JP2011205767A - Non-contact charging system - Google Patents

Non-contact charging system Download PDF

Info

Publication number
JP2011205767A
JP2011205767A JP2010069709A JP2010069709A JP2011205767A JP 2011205767 A JP2011205767 A JP 2011205767A JP 2010069709 A JP2010069709 A JP 2010069709A JP 2010069709 A JP2010069709 A JP 2010069709A JP 2011205767 A JP2011205767 A JP 2011205767A
Authority
JP
Japan
Prior art keywords
power
charged
coils
power transmission
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010069709A
Other languages
Japanese (ja)
Inventor
Hiroyasu Kitamura
浩康 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010069709A priority Critical patent/JP2011205767A/en
Publication of JP2011205767A publication Critical patent/JP2011205767A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact charging system having improved convenience.SOLUTION: A charger 10 includes: a plurality of power transmitting side coils 13a-13c; and power transmitting circuits 12a-12c for converting power from a power supply circuit 11 into AC and supplying the converted power to the power transmitting coils 13a-13c independently for the respective coils 13a-13c. An apparatus to be charged (a body apparatus A) equipped with a plurality of power receiving side coils 21a-21c can be charged by using power transmission from the plurality of power transmitting side coils 13a-13c of the charger 10, and a plurality of apparatuses to be charged (body apparatuses B-D) equipped with the power receiving side coils (power receiving side coils 21d-21f) whose number is smaller than the number of the power transmitting side coils 13a-13c can be simultaneously charged.

Description

本発明は、本体機器と充電器との間等、2つの機器間で電磁誘導にて電力伝送を行う非接触充電システムに関するものである。   The present invention relates to a non-contact charging system that transmits power by electromagnetic induction between two devices, such as between a main device and a charger.

従来より、携帯電話やデジタルカメラ等の本体機器(被充電機器)に内蔵される二次電池を非接触で充電するものが知られている。本体機器及びこれに対応する専用の充電器には、それぞれ充電のための電力を伝送するコイルが備えられており、両コイルでの電磁誘導により充電器から本体機器に交流電力を伝送し、これを直流電力に変換して二次電池を充電させるようになっている。   2. Description of the Related Art Conventionally, a battery that charges a secondary battery built in a main device (charged device) such as a mobile phone or a digital camera in a contactless manner is known. The main device and a dedicated charger corresponding to the main device are each provided with a coil for transmitting electric power for charging, and AC power is transmitted from the charger to the main device by electromagnetic induction in both coils. Is converted to DC power to charge the secondary battery.

ところで、非接触充電システムにおいて、本体機器と充電器にそれぞれ複数のコイルを有する構成が知られており、このような充電システムでは、二次電池を急速に充電することが可能となっている(例えば特許文献1参照)。   By the way, in a non-contact charging system, the structure which has a some coil in a main body apparatus and a charger is known, respectively, and in such a charging system, it is possible to charge a secondary battery rapidly ( For example, see Patent Document 1).

特開2006−333557号公報JP 2006-333557 A

ところで、上記のような非接触充電システムでは、複数のコイルによって本体機器を急速に充電することが可能となっているが、利便性向上の点において、更なる改善の余地があった。   By the way, in the non-contact charging system as described above, the main device can be rapidly charged by a plurality of coils, but there is room for further improvement in terms of improving convenience.

本発明は、上記課題を解決するためになされたものであって、その目的は、利便性を向上させることができる非接触充電システムを提供することにある。   The present invention has been made to solve the above problems, and an object thereof is to provide a non-contact charging system capable of improving convenience.

