JP2011205571A - Receiving apparatus and visible light communication system - Google Patents

Receiving apparatus and visible light communication system Download PDF

Info

Publication number
JP2011205571A
JP2011205571A JP2010073209A JP2010073209A JP2011205571A JP 2011205571 A JP2011205571 A JP 2011205571A JP 2010073209 A JP2010073209 A JP 2010073209A JP 2010073209 A JP2010073209 A JP 2010073209A JP 2011205571 A JP2011205571 A JP 2011205571A
Authority
JP
Japan
Prior art keywords
light
receiving sensor
light receiving
signal
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010073209A
Other languages
Japanese (ja)
Inventor
Akihiro Shiga
昭弘 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010073209A priority Critical patent/JP2011205571A/en
Publication of JP2011205571A publication Critical patent/JP2011205571A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a receiving apparatus and visible light communication system capable of optimizing reception processing in accordance with a received light wavelength, without performing multiplexing such as using a plurality of LEDs and without wasting, at a receiving side, light generated by a transmitting-side LED.SOLUTION: A receiving apparatus 30 for visible light communication has: a first photodetection sensor 31 including a first filter FLT31 passing light of an arbitrary wavelength band; a second photodetection sensor 32 including a second filter FLT32 passing light of a different band from the arbitrary wavelength band; and a signal processor 33 for receiving output signals from the first photodetection sensor 31 and the second photodetection sensor 32 and performing signal processing. The signal processor 33 performs signal processing using the one signal when any one of the signals from the first photodetection sensor 31 and the second photodetection sensor 32 can be received, and using a signal with higher reliability when both of the signals can be received.

Description

本発明は、たとえば蛍光体を含む発光素子を利用する可視光通信に採用可能な受信装置および可視光通信システムに関するものである。   The present invention relates to a receiving apparatus and a visible light communication system that can be employed for visible light communication using, for example, a light emitting element including a phosphor.

近年、輝度特性の向上により、発光ダイオード(LED)は蛍光灯や白熱灯に代わる照明用光源の利用と共に、可視光通信の光源としての利用が注目されている。   In recent years, due to the improvement in luminance characteristics, light-emitting diodes (LEDs) have attracted attention as a light source for visible light communication as well as use of an illumination light source instead of a fluorescent lamp or an incandescent lamp.

一般的に、可視光通信に利用されるLEDは、送信機能と照明機能を兼用している。
このため、可視光通信では、通信可能な範囲は少なくとも照明の領域内に限定される。
これは、通信範囲を限定することが可能で、かつそれを視覚的に容易に認識できるという可視光通信の特徴になっている。
In general, an LED used for visible light communication has both a transmission function and an illumination function.
For this reason, in visible light communication, the communicable range is limited to at least the illumination area.
This is a feature of visible light communication in which the communication range can be limited and it can be easily recognized visually.

ところで、可視光通信で利用するLEDは送信機能と照明機能を兼ねるため、照明機器として送信機には白色光が求められる。
しかし、LED単体で白色光を出すものは存在しないため、紫色発光LEDや青色発光LEDに蛍光体を組み合わせて白色を出す手法が取られている。
このLEDを以下、蛍光型LEDと呼ぶ。
By the way, since the LED used in visible light communication has both a transmission function and an illumination function, white light is required for a transmitter as an illumination device.
However, since there is no LED that emits white light alone, a technique of emitting white light by combining a phosphor with a violet LED or a blue LED is employed.
Hereinafter, this LED is referred to as a fluorescent LED.

可視光通信では、LEDを高速にオン・オフ(点灯、消灯)させることにより、デジタルデータの送信が行われる。
しかしながら、蛍光型LEDは、高速にオン・オフさせる制御には限界がある。
これは、蛍光型LEDには、LEDから放出された光エネルギーを蛍光体が吸収・励起して可視光線を放射するまでに、ある程度の遅延があるためである。
このため、蛍光型LEDに電流を供給しても、発光される可視光の光量が最大になるまでにある程度の時間を要する。
In visible light communication, digital data is transmitted by turning on / off (turning on and off) LEDs at high speed.
However, the fluorescent LED has a limit in the control to turn on and off at high speed.
This is because a fluorescent LED has a certain delay until the phosphor absorbs and excites light energy emitted from the LED and emits visible light.
For this reason, even if a current is supplied to the fluorescent LED, a certain amount of time is required until the amount of visible light emitted is maximized.

