JP2011204946A - Three-phase magnetic coupling reactor - Google Patents

Three-phase magnetic coupling reactor Download PDF

Info

Publication number
JP2011204946A
JP2011204946A JP2010071428A JP2010071428A JP2011204946A JP 2011204946 A JP2011204946 A JP 2011204946A JP 2010071428 A JP2010071428 A JP 2010071428A JP 2010071428 A JP2010071428 A JP 2010071428A JP 2011204946 A JP2011204946 A JP 2011204946A
Authority
JP
Japan
Prior art keywords
core
phase
triaxial
hexahedral
magnetically coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010071428A
Other languages
Japanese (ja)
Inventor
Tomohiko Kaneko
智彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010071428A priority Critical patent/JP2011204946A/en
Publication of JP2011204946A publication Critical patent/JP2011204946A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-phase magnetic coupling reactor which can further improve space utilization efficiency while equalizing magnetic path lengths.SOLUTION: The three-phase magnetic coupling reactor 10 is structured by including a hexahedral core 20, and a body 30 housed therein. The hexahedral core 20 is structured by including a tetrahedral cylindrical core 22 having through square holes with opening parts at both ends, and two cover part cores 26, 28 for magnetically closing the opening parts at both ends of the tetrahedral cylindrical core 22. A cubic space surrounded by the through square holes and the two cover part cores 26, 28 is a housing space 24. The body 30 is structured by including a triaxial core 40, phase coils 50 wound around the triaxial core 40, and a common gapping member 60. The triaxial core 40 is formed by arranging and integrating three shaft bodies along three axes orthogonal to each other, and includes projection parts respectively projecting from a common center part in six directions.

Description

本発明は、3相磁気結合リアクトルに係り、特に、3相リアクトルを相互に磁気結合させて構成される3相磁気結合リアクトルに関する。   The present invention relates to a three-phase magnetically coupled reactor, and more particularly to a three-phase magnetically coupled reactor configured by magnetically coupling three-phase reactors to each other.

例えば、3相変圧器に使用される積層鉄心は、コイルの配置等の関係から同列に配置されることが一般的で、そのために巻装される3相コイルに対して対称な配置構成となっていない。このことから、各相のインダクタンスが同一にならない。そこで、各相のインダクタンス、磁路長を揃える構成が種々提案されている。   For example, laminated iron cores used in three-phase transformers are generally arranged in the same row because of the arrangement of the coils and the like, and are therefore arranged symmetrically with respect to the three-phase coils wound for that purpose. Not. For this reason, the inductance of each phase is not the same. Therefore, various configurations for aligning the inductance and magnetic path length of each phase have been proposed.

特許文献1には、鉄損を低減できる3相変圧器として、環状の3個の単位鉄心を同一の軸を中心として対称に配置するとともに、互いに他の2つの鉄心と外周の一部が接するようにし、3個の環状鉄心のうちの2個の鉄心ごとにそれぞれ1つの相の巻線を行い、合計で3相巻線とする構成が述べられている。   In Patent Document 1, as a three-phase transformer capable of reducing iron loss, three annular unit cores are arranged symmetrically about the same axis, and the other two iron cores are in contact with a part of the outer periphery. Thus, a configuration is described in which one phase winding is performed for each of two of the three annular cores, and a total of three-phase windings are described.

特許文献2には、3相コイルとして、柱状の3つの脚部を一直線状に配置するのでなく、正3角形の頂点上に来るように立設し、その3つの脚部のそれぞれに各相コイルを巻線することで、3つの脚部の磁路の長さを等しくする構成が述べられている。   In Patent Document 2, as a three-phase coil, three columnar legs are not arranged in a straight line, but are erected so as to be on the apex of a regular triangle, and each phase is placed on each of the three legs. A configuration is described in which the lengths of the magnetic paths of the three leg portions are made equal by winding a coil.

特許文献3には、3相電磁機器として、6つの直線磁心の一端を集合させて平面的に星型の配置とし、その他端を環状の連結磁心で連結して窓部を形成し、3方向に延びる直線磁心のそれぞれに3相の主巻線を巻回し、連結磁心に制御巻線を巻回する構成が述べられている。   In Patent Document 3, as a three-phase electromagnetic device, one end of six linear magnetic cores is gathered to form a star-like arrangement in a plane, and the other end is connected with an annular connecting magnetic core to form a window portion, and three directions A configuration is described in which a three-phase main winding is wound around each of the linear magnetic cores extending in a straight line and a control winding is wound around the connecting magnetic core.