上記課題を解決するために、請求項1に記載の発明は、充電器と被充電機器とにそれぞれ備えられた送電側コイル及び受電側コイルの電磁誘導作用により非接触で前記充電器から前記被充電機器に給電を行い、前記受電側コイルにて受電した電力を前記被充電機器に内蔵の二次電池に充電する非接触充電システムであって、前記充電器は、前記送電側コイルを複数備えるとともに、電源回路からの電力を交流電力に変換して前記送電側コイルに供給する電力伝送回路を複数の前記送電側コイル毎に個別に備え、前記受電側コイルを複数備えた前記被充電機器に対し、前記充電器の複数の前記送電側コイルからの電力伝送によって充電可能であるとともに、複数の前記送電側コイルの個数よりも少ない個数の前記受電側コイルを備えた前記被充電機器を、複数同時に充電可能であることを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 is characterized in that the charger and the device to be charged are contacted from the charger in a non-contact manner by the electromagnetic induction action of the power transmission side coil and the power reception side coil respectively. A non-contact charging system that supplies power to a charging device and charges power received by the power receiving side coil to a secondary battery built in the device to be charged, wherein the charger includes a plurality of the power transmitting side coils. And a power transmission circuit that converts power from the power supply circuit into AC power and supplies the power to the power transmission side coil individually for each of the plurality of power transmission side coils, and the charged device that includes a plurality of the power reception side coils. On the other hand, the to-be-charged battery can be charged by power transmission from the plurality of power transmission side coils of the charger and includes the power receiving side coils in a number smaller than the number of the plurality of power transmission side coils. The device, characterized in that it is a multiple simultaneously can be charged.

この発明では、受電側コイルを複数備えた被充電機器に対し、充電器の複数の送電側コイルからの電力伝送によって充電可能であるため、その被充電機器を急速に充電することが可能となる。従って、電池容量が比較的大きい被充電機器に複数の受電側コイルを設ければ、電池容量が大きくても急速に充電することができ、効果的である。一方、電池容量が比較的小さい被充電機器の場合には受電側コイルを例えば1つ設け、その被充電機器を充電器の複数の送電側コイルのうちの1つによって個別に充電可能であるため、送電側コイルの個数分だけ複数の被充電機器を充電器で同時に充電することが可能となる。このように、被充電機器の電池容量の大きさに応じた効率的な充電が可能となるため、利便性の向上に寄与できる。   In this invention, since it can charge with the electric power transmission from the several power transmission side coil of a charger with respect to the to-be-charged apparatus provided with two or more power receiving side coils, it becomes possible to charge the to-be-charged apparatus rapidly. . Therefore, if a plurality of power receiving coils are provided in a to-be-charged device having a relatively large battery capacity, it is possible to charge rapidly even if the battery capacity is large, which is effective. On the other hand, in the case of a to-be-charged device having a relatively small battery capacity, for example, one receiving-side coil is provided, and the to-be-charged device can be individually charged by one of the plurality of transmitting-side coils of the charger. Thus, it is possible to charge a plurality of devices to be charged by the charger at the same time as the number of power transmission coils. Thus, efficient charging according to the size of the battery capacity of the device to be charged becomes possible, which can contribute to improvement in convenience.

請求項2に記載の発明は、請求項1に記載の非接触充電システムにおいて、前記受電側コイルを複数備えた前記被充電機器は、その各受電側コイルで受電した交流電力を整流する整流回路を該受電側コイル毎に個別に備え、該各受電側コイルで受電した交流電力を前記各整流回路で整流した後に合成するように構成されたことを特徴とする。   According to a second aspect of the present invention, in the non-contact charging system according to the first aspect, the charged device including a plurality of the power receiving side coils rectifies the AC power received by each of the power receiving side coils. For each of the power receiving coils, and the AC power received by the power receiving coils is rectified by the rectifier circuits and then combined.

この発明では、被充電機器の複数の受電側コイルで受電した交流電力をそれぞれ個別の整流回路で整流した後に合成するように構成される。このため、受電側コイルを直列接続し、その受電側コイルで受電した交流電力を合成した後に整流する構成に比べてコイル部分の配線を短くでき、その結果、配線長さに起因する輻射ノイズを低減することが可能となる。   In this invention, it is comprised so that the alternating current power received with the some receiving side coil of the to-be-charged apparatus may be synthesize | combined, after rectifying by each separate rectifier circuit. For this reason, it is possible to shorten the wiring of the coil part compared to a configuration in which the power receiving side coil is connected in series and the AC power received by the power receiving side coil is combined and then rectified, and as a result, radiation noise caused by the wiring length is reduced. It becomes possible to reduce.

従って、上記記載の発明によれば、利便性を向上させることができる。   Therefore, according to the above described invention, convenience can be improved.