また、蛍光型LEDは、LEDに対する電流がオフして光エネルギーが途絶えても可視光線の放射がある程度持続する。
このため、蛍光型LEDに供給する電流を遮断しても、光量がゼロになり、消灯(オフ)するまでにある程度の時間を要する。
Further, in the fluorescent LED, visible light emission is sustained to some extent even when the current to the LED is turned off and the light energy is cut off.
For this reason, even if the current supplied to the fluorescent LED is cut off, the amount of light becomes zero, and a certain amount of time is required until the light is turned off.

このような特性により、蛍光型LEDを使用した可視光通信では、非蛍光型LEDを使用した場合と比較して、通信速度の限界が1桁以上低くなる。
また、送信信号に対応する受信信号の波形が変形し、受信側の復調処理におけるエラーレートが高くなるなど、安定した通信特性が得られない可能性がある。
要するに、蛍光型LEDを使用した可視光通信では、通信速度および安定した通信動作は、蛍光体の材料特性に依存するといっても過言ではない。
Due to such characteristics, in the visible light communication using the fluorescent LED, the limit of the communication speed is lower by one digit or more than in the case where the non-fluorescent LED is used.
In addition, there is a possibility that stable communication characteristics cannot be obtained, for example, the waveform of the reception signal corresponding to the transmission signal is deformed and the error rate in the demodulation processing on the reception side becomes high.
In short, in visible light communication using fluorescent LEDs, it is no exaggeration to say that the communication speed and stable communication operation depend on the material properties of the phosphor.

このような可視光通信の問題、特に通信速度限界を打破するために、たとえば特許文献1によれば、蛍光型LEDを含む複数のLEDを利用する方法が提案されている。
この先行技術文献1による方法は、LEDおよびフォトダイオードをアレイ状に配置して、それぞれが並列して動作することでデータ伝送の多重化を図るものである。
In order to overcome such a visible light communication problem, particularly the communication speed limit, for example, Patent Document 1 proposes a method of using a plurality of LEDs including a fluorescent LED.
The method according to this prior art document 1 arranges LEDs and photodiodes in an array and operates in parallel with each other to multiplex data transmission.

また別の方法として、特許文献2に開示されている技術が知られている。
これは、前記受信信号の波形の変形に影響する470nm以上の波長成分を除去するフィルタを受信側の直前に配置することにより、高速化を図ろうとしている。
As another method, a technique disclosed in Patent Document 2 is known.
This is intended to increase the speed by arranging a filter that removes a wavelength component of 470 nm or more that affects the deformation of the waveform of the reception signal immediately before the reception side.

特開2001−292107号公報JP 2001-292107 A 特開2009−077344号公報JP 2009-077344 A

前述の特許文献1の方法であれば、LEDの数を増やして、多重度を上げるだけで通信速度を向上させることが可能である。
しかしながら、このような多重化方法には、以下のような問題がある。
すなわち、複数のLEDと複数のフォトダイオードとをそれぞれ対応づけるための光学レンズと、その光学レンズの焦点合わせ操作が必要不可欠であるため、送信装置と受信装置の位置関係が可変となる用途には適さない。
また、多重度を上げることにより、フォトダイオードやそれに付随する受光回路等に要するコストが増大する。
With the method disclosed in Patent Document 1, it is possible to increase the communication speed by simply increasing the number of LEDs and increasing the multiplicity.
However, such a multiplexing method has the following problems.
In other words, an optical lens for associating a plurality of LEDs with a plurality of photodiodes and a focusing operation of the optical lens are indispensable, so that the positional relationship between the transmitting device and the receiving device is variable. Not suitable.
In addition, increasing the multiplicity increases the cost required for the photodiode, the light receiving circuit associated therewith, and the like.

また、前述の特許文献2の方法であれば、問題となる波長の光を取り除くことができるが、逆に受信に使用できる光量が大きく減少してしまい、図1に示すように、通信距離が大幅に減少したり、受信側の復調処理におけるエラーレートが高くなったりするなど、問題点が明らかである。   In addition, with the method of Patent Document 2 described above, light with a wavelength in question can be removed, but conversely, the amount of light that can be used for reception is greatly reduced, and as shown in FIG. Problems are obvious, such as a significant decrease and an increased error rate in the demodulation process on the receiving side.

本発明は、複数のLEDを用いるなど多重化を行わず、かつ送信側LEDが発した光を、受信側が無駄することなく、受光波長に応じて受信処理を最適化することが可能な受信装置および可視光通信システムを提供することにある。   The present invention is a receiving device that can optimize reception processing according to the light receiving wavelength without using the plurality of LEDs to multiplex and without causing the receiving side to waste light emitted from the transmitting side LED. And providing a visible light communication system.

