the heat exchanger Q2 and the heat exchanger Q3 in this order and is heated in the order of excess sludge and mixed sludge, and then returned to the steam boiler 11 again.

次に、本発明の有機性廃水の処理方法について、図1に示す処理装置を用いた場合を例に挙げて説明する。   Next, the organic wastewater treatment method of the present invention will be described by taking the case of using the treatment apparatus shown in FIG. 1 as an example.

まず、有機性廃水の供給源から送られてくる下水等の有機性廃水を、第1固液分離槽1に供給し、有機性廃水中の繊維成分などの固形物を固液分離して、初沈汚泥と分離液とに分離する。この初沈汚泥の水温は、外気温度により異なるが、およそ10〜20℃である。また、初沈汚泥の排出量は、処理対象となる有機性廃水の性状や各種処理条件により異なるが、後述する余剰汚泥との固形分比率で、初沈汚泥:余剰汚泥=6:4〜5:5であることが多い。   First, organic wastewater such as sewage sent from an organic wastewater supply source is supplied to the first solid-liquid separation tank 1, and solids such as fiber components in the organic wastewater are subjected to solid-liquid separation. Separated into primary sludge and separated liquid. The water temperature of this initial sedimentation sludge is approximately 10 to 20 ° C., although it varies depending on the outside air temperature. In addition, the amount of primary sludge discharged varies depending on the properties of the organic wastewater to be treated and various treatment conditions, but the initial sludge: surplus sludge = 6: 4-5 in a solid content ratio with surplus sludge described later. : 5 in many cases.

初沈汚泥を除去した有機性廃水(分離液)は、配管L5を通して曝気槽5に送り、ここで活性汚泥処理して有機物や窒素成分などを除去する。そして、曝気槽5から配管L6を通して活性汚泥処理水を引き抜き、第2固液分離槽6に送って余剰汚泥と分離処理液とに固液分離する。この余剰汚泥の水温は、外気温度により異なるが、およそ10〜20℃である。   The organic waste water (separated liquid) from which the initial settling sludge has been removed is sent to the aeration tank 5 through the pipe L5, where it is treated with activated sludge to remove organic substances and nitrogen components. Then, the activated sludge treated water is withdrawn from the aeration tank 5 through the pipe L6 and is sent to the second solid-liquid separation tank 6 to be separated into the excess sludge and the separated treatment liquid. The water temperature of this excess sludge is approximately 10 to 20 ° C., although it varies depending on the outside air temperature.

分離処理液は、配管L7を通して図示しない排水系に送り、そのまま、あるいは、必要に応じて薬品等を添加して浄化処理した後、系外に排水する。   The separation treatment liquid is sent to a drainage system (not shown) through the pipe L7, and is drained out of the system as it is or after being purified by adding chemicals or the like as necessary.

余剰汚泥は、配管L8を通して余剰汚泥貯留槽7に送り、ここで一時的に貯留する。槽内に貯留された余剰汚泥の一部は、返送配管L16を通して曝気槽5へ返送し、活性汚泥処理に供する。また、配管L9から一定量ずつ引き抜き、熱交換器Q2にて、蒸気ボイラー11によって加熱された熱媒体と熱交換して加熱する。熱交換器Q2では、余剰汚泥が60〜90℃、好ましくは70〜80℃に加熱されるように、余剰汚泥の流量、熱媒体の流量を調整する。   The surplus sludge is sent to the surplus sludge storage tank 7 through the pipe L8 and is temporarily stored here. A part of the excess sludge stored in the tank is returned to the aeration tank 5 through the return pipe L16 and used for the activated sludge treatment. In addition, the pipe L9 is pulled out from the pipe L9 by a certain amount, and is heated by exchanging heat with the heat medium heated by the steam boiler 11 in the heat exchanger Q2. In the heat exchanger Q2, the flow rate of the excess sludge and the flow rate of the heat medium are adjusted so that the excess sludge is heated to 60 to 90 ° C, preferably 70 to 80 ° C.