(a)(b)本実施形態の非接触充電システムの構成図である。(A) (b) It is a block diagram of the non-contact charge system of this embodiment.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1(a)(b)は、本実施形態の非接触充電システムを示す。本実施形態の非接触充電システムにおいて、充電器10は、外部からの例えば商用電源の供給に基づいて電力供給の制御を行う電源回路11と、電源回路11から供給される電力に基づき被充電機器(本体機器A,B,C,D)の充電に適した所定の交流電力を生成する3つの電力伝送回路12a,12b,12cとを備える。電力伝送回路12a〜12cは、電力伝送用の3つの送電側コイル13a,13b,13cとそれぞれ接続されており、電力伝送回路12a〜12cは、生成した交流電力を送電側コイル13a〜13cにそれぞれ供給する。これにより、電力伝送回路12a〜12cは、送電側コイル13a〜13cを通じて本体機器A〜Dに向けての電力伝送が可能となっている。また、電力伝送回路12a〜12cは、3つの送電側コイル13a〜13c毎に個別に設けられているため、送電側コイル13a〜13c毎に給電する電圧の制御が可能となっている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
Fig.1 (a) (b) shows the non-contact charge system of this embodiment. In the contactless charging system of the present embodiment, the charger 10 includes a power supply circuit 11 that controls power supply based on, for example, supply of commercial power from the outside, and a device to be charged based on power supplied from the power supply circuit 11. And three power transmission circuits 12a, 12b, and 12c that generate predetermined AC power suitable for charging (main devices A, B, C, and D). The power transmission circuits 12a to 12c are respectively connected to the three power transmission side coils 13a, 13b, and 13c for power transmission, and the power transmission circuits 12a to 12c send the generated AC power to the power transmission side coils 13a to 13c, respectively. Supply. Thereby, the power transmission circuits 12a to 12c can transmit power toward the main devices A to D through the power transmission side coils 13a to 13c. Moreover, since the power transmission circuits 12a to 12c are individually provided for each of the three power transmission side coils 13a to 13c, the voltage supplied to each of the power transmission side coils 13a to 13c can be controlled.

本実施形態の非接触充電システムの充電器10では、3つの受電側コイル21a,21b,21cを備える本体機器Aに対する充電と、受電側コイル21d,21e,21fを1つずつ備える本体機器B〜Dに対する充電とが両方可能となっている。尚、本体機器Aは、例えばパソコンのバッテリであり、電池容量が比較的大きなものである。一方、本体機器B〜Dは、例えば携帯電話、デジタルカメラ、携帯型ゲーム機器等であり、電池容量が比較的小さなものとなっている。   In the charger 10 of the non-contact charging system according to the present embodiment, charging of the main device A including the three power receiving side coils 21a, 21b, and 21c and main device B including one power receiving side coil 21d, 21e, and 21f. Both charging to D is possible. The main device A is a battery of a personal computer, for example, and has a relatively large battery capacity. On the other hand, the main body devices B to D are, for example, mobile phones, digital cameras, portable game devices, etc., and have a relatively small battery capacity.

また、充電器10及び本体機器A〜Dはそれぞれ、図示しない認証回路及び認証用コイルを備えており、それらの認証回路は、認証用コイルを通じて充電器10と各本体機器A〜Dとの間で確認信号の授受を行う。つまり、充電器10の認証回路は、充電しようとする本体機器A〜Dが充電器10と適合するものか否かをその確認信号の授受にて判定し、適合の本体機器A〜Dであるとの判定に基づいて電源回路11に充電許可信号を出力する。そして、電源回路11はその充電許可信号の入力に基づいて本体機器A〜Dに向けての送電を開始するようになっている。これにより、適合しない本体機器A〜Dや金属等が充電器10に載置されても送電が実施されないため、無用な充電動作が防止される。   The charger 10 and the main body devices A to D each include an authentication circuit and an authentication coil (not shown), and these authentication circuits are connected between the charger 10 and each of the main body devices A to D through the authentication coil. Send and receive confirmation signals at. That is, the authentication circuit of the charger 10 determines whether or not the main body devices A to D to be charged are compatible with the charger 10 by sending and receiving the confirmation signal, and is the compatible main body devices A to D. Is output to the power supply circuit 11 based on the determination. And the power supply circuit 11 starts the power transmission toward main body apparatus AD based on the input of the charge permission signal. As a result, power transmission is not performed even when the incompatible main device A to D, metal, or the like is placed on the charger 10, thereby preventing unnecessary charging operation.