特開2005−333057号公報JP 2005-333057 A 特開2000−150269号公報JP 2000-150269 A 特開2008−177500号公報JP 2008-177500 A

従来技術において、3相のリアクトルを共通の鉄心を用いて磁気結合させて用いるとき、そのインダクタンス、磁路長を同じにする工夫が様々になされている。ところで、特許文献1の構成では、環状の鉄心を3つ準備する必要があり、また無駄な空間が生じ、体積効率あるいは空間利用効率がよくない。特許文献2の構成でも無駄な空間が生じ、空間利用効率がよくない。特許文献3の構成は平面的配置をとる場合には効果的と考えられるが、平面積が大きくなる欠点がある。このように、磁気結合リアクトルの空間利用効率向上にはまだ工夫の余地がある。   In the prior art, when a three-phase reactor is magnetically coupled using a common iron core, various ideas have been made to make the inductance and magnetic path length the same. By the way, in the structure of patent document 1, it is necessary to prepare three cyclic | annular iron cores, a useless space arises, and volume efficiency or space utilization efficiency is not good. Even in the configuration of Patent Document 2, useless space is generated, and space utilization efficiency is not good. Although the configuration of Patent Document 3 is considered effective when a planar arrangement is adopted, there is a drawback in that the plane area becomes large. Thus, there is still room for improvement in improving the space utilization efficiency of the magnetically coupled reactor.

本発明の目的は、磁路長を同じにしつつ、空間利用効率をさらに向上することを可能にする3相磁気結合リアクトルを提供することである。   An object of the present invention is to provide a three-phase magnetically coupled reactor that makes it possible to further improve space utilization efficiency while maintaining the same magnetic path length.

本発明に係る3相磁気結合リアクトルは、相互に直交する3軸に沿い、中心部から6方向にそれぞれ突出する突出部を有する3軸コアと、3軸コアの各軸にそれぞれ巻回される3つの各相コイルと、各相コイルがそれぞれ巻回された3軸コアを内部に収納可能な収納空間を有し、3軸コアの6つの突出部に対向する6つの内壁面を有する6面体コアと、を備えることを特徴とする。   A three-phase magnetically coupled reactor according to the present invention is wound around a triaxial core having projecting portions that project in six directions from the center along three axes orthogonal to each other, and each axis of the triaxial core. A hexahedron having a storage space capable of storing three respective phase coils and a three-axis core around which each phase coil is wound, and six inner wall surfaces facing the six projecting portions of the three-axis core And a core.

また、本発明に係る3相磁気結合リアクトルにおいて、6面体コアは、両端に開口部を有する貫通四角穴を含む4面筒部コアと、4面筒部の両端の開口部を磁気的に閉じる2つの蓋部コアと、を含むことが好ましい。   Further, in the three-phase magnetic coupling reactor according to the present invention, the hexahedral core magnetically closes the four-sided cylindrical core including a through-square hole having openings at both ends and the openings at both ends of the four-sided cylindrical portion. And including two lid cores.

また、本発明に係る3相磁気結合リアクトルにおいて、6面体コアの6つの内壁面のそれぞれと、3軸コアの6つの突出部の先端面のそれぞれとの間に配置される6つの共通ギャップ体を備えることが好ましい。   Further, in the three-phase magnetically coupled reactor according to the present invention, six common gap bodies arranged between each of the six inner wall surfaces of the hexahedral core and each of the tip surfaces of the six projecting portions of the triaxial core. It is preferable to provide.

上記構成により、3相磁気結合リアクトルは、相互に直交する3軸に沿って中心部から6方向にそれぞれ突出する突出部を有する3軸コアの各軸にそれぞれ各相コイルが巻回される。そして、各相コイルがそれぞれ巻回された3軸コアが、6面体コアの収納空間に収納されて、各突出部が6面体コアの6つの内壁面に対向するように配置される。このような構成によれば、3軸コアの各軸の長さを同じにすることで各相リアクトルの磁路長を同じにでき、また3次元空間を有効に利用できるので、空間利用効率を向上させることができる。   With the above configuration, in the three-phase magnetically coupled reactor, each phase coil is wound around each axis of a three-axis core having projecting portions that project in six directions from the center along three axes orthogonal to each other. And the triaxial core around which each phase coil was wound is stored in the storage space of the hexahedron core, and each protrusion is arranged so as to face the six inner wall surfaces of the hexahedron core. According to such a configuration, by making the length of each axis of the three-axis core the same, the magnetic path length of each phase reactor can be made the same, and the three-dimensional space can be used effectively. Can be improved.