本発明の第1の観点の受信装置は、任意の波長帯域の光を透過するフィルタを備えた第1の受光センサと、前記任意の波長帯域とは異なる帯域の光を透過するフィルタを備えた第2の受光センサと、前記第1の受光センサおよびもしくは第2の受光センサの出力信号を受けて信号処理を行う信号処理部と、を有し、前記信号処理部は、前記第1の受光センサおよび第2の受光センサのうちいずれか一方の信号のみが受信できている場合には当該一方の信号を、両方の信号が受信できている場合には信頼性が高いほうの信号を用いて信号処理を行う。   A receiving apparatus according to a first aspect of the present invention includes a first light receiving sensor including a filter that transmits light in an arbitrary wavelength band, and a filter that transmits light in a band different from the arbitrary wavelength band. A second light receiving sensor; and a signal processing unit that performs signal processing in response to an output signal of the first light receiving sensor and / or the second light receiving sensor, and the signal processing unit includes the first light receiving sensor. When only one of the sensor and the second light receiving sensor can be received, the one signal is used. When both signals are received, the signal having higher reliability is used. Perform signal processing.

好適には、前記信号処理部は、前記第1の受光センサが備えたフィルタが透過する光より前記第2の受光センサが備えたフィルタが透過する光のほうが波長が長く、前記信号処理部において前記第1の受光センサおよび第2の受光センサの両方の信号が受信できている場合に、前記第1の受光センサの信号を用いて信号処理を行う。   Preferably, the signal processing unit has a longer wavelength for the light transmitted by the filter included in the second light receiving sensor than the light transmitted by the filter included in the first light receiving sensor. When the signals of both the first light receiving sensor and the second light receiving sensor are received, signal processing is performed using the signal of the first light receiving sensor.

本発明の第2の観点の可視光通信システムは、可視光通信用光源と、前記可視光通信用光源による光を受信する受信装置と、を有し、前記可視光通信用光源は、発光ダイオード(LED)と、前記LEDの発光を受けて、当該LEDベアチップより長波長の発光をする蛍光体と、前記LEDの点滅を制御する発光制御部と、を含み、前記受信装置は、前記LEDの光を含む波長帯域の光を透過するフィルタを備えた第1の受光センサと、前記波長帯域とは異なる帯域で前記蛍光体の光を含む帯域の光を透過するフィルタを備えた第2の受光センサと、前記第1の受光センサおよびもしくは第2の受光センサの出力信号を受けて信号処理を行う信号処理部と、を有し、前記信号処理部は、前記第1の受光センサおよび第2の受光センサのうちいずれか一方の信号のみが受信できている場合には当該一方の信号を、両方の信号が受信できている場合には第1の受光センサの信号を用いて信号処理を行う。   A visible light communication system according to a second aspect of the present invention includes a visible light communication light source and a receiving device that receives light from the visible light communication light source, and the visible light communication light source includes a light emitting diode. (LED), a phosphor that receives light emitted from the LED and emits light having a longer wavelength than the LED bare chip, and a light emission control unit that controls blinking of the LED, and the receiving device includes: A first light receiving sensor including a filter that transmits light in a wavelength band including light, and a second light receiving sensor including a filter that transmits light in a band including light of the phosphor in a band different from the wavelength band. A sensor, and a signal processing unit that performs signal processing in response to an output signal of the first light receiving sensor and / or the second light receiving sensor, wherein the signal processing unit includes the first light receiving sensor and the second light receiving sensor. Light receiving sensor The one of the signal when only is able to receive Re or the other signal, if both signals are successfully received and performs signal processing using the signal of the first light-receiving sensor.

好適には、前記受信装置に、送信部を、前記可視光通信用光源に前記送信部の送信信号の受信部を、それぞれさらに有し、前記送信部は、前記信号処理部において前記第1の受光センサの信号が受信できている場合に、前記第1の受光センサによる受信が可能である旨の通信可能信号を送信し、前記受信部は、前記通信可能信号を受信すると前記発光制御部にて可視光通信の通信速度を上げる制御を行う。   Preferably, the reception device further includes a transmission unit, and the visible light communication light source further includes a transmission signal reception unit of the transmission unit, and the transmission unit includes the first signal processing unit in the first signal processing unit. When the signal of the light receiving sensor is received, a communication enable signal indicating that reception by the first light receiving sensor is possible is transmitted, and when the receiving unit receives the communication enable signal, the receiving unit Control to increase the communication speed of visible light communication.

本発明によれば、複数のLEDを用いるなど多重化を行わず、かつ送信側LEDが発した光を、受信側が無駄にすることなく、受光波長に応じて受信処理を最適化することができる。   According to the present invention, it is possible to optimize the reception process according to the light reception wavelength without performing multiplexing such as using a plurality of LEDs and without causing the reception side to waste light emitted from the transmission side LED. .