図1(a)に示すように、本体機器Aの受電側コイル21a〜21cは、本体機器Aが充電器10に載置(近接)された状態において、各送電側コイル13a〜13cに対応した位置にそれぞれ配設されている。また、本体機器Aは、3つの受電側コイル21a〜21cにそれぞれ対応して設けられたダイオードとコンデンサ等を有する3つの整流回路22a〜22cと、各整流回路22a〜22cと直列接続された二次電池23aとを備えている。整流回路22a〜22cは、本体機器Aの充電時において、充電器10の各送電側コイル13a〜13cを通じて受電側コイル21a〜21cで受電した交流電力を所定の直流電力に変換する。即ち、整流回路22a〜22cは、受電側コイル21a〜21cに鎖交された磁束から取り出された電流を受電側コイル21a〜21c毎に整流するようになっている。整流回路22a〜22cは、直列接続された二次電池23aに直流電力を供給し、二次電池23aはその直流電力にて充電される。   As shown to Fig.1 (a), the receiving side coils 21a-21c of the main body apparatus A respond | corresponded to each power transmission side coil 13a-13c in the state in which the main body apparatus A was mounted in the charger 10 (close proximity). It is arranged at each position. The main device A includes three rectifier circuits 22a to 22c each having a diode and a capacitor provided corresponding to the three power receiving coils 21a to 21c, and two rectifier circuits 22a to 22c connected in series. And a secondary battery 23a. The rectifier circuits 22a to 22c convert AC power received by the power receiving side coils 21a to 21c through the power transmitting side coils 13a to 13c of the charger 10 into predetermined DC power when the main device A is charged. That is, the rectifier circuits 22a to 22c rectify the current extracted from the magnetic flux linked to the power receiving coils 21a to 21c for each of the power receiving coils 21a to 21c. The rectifier circuits 22a to 22c supply DC power to the secondary batteries 23a connected in series, and the secondary battery 23a is charged with the DC power.

本体機器Aの充電時において、充電器10の電力伝送回路12a〜12cは、送電側コイル13a〜13cを通じて本体機器Aに向けての電力伝送を行う。このとき、電源回路11は、電力伝送回路12a〜12cからそれぞれ送電側コイル13a〜13cに供給される電力が互いに等しくなるように制御する。本体機器A側では、受電側コイル21a〜21cはそれぞれ略同一の大きさの電力を受電し、二次電池23aには、1つの受電側コイル21a〜21cで受電する電力の3倍の電力が二次電池23aに充電されるようになっている。このように、それぞれ3つずつの送電側コイル13a〜13c及び受電側コイル21a〜21cを通じて二次電池23aの充電を行うことで、その二次電池23aを急速に充電することが可能となっている。   When charging the main device A, the power transmission circuits 12a to 12c of the charger 10 perform power transmission toward the main device A through the power transmission side coils 13a to 13c. At this time, the power supply circuit 11 controls the power supplied from the power transmission circuits 12a to 12c to the power transmission side coils 13a to 13c to be equal to each other. On the main device A side, the power receiving coils 21a to 21c receive substantially the same amount of power, and the secondary battery 23a has three times the power received by one power receiving coil 21a to 21c. The secondary battery 23a is charged. Thus, it becomes possible to charge the secondary battery 23a rapidly by charging the secondary battery 23a through the three power transmission side coils 13a to 13c and the power reception side coils 21a to 21c. Yes.

また、本実施形態の本体機器Aでは、受電側コイル21a〜21cからの電流を受電側コイル21a〜21c毎に整流回路22a〜22cで整流するようになっており、各整流回路22a〜22cと二次電池23aが直列接続されている。このため、受電側コイル21a〜21cを整流前に互いに直列接続する構成に比べてコイル部分の配線を短くでき、その結果、配線長さに起因する輻射ノイズを低減することが可能となっている。   Further, in the main device A of the present embodiment, the current from the power receiving side coils 21a to 21c is rectified by the rectifying circuits 22a to 22c for each of the power receiving side coils 21a to 21c, and each of the rectifying circuits 22a to 22c Secondary batteries 23a are connected in series. For this reason, compared with the structure which mutually connects the power receiving side coils 21a-21c in series before commutation, the wiring of a coil part can be shortened, As a result, it becomes possible to reduce the radiation noise resulting from wiring length. .