熱交換器Q2で所定温度に加熱した余剰汚泥は、可溶化処理槽8に送り、60〜90℃、好ましくは70〜80℃の温度下で、1〜4時間、好ましくは2〜3時間可溶化処理を行う。また、可溶化処理中は、槽内に貯留された余剰汚泥を攪拌するなど剪断力を加えてもよい。余剰汚泥は微生物などの有機物を主に含む汚泥であり、このようにして可溶化処理を行うことにより、微生物の細胞質等が破壊されて、メタン発酵処理され易い性状に改質される。また、流動性が生じて配管内を流通し易くなる。   Excess sludge heated to a predetermined temperature in the heat exchanger Q2 is sent to the solubilization tank 8 and can be used at a temperature of 60 to 90 ° C, preferably 70 to 80 ° C for 1 to 4 hours, preferably 2 to 3 hours. Perform solubilization. Further, during the solubilization treatment, a shearing force may be applied such as stirring the excess sludge stored in the tank. Surplus sludge is sludge mainly containing organic substances such as microorganisms, and by performing solubilization treatment in this way, the cytoplasm of microorganisms and the like are destroyed, and the sludge is modified to a property that is easily subjected to methane fermentation treatment. Moreover, fluidity arises and it becomes easy to distribute | circulate the inside of piping.

そして、可溶化処理槽8から改質余剰汚泥を、配管L10を通して一定量ずつ引き抜き、熱交換器Q1を通過させて汚泥混合槽4に送る。   Then, the reformed surplus sludge is extracted from the solubilization treatment tank 8 by a certain amount through the pipe L10, passed through the heat exchanger Q1, and sent to the sludge mixing tank 4.

一方、初沈汚泥は、配管L2を通して初沈汚泥貯留槽2に送り、ここで一時的に貯留する。そして、槽内に貯留された初沈汚泥を、配管L3から一定量ずつ引き抜き、熱交換器Q1にて、上述した改質余剰汚泥と熱交換して加熱する。可溶化処理槽8から引き出された改質余剰汚泥は、流動性が高いので、熱交換器内の配管をスムーズに流通する。また、改質余剰汚泥の水温は、およそ60〜90℃であるので、初沈汚泥と改質余剰汚泥とを熱交換することにより、初沈汚泥は加熱される。熱交換器Q1では、初沈汚泥が25〜45℃、好ましくは30〜40℃に加熱されるように、初沈汚泥の流量、改質余剰汚泥の流量を調整する。なお、改質余剰汚泥との熱交換のみでは初沈汚泥を所望の温度まで加熱できない場合は、ヒータ等の補助熱源を設置して、これらの補助熱源で不足する加熱量を補ってもよい。   On the other hand, the first settling sludge is sent to the first settling sludge storage tank 2 through the pipe L2 and temporarily stored therein. Then, the initially settled sludge stored in the tank is pulled out from the pipe L3 by a certain amount, heated in the heat exchanger Q1 by exchanging heat with the above-described reformed excess sludge. The reformed surplus sludge drawn out from the solubilization tank 8 has a high fluidity, and thus smoothly flows through the piping in the heat exchanger. Moreover, since the water temperature of the modified surplus sludge is approximately 60 to 90 ° C., the initial sludge is heated by exchanging heat between the initially settled sludge and the modified surplus sludge. In the heat exchanger Q1, the flow rate of the first settling sludge and the flow rate of the excess surplus sludge are adjusted so that the first settling sludge is heated to 25 to 45 ° C, preferably 30 to 40 ° C. In addition, when the initial settling sludge cannot be heated to a desired temperature only by heat exchange with the reformed surplus sludge, an auxiliary heat source such as a heater may be installed to compensate for the insufficient heating amount with these auxiliary heat sources.