青色LEDおよび黄色蛍光体の発光スペクトル例を示す図である。It is a figure which shows the example of the emission spectrum of blue LED and yellow fluorescent substance. 本発明の実施形態に係る可視光通信システムの構成例を示す図である。It is a figure which shows the structural example of the visible light communication system which concerns on embodiment of this invention. 本実施形態に係る可視光通信システムの可視光通信用光源および受信装置の構成例を示す図である。It is a figure which shows the structural example of the light source for visible light communications of the visible light communication system which concerns on this embodiment, and a receiver. 第1および第2のフィルタを通して、第1のフォトダイオード、第2のフォトダイオードが受ける光波を示す図である。It is a figure which shows the light wave which a 1st photodiode and a 2nd photodiode receive through the 1st and 2nd filter. 本実施形態に係る可視光通信システムの受信装置側の基本的な動作を示すフローチャートである。It is a flowchart which shows the fundamental operation | movement by the side of the receiver of the visible light communication system which concerns on this embodiment.

以下、本発明の実施形態を図面に関連付けて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、本発明の実施形態に係る可視光通信システムの構成例を示す図である。
図3は、本実施形態に係る可視光通信システムの可視光通信用光源および受信装置の構成例を示す図である。
FIG. 2 is a diagram illustrating a configuration example of a visible light communication system according to the embodiment of the present invention.
FIG. 3 is a diagram illustrating a configuration example of the visible light communication light source and the reception device of the visible light communication system according to the present embodiment.

本実施形態に係る可視光通信システム10は、可視光通信用光源20と、可視光通信用光源20による光を受信する受信装置30と、を有する。   The visible light communication system 10 according to the present embodiment includes a visible light communication light source 20 and a receiving device 30 that receives light from the visible light communication light source 20.

可視光通信用光源20は、図3に示すように、単一または複数の発光ダイオード(LED)21と、LED21の発光を受けて、LEDベアチップより長波長の発光をする蛍光体22と、LED21の点滅を制御する発光制御部23と、を含んで構成される。
また、可視光通信用光源20は、受信装置30から送信されてくる高速通信可能信号を含む送信信号SNDを受信し、受信信号に応じた指示を発光制御部23に出力する受信部24を有する。
受信部24は、通信可能信号を受信すると発光制御部23にて可視光通信の通信速度を上げるように制御を行う。
As shown in FIG. 3, the visible light communication light source 20 includes a single or a plurality of light emitting diodes (LEDs) 21, a phosphor 22 that receives light emitted from the LEDs 21 and emits light having a longer wavelength than the LED bare chip, and an LED 21. And a light emission control unit 23 that controls blinking of the light.
In addition, the visible light communication light source 20 includes a reception unit 24 that receives a transmission signal SND including a high-speed communication enable signal transmitted from the reception device 30 and outputs an instruction corresponding to the reception signal to the light emission control unit 23. .
When receiving the communicable signal, the receiving unit 24 controls the light emission control unit 23 to increase the communication speed of visible light communication.

受信装置30は、第1の受光センサ31、第2の受光センサ32、信号処理部33、および送信部34を有する。   The receiving device 30 includes a first light receiving sensor 31, a second light receiving sensor 32, a signal processing unit 33, and a transmitting unit 34.

第1の受光センサ31は、光源20のLED21の光を含む波長帯域の光を透過する第1のフィルタFLT31と、第1のフィルタFLT31を透過した光を受光して電気信号を信号処理部33に出力する第1のフォトダイオードPD31と、を有する。   The first light receiving sensor 31 receives the first filter FLT 31 that transmits light in the wavelength band including the light of the LED 21 of the light source 20, and the light that has passed through the first filter FLT 31, and receives the electrical signal as a signal processing unit 33. A first photodiode PD31 that outputs to the first photodiode PD31.

第2の受光センサ32は、第1のフィルタFLT31が透過させる波長帯域とは異なる帯域で蛍光体22の光を含む帯域の光を透過する第2のフィルタFLT32と、第2のフィルタFLT32を透過した光を受光して電気信号を信号処理部33に出力する第2のフォトダイオードPD32と、を有する。   The second light receiving sensor 32 transmits the second filter FLT32 that transmits light in a band including the light of the phosphor 22 in a band different from the wavelength band transmitted by the first filter FLT31, and the second filter FLT32. A second photodiode PD32 that receives the received light and outputs an electrical signal to the signal processing unit 33.