図1(b)に示すように、受電側コイル21d〜21fを1つずつ備える本体機器B〜Dは、受電側コイル21d〜21fにそれぞれ対応して設けられたダイオードとコンデンサ等を有する整流回路22d,22e,22fと、その整流回路22d〜22fとそれぞれ接続された二次電池23b,23c,23dとを1つずつ備えている。整流回路22d〜22fは、本体機器B〜Dの充電時において、充電器10の各送電側コイル13a〜13cを通じて受電側コイル21d〜21fで受電した交流電力を所定の直流電力に変換して二次電池23b〜23dにそれぞれ供給し、二次電池23b〜23dはその直流電力にて充電される。   As shown in FIG. 1B, the main body devices B to D each including the power receiving side coils 21d to 21f are rectifier circuits each having a diode, a capacitor, and the like provided corresponding to the power receiving side coils 21d to 21f. 22d, 22e, and 22f, and secondary batteries 23b, 23c, and 23d respectively connected to the rectifier circuits 22d to 22f. The rectifier circuits 22d to 22f convert the AC power received by the power receiving coils 21d to 21f through the power transmitting coils 13a to 13c of the charger 10 into predetermined DC power when charging the main body devices B to D, respectively. The secondary batteries 23b to 23d are supplied to the secondary batteries 23b to 23d, respectively, and the secondary batteries 23b to 23d are charged with the DC power.

本体機器B〜Dを充電器10の送電側コイル13a〜13cにそれぞれ対応する位置にそれぞれ載置(近接)し、本体機器B〜Dを充電器10にて同時に充電する場合について説明する。まず、充電器10の電力伝送回路12a〜12cは、送電側コイル13a〜13cを通じて本体機器B〜Dに向けての電力伝送を行う。このとき、電源回路11は、本体機器B〜Dの充電にそれぞれ適した所定の交流電力が各送電側コイル13a〜13cから送電されるように各電力伝送回路12a〜12cを制御する。そして、送電側コイル13aから本体機器Bの受電側コイル21dへ、送電側コイル13bから本体機器Cの受電側コイル21eへ、送電側コイル13cから本体機器Dの受電側コイル21fへそれぞれ電力伝送が行われるようになっている。   A case will be described in which the main devices B to D are placed (closed) at positions corresponding to the power transmission coils 13 a to 13 c of the charger 10, respectively, and the main devices B to D are charged simultaneously by the charger 10. First, the power transmission circuits 12a to 12c of the charger 10 perform power transmission toward the main devices B to D through the power transmission side coils 13a to 13c. At this time, the power supply circuit 11 controls the power transmission circuits 12a to 12c so that predetermined AC power suitable for charging the main devices B to D is transmitted from the power transmission coils 13a to 13c. Then, power is transmitted from the power transmission side coil 13a to the power reception side coil 21d of the main device B, from the power transmission side coil 13b to the power reception side coil 21e of the main device C, and from the power transmission side coil 13c to the power reception side coil 21f of the main device D. To be done.

このように本実施形態の非接触充電システムでは、充電器10にて3つの受電側コイル21a〜21cを備える本体機器Aに対して充電可能であるとともに、送電側コイル13a〜13cの個数よりも少ない個数(本実施形態では1つ)の受電側コイル21d〜21fをそれぞれ備える3つの本体機器B〜Dを同時に充電可能となっている。これにより、電池容量が比較的大きな本体機器Aの充電は急速に行うことができるとともに、電池容量が比較的小さな本体機器B〜Dの充電は同時に行うことができるため、利便性の向上に寄与できるようになっている。   Thus, in the non-contact charging system of the present embodiment, the charger 10 can charge the main device A including the three power receiving side coils 21a to 21c, and more than the number of the power transmitting side coils 13a to 13c. The three main devices B to D each including a small number (one in this embodiment) of the power receiving side coils 21d to 21f can be charged simultaneously. As a result, the main unit A having a relatively large battery capacity can be rapidly charged, and the main units B to D having a relatively small battery capacity can be simultaneously charged, which contributes to an improvement in convenience. It can be done.

