JP2011206392A - Method of manufacturing medical pipe - Google Patents

Method of manufacturing medical pipe Download PDF

Info

Publication number
JP2011206392A
JP2011206392A JP2010078881A JP2010078881A JP2011206392A JP 2011206392 A JP2011206392 A JP 2011206392A JP 2010078881 A JP2010078881 A JP 2010078881A JP 2010078881 A JP2010078881 A JP 2010078881A JP 2011206392 A JP2011206392 A JP 2011206392A
Authority
JP
Japan
Prior art keywords
pipe
manufacturing
medical
wire
medical pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010078881A
Other languages
Japanese (ja)
Other versions
JP5552350B2 (en
Inventor
Dai Akitomo
大 秋友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2010078881A priority Critical patent/JP5552350B2/en
Publication of JP2011206392A publication Critical patent/JP2011206392A/en
Application granted granted Critical
Publication of JP5552350B2 publication Critical patent/JP5552350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a medical pipe which equalizes the inside diameters of the medical pipes when the medical pipes of sizes insertable into blood vessels or the like are manufactured.SOLUTION: The method of manufacturing the medical pipes is intended for manufacturing the medical pipes 10 from a tubular pipe 11 having tiny irregularities formed on the inside periphery. The medical pipe manufacturing method has a process of carrying out flattening to reduce the irregularities. The flattening process is a process of inserting a wire rod 1 harder than the pipe 11 into the pipe 11 and rotating it around the axis of the pipe 11 while moving it along the axial direction of the pipe 11.

Description

本発明は、医療用パイプの製造方法に関する。   The present invention relates to a method for manufacturing a medical pipe.

消化管、血管等の生体管腔にカテーテルを挿入する際には、当該カテーテルを生体管腔の目的部位まで誘導するために、ガイドワイヤが用いられる(例えば、特許文献1参照)。この特許文献1に記載のガイドワイヤは、カテーテル内に挿通して用いられる。そして、ガイドワイヤが挿通したカテーテルを別のカテーテルに交換したい場合には、ガイドワイヤ(以下「第1のガイドワイヤ」という)の基端部に延長用のガイドワイヤ(以下「第2のガイドワイヤ」という)を接続して、その交換作業を行なう。この第1のガイドワイヤと第2のガイドワイヤとの接続構造としては、次のような構造が用いられている。   When a catheter is inserted into a biological lumen such as a digestive tract or a blood vessel, a guide wire is used to guide the catheter to a target site in the biological lumen (for example, see Patent Document 1). The guide wire described in Patent Document 1 is used by being inserted into a catheter. When it is desired to replace the catheter through which the guide wire is inserted with another catheter, an extension guide wire (hereinafter referred to as “second guide wire”) is provided at the proximal end portion of the guide wire (hereinafter referred to as “first guide wire”). ”) And connect the parts. As a connection structure between the first guide wire and the second guide wire, the following structure is used.

第1のガイドワイヤには、その基端部に管状の第1の接続部が設けられている。一方、第2のガイドワイヤには、その先端部に外径が第1の接続部と嵌合する程度の大きさの第2の接続部が設けられている。第1の接続部に第2の接続部を挿入することにより、これらの接続部同士が嵌合して、接続される。   The first guide wire is provided with a tubular first connection portion at the base end portion thereof. On the other hand, the second guide wire is provided with a second connection portion having an outer diameter that is large enough to fit the first connection portion at the distal end portion thereof. By inserting the second connection portion into the first connection portion, these connection portions are fitted and connected.

しかしながら、特許文献1に記載のガイドワイヤでは、第1のガイドワイヤの外径が0.0457mm(0.018in)であるので、第1の接続部の内径は、それよりも小さいものとなり、その寸法管理が非常に難しい。例えば、第1の接続部の内径を所望の大きさにするには、その内径よりも大きい状態の第1の接続部に対しエッチング法で処理することができるが、処理時間の長短やエッチング液の濃度の高低によっては、処理後の内径が所望の内径よりも大きすぎたり、小さすぎたりする場合がある。そして、内径が大き過ぎる第1の接続部に第2の接続部を挿入したとしても、これらの接続部同士の嵌合力が弱く、第1の接続部から第2の接続部が容易に抜去してしまう。一方、内径が小さ過ぎる第1の接続部に第2の接続部を挿入しようとしても、その挿入がし辛いまたは不可能となる。さらに、その後にエッチング液を洗浄しなければならず、工程が1つ増えてしまう。また、前述したエッチング法の他にドリルを用いる方法も考えられるが、ドリルで内径が1mm以下のものを加工するのは事実上困難である。さらに、ドリルによる加工では、削りカスが生じ、その削りカスを取り除く作業が必要となる。   However, in the guide wire described in Patent Document 1, since the outer diameter of the first guide wire is 0.0457 mm (0.018 in), the inner diameter of the first connecting portion is smaller than that. Dimension management is very difficult. For example, in order to make the inner diameter of the first connection portion a desired size, the first connection portion in a state larger than the inner diameter can be processed by an etching method. Depending on the level of the concentration, the inner diameter after treatment may be too large or too small than the desired inner diameter. And even if it inserts a 2nd connection part in the 1st connection part whose internal diameter is too large, the fitting force of these connection parts is weak, and the 2nd connection part can be easily extracted from the 1st connection part. End up. On the other hand, even if an attempt is made to insert the second connection portion into the first connection portion whose inner diameter is too small, the insertion is difficult or impossible. Furthermore, after that, the etching solution must be washed, which increases one process. In addition to the etching method described above, a method using a drill is also conceivable, but it is practically difficult to process a drill having an inner diameter of 1 mm or less. Further, in machining with a drill, shavings are generated, and it is necessary to remove the shavings.