また、3相磁気結合リアクトルにおいて、6面体コアは、両端に開口部を有する貫通四角穴を含む4面筒部コアと、4面筒部の両端の開口部を磁気的に閉じる2つの蓋部コアとを含む構成であるので、3軸コアを収納する作業が容易である。   Further, in the three-phase magnetically coupled reactor, the hexahedral core includes a four-surface cylindrical core including a through-square hole having openings at both ends, and two lid portions that magnetically close the openings at both ends of the four-surface cylindrical portion. Since the configuration includes the core, the operation of storing the triaxial core is easy.

また、3相磁気結合リアクトルにおいて、6面体コアの6つの内壁面のそれぞれと、3軸コアの6つの突出部の先端面のそれぞれとの間に6つの共通ギャップ体が配置されるので、各相リアクトルのギャップを含む磁気抵抗を同じとすることが容易となる。   Further, in the three-phase magnetically coupled reactor, since six common gap bodies are arranged between each of the six inner wall surfaces of the hexahedral core and each of the tip surfaces of the six projecting portions of the triaxial core, It becomes easy to make the magnetic resistance including the gap of the phase reactor the same.

本発明に係る実施の形態の3相磁気結合リアクトルの構成を説明する斜視図である。It is a perspective view explaining the structure of the three-phase magnetic coupling reactor of embodiment which concerns on this invention. 本発明に係る実施の形態の3相磁気結合リアクトルの構成を説明する3面図である。It is a three-plane figure explaining the structure of the three-phase magnetic coupling reactor of embodiment which concerns on this invention. 本発明に係る実施の形態の3相磁気結合リアクトルの6面体コアの構成を説明する分解図である。It is an exploded view explaining the structure of the hexahedral core of the three-phase magnetic coupling reactor of embodiment which concerns on this invention. 本発明に係る実施の形態の3相磁気結合リアクトルにおける本体部の構成を説明する分解図である。It is an exploded view explaining the structure of the main-body part in the three-phase magnetic coupling reactor of embodiment which concerns on this invention. 本発明に係る実施の形態の3相磁気結合リアクトルにおける磁気結合の様子を説明する図である。It is a figure explaining the mode of magnetic coupling in the three phase magnetic coupling reactor of embodiment which concerns on this invention. 従来技術の3相磁気結合リアクトルにおける磁気結合の様子を説明する図である。It is a figure explaining the mode of the magnetic coupling in the three-phase magnetic coupling reactor of a prior art.

以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下で説明する形状、寸法、材質等は、説明のための例示であり、3相磁気結合リアクトルの仕様に応じ、適宜変更が可能である。   Embodiments according to the present invention will be described below in detail with reference to the drawings. The shapes, dimensions, materials, and the like described below are examples for explanation, and can be appropriately changed according to the specifications of the three-phase magnetic coupling reactor.

以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。   Below, the same code | symbol is attached | subjected to the same element in all the drawings, and the overlapping description is abbreviate | omitted. In the description in the text, the symbols described before are used as necessary.

図1は、3相磁気結合リアクトル10の構成を示す斜視図である。図2は、3相磁気結合リアクトル10の構成を示す3面図である。これらの図において、直交する3軸の方向として、X軸、Y軸、Z軸の方向を示した。3相磁気結合リアクトル10は、6面体コア20と、その中に収納される本体部30とを含んで構成される。   FIG. 1 is a perspective view showing a configuration of a three-phase magnetically coupled reactor 10. FIG. 2 is a three-plane view showing the configuration of the three-phase magnetically coupled reactor 10. In these drawings, the directions of the X axis, the Y axis, and the Z axis are shown as directions of three orthogonal axes. The three-phase magnetically coupled reactor 10 includes a hexahedral core 20 and a main body 30 accommodated therein.

この3相磁気結合リアクトル10は、U相、V相、W相の3相の3つのリアクトル32,34,36が、3軸コア40と6面体コア20を共通のコアとして用い、3軸コア40にそれぞれ各相コイル50を巻回し、共通ギャップ体60を介して3軸コア40と6面体コア20とを磁気的に一体化し、3相の間に磁気結合を形成する構造を有する。   In this three-phase magnetically coupled reactor 10, three reactors 32, 34, and 36 of three phases of U phase, V phase, and W phase use a triaxial core 40 and a hexahedral core 20 as a common core. Each of the phase coils 50 is wound around 40, and the triaxial core 40 and the hexahedron core 20 are magnetically integrated via a common gap body 60 to form a magnetic coupling between the three phases.