次に、本実施形態の特徴的な作用効果を記載する。
(1)受電側コイル21a〜21cを複数備えた本体機器Aに対し、充電器10の複数の送電側コイル13a〜13cからの電力伝送によって充電可能であるため、その本体機器Aを急速に充電することが可能となる。従って、電池容量が比較的大きい被充電機器(本体機器A)に複数の受電側コイル21a〜21cを設ければ、電池容量が大きくても急速に充電することができ、効果的である。一方、電池容量が比較的小さい被充電機器(本体機器B〜D)の場合には受電側コイルを例えば1つ(各受電側コイル21d〜21f)設け、その本体機器B〜Dを複数の送電側コイル13a〜13cのうちの1つによって個別に充電可能である。従って、この場合には送電側コイル13a〜13cの個数分だけ本体機器B〜Dを充電器10で同時に充電することが可能となる。このように、本体機器A〜Dの電池容量の大きさに応じた効率的な充電が可能となるため、利便性の向上に寄与できる。
Next, characteristic effects of the present embodiment will be described.
(1) Since the main device A having a plurality of power receiving coils 21a to 21c can be charged by power transmission from the plurality of power transmission coils 13a to 13c of the charger 10, the main device A is rapidly charged. It becomes possible to do. Therefore, if a plurality of power receiving coils 21a to 21c are provided in a to-be-charged device (main device A) having a relatively large battery capacity, it is possible to charge rapidly even if the battery capacity is large, which is effective. On the other hand, in the case of a to-be-charged device (main body devices B to D) having a relatively small battery capacity, for example, one power receiving side coil (each power receiving side coil 21d to 21f) is provided, It can be charged individually by one of the side coils 13a-13c. Therefore, in this case, it becomes possible to charge the main body devices B to D simultaneously with the charger 10 by the number of the power transmission side coils 13 a to 13 c. In this way, efficient charging according to the size of the battery capacity of the main devices A to D is possible, which can contribute to improvement in convenience.

(2)本体機器Aの複数の受電側コイル21a〜21cで受電した交流電力をそれぞれ個別の整流回路22a〜22cで整流した後に合成するように構成される。このため、受電側コイル21a〜21cを直列接続し、その受電側コイル21a〜21cで受電した交流電力を合成した後に整流する構成に比べてコイル部分の配線を短くでき、その結果、配線長さに起因する輻射ノイズを低減することが可能となる。   (2) The AC power received by the plurality of power receiving coils 21a to 21c of the main device A is rectified by the individual rectifier circuits 22a to 22c and then combined. For this reason, the wiring of the coil part can be shortened compared to the configuration in which the power receiving coils 21a to 21c are connected in series and the AC power received by the power receiving coils 21a to 21c is combined and then rectified. It is possible to reduce the radiation noise caused by.

尚、本発明の実施形態は、以下のように変更してもよい。
・上記実施形態では、充電器10において電力伝送回路12a〜12c及び送電側コイル13a〜13cをそれぞれ3つ備えたが、特にこれに限定されるものではなく、その個数を適宜変更してもよい。
In addition, you may change embodiment of this invention as follows.
In the above embodiment, the charger 10 includes three power transmission circuits 12a to 12c and three power transmission side coils 13a to 13c, but the invention is not particularly limited thereto, and the number thereof may be changed as appropriate. .

・上記実施形態では、受電側コイルを複数備える被充電機器としての本体機器Aは、3つの受電側コイル21a〜21cを備えたが、特にこれに限定されるものではなく、本体機器Aに設けられる受電側コイルの個数は適宜変更してもよい。   -In above-mentioned embodiment, although the main body apparatus A as a to-be-charged apparatus provided with two or more receiving side coils was equipped with three receiving side coils 21a-21c, it is not limited to this in particular, It is provided in the main body apparatus A The number of power receiving coils to be used may be changed as appropriate.

・上記実施形態では、充電器10で複数の被充電機器を同時に充電する例として、図1(b)に示すように、受電側コイル(受電側コイル21d〜21f)をそれぞれ1つ有する本体機器B〜Dを3つ同時に充電する場合を例に挙げたが、特にこれに限定されるものではない。例えば、充電器10によって、受電側コイルを2つ有する本体機器と受電側コイルを1つ有する本体機器を同時に充電するように構成してもよい。   -In above-mentioned embodiment, as an example which charges a several to-be-charged apparatus simultaneously with the charger 10, as shown in FIG.1 (b), as shown in FIG.1 (b), the main body apparatus which has one receiving side coil (power receiving side coil 21d-21f), respectively. Although the case where three B to D are simultaneously charged has been described as an example, the present invention is not particularly limited to this. For example, the charger 10 may be configured to charge the main device having two power receiving coils and the main device having one power receiving coil at the same time.