信号処理部33は、第1の受光センサ31および第2の受光センサ32の出力信号を受けて信号処理を行う。
具体的には、信号処理部33は、第1の受光センサ31および第2の受光センサ32のうちいずれか一方の信号のみが受信できている場合にはその一方の信号を、両方の信号が受信できている場合には信頼性の高い第1の受光センサ31の信号を用いて信号処理を行う。
The signal processing unit 33 receives the output signals from the first light receiving sensor 31 and the second light receiving sensor 32 and performs signal processing.
Specifically, when only one of the first light receiving sensor 31 and the second light receiving sensor 32 can be received, the signal processing unit 33 determines that both signals are received. If reception is possible, signal processing is performed using a highly reliable signal from the first light receiving sensor 31.

送信部34は、信号処理部33において第1の受光センサ31の信号が受信できている場合に、第1の受光センサ31による受信が可能である旨の通信可能信号を光源20の受信部24に送信する。
なお、この送信部34と受信部24間の通信は、無線通信で行うことも可能であり、また、有線により通信を行うことも可能である。
When the signal processing unit 33 is able to receive the signal from the first light receiving sensor 31, the transmitting unit 34 transmits a communicable signal indicating that the signal can be received by the first light receiving sensor 31 to the receiving unit 24 of the light source 20. Send to.
The communication between the transmission unit 34 and the reception unit 24 can be performed by wireless communication, or can be performed by wired communication.

以上のように、本実施形態の可視光通信システム10は、送信側となる光源20に「蛍光型LED」が1つ配置されている。
受信装置30における、第1のフィルタFLT31はハイパスフィルタ(HPF)の特性を有する。
第2のフィルタFLT32は、ローパスフィルタ(LPF)の特性を有する。
ここで、たとえば第1のフィルタFLT31の遮断波長を470nm、第2のフィルタFLT32の遮断波長を500nmとした場合の、各々のフィルタを通して、第1のフォトダイオードPD31、第2のフォトダイオードPD32が受ける光波を表したのが図4となる。
As described above, in the visible light communication system 10 according to this embodiment, one “fluorescent LED” is arranged in the light source 20 on the transmission side.
The first filter FLT 31 in the receiving device 30 has a high-pass filter (HPF) characteristic.
The second filter FLT 32 has a low pass filter (LPF) characteristic.
Here, for example, when the cutoff wavelength of the first filter FLT31 is 470 nm and the cutoff wavelength of the second filter FLT32 is 500 nm, the first photodiode PD31 and the second photodiode PD32 receive through each filter. FIG. 4 shows the light wave.

この図4は市販されている白色LED照明のスペクトルを実測したもので、周波数が450nm近辺にピークが一つと、520〜600nmにかけてなだらかにピークが一つあるため、青色発光LEDと黄色蛍光体を組み合わせたものということが分かる。
このような特性を有する蛍光型LEDに対して、470nmでハイパスフィルタをかけると、第1のフォトダイオードPD31は図4中のAで示す網掛け部分の受光を行うものとなる。
同様に、500nmでローパスフィルタを使用する第2のフォトダイオードPD32は、図4中のBで示す網掛け部分の受光を行う。
FIG. 4 shows an actual measurement of the spectrum of commercially available white LED illumination. Since the frequency is one peak around 450 nm and one peak gently between 520 and 600 nm, the blue light emitting LED and the yellow phosphor are You can see that it is a combination.
When a high-pass filter is applied to a fluorescent LED having such characteristics at 470 nm, the first photodiode PD31 receives light at a shaded portion indicated by A in FIG.
Similarly, the second photodiode PD32 that uses a low-pass filter at 500 nm receives light in the shaded portion indicated by B in FIG.

この例にもあるように、一般に蛍光型LEDは、蛍光体が発した光量の方が、LED21が発した光量よりも大きい。
また、蛍光体22は励起に使用された光波よりも長波長の光のみしか出せないという特徴がある。同じ光量であっても、長波長の光の方がより空気中を伝播し易い。
これらにより、本可視光通信システム10においては、第2のフォトダイオードPD32の方が先に通信開始が可能な状態になるということが分かる。
As shown in this example, generally, in the fluorescent LED, the amount of light emitted from the phosphor is larger than the amount of light emitted from the LED 21.
Further, the phosphor 22 has a feature that it can emit only light having a longer wavelength than the light wave used for excitation. Even with the same amount of light, longer wavelength light is more likely to propagate through the air.
Accordingly, it can be seen that in the visible light communication system 10, the second photodiode PD32 is in a state where communication can be started first.

図5は、本実施形態に係る可視光通信システムの受信装置側の基本的な動作を示すフローチャートである。   FIG. 5 is a flowchart showing a basic operation on the receiving device side of the visible light communication system according to the present embodiment.