6面体コア20は、磁性材料で構成され、立方体の外形形状を有し、その内部に各相コイル50がそれぞれ巻回された3軸コア40を収納可能な収納空間24を有する箱状のコアである。図3は、6面体コア20の分解図である。   The hexahedral core 20 is made of a magnetic material, has a cubic outer shape, and a box-shaped core having a storage space 24 in which a triaxial core 40 around which each phase coil 50 is wound can be stored. It is. FIG. 3 is an exploded view of the hexahedral core 20.

図3に示されるように、6面体コア20は、両端に開口部を有する貫通四角穴を含む4面筒部コア22と、4面筒部コア22の両端の開口部を磁気的に閉じる2つの蓋部コア26,28を含んで構成される。貫通四角穴と、2つの蓋部コア26,28によって囲まれる立方体の空間が、収納空間24である。   As shown in FIG. 3, the hexahedral core 20 includes a tetrahedral cylindrical core 22 including through-holes having openings at both ends, and magnetically closes the openings at both ends of the tetrahedral cylindrical core 2. Two lid cores 26 and 28 are included. A cubic space surrounded by the penetrating square hole and the two lid cores 26 and 28 is a storage space 24.

6面体コア20の外形は立方体であるので、その各辺の長さは同じである。例えば、立方体の各辺の長さをLとすると、2つの蓋部コア26,28のXY平面に平行な天井面あるいは底面の各辺の長さはそれぞれLである。2つの蓋部コア26,28のZ方向に沿った厚さをHとすると、4面筒部コア22の外形のX方向に沿った長さと、Y方向に沿った長さは、ともにLであるが、Z方向に沿った高さは、(L−2H)である。そして、収納空間24を取り囲む4方壁の厚さはそれぞれHとされる。したがって、収納空間24は、X方向の寸法もY方向の寸法もZ方向の寸法も、同じ(L−2H)である。つまり、収納空間24は、各辺が(L−2H)の寸法を有する立方体の空間である。換言すれば、収納空間24は、各辺が(L−2H)の寸法を有する正方形の6つの内壁部で囲まれた空間である。   Since the outer shape of the hexahedral core 20 is a cube, the length of each side is the same. For example, if the length of each side of the cube is L, the length of each side of the ceiling surface or the bottom surface parallel to the XY plane of the two lid cores 26 and 28 is L, respectively. When the thickness along the Z direction of the two lid cores 26 and 28 is H, the length along the X direction and the length along the Y direction of the outer shape of the four-surface cylinder core 22 are both L. However, the height along the Z direction is (L-2H). The thicknesses of the four-side walls surrounding the storage space 24 are each H. Accordingly, the storage space 24 has the same dimension (L-2H) in the X direction, the Y direction, and the Z direction. That is, the storage space 24 is a cubic space in which each side has a dimension of (L-2H). In other words, the storage space 24 is a space surrounded by six square inner walls each having a dimension of (L-2H).

かかる4面筒部コア22は、四角枠形状に成形された電磁鋼板を複数枚積層したものを用いることができる。また、2つの蓋部コア26,28は、正方形形状に成形された電磁鋼板を複数枚積層したものを用いることができる。   As the four-surface cylindrical portion core 22, a laminate in which a plurality of electromagnetic steel sheets formed into a square frame shape are stacked can be used. In addition, the two lid cores 26 and 28 may be formed by laminating a plurality of electromagnetic steel plates formed in a square shape.

本体部30は、3軸コア40と、3軸コア40に巻回される各相コイル50と、3軸コア40と6面体コア20との間に配置される共通ギャップ体60を含んで構成される。図4は、本体部30の分解図である。   The main body 30 includes a triaxial core 40, each phase coil 50 wound around the triaxial core 40, and a common gap body 60 disposed between the triaxial core 40 and the hexahedral core 20. Is done. FIG. 4 is an exploded view of the main body 30.

3軸コア40は、3つの軸体を相互に直交する3軸に沿うように配置して一体化したものである。図4では、3つの軸体として円柱軸が用いられ、この3つの円柱軸をX軸、Y軸、Z軸に沿って配置して一体化した3軸コア40が示されている。したがって、この3軸コア40は、共通の中心部から、6方向にそれぞれ突出する突出部42,43,44,45,46,47を有する。   The triaxial core 40 is formed by arranging and integrating three shaft bodies along three axes orthogonal to each other. In FIG. 4, a cylindrical shaft is used as three shaft bodies, and a three-axis core 40 in which the three cylindrical shafts are arranged along the X axis, the Y axis, and the Z axis is shown. Therefore, the triaxial core 40 has projecting portions 42, 43, 44, 45, 46, and 47 that project in six directions from a common central portion.