熱交換器Q1で所定温度に加熱した初沈汚泥は、酸発酵処理槽3に送り、30〜40℃で、3〜4日日行う。また、酸発酵処理中は、槽内に貯留された初沈汚泥を攪拌するなど剪断力を加えてもよい。初沈汚泥は、繊維などの難分解性成分を主に含む汚泥であり、加熱処理しても殆ど分解しないが、酸発酵処理することにより、初沈汚泥がメタン発酵処理され易い性状に改質される。   The initial settling sludge heated to a predetermined temperature by the heat exchanger Q1 is sent to the acid fermentation treatment tank 3 and carried out at 30 to 40 ° C. for 3 to 4 days. Further, during the acid fermentation treatment, a shearing force may be applied, for example, stirring the initially settled sludge stored in the tank. Primary sedimentation sludge is a sludge that mainly contains difficult-to-decompose components such as fibers, and hardly decomposes even when heat-treated, but by acid fermentation treatment, the primary sedimentation sludge is modified to a property that is easy to be subjected to methane fermentation treatment. Is done.

そして、酸発酵処理槽3から改質初沈汚泥を配管L4を通して一定量ずつ引き抜き、汚泥混合槽4に送る。   Then, the modified initial settling sludge is extracted from the acid fermentation treatment tank 3 by a certain amount through the pipe L4 and sent to the sludge mixing tank 4.

汚泥混合槽4では、酸発酵処理槽3から送られてくる改質初沈汚泥と、可溶化処理槽8から送られてくる改質余剰汚泥とを混合し、必要に応じて破砕、粉砕等の処理を行う。そして、配管L11から槽内の混合汚泥を一定量ずつ引き抜き、熱交換器Q3にて、余剰汚泥との熱交換後の熱媒体と熱交換して混合汚泥を加熱した後、メタン発酵槽9へ送る。熱交換器Q3では、混合汚泥が40〜50℃、好ましくは50〜60℃に加熱されるように、混合汚泥の流量を調整する。   In the sludge mixing tank 4, the modified initial sedimentation sludge sent from the acid fermentation treatment tank 3 and the modified excess sludge sent from the solubilization treatment tank 8 are mixed, and crushed, pulverized, etc. as necessary. Perform the process. Then, a certain amount of the mixed sludge in the tank is drawn from the pipe L11 and heated in the heat exchanger Q3 with the heat medium after heat exchange with the excess sludge to heat the mixed sludge, and then to the methane fermentation tank 9. send. In the heat exchanger Q3, the flow rate of the mixed sludge is adjusted so that the mixed sludge is heated to 40 to 50 ° C, preferably 50 to 60 ° C.

メタン発酵槽9では、嫌気性微生物の作用により、供給された混合汚泥を嫌気処理して、メタンガス等のバイオガスに分解する。メタン発酵後の発酵液は、配管L12を通して図示しない汚泥処理系に送り、必要に応じて薬品等を添加して脱水処理、焼却処理などして処理する。また、メタン発酵によって生成したバイオガスは、ガスホルダ10で回収し、蒸気ボイラー11で燃焼して循環経路L15を流通する熱媒体(高圧水蒸気など)を加熱する。蒸気ボイラー11で加熱された熱媒体は、熱交換器Q2にて余剰汚泥を所定温度まで加熱したのち、熱交換器Q3にて、その余熱で混合汚泥を所定温度まで加熱し、蒸気ボイラー11に返送される。蒸気ボイラーに返送された熱媒体は、蒸気ボイラー11で再び加熱されて、循環経路L15を流通して余剰汚泥、混合汚泥を加熱する。   In the methane fermentation tank 9, the supplied mixed sludge is subjected to anaerobic treatment by the action of anaerobic microorganisms and decomposed into biogas such as methane gas. The fermented liquid after methane fermentation is sent to a sludge treatment system (not shown) through the pipe L12, and is treated by dehydration, incineration, etc. by adding chemicals as necessary. In addition, the biogas generated by methane fermentation is recovered by the gas holder 10, burned by the steam boiler 11, and heats a heat medium (such as high-pressure steam) that circulates in the circulation path L15. The heat medium heated by the steam boiler 11 heats the excess sludge to a predetermined temperature in the heat exchanger Q2, and then heats the mixed sludge to the predetermined temperature with the remaining heat in the heat exchanger Q3. Will be returned. The heat medium returned to the steam boiler is heated again by the steam boiler 11 and flows through the circulation path L15 to heat excess sludge and mixed sludge.