・上記実施形態の本体機器Aでは、受電側コイル21a〜21cで受電した交流電力を受電側コイル21a〜21c毎に整流回路22a〜22cで整流する構成としたが、これ以外に、受電側コイル21a〜21cを直列接続し、受電側コイル21a〜21cで受電した交流電力を1つの整流回路で整流する構成としてもよい。この構成によれば、整流回路が1つで済み、部品点数の増加を抑えることができる。   In the main device A of the above embodiment, the AC power received by the power receiving side coils 21a to 21c is rectified by the rectifier circuits 22a to 22c for each power receiving side coil 21a to 21c. 21a-21c may be connected in series, and the AC power received by the power receiving coils 21a-21c may be rectified by one rectifier circuit. According to this configuration, only one rectifier circuit is required, and an increase in the number of parts can be suppressed.

・上記実施形態において、整流回路22a〜22fの構成を適宜変更してもよい。
・上記実施形態では、被充電機器としての本体機器Aをパソコンのバッテリとし、本体機器B〜Dを携帯電話、デジタルカメラ、ゲーム機器等としたが、特にこれに限定されるものではなく、他の機器(バッテリを含む)に適用してもよい。
-In above-mentioned embodiment, you may change suitably the structure of rectifier circuit 22a-22f.
In the above embodiment, the main device A as the device to be charged is a battery of a personal computer, and the main devices B to D are mobile phones, digital cameras, game devices, etc., but are not particularly limited to this. The present invention may be applied to other devices (including batteries).

A〜D…本体機器(被充電機器)、10…充電器、11…電源回路、12a〜12c…電力伝送回路、13a〜13c…送電側コイル、21a〜21f…受電側コイル、22a〜22f…整流回路、23a〜23d…二次電池。   A to D: main device (device to be charged), 10: charger, 11: power supply circuit, 12a-12c ... power transmission circuit, 13a-13c ... power transmission side coil, 21a-21f ... power reception side coil, 22a-22f ... Rectifier circuit, 23a-23d ... secondary battery.

Claims (2)

充電器と被充電機器とにそれぞれ備えられた送電側コイル及び受電側コイルの電磁誘導作用により非接触で前記充電器から前記被充電機器に給電を行い、前記受電側コイルにて受電した電力を前記被充電機器に内蔵の二次電池に充電する非接触充電システムであって、
前記充電器は、前記送電側コイルを複数備えるとともに、電源回路からの電力を交流電力に変換して前記送電側コイルに供給する電力伝送回路を複数の前記送電側コイル毎に個別に備え、
前記受電側コイルを複数備えた前記被充電機器に対し、前記充電器の複数の前記送電側コイルからの電力伝送によって充電可能であるとともに、
複数の前記送電側コイルの個数よりも少ない個数の前記受電側コイルを備えた前記被充電機器を、複数同時に充電可能であることを特徴とする非接触充電システム。
Power is supplied from the charger to the device to be charged in a non-contact manner by the electromagnetic induction action of the power transmission side coil and the power reception side coil respectively provided in the charger and the device to be charged, and the power received by the power reception side coil A non-contact charging system for charging a secondary battery built in the device to be charged,
The charger includes a plurality of the power transmission side coils, and separately includes a power transmission circuit that converts power from a power supply circuit into alternating current power and supplies the power transmission side coils to each of the plurality of power transmission side coils,
While being able to be charged by power transmission from the plurality of power transmission side coils of the charger, the device to be charged provided with a plurality of the power reception side coils,
A non-contact charging system, wherein a plurality of the devices to be charged including a number of the power receiving side coils smaller than the number of the plurality of power transmitting side coils can be charged simultaneously.
請求項1に記載の非接触充電システムにおいて、
前記受電側コイルを複数備えた前記被充電機器は、その各受電側コイルで受電した交流電力を整流する整流回路を該受電側コイル毎に個別に備え、該各受電側コイルで受電した交流電力を前記各整流回路で整流した後に合成するように構成されたことを特徴とする非接触充電システム。
The contactless charging system according to claim 1,
The to-be-charged device including a plurality of the power receiving side coils is provided with a rectifier circuit for rectifying the AC power received by each power receiving side coil for each power receiving side coil, and the AC power received by each power receiving side coil. A non-contact charging system configured to synthesize after being rectified by each of the rectifier circuits.
JP2010069709A 2010-03-25 2010-03-25 Non-contact charging system Withdrawn JP2011205767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069709A JP2011205767A (en) 2010-03-25 2010-03-25 Non-contact charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069709A JP2011205767A (en) 2010-03-25 2010-03-25 Non-contact charging system