また、同様に、血管内に留置して使用されるステント等、内径が小さく、また、微細な加工を必要とする医療器具は、精度の高い内径管理が求められ、上述した方法では、ばらつきが生じ、歩留まりが悪くなってしまう。   Similarly, a medical instrument that has a small inner diameter and requires fine processing, such as a stent used by being placed in a blood vessel, requires highly accurate inner diameter management. And the yield will deteriorate.

このように、従来の方法では、細管を製造する際、その内径にばらつきが生じ易い、すなわち、歩留まりが悪く、均一なものが得られ難いという問題があった。   As described above, the conventional method has a problem in that when manufacturing a thin tube, the inner diameter tends to vary, that is, the yield is poor and it is difficult to obtain a uniform product.

特開平6−197979号公報JP-A-6-197979

本発明の目的は、血管内に挿入可能なサイズの医療用パイプを製造する際にその医療用パイプの内径が均一となる医療用パイプの製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a medical pipe in which the inner diameter of the medical pipe is uniform when manufacturing a medical pipe of a size that can be inserted into a blood vessel.

このような目的は、下記(1)〜(12)の本発明により達成される。
(1) 内周面に微小な凹凸を有するパイプから医療用パイプを製造する方法であって、
前記凹凸を低減させる平滑化処理を施す工程を有し、
前記平滑化処理は、複数箇所で屈曲または湾曲した波形をなし、前記パイプよりも硬質の線材を前記パイプに挿入して、該パイプの軸方向に沿って移動させつつ、前記パイプの軸回りに回転させることを特徴とする医療用パイプの製造方法。
Such an object is achieved by the present inventions (1) to (12) below.
(1) A method for producing a medical pipe from a pipe having minute irregularities on its inner peripheral surface,
Having a step of performing a smoothing treatment to reduce the unevenness;
The smoothing process forms a waveform that is bent or curved at a plurality of locations, and a wire rod that is harder than the pipe is inserted into the pipe and moved along the axial direction of the pipe, while moving around the axis of the pipe. A method for producing a medical pipe, comprising rotating the medical pipe.

(2) 前記平滑化処理は、前記凹凸における凸部を潰して凹部を埋め、前記内周面に対する平滑化を行なう処理である上記(1)に記載の医療用パイプの製造方法。   (2) The said smoothing process is a manufacturing method of the medical pipe as described in said (1) which is a process which crushes the convex part in the said unevenness | corrugation, fills a recessed part, and smoothes with respect to the said internal peripheral surface.

(3) 前記平滑化処理は、前記パイプの内周面からの屑の発生が防止または抑制される程度に行なわれる上記(2)に記載の医療用パイプの製造方法。   (3) The said smoothing process is a manufacturing method of the medical pipe as described in said (2) performed to such an extent that generation | occurrence | production of the waste from the internal peripheral surface of the said pipe is prevented or suppressed.

(4) 前記線材の移動は、往復動である上記(1)ないし(3)のいずれかに記載の医療用パイプの製造方法。   (4) The method for manufacturing a medical pipe according to any one of (1) to (3), wherein the movement of the wire is reciprocation.

(5) 前記線材の回転は、連続回転である上記(1)ないし(4)のいずれかに記載の医療用パイプの製造方法。   (5) The method for manufacturing a medical pipe according to any one of (1) to (4), wherein the wire is rotated continuously.

(6) 前記線材は、前記パイプに挿入されると該パイプの径方向に圧縮される上記(1)ないし(5)のいずれかに記載の医療用パイプの製造方法。   (6) The method for manufacturing a medical pipe according to any one of (1) to (5), wherein when the wire is inserted into the pipe, the wire is compressed in a radial direction of the pipe.

(7) 前記線材は、外力を付与しない自然状態で、前記波形の振幅が前記パイプの平均内径よりも大きいものである上記(1)ないし(6)のいずれかに記載の医療用パイプの製造方法。   (7) The manufacturing of the medical pipe according to any one of (1) to (6), wherein the wire is in a natural state in which an external force is not applied, and an amplitude of the waveform is larger than an average inner diameter of the pipe. Method.

(8) 前記線材は、外力を付与しない自然状態で、前記波形の波長が0.5〜10mmである上記(1)ないし(7)のいずれかに記載の医療用パイプの製造方法。   (8) The said wire is a manufacturing method of the medical pipe in any one of said (1) thru | or (7) whose wavelength of the said waveform is 0.5-10 mm in the natural state which does not provide external force.

(9) 前記線材の横断面形状は、円形または楕円形である上記(1)ないし(8)のいずれかに記載の医療用パイプの製造方法。   (9) The method for manufacturing a medical pipe according to any one of (1) to (8), wherein the cross-sectional shape of the wire is circular or elliptical.