本発明の有機性廃水の処理方法によれば、初沈汚泥、余剰汚泥をそれぞれ別々に、初沈汚泥に対しては酸発酵処理槽3にて酸発酵処理し、余剰汚泥に対しては可溶化処理槽8にて可溶化処理するので、各々の汚泥に適した処理が個別に行われ、初沈汚泥及び余剰汚泥を、効率よくメタン発酵処理され易い性状に改質でき、改質処理に要する熱エネルギーや処理時間を低減できる。そして、メタン発酵槽9には、メタン発酵処理され易い性状に改質された汚泥を供給できるので、汚泥のメタン発酵効率が向上して最終汚泥の排出量を低減でき、汚泥の減容化に優れている。   According to the organic wastewater treatment method of the present invention, primary sedimentation sludge and excess sludge are separately subjected to acid fermentation treatment in the acid fermentation treatment tank 3 for primary sedimentation sludge and acceptable for excess sludge. Since the solubilization treatment is performed in the solubilization treatment tank 8, the treatment suitable for each sludge is performed individually, and the initial settling sludge and the excess sludge can be efficiently modified to a property that can be easily subjected to methane fermentation treatment. The required thermal energy and processing time can be reduced. The methane fermentation tank 9 can be supplied with sludge that has been modified to be easily methane-fermented, so that the methane fermentation efficiency of the sludge can be improved and the final sludge discharged can be reduced, thereby reducing the sludge volume. Are better.

また、この実施形態では、蒸気ボイラー11で加熱された熱媒体を用いて、余剰汚泥を可溶化処理に適した温度に加熱し、その余熱を利用して更に混合汚泥をメタン発酵に適した温度まで加熱すると共に、改質余剰汚泥の熱を利用して初沈汚泥を、酸発酵処理に適した温度に加熱しているので、熱の利用効率が高く、より小さい熱エネルギーで有機性廃水を処理することができる。   Moreover, in this embodiment, using the heat medium heated with the steam boiler 11, the excess sludge is heated to a temperature suitable for the solubilization treatment, and the mixed sludge is further converted to a temperature suitable for methane fermentation using the residual heat. And heat the reformed surplus sludge to heat the primary sludge to a temperature suitable for acid fermentation treatment, so the heat utilization efficiency is high, and organic wastewater is produced with less heat energy. Can be processed.

なお、この実施形態では、改質余剰汚泥を熱交換器Q1に通して、改質余剰汚泥の熱を利用して直接的に初沈汚泥を加熱したが、例えば、熱交換器Q1と可溶化処理槽8との間に熱媒体の循環経路を設け、改質余剰汚泥の熱を利用し、熱媒体を介して間接的に初沈汚泥を加熱するようにしてもよい。このようにすることで、熱の利用効率を高めて、より小さい熱エネルギーで有機性廃水を処理することができる。   In this embodiment, the reformed surplus sludge is passed through the heat exchanger Q1, and the initial settling sludge is directly heated using the heat of the reformed surplus sludge. For example, the solubilized with the heat exchanger Q1 is used. A heat medium circulation path may be provided between the treatment tank 8 and the heat of the reformed excess sludge may be used to indirectly heat the first settling sludge via the heat medium. By doing in this way, the utilization efficiency of a heat | fever can be improved and an organic waste water can be processed with a smaller thermal energy.

1:第1固液分離槽
2:初沈汚泥貯留槽
3:酸発酵処理槽
4:汚泥混合槽
5:曝気槽
6:第2固液分離槽
7:余剰汚泥貯留槽
8:可溶化処理槽
9:メタン発酵槽
10:ガスホルダ
11:蒸気ボイラー
1: First solid-liquid separation tank 2: Initial settling sludge storage tank 3: Acid fermentation treatment tank 4: Sludge mixing tank 5: Aeration tank 6: Second solid-liquid separation tank 7: Surplus sludge storage tank 8: Solubilization treatment tank 9: Methane fermentation tank 10: Gas holder 11: Steam boiler

Claims (5)