受信装置30側は通常は通信開始合図に対して待機状態となる(ST1)。
前述の理由により、まず第2の受光センサ32側の第2のフォトダイオードPD32の方のみ待機状態としておき、第1の受光センサ31の第1のフォトダイオードPD31については任意となる。
第2の受光センサ32の第2のフォトダイオードPD32の方でSOFを認識するなど、通信開始合図を受け取ったら、第2のフォトダイオードPD32で受信開始するが(ST2,ST3)、この際、第1の受光センサ31の第1のフォトダイオードPD31を待機状態に遷移させる。
第1の受光センサ31の第1のフォトダイオードPD31でも受信が可能な状態になったら、第1のフォトダイオードPD31をメインとして受信を開始する(ST4)。
この際、第2のフォトダイオードPD32の受信は中断するのではなく、継続して受信を行っておく(ST5,ST6)。
第1の受光センサ31の第1のフォトダイオードPD31でも受信開始が行えるようになったら、第1のフォトダイオードPD31をメインにして受信を行う(ST7〜ST9)。
蛍光体22の発光した光波は、蛍光体22によって強弱はあるが、燐光や遅延蛍光といった現象により、一般的に波形がなまることが知られている。
よって、第2の受光センサ32の第2のフォトダイオードPD32で受信する光波では、長波長・大光量であるゆえの遠距離から受信できるというメリットがある。ただし、受信エラー発生の割合が高くなるおそれもある。
第1の受光センサ31の第1のフォトダイオードPD31で受信を開始したらメインの通信を第1のフォトダイオードPD31に移行することにより、この問題を軽減できる。
The receiving apparatus 30 is normally in a standby state for a communication start signal (ST1).
For the above-described reason, only the second photodiode PD32 on the second light receiving sensor 32 side is set in a standby state, and the first photodiode PD31 of the first light receiving sensor 31 is optional.
When a communication start signal is received, such as recognizing SOF by the second photodiode PD32 of the second light receiving sensor 32, reception is started by the second photodiode PD32 (ST2, ST3). The first photodiode PD31 of one light receiving sensor 31 is shifted to a standby state.
When the first photodiode PD31 of the first light receiving sensor 31 is ready for reception, reception starts with the first photodiode PD31 as the main (ST4).
At this time, the reception of the second photodiode PD32 is not interrupted, but is continuously received (ST5 and ST6).
When the first photodiode PD31 of the first light receiving sensor 31 can start reception, reception is performed with the first photodiode PD31 as the main (ST7 to ST9).
It is known that the light wave emitted from the phosphor 22 is weak depending on the phosphor 22, but the waveform is generally distorted by a phenomenon such as phosphorescence or delayed fluorescence.
Therefore, the light wave received by the second photodiode PD32 of the second light receiving sensor 32 has an advantage that it can be received from a long distance because it has a long wavelength and a large amount of light. However, the rate of occurrence of reception errors may increase.
When reception is started by the first photodiode PD31 of the first light receiving sensor 31, this problem can be reduced by shifting main communication to the first photodiode PD31.

以上説明したように、本実施形態によれば、可視光通信システム10は、可視光通信用光源20と、可視光通信用光源20による光を受信する受信装置30と、を有する。
可視光通信用光源20は、LED21と、LED21の発光を受けて、そのLEDベアチップより長波長の発光をする蛍光体22と、LED21の点滅を制御する発光制御部23と、を含む。
受信装置30は、LED21の光を含む波長帯域の光を透過する第1のフィルタFLT31を備えた第1の受光センサ31と、波長帯域とは異なる帯域で蛍光体22の光を含む帯域の光を透過する第2のフィルタFLT32を備えた第2の受光センサ32と、第1の受光センサ31および第2の受光センサ32の出力信号を受けて信号処理を行う信号処理部33と、を有する。
そして、信号処理部33は、第1の受光センサ31および第2の受光センサ32のうちいずれか一方の信号のみが受信できている場合には一方の信号を、両方の信号が受信できている場合には第1の受光センサ31の信号を用いて信号処理を行う。
したがって、本実施形態によれば、以下の効果を得ることができる。
As described above, according to the present embodiment, the visible light communication system 10 includes the visible light communication light source 20 and the receiving device 30 that receives light from the visible light communication light source 20.
The visible light communication light source 20 includes an LED 21, a phosphor 22 that receives light emitted from the LED 21 and emits light having a longer wavelength than the LED bare chip, and a light emission control unit 23 that controls blinking of the LED 21.
The receiving device 30 includes a first light receiving sensor 31 including a first filter FLT 31 that transmits light in a wavelength band including the light of the LED 21, and light in a band including the light of the phosphor 22 in a band different from the wavelength band. A second light receiving sensor 32 having a second filter FLT 32 that transmits the light, and a signal processing unit 33 that receives the output signals of the first light receiving sensor 31 and the second light receiving sensor 32 and performs signal processing. .
The signal processing unit 33 can receive both signals when only one of the first light receiving sensor 31 and the second light receiving sensor 32 is received. In this case, signal processing is performed using the signal of the first light receiving sensor 31.
Therefore, according to the present embodiment, the following effects can be obtained.