(10) 前記線材は、形状および構成材料のうちの少なくとも1つの条件が異なる2つの部分を有し、該各部分が順に用いられる上記(1)ないし(9)のいずれかに記載の医療用パイプの製造方法。   (10) The medical wire according to any one of (1) to (9), wherein the wire has two portions that differ in at least one of a shape and a constituent material, and the portions are used in order. Pipe manufacturing method.

(11) 前記医療用パイプは、超弾性合金で構成されている上記(1)ないし(10)のいずれかに記載の医療用パイプの製造方法。   (11) The method for manufacturing a medical pipe according to any one of (1) to (10), wherein the medical pipe is made of a superelastic alloy.

(12) 前記医療用パイプの平均内径は、0.1〜2mmである上記(1)ないし(11)のいずれかに記載の医療用パイプの製造方法。   (12) The medical pipe manufacturing method according to any one of (1) to (11), wherein an average inner diameter of the medical pipe is 0.1 to 2 mm.

本発明によれば、パイプに対し平滑化処理を施すには、線材をパイプに挿入した状態で、パイプの軸方向に沿って移動させつつ、パイプの軸回りに回転させる。このような線材の変位により、パイプの内周面の凹凸を確実に低減させることができる。そして、このように製造された医療用パイプは、いずれも内径が均一のものとなり、また、医療用パイプの製造時に用いた潤滑剤等の不純物を同時に除去することができることから、粗度と抵抗とを大幅に低減することができる。   According to the present invention, in order to smooth the pipe, the wire is rotated around the axis of the pipe while being moved in the axial direction of the pipe while being inserted into the pipe. By such a displacement of the wire, the unevenness of the inner peripheral surface of the pipe can be reliably reduced. The medical pipes manufactured in this way all have a uniform inner diameter, and since impurities such as a lubricant used during the manufacture of the medical pipe can be removed at the same time, the roughness and resistance Can be greatly reduced.

本発明の医療用パイプの製造方法(第1実施形態)で医療用パイプを製造する状態を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the state which manufactures a medical pipe with the manufacturing method (1st Embodiment) of the medical pipe of this invention. 平滑化処理前の医療用パイプの状態(a)と平滑化処理後の医療用パイプの状態(b)を示す横断面図である。It is a cross-sectional view showing the state (a) of the medical pipe before the smoothing process and the state (b) of the medical pipe after the smoothing process. 本発明の医療用パイプの製造方法(第1実施形態)で医療用パイプを製造する状態を模式的に示す拡大横断面図である。It is an expanded cross-sectional view which shows typically the state which manufactures a medical pipe with the manufacturing method (1st Embodiment) of the medical pipe of this invention. 本発明の医療用パイプの製造方法(第2実施形態)で医療用パイプを製造する状態を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the state which manufactures a medical pipe with the manufacturing method (2nd Embodiment) of the medical pipe of this invention. 本発明の医療用パイプの製造方法で製造された医療用パイプの使用形態の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the usage condition of the medical pipe manufactured with the manufacturing method of the medical pipe of this invention.

以下、本発明の医療用パイプの製造方法を添付図面に示す好適な実施形態に基づいて詳細に説明する。   Hereinafter, the manufacturing method of the medical pipe of this invention is demonstrated in detail based on suitable embodiment shown to an accompanying drawing.

<第1実施形態>
図1は、本発明の医療用パイプの製造方法(第1実施形態)で医療用パイプを製造する状態を示す部分縦断面図、図2は、平滑化処理前の医療用パイプの状態(a)と平滑化処理後の医療用パイプの状態(b)を示す横断面図、図3は、本発明の医療用パイプの製造方法(第1実施形態)で医療用パイプを製造する状態を模式的に示す拡大横断面図、図5は、本発明の医療用パイプの製造方法で製造された医療用パイプの使用形態の一例を示す縦断面図である。なお、図2、図3中では、それぞれ、理解を容易にするため、医療用パイプの内周面に形成された微小な凹凸を誇張して模式的に図示しており、凹凸の大きさと医療用パイプの太さとの比率は実際とは異なる。
<First Embodiment>
FIG. 1 is a partial longitudinal sectional view showing a state where a medical pipe is manufactured by the method for manufacturing a medical pipe of the present invention (first embodiment), and FIG. 2 is a state (a) of the medical pipe before smoothing processing (a) ) And a cross-sectional view showing the state (b) of the medical pipe after the smoothing treatment, FIG. 3 schematically shows a state in which the medical pipe is manufactured by the method for manufacturing a medical pipe of the present invention (first embodiment). FIG. 5 is a longitudinal sectional view showing an example of a usage form of a medical pipe manufactured by the method for manufacturing a medical pipe of the present invention. In FIG. 2 and FIG. 3, for the sake of easy understanding, the minute irregularities formed on the inner peripheral surface of the medical pipe are schematically shown exaggeratedly. The ratio of the pipe thickness is different from the actual one.

まず、医療用パイプの製造方法について説明する前に、この製造方法により製造された医療用パイプ10の使用形態の一例について説明する。   First, before explaining the manufacturing method of a medical pipe, an example of the usage form of the medical pipe 10 manufactured by this manufacturing method will be described.