有機性廃水から初沈汚泥を除去する初沈汚泥除去工程と、初沈汚泥が除去された有機性廃水を活性汚泥処理する活性汚泥処理工程と、活性汚泥処理後の処理液から余剰汚泥を除去する余剰汚泥除去工程と、前記初沈汚泥及び前記余剰汚泥をメタン発酵槽に導入してメタン発酵処理するメタン発酵処理工程とを有する有機性廃水の処理方法であって、
前記初沈汚泥を30〜40℃で3〜4日酸発酵処理し、前記余剰汚泥を60〜90℃で可溶化処理した後、両者を混合して混合汚泥とし、該混合汚泥を前記メタン発酵槽に導入することを特徴とする有機性廃水の処理方法。
Initial sludge removal process to remove primary sludge from organic waste water, activated sludge treatment process to treat organic waste water from which primary sludge has been removed, and excess sludge from the treatment liquid after activated sludge treatment A wastewater sludge removal step, and a method of treating organic wastewater having a methane fermentation treatment step of introducing the initial sludge and the surplus sludge into a methane fermentation tank to perform methane fermentation treatment,
The initial settling sludge is subjected to acid fermentation treatment at 30 to 40 ° C. for 3 to 4 days, the surplus sludge is solubilized at 60 to 90 ° C., and then mixed to form mixed sludge. An organic wastewater treatment method characterized by being introduced into a tank.
前記メタン発酵槽から発生したバイオガスを熱源として前記余剰汚泥を加熱し、次いでその余熱を利用して前記混合汚泥を加熱する、請求項1に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1, wherein the surplus sludge is heated using biogas generated from the methane fermentation tank as a heat source, and then the mixed sludge is heated using the surplus heat. 前記可溶化処理された余剰汚泥の熱を利用して、直接的又は間接的に前記初沈汚泥を加熱して酸発酵処理する、請求項1又は2に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1 or 2, wherein the heat of the solubilized surplus sludge is used to heat the primary sedimentation sludge directly or indirectly for acid fermentation treatment. 有機性廃水から初沈汚泥を除去する第1固液分離槽と、初沈汚泥が除去された有機性廃水を活性汚泥処理する曝気槽と、活性汚泥処理後の処理液から余剰汚泥を除去する第2固液分離槽と、前記初沈汚泥及び前記余剰汚泥をメタン発酵処理するメタン発酵槽と、前記メタン発酵槽から発生するバイオガスを燃焼して熱源を生成するボイラーとを備えた有機性廃水処理装置であって、
前記初沈汚泥を酸発酵処理する酸発酵処理槽と、前記余剰汚泥を加熱して可溶化処理する可溶化処理槽と、前記ボイラーの熱を利用して前記余剰汚泥及び前記初沈汚泥を加熱する加熱手段と、酸発酵処理後の初沈汚泥及び可溶化処理後の余剰汚泥を混合して前記メタン発酵槽に供給する汚泥混合槽とを備えることを特徴とする有機性廃水処理装置。
A first solid-liquid separation tank that removes primary sedimentation sludge from organic wastewater, an aeration tank that treats organic wastewater from which primary sedimentation sludge has been removed, and excess sludge from the treatment liquid after activated sludge treatment Organic having a second solid-liquid separation tank, a methane fermentation tank that performs methane fermentation treatment of the initial settling sludge and the excess sludge, and a boiler that generates a heat source by burning biogas generated from the methane fermentation tank A wastewater treatment device,
An acid fermentation treatment tank for acid fermentation treatment of the initial settling sludge, a solubilization treatment tank for heating and solubilizing the excess sludge, and heating the excess sludge and the initial settling sludge using heat of the boiler An organic wastewater treatment apparatus comprising: a heating means that performs mixing, and a sludge mixing tank that mixes the first settling sludge after acid fermentation treatment and surplus sludge after solubilization treatment and supplies the mixed sludge to the methane fermentation tank.
前記加熱手段として、前記第1固液分離槽と前記酸発酵処理槽との間の経路又は前記酸発酵処理槽に設けられた第1熱交換器と、前記第2固液分離槽と前記可溶化処理槽との間の経路又は前記可溶化処理槽に設けられた第2熱交換器と、前記汚泥混合槽と前記メタン発酵槽との間の経路に設けられた第3熱交換器とを有し、
前記ボイラーから生成した熱源の少なくとも一部が、前記第2熱交換器を経由して前記余剰汚泥と熱交換した後、前記第3熱交換器を通過して前記混合汚泥と熱交換するように構成され、
前記可溶化処理後の余剰汚泥の少なくとも一部が、前記第1熱交換器を経由して前記初沈汚泥と熱交換した後、前記汚泥混合槽に導入するように構成されている、請求項4に記載の有機性廃水処理装置。
As the heating means, a path between the first solid-liquid separation tank and the acid fermentation treatment tank or a first heat exchanger provided in the acid fermentation treatment tank, the second solid-liquid separation tank, and the acceptable A path between the solubilization tank or the second heat exchanger provided in the solubilization tank, and a third heat exchanger provided in the path between the sludge mixing tank and the methane fermentation tank. Have
At least a part of the heat source generated from the boiler exchanges heat with the surplus sludge via the second heat exchanger, and then exchanges heat with the mixed sludge via the third heat exchanger. Configured,
The at least part of the excess sludge after the solubilization treatment is configured to be introduced into the sludge mixing tank after heat exchange with the first settling sludge via the first heat exchanger. 4. The organic wastewater treatment apparatus according to 4.
JP2010076549A 2010-03-30 2010-03-30 Organic wastewater treatment method and treatment apparatus Active JP5441787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076549A JP5441787B2 (en) 2010-03-30 2010-03-30 Organic wastewater treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076549A JP5441787B2 (en) 2010-03-30 2010-03-30 Organic wastewater treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2011206667A true JP2011206667A (en) 2011-10-20
JP5441787B2 JP5441787B2 (en) 2014-03-12