すなわち、本実施形態によれば、それを優先的に用いて高速において信頼性の高い可視光通信を実現でき、LEDの光の受光が困難な場合は蛍光体の光を用いることで通信できる条件である距離、光の伝播条件等は広く維持することできる。   That is, according to the present embodiment, it is possible to realize visible light communication with high reliability at high speed by using it preferentially, and when it is difficult to receive the light of the LED, it is possible to communicate by using the light of the phosphor The distance, the light propagation condition, etc. can be widely maintained.

10・・・可視光通信システム、20・・・可視光通信用光源、21・・・LED、22・・・蛍光体、23・・・発光制御部、24・・・受信部、30・・・受信装置、31・・・第1の受光センサ、32・・・第2の受光センサ、33・・・信号処理部、34・・・送信部、FLT31・・・第1のフィルタ、FLT32・・・第2のフィルタ、PD31・・・第1のフォトダイオード、PD32・・・第2のフォトダイオード。   DESCRIPTION OF SYMBOLS 10 ... Visible light communication system, 20 ... Light source for visible light communication, 21 ... LED, 22 ... Phosphor, 23 ... Light emission control part, 24 ... Reception part, 30 ...・ Receiving device, 31... First light receiving sensor, 32... Second light receiving sensor, 33... Signal processing section, 34... Transmitting section, FLT 31. .. second filter, PD31... First photodiode, PD32... Second photodiode.

Claims (4)

任意の波長帯域の光を透過するフィルタを備えた第1の受光センサと、
前記任意の波長帯域とは異なる帯域の光を透過するフィルタを備えた第2の受光センサと、
前記第1の受光センサおよびもしくは第2の受光センサの出力信号を受けて信号処理を行う信号処理部と、を有し、
前記信号処理部は、
前記第1の受光センサおよび第2の受光センサのうちいずれか一方の信号のみが受信できている場合には当該一方の信号を、両方の信号が受信できている場合には信頼性が高いほうの信号を用いて信号処理を行う
可視光通信の受信装置。
A first light receiving sensor including a filter that transmits light of an arbitrary wavelength band;
A second light receiving sensor including a filter that transmits light in a band different from the arbitrary wavelength band;
A signal processing unit that performs signal processing in response to an output signal of the first light receiving sensor and / or the second light receiving sensor,
The signal processing unit
When only one of the first light receiving sensor and the second light receiving sensor is received, the one signal is received. When both signals are received, the one having higher reliability is received. A receiver for visible light communication that performs signal processing using the signal.
前記信号処理部は、
前記第1の受光センサが備えたフィルタが透過する光より前記第2の受光センサが備えたフィルタが透過する光のほうが波長が長く、前記信号処理部において前記第1の受光センサおよび第2の受光センサの両方の信号が受信できている場合に、
前記第1の受光センサの信号を用いて信号処理を行う
請求項1に記載の可視光通信の受信装置。
The signal processing unit
The light transmitted through the filter provided in the second light receiving sensor has a longer wavelength than the light transmitted through the filter provided in the first light receiving sensor, and the first light receiving sensor and the second light are transmitted in the signal processing unit. When both signals of the light receiving sensor are received,
The visible light communication receiving device according to claim 1, wherein signal processing is performed using a signal of the first light receiving sensor.
可視光通信用光源と、
前記可視光通信用光源による光を受信する受信装置と、を有し、
前記可視光通信用光源は、
発光ダイオード(LED)と、
前記LEDの発光を受けて、当該LEDベアチップより長波長の発光をする蛍光体と、
前記LEDの点滅を制御する発光制御部と、を含み、
前記受信装置は、
前記LEDの光を含む波長帯域の光を透過するフィルタを備えた第1の受光センサと、
前記波長帯域とは異なる帯域で前記蛍光体の光を含む帯域の光を透過するフィルタを備えた第2の受光センサと、
前記第1の受光センサおよびもしくは第2の受光センサの出力信号を受けて信号処理を行う信号処理部と、を有し、
前記信号処理部は、
前記第1の受光センサおよび第2の受光センサのうちいずれか一方の信号のみが受信できている場合には当該一方の信号を、両方の信号が受信できている場合には第1の受光センサの信号を用いて信号処理を行う
可視光通信システム。
A light source for visible light communication;
A receiver for receiving light from the visible light communication light source,
The visible light communication light source is:
A light emitting diode (LED);
A phosphor that emits light of a longer wavelength than the LED bare chip upon receiving the light emission of the LED;
A light emission control unit for controlling blinking of the LED,
The receiving device is:
A first light receiving sensor including a filter that transmits light in a wavelength band including the light of the LED;
A second light receiving sensor comprising a filter that transmits light in a band including the light of the phosphor in a band different from the wavelength band;
A signal processing unit that performs signal processing in response to an output signal of the first light receiving sensor and / or the second light receiving sensor,
The signal processing unit
When only one of the first light receiving sensor and the second light receiving sensor is received, the one light receiving sensor is received. When both signals are received, the first light receiving sensor is received. Visible light communication system that performs signal processing using the signal.
前記受信装置に、
送信部を、前記可視光通信用光源に前記送信部の送信信号の受信部を、それぞれさらに有し、
前記送信部は、
前記信号処理部において前記第1の受光センサの信号が受信できている場合に、前記第1の受光センサによる受信が可能である旨の通信可能信号を送信し、
前記受信部は、
前記通信可能信号を受信すると前記発光制御部にて可視光通信の通信速度を上げる制御を行う
請求項3に記載の可視光通信システム。
In the receiving device,
A transmission unit, the visible light communication light source further includes a transmission signal reception unit of the transmission unit,
The transmitter is
When the signal of the first light receiving sensor can be received in the signal processing unit, a communicable signal indicating that the signal can be received by the first light receiving sensor is transmitted.
The receiver is
The visible light communication system according to claim 3, wherein when the communication enable signal is received, the light emission control unit performs control to increase a communication speed of visible light communication.
JP2010073209A 2010-03-26 2010-03-26 Receiving apparatus and visible light communication system Pending JP2011205571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073209A JP2011205571A (en) 2010-03-26 2010-03-26 Receiving apparatus and visible light communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073209A JP2011205571A (en) 2010-03-26 2010-03-26 Receiving apparatus and visible light communication system