図5に示すように、医療用パイプ10は、可撓性を有する長尺な第1ワイヤ20aおよび第2ワイヤ20bの端部201同士を接続する接続部材として使用される。そして、この接続された1本のワイヤを例えばガイドワイヤとして用いることができる。この場合、医療用パイプ10の構成材料としては、例えば、Ni−Ti系合金、Ni−Al系合金、Cu−Zn系合金等の超弾性合金が挙げられる。また、第1ワイヤ20aおよび第2ワイヤ20bの構成材料としては、例えば、前記超弾性合金や、その他、ステンレス鋼等の種々の金属材料が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。このような構成材料を用いることにより、ガイドワイヤが柔軟性に富んだものとなる。また、超弾性合金は、金属材料の中でも比較的軟質なものでるため、加工し易い材料である。これにより、超弾性合金からなる医療用パイプ10を製造する際に、その製造を容易に行なうことができる。ここでは、ガイドワイヤを例に挙げたが、言うまでもなく、このような医療用パイプ10は、血管内に挿入可能な微細な管状パイプを使用する医療器具、例えば、ステント等、様々な医療器具に利用される。   As shown in FIG. 5, the medical pipe 10 is used as a connecting member that connects the ends 201 of the long first wire 20a and the second wire 20b having flexibility. The single connected wire can be used as a guide wire, for example. In this case, examples of the constituent material of the medical pipe 10 include superelastic alloys such as a Ni—Ti alloy, a Ni—Al alloy, and a Cu—Zn alloy. Moreover, as a constituent material of the 1st wire 20a and the 2nd wire 20b, various metal materials, such as the said superelastic alloy and stainless steel, are mentioned, for example, 1 type or 2 types or more of these are mentioned. They can be used in combination. By using such a constituent material, the guide wire becomes rich in flexibility. A superelastic alloy is a material that is relatively soft among metal materials, and is therefore a material that can be easily processed. Thereby, when manufacturing the medical pipe 10 which consists of a superelastic alloy, the manufacture can be performed easily. Here, a guide wire is taken as an example. Needless to say, such a medical pipe 10 is used for various medical instruments such as a stent using a fine tubular pipe that can be inserted into a blood vessel. Used.

次に、医療用パイプ10を製造する方法について説明する。この製造方法は、特に、血管内に挿入することを目的とした医療器具に用いることができるような細管の製造に適している。ここで、「細管」とは、内径(平均)φdが好ましくは0.1〜2mmであり、より好ましくは0.2〜0.5mmであるものをいう。   Next, a method for manufacturing the medical pipe 10 will be described. This manufacturing method is particularly suitable for manufacturing a thin tube that can be used in a medical instrument intended to be inserted into a blood vessel. Here, the “capillary tube” means that the inner diameter (average) φd is preferably 0.1 to 2 mm, more preferably 0.2 to 0.5 mm.

図2に示すように、医療用パイプ10は、エッチングやドリル加工等の従来の方法で作成された管状をなすパイプ11から得られるものである。このパイプ11は、内周面101にパイプ11を成形する際に生じた凹凸が形成されたものである、すなわち、内周面101に微小な凹部102や凸部103が多数形成されたものである。そして、パイプ11の内径φdが目標内径である医療用パイプ10の内径φdとなるように、すなわち、パイプ11の内周面101の位置が図2(a)中の二点鎖線の位置となるように、パイプ11に対し凹凸を低減させる平滑化処理を施す。   As shown in FIG. 2, the medical pipe 10 is obtained from a tubular pipe 11 made by a conventional method such as etching or drilling. The pipe 11 is formed by forming irregularities generated when the pipe 11 is formed on the inner peripheral surface 101, that is, a plurality of minute concave portions 102 and convex portions 103 are formed on the inner peripheral surface 101. is there. Then, the inner diameter φd of the pipe 11 is the target inner diameter φd, that is, the position of the inner peripheral surface 101 of the pipe 11 is the position of the two-dot chain line in FIG. Thus, the smoothing process which reduces an unevenness | corrugation with respect to the pipe 11 is performed.

平滑化処理では、その平滑化処理用の治具として、横断面形状が円形の線材1を用いる。図1(a)に示すように、線材1は、外力を付与しない自然状態(以下単に「自然状態」と言う)で、複数箇所で湾曲した波形(コイル状を含む)をなす部材である。パイプ11に対し平滑化処理を施すには、図1(b)に示すように、線材1をパイプ11に挿入した状態で、パイプ11の軸方向に沿って矢印A方向に移動させつつ、その軸回りに矢印B方向に回転させる。このような線材1の変位により、図3に示すように、線材1の各湾曲点(波形の山の頂点)2で凸部103を押し潰すことができ、当該潰された凸部103で、その周辺の凹部102を埋めることができる。これにより、内周面101がならされて、内周面101に対する平滑化処理を確実に行なうことができる。   In the smoothing process, the wire 1 having a circular cross section is used as the jig for the smoothing process. As shown in FIG. 1A, the wire 1 is a member that forms a waveform (including a coil shape) that is curved at a plurality of locations in a natural state (hereinafter simply referred to as “natural state”) in which no external force is applied. To smooth the pipe 11, as shown in FIG. 1 (b), the wire 1 is inserted into the pipe 11 and moved in the direction of arrow A along the axial direction of the pipe 11. Rotate in the direction of arrow B around the axis. Due to such displacement of the wire 1, as shown in FIG. 3, the convex portion 103 can be crushed at each bending point (the peak of the corrugated mountain) 2 of the wire 1, and the crushed convex portion 103 The peripheral recess 102 can be filled. Thereby, the inner peripheral surface 101 is smoothed and the smoothing process for the inner peripheral surface 101 can be reliably performed.