Family

ID=44938370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076549A Active JP5441787B2 (en) 2010-03-30 2010-03-30 Organic wastewater treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP5441787B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042972A1 (en) * 2016-09-02 2018-03-08 メタウォーター株式会社 Organic wastewater treatment method and organic wastewater treatment device
KR20180106010A (en) * 2017-03-17 2018-10-01 주윤식 Sludge resource circulation system and method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167000A (en) * 1980-05-26 1981-12-22 Hitachi Plant Eng & Constr Co Ltd Anaerobic digestion of sewage sludge
JPS5784798A (en) * 1980-11-15 1982-05-27 Takuma Sogo Kenkyusho:Kk Tratment of sludge
JPS57107299A (en) * 1980-12-26 1982-07-03 Takuma Sogo Kenkyusho:Kk Anaerobic sludge digestion method
JPS5870896A (en) * 1981-10-26 1983-04-27 Ebara Infilco Co Ltd Anaerobic digestion of sewage sludge
JPS5895600A (en) * 1981-11-30 1983-06-07 Takuma Sogo Kenkyusho:Kk Treatment of sludge
JPS59136196A (en) * 1983-01-26 1984-08-04 Takuma Sogo Kenkyusho:Kk Sludge treatment
JPH0699199A (en) * 1992-09-22 1994-04-12 Ngk Insulators Ltd Anaerobic digestion treatment of organic sludge
JP2003305498A (en) * 2002-04-11 2003-10-28 Kurita Water Ind Ltd Sludge treatment apparatus
JP2004000837A (en) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd Anaerobic treatment method for organic waste and treatment system using the same
JP2004041902A (en) * 2002-07-11 2004-02-12 Mitsubishi Kakoki Kaisha Ltd Sludge treatment equipment and sludge treatment method
JP2004330152A (en) * 2003-05-12 2004-11-25 Ebara Engineering Service Co Ltd Wastewater treatment method and apparatus therefor
JP2004330153A (en) * 2003-05-12 2004-11-25 Ebara Corp Methane fermentation treating method and apparatus
JP2006122861A (en) * 2004-11-01 2006-05-18 Mitsubishi Kakoki Kaisha Ltd Apparatus for treating organic waste water