Publications (1)

Publication Number Publication Date
JP2011205571A true JP2011205571A (en) 2011-10-13

Family

ID=44881691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073209A Pending JP2011205571A (en) 2010-03-26 2010-03-26 Receiving apparatus and visible light communication system

Country Status (1)

Country Link
JP (1) JP2011205571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152666A (en) * 2016-02-25 2017-08-31 豊田合成株式会社 Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152666A (en) * 2016-02-25 2017-08-31 豊田合成株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
JP4464888B2 (en) Optical communication transmitter, optical communication receiver, optical communication system, and communication apparatus
EP2927722B1 (en) Single-core optical transceiver
JP5538524B2 (en) Apparatus and method for generating visible signal according to data transmission amount in visible light communication system
US8526825B2 (en) Visible light communication transmitter and visible light communication system
US7809276B2 (en) Inter-transceiver module communication for optimization of link between transceivers
US8229301B2 (en) Configuration of optical transceivers to perform custom features
JP2010536210A5 (en)
WO2011056233A3 (en) High speed communication
JP2009225196A (en) Visible light communication system and optical wireless lan device
JP2019175737A (en) Receiver, program, transmitter, light emitter, and communication system
JP2011205571A (en) Receiving apparatus and visible light communication system
CN104576631A (en) Photoelectric detection integrated chip
CN104601236A (en) Reflection principle based visible light communication system and method
KR102452318B1 (en) Free space optical communications system
CN113301456B (en) Optical network device with abnormal luminescence detection
KR101346616B1 (en) Visible light communication system, control method for visible light communication, optical transmitter
US8405315B2 (en) Energy-saving lamp
JP2009219032A (en) Visible light communication device and method
US10326525B2 (en) Photovoltaic receiver device with polarization management in order to increase the rate of an optical communication
US9948392B2 (en) Apparatus and method for generating visible signal according to amount of data transmission in visible light communication system
CN114915339A (en) Visible light communication system and method through light emitting diode array
JP2008199172A (en) Spatial optical transmitter and spatial optical transmission system using the same
US20030099445A1 (en) Semiconductor light-emitting element and optical transmission device
CN114499661A (en) Rescue equipment based on visible light communication
WO2015075893A1 (en) Optical transmission/reception module and optical transmission/reception module control method