なお、平滑化された内周面101を例えば電子顕微鏡で観察すると、凸部103が潰れて、その潰れた凸部103が凹部102に移行した痕跡を確認することができる。   Note that when the smoothed inner peripheral surface 101 is observed with, for example, an electron microscope, it is possible to confirm a trace in which the convex portion 103 is crushed and the crushed convex portion 103 is transferred to the concave portion 102.

線材1は、パイプ11(医療用パイプ10)よりも硬質の材料で構成され、その材料としては、パイプ11が前記超弾性合金である場合には、例えば、ステンレス鋼が挙げられ、これらの中でも特にステンレス鋼が好ましい。このような硬質の線材1がパイプ11に対し前述したように変位することにより、凸部103を確実に潰して、凹部102を埋めることができ、よって、内周面101に対する平滑化処理をより確実に行なうことができる。   The wire 1 is made of a material harder than the pipe 11 (medical pipe 10). As the material, when the pipe 11 is the superelastic alloy, for example, stainless steel can be cited. Among these, Stainless steel is particularly preferable. By displacing the hard wire 1 with respect to the pipe 11 as described above, the convex portion 103 can be reliably crushed and the concave portion 102 can be filled, so that the inner peripheral surface 101 can be further smoothed. It can be done reliably.

図1(a)に示すように、線材1の自然状態での波形の振幅e、特に、その2倍は、パイプ11の内径φdよりも大きいのが好ましい。その大きさとしては、特に限定されないが、例えば、2e/φdが1.01〜4であるのが好ましく、1.5〜2.5であるのがより好ましい。これにより、図1(b)に示すように、線材1をパイプ11に挿入した状態では、当該線材1は、各湾曲点2がそれぞれパイプ11の内周面101に規制されて、パイプ11の径方向に圧縮された状態となる。これにより、各湾曲点2がそれぞれパイプ11の内周面101に当接することができ、よって、前述したように湾曲点2で凸部103を潰して、凹部102を埋めることができる。   As shown in FIG. 1 (a), it is preferable that the amplitude e of the waveform of the wire 1 in the natural state, in particular twice, is larger than the inner diameter φd of the pipe 11. Although the size is not particularly limited, for example, 2e / φd is preferably 1.01 to 4, more preferably 1.5 to 2.5. As a result, as shown in FIG. 1B, in the state where the wire 1 is inserted into the pipe 11, the bending point 2 of the wire 1 is restricted by the inner peripheral surface 101 of the pipe 11. It becomes a state compressed in the radial direction. Thereby, each bending point 2 can contact | abut to the internal peripheral surface 101 of the pipe 11, respectively, Therefore, as above-mentioned, the convex part 103 can be crushed by the curved point 2, and the recessed part 102 can be filled.

また、線材1の形成条件として、振幅eの他に、次の数値範囲に設定するのが好ましい。   In addition to the amplitude e, the formation condition of the wire 1 is preferably set to the following numerical range.

線材1の自然状態での波形の波長λは、特に限定されないが、例えば、0.5〜10mmであるのが好ましく、2〜3mmであるのがより好ましい。   Although the wavelength λ of the waveform in the natural state of the wire 1 is not particularly limited, for example, it is preferably 0.5 to 10 mm, and more preferably 2 to 3 mm.

また、線材1の直径φfは、長手方向に沿って一定であり、その大きさは、パイプ11の内径φdの30〜99%であるのが好ましく、90〜99%であるのがより好ましい。   The diameter φf of the wire 1 is constant along the longitudinal direction, and the size is preferably 30 to 99% of the inner diameter φd of the pipe 11 and more preferably 90 to 99%.

線材1の形成条件をこのような数値範囲に設定することにより、前記大きさの細管の製造に特に適した線材1となり、よって、平滑化処理を効率的に行なうことができる。また、医療用パイプ10製造時に用いた潤滑剤等、不純物や硬い異物も除去することができる。   By setting the forming condition of the wire 1 within such a numerical range, the wire 1 is particularly suitable for manufacturing the above-mentioned size of the thin tube, and therefore the smoothing process can be performed efficiently. Further, impurities and hard foreign matters such as a lubricant used in manufacturing the medical pipe 10 can be removed.

また、研削や研磨等の従来の機械加工により医療用パイプ10の内径φdを所望の大きさにしようとした場合には、切り屑が生じ、その切り屑を除去する除去工程を経なければならない。これに対し、本製造方法は、金属内面の凹凸を踏みならす効果があるため、切り屑が生じず、前記従来の機械加工と異なり、除去工程を省略することができる。   Moreover, when trying to make the internal diameter φd of the medical pipe 10 to a desired size by conventional machining such as grinding or polishing, chips are generated and a removal process for removing the chips must be performed. . On the other hand, since this manufacturing method has the effect of leveling the unevenness of the metal inner surface, chips are not generated, and the removal step can be omitted unlike the conventional machining.