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167000A (en) * 1980-05-26 1981-12-22 Hitachi Plant Eng & Constr Co Ltd Anaerobic digestion of sewage sludge
JPS5784798A (en) * 1980-11-15 1982-05-27 Takuma Sogo Kenkyusho:Kk Tratment of sludge
JPS57107299A (en) * 1980-12-26 1982-07-03 Takuma Sogo Kenkyusho:Kk Anaerobic sludge digestion method
JPS5870896A (en) * 1981-10-26 1983-04-27 Ebara Infilco Co Ltd Anaerobic digestion of sewage sludge
JPS5895600A (en) * 1981-11-30 1983-06-07 Takuma Sogo Kenkyusho:Kk Treatment of sludge
JPS59136196A (en) * 1983-01-26 1984-08-04 Takuma Sogo Kenkyusho:Kk Sludge treatment
JPH0699199A (en) * 1992-09-22 1994-04-12 Ngk Insulators Ltd Anaerobic digestion treatment of organic sludge
JP2003305498A (en) * 2002-04-11 2003-10-28 Kurita Water Ind Ltd Sludge treatment apparatus
JP2004000837A (en) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd Anaerobic treatment method for organic waste and treatment system using the same
JP2004041902A (en) * 2002-07-11 2004-02-12 Mitsubishi Kakoki Kaisha Ltd Sludge treatment equipment and sludge treatment method
JP2004330152A (en) * 2003-05-12 2004-11-25 Ebara Engineering Service Co Ltd Wastewater treatment method and apparatus therefor
JP2004330153A (en) * 2003-05-12 2004-11-25 Ebara Corp Methane fermentation treating method and apparatus
JP2006122861A (en) * 2004-11-01 2006-05-18 Mitsubishi Kakoki Kaisha Ltd Apparatus for treating organic waste water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042972A1 (en) * 2016-09-02 2018-03-08 メタウォーター株式会社 Organic wastewater treatment method and organic wastewater treatment device
JPWO2018042972A1 (en) * 2016-09-02 2019-06-24 メタウォーター株式会社 Method of treating organic drainage and treatment apparatus of organic drainage
EP3508457A4 (en) * 2016-09-02 2019-07-10 Metawater Co., Ltd. Organic wastewater treatment method and organic wastewater treatment device
US10723646B2 (en) 2016-09-02 2020-07-28 Metawater Co., Ltd. Organic wastewater treatment method and organic wastewater treatment device
KR20180106010A (en) * 2017-03-17 2018-10-01 주윤식 Sludge resource circulation system and method
KR102340194B1 (en) * 2017-03-17 2021-12-15 주윤식 Sludge resource circulation system and method

Also Published As

Publication number Publication date
JP5441787B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
US9758416B2 (en) System and method for treating wastewater and resulting sludge
CN101835715B (en) Sludge treating system
WO2012086416A1 (en) Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
DK2233442T3 (en) A method for thermal hydrolysis of sludge
JP7440575B2 (en) Digestion equipment
JP2009214043A (en) Biological treatment method for organic waste liquid, and treatment device therefor
JP2003200198A (en) Method and apparatus for treating sludge
JP4292610B2 (en) Organic wastewater treatment equipment
JP5441787B2 (en) Organic wastewater treatment method and treatment apparatus
JP2006281074A (en) Organic sludge treatment method
JP3804507B2 (en) Biogasification method for organic waste
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
KR101336260B1 (en) Anaerobic digestion system
KR102073704B1 (en) Hybrid wastewater and sludge reduction treatment system
JP4365617B2 (en) Organic waste liquid processing method and processing apparatus
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
KR20200073089A (en) Jinseng processing organic wasted water treating apparatus
CN105339314A (en) Method and installation for the thermal hydrolysis of biomass
KR20190089664A (en) High concentrated organic wasted water treating apparatus
JP2002316186A (en) Anaerobic digestion apparatus
KR101979423B1 (en) High concentrated organic wasted water treating method
JP2007117801A (en) Methane fermentation treatment method of organic waste and its apparatus
JP2004321931A (en) Method and apparatus for treating organic waste liquid
KR20150109779A (en) Method and Apparatus for Recovering Organic Carbon Source by Self-heating Aerobic Process Using High-efficiency Sludge decreasing
JP2004016844A (en) Drainage treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5441787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250