Publications (1)

Publication Number Publication Date
JP2011205767A true JP2011205767A (en) 2011-10-13

Family

ID=44881795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069709A Withdrawn JP2011205767A (en) 2010-03-25 2010-03-25 Non-contact charging system

Country Status (1)

Country Link
JP (1) JP2011205767A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039027A (en) * 2011-08-04 2013-02-21 Fu Da Tong Technology Co Ltd Wireless charging coil structure of electronic device
CN104052163A (en) * 2013-03-13 2014-09-17 株式会社东芝 Wireless power supply system, power transmission controlling apparatus and power reception controlling apparatus
KR20210031668A (en) * 2020-09-03 2021-03-22 지이 하이브리드 테크놀로지스, 엘엘씨 Wireless power transmission device which enables to simultaneously charge
US10965169B2 (en) 2017-11-07 2021-03-30 Wits Co., Ltd. Wireless power transmitter
KR20220057493A (en) * 2021-03-11 2022-05-09 지이 하이브리드 테크놀로지스, 엘엘씨 Wireless power transmission device which enables to simultaneously charge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039027A (en) * 2011-08-04 2013-02-21 Fu Da Tong Technology Co Ltd Wireless charging coil structure of electronic device
CN104052163A (en) * 2013-03-13 2014-09-17 株式会社东芝 Wireless power supply system, power transmission controlling apparatus and power reception controlling apparatus
JP2014180078A (en) * 2013-03-13 2014-09-25 Toshiba Corp Radio power feeding system, power transmission unit, power receiving unit, power transmission control apparatus, and power receiving control apparatus
US10965169B2 (en) 2017-11-07 2021-03-30 Wits Co., Ltd. Wireless power transmitter
KR20210031668A (en) * 2020-09-03 2021-03-22 지이 하이브리드 테크놀로지스, 엘엘씨 Wireless power transmission device which enables to simultaneously charge
KR102390286B1 (en) * 2020-09-03 2022-04-25 지이 하이브리드 테크놀로지스, 엘엘씨 Wireless power transmission device which enables to simultaneously charge
KR20220057493A (en) * 2021-03-11 2022-05-09 지이 하이브리드 테크놀로지스, 엘엘씨 Wireless power transmission device which enables to simultaneously charge
KR102611773B1 (en) * 2021-03-11 2023-12-07 지이 하이브리드 테크놀로지스, 엘엘씨 Wireless power transmission device which enables to simultaneously charge

Similar Documents

Publication Publication Date Title
US11277037B2 (en) Method for wireless charging and electronic device thereof
US9225195B2 (en) Wireless power receiver for increased charging efficiency
US9438315B2 (en) Wireless power adapter
EP3337010B1 (en) Wireless power transmitter and method for controlling same
US9088171B2 (en) Method for wireless charging using communication network
JP5593926B2 (en) Power feeding system, power feeding device and electronic device
JP6607669B2 (en) Wireless charging apparatus and charging method thereof
JP2011125211A (en) Portable device and battery charging method thereof
JP2011205767A (en) Non-contact charging system
US11296556B2 (en) Power relay device and system
CN102984312A (en) Cell phone mobile terminal
JP2006311712A (en) Battery pack lid for providing non-contact charge interface and portable telephone having same
WO2021227652A1 (en) Wireless charging device and device to be charged
KR20140001094U (en) The magnetic holder for the wireless charge system of mobile devices
KR20170016147A (en) Portable wireless dual charging battery pack
JP6578531B2 (en) Wireless power receiving apparatus and electronic device including the same
KR20160030798A (en) Non contact type power transmitting appratus, non contact type power transmitting-receiving appratus, contact-non contact type power transmitting appratus and contact-non contact type power transmitting-receiving appratus
WO2011118673A1 (en) Non-contact power transmission device
JP2010284066A (en) Communication device, communication terminal and communication system
CN105024408B (en) Tandem-type wireless charging system and charging method thereof
CN109193889A (en) Wireless charging system
US10109415B2 (en) Wireless power receiver and external inductor connected thereto
JP2011205768A (en) Charging system
Patil et al. Review on Wireless Charging
CN202998204U (en) Mobile phone, bluetooth earphone and mobile terminal of mobile phone

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130401