なお、前記屑の発生が防止または抑制されていることを確認する方法としては、例えば、医療用パイプ10の内径を確認するにより行なうことができる。   In addition, as a method of confirming that generation | occurrence | production of the said waste is prevented or suppressed, it can carry out by confirming the internal diameter of the medical pipe 10, for example.

以上のような本製造方法により製造された医療用パイプ10は、その内周面101が平滑され、かつ、内径φdが確実に所望の大きさのものとなっている。この平滑化された内周面101の表面粗さRa(JIS B 0601に規定)は、通常、0.01〜0.02μmとなる。   The medical pipe 10 manufactured by the above manufacturing method as described above has a smooth inner surface 101 and a desired inner diameter φd. The surface roughness Ra (specified in JIS B 0601) of the smoothed inner peripheral surface 101 is usually 0.01 to 0.02 μm.

また、前述したように医療用パイプ10を第1ワイヤ20aと第2ワイヤ20bとを接続する接続部材として用いた場合、医療用パイプ10の内周面101が平滑化されているため、その挿接続操作、すなわち、第1ワイヤ20aの端部201を医療用パイプ10の一端部に挿入し、第2ワイヤ20bの端部201を医療用パイプ10の他端部に挿入する操作を容易に行なうことができる。   Further, as described above, when the medical pipe 10 is used as a connecting member for connecting the first wire 20a and the second wire 20b, the inner peripheral surface 101 of the medical pipe 10 is smoothed. The connecting operation, that is, the operation of inserting the end 201 of the first wire 20a into one end of the medical pipe 10 and inserting the end 201 of the second wire 20b into the other end of the medical pipe 10 is easily performed. be able to.

また、本製造方法をステントに用いた場合には、ステントに用いられる金属の肉厚が周方向に、より一定となるため、レーザカット時のばらつき(切り残し、反対側の内面に切り傷が残る等)を防止することができる。また、医療用パイプ10のパイプ11以外の物質(例えば製造時に用いる潤滑剤や油等の残り)のみを効率的に取り除くことができ、これにより、この後行なわれる薬品の研磨時の内外面の研磨に差が生じにくくなる。   In addition, when this manufacturing method is used for a stent, the thickness of the metal used for the stent becomes more constant in the circumferential direction, so that there is variation during laser cutting (leaves a cut and leaves a cut on the inner surface on the opposite side. Etc.) can be prevented. Further, only substances other than the pipe 11 of the medical pipe 10 (for example, the remainder of the lubricant or oil used in the manufacturing) can be efficiently removed, and thereby the inner and outer surfaces of the chemicals to be polished after that can be removed. Differences in polishing are less likely to occur.

<第2実施形態>
図4は、本発明の医療用パイプの製造方法(第2実施形態)で医療用パイプを製造する状態を示す部分縦断面図である。
Second Embodiment
FIG. 4 is a partial longitudinal sectional view showing a state in which a medical pipe is manufactured by the method for manufacturing a medical pipe of the present invention (second embodiment).

以下、この図を参照して本発明の医療用パイプの製造方法の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。   Hereinafter, the second embodiment of the method for manufacturing a medical pipe according to the present invention will be described with reference to this figure, but the description will focus on the differences from the above-described embodiment, and the description of the same matters will be omitted. .

本実施形態は、本発明の医療用パイプの製造方法で使用する線材の構成が異なること以外は前記第1実施形態と同様である。   This embodiment is the same as the first embodiment except that the configuration of the wire used in the method for manufacturing a medical pipe of the present invention is different.

図4に示す線材1Aは、大波長部3aと小波長部3bとを有している。大波長部3aと小波長部3bとは、線材1Aの長手方向に沿って、波形の波長が互いに異なる部分である。自然状態では、大波長部3aの波長λは、例えば、小波長部3bの波長λの150〜500%であるのが好ましく、200〜300%であるのがより好ましい。 The wire 1A shown in FIG. 4 has a large wavelength portion 3a and a small wavelength portion 3b. The large wavelength portion 3a and the small wavelength portion 3b are portions having different waveform wavelengths along the longitudinal direction of the wire 1A. In nature, the wavelength lambda a large wavelength portion 3a is, for example, is preferably 150 to 500% of the wavelength lambda b of the small wavelength portion 3b, and more preferably 200 to 300%.

そして、平滑化処理では、小波長部3b、大波長部3aの順に用いられる。この場合、粗い平滑化処理を剛性の高い小波長部3bで行い、それよりも細かい平滑化処理を接触面が広い大波長部3aで行なうことができる。このように段階的に平滑化処理を行なうことができ、よって、得られた医療用パイプ10はいずれも内径がより均一のものとなる。   In the smoothing process, the small wavelength portion 3b and the large wavelength portion 3a are used in this order. In this case, rough smoothing processing can be performed by the small wavelength portion 3b having high rigidity, and finer smoothing processing can be performed by the large wavelength portion 3a having a wide contact surface. In this way, the smoothing process can be performed in stages, so that the obtained medical pipe 10 has a more uniform inner diameter.

なお、線材1Aは、図示の構成では1本の線材に大波長部3aおよび小波長部3bを有するものであるが、これに限定されず、例えば、2本の線材からなり、各線材にそれぞれ大波長部3aおよび小波長部3bを有するものであってもよい。   In the configuration shown in the figure, the wire 1A has a large wavelength portion 3a and a small wavelength portion 3b in one wire. However, the wire 1A is not limited to this. For example, the wire 1A is composed of two wires. You may have the large wavelength part 3a and the small wavelength part 3b.

また、線材1Aは、図示の構成では波形の波長が互いに異なる2つの部分を有するものであるが、これに限定させず、例えば、波形の振幅が互いに異なる2つの部分を有するもの、構成材料(剛性)が互いに異なる2つの部分を有するもの、または、これらを組み合わせたものであってもよい。   Further, the wire 1A has two portions having different waveform wavelengths in the configuration shown in the drawing, but is not limited to this. For example, the wire 1A has two portions having different waveform amplitudes. It may have two parts with different stiffness) or may be a combination of these.

以上、本発明の医療用パイプの製造方法を図示の実施形態について説明したが、本発明は、これに限定されるものではない。   As mentioned above, although the manufacturing method of the medical pipe of this invention was demonstrated about embodiment of illustration, this invention is not limited to this.

また、本発明の医療用パイプの製造方法は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。   In addition, the medical pipe manufacturing method of the present invention may be a combination of any two or more configurations (features) of the above embodiments.

また、本発明の医療用パイプの製造方法で用いる線材は、前記各実施形態では複数箇所で湾曲した波形をなす部材であるが、これに限定されず、複数箇所で屈曲した波形をなす部材であってもよい。   In addition, the wire used in the method for manufacturing a medical pipe of the present invention is a member having a waveform that is curved at a plurality of locations in each of the above embodiments, but is not limited thereto, and is a member that has a waveform that is bent at a plurality of locations. There may be.

また、本発明の医療用パイプの製造方法で用いる線材は、前記各実施形態では横断面形状が円形の部材であるが、これに限定されず、横断面形状が楕円形の部材であってもよい。   Further, the wire used in the method for manufacturing a medical pipe of the present invention is a member having a circular cross-sectional shape in each of the above embodiments, but is not limited thereto, and may be a member having an elliptical cross-sectional shape. Good.

1、1A 線材
2 湾曲点(波形の山の頂点)
3a 大波長部
3b 小波長部
10 医療用パイプ
11 パイプ
101 内周面
102 凹部
103 凸部
20a 第1ワイヤ
20b 第2ワイヤ
201 端部
φd 内径
e 振幅
φf 直径
λ、λ、λ 波長
1, 1A Wire 2 Curved point (vertical peak of corrugated mountain)
3a the large wavelength portion 3b small wavelength portion 10 medical pipe 11 pipe 101 inner peripheral surface 102 recess 103 protrusion 20a first wire 20b second wire 201 ends φd inner diameter e amplitude φf diameter λ, λ a, λ b Wavelength

Claims (12)

内周面に微小な凹凸を有するパイプから医療用パイプを製造する方法であって、
前記凹凸を低減させる平滑化処理を施す工程を有し、
前記平滑化処理は、複数箇所で屈曲または湾曲した波形をなし、前記パイプよりも硬質の線材を前記パイプに挿入して、該パイプの軸方向に沿って移動させつつ、前記パイプの軸回りに回転させることを特徴とする医療用パイプの製造方法。
A method of manufacturing a medical pipe from a pipe having minute irregularities on an inner peripheral surface,
Having a step of performing a smoothing treatment to reduce the unevenness;
The smoothing process forms a waveform that is bent or curved at a plurality of locations, and a wire rod that is harder than the pipe is inserted into the pipe and moved along the axial direction of the pipe, while moving around the axis of the pipe. A method for producing a medical pipe, comprising rotating the medical pipe.
前記平滑化処理は、前記凹凸における凸部を潰して凹部を埋め、前記内周面に対する平滑化を行なう処理である請求項1に記載の医療用パイプの製造方法。   The method of manufacturing a medical pipe according to claim 1, wherein the smoothing process is a process of crushing a convex portion in the concave and convex portion to fill a concave portion and smoothing the inner peripheral surface. 前記平滑化処理は、前記パイプの内周面からの屑の発生が防止または抑制される程度に行なわれる請求項2に記載の医療用パイプの製造方法。   The said smoothing process is a manufacturing method of the medical pipe of Claim 2 performed to such an extent that generation | occurrence | production of the waste from the internal peripheral surface of the said pipe is prevented or suppressed. 前記線材の移動は、往復動である請求項1ないし3のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 3, wherein the movement of the wire is a reciprocating motion. 前記線材の回転は、連続回転である請求項1ないし4のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 4, wherein the rotation of the wire is continuous rotation. 前記線材は、前記パイプに挿入されると該パイプの径方向に圧縮される請求項1ないし5のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 5, wherein when the wire is inserted into the pipe, the wire is compressed in a radial direction of the pipe. 前記線材は、外力を付与しない自然状態で、前記波形の振幅が前記パイプの平均内径よりも大きいものである請求項1ないし6のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 6, wherein the wire is in a natural state in which an external force is not applied and the amplitude of the waveform is larger than an average inner diameter of the pipe. 前記線材は、外力を付与しない自然状態で、前記波形の波長が0.5〜10mmである請求項1ないし7のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 7, wherein the wire has a natural state in which an external force is not applied and a wavelength of the waveform is 0.5 to 10 mm. 前記線材の横断面形状は、円形または楕円形である請求項1ないし8のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 8, wherein a cross-sectional shape of the wire is a circle or an ellipse. 前記線材は、形状および構成材料のうちの少なくとも1つの条件が異なる2つの部分を有し、該各部分が順に用いられる請求項1ないし9のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 9, wherein the wire has two parts that differ in at least one of a shape and a constituent material, and the parts are used in order. 前記医療用パイプは、超弾性合金で構成されている請求項1ないし10のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 10, wherein the medical pipe is made of a superelastic alloy. 前記医療用パイプの平均内径は、0.1〜2mmである請求項1ないし11のいずれかに記載の医療用パイプの製造方法。   The method for manufacturing a medical pipe according to any one of claims 1 to 11, wherein an average inner diameter of the medical pipe is 0.1 to 2 mm.
JP2010078881A 2010-03-30 2010-03-30 Manufacturing method of medical pipe Active JP5552350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078881A JP5552350B2 (en) 2010-03-30 2010-03-30 Manufacturing method of medical pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078881A JP5552350B2 (en) 2010-03-30 2010-03-30 Manufacturing method of medical pipe

Publications (2)

Publication Number Publication Date
JP2011206392A true JP2011206392A (en) 2011-10-20
JP5552350B2 JP5552350B2 (en) 2014-07-16

Family

ID=44938158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078881A Active JP5552350B2 (en) 2010-03-30 2010-03-30 Manufacturing method of medical pipe

Country Status (1)

Country Link
JP (1) JP5552350B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018175127A (en) * 2017-04-07 2018-11-15 東海電気株式会社 Marker for body tube introduction and body tube introduction, as well as manufacturing method of them
JP7508630B1 (en) 2023-03-27 2024-07-01 株式会社古河テクノマテリアル Tubing and method for making tubing, as well as stents, guidewires and pressure guidewires

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115866A (en) * 1990-09-06 1992-04-16 Toyota Motor Corp Burnishing tool for roller
JPH05329770A (en) * 1992-05-27 1993-12-14 Daido Steel Co Ltd Hole inner finish machining method and device
JPH06225944A (en) * 1993-02-02 1994-08-16 Terumo Corp Catheter introducer
JPH10427A (en) * 1996-06-13 1998-01-06 Matsumoto Giken Kk Treatment method of inner surface of metal pipe
JP2007216342A (en) * 2006-02-17 2007-08-30 Natsume Optical Corp Polisher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115866A (en) * 1990-09-06 1992-04-16 Toyota Motor Corp Burnishing tool for roller
JPH05329770A (en) * 1992-05-27 1993-12-14 Daido Steel Co Ltd Hole inner finish machining method and device
JPH06225944A (en) * 1993-02-02 1994-08-16 Terumo Corp Catheter introducer
JPH10427A (en) * 1996-06-13 1998-01-06 Matsumoto Giken Kk Treatment method of inner surface of metal pipe
JP2007216342A (en) * 2006-02-17 2007-08-30 Natsume Optical Corp Polisher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018175127A (en) * 2017-04-07 2018-11-15 東海電気株式会社 Marker for body tube introduction and body tube introduction, as well as manufacturing method of them
JP7508630B1 (en) 2023-03-27 2024-07-01 株式会社古河テクノマテリアル Tubing and method for making tubing, as well as stents, guidewires and pressure guidewires

Also Published As

Publication number Publication date
JP5552350B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US10350715B2 (en) Method of producing a medical cutting instrument
JP2008036759A (en) Drill
JP6343005B2 (en) Drill and method of manufacturing cut product using the same
JP6139413B2 (en) Reamer root canal instrument
JP5368835B2 (en) Longitudinal ground file that is highly durable against damage due to torsion and repeated fatigue
JP5552350B2 (en) Manufacturing method of medical pipe
JP2011200963A (en) Drilling tool
JP2010057527A (en) Broach and method for manufacturing broach
CN111098101A (en) Novel root canal file processing technology and root canal file
US9408601B2 (en) Manufacturing method of an eyeless suture needle
US20120208146A1 (en) Fluted reamer comprising a plurality of helical cutting lips
CN105142580B (en) Flexible support
US20210177543A1 (en) Dental file
US7249414B2 (en) Method for making a root canal instrument
JP6171719B2 (en) Stent processing jig and stent manufacturing method
JP4843450B2 (en) Mouthpiece shell manufacturing method and mouthpiece shell
JP6329720B2 (en) Composite member manufacturing method, composite member and composite member manufacturing apparatus
EA005704B1 (en) Waveguide for intravascular thrombectomy of thrombi and thromboemboli
CN110693615A (en) Three-dimensional self-adjusting root canal file and processing technology thereof
JP3244963U (en) stage reaming tool
CN218305162U (en) Integrative root canal file of combined type
JP2010032037A (en) Self-tapping insert
JP2007038021A (en) Metal injection needle
JP2019126849A (en) Stylus manufacturing method
JP2019514484A (en) Method of fabricating a needle cannula with a reduced end portion by electrochemical etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5552350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250