図4に示されるように、突出部42,43は、X軸に沿って配置され、突出部44,45は、Y軸に沿って配置され、突出部46,47は、Z軸に沿って配置される。中央部を挟んで両側の突出部42,43の先端面の間のX方向に沿った長さと、中央部を挟んで両側の突出部44,45の先端面の間のY方向に沿った長さと、中央部を挟んで両側の突出部46,47の先端面の間のZ方向に沿った長さは、いずれも同じとされる。この長さ寸法は、6面体コア20の収納空間24の向かい合う内壁部の間の間隔である(L−2H)よりも短く設定される。   As shown in FIG. 4, the protrusions 42 and 43 are arranged along the X axis, the protrusions 44 and 45 are arranged along the Y axis, and the protrusions 46 and 47 are along the Z axis. Be placed. The length along the X direction between the tip surfaces of the protrusions 42 and 43 on both sides across the central portion, and the length along the Y direction between the tip surfaces of the protrusions 44 and 45 on both sides across the center portion And the length along the Z direction between the front end surfaces of the projecting portions 46 and 47 on both sides across the central portion is the same. This length dimension is set to be shorter than (L-2H), which is the distance between the inner walls facing each other in the storage space 24 of the hexahedral core 20.

このように6面体コア20の収納空間24の寸法と、3軸コア40の寸法とを設定することで、3軸コア40は、6面体コア20の収納空間24の中に収納されることができる。このとき、6面体コア20の収納空間24の6つの内壁面は、6つの突出部42,43,44,45,46,47と、一定の隙間を開けて、対向することになる。この一定の隙間は、共通ギャップ体60の厚さに相当するものである。   By setting the dimensions of the storage space 24 of the hexahedral core 20 and the dimensions of the triaxial core 40 in this way, the triaxial core 40 can be stored in the storage space 24 of the hexahedral core 20. it can. At this time, the six inner wall surfaces of the storage space 24 of the hexahedral core 20 face the six projecting portions 42, 43, 44, 45, 46, 47 with a certain gap therebetween. This fixed gap corresponds to the thickness of the common gap body 60.

ここでは、3軸コア40の3つの軸体を円柱軸として説明したが、円柱以外の軸であってもよい。例えば、矩形軸、多角形軸、楕円軸等であってもよい。どのような軸形状を用いるとしても、6つの突出部42,43,44,45,46,47の軸方向に垂直な断面形状は、いずれも同一形状である。   Here, the three shaft bodies of the triaxial core 40 have been described as cylinder axes, but axes other than cylinders may be used. For example, it may be a rectangular axis, a polygonal axis, an elliptical axis, or the like. Whatever the axial shape is used, the cross-sectional shapes perpendicular to the axial direction of the six protrusions 42, 43, 44, 45, 46, 47 are all the same.

かかる3軸コア40は、円板状に成形した電磁鋼板を積層して、上記で説明した外形形状としたものを用いることができるが、この他に磁性体粉末を原材料として、粉末成形技術を用いて、上記で説明した外形形状に一体化成形したものを用いてもよい。あるいは、磁性材料を切削加工によって上記で説明した外形形状としたものを用いることもできる。   The triaxial core 40 can be formed by laminating electromagnetic steel plates formed in a disk shape to have the outer shape described above. In addition to this, a powder molding technique using a magnetic powder as a raw material can be used. It is also possible to use one that is integrally formed with the outer shape described above. Alternatively, a magnetic material having the outer shape described above by cutting can be used.

各相コイル50は、3軸コア40の各軸にそれぞれ巻回される3つの各相コイルである。この3つの各相コイルを区別して、U相コイル52、V相コイル54、W相コイル56と呼ぶことにすると、図4の例では、X軸方向に沿った突出部42,43に巻回されるコイルがU相コイル52、Y軸方向に沿った突出部44,45に巻回されるコイルがV相コイル54、Z軸方向に沿った突出部46,47に巻回されるコイルがW相コイル56である。   Each phase coil 50 is three each phase coil wound around each axis of the three-axis core 40. If these three phase coils are distinguished and referred to as U-phase coil 52, V-phase coil 54, and W-phase coil 56, they are wound around protrusions 42 and 43 along the X-axis direction in the example of FIG. The coil to be wound is the U-phase coil 52, the coil wound around the protrusions 44, 45 along the Y-axis direction is the coil wound around the V-phase coil 54, and the protrusions 46, 47 along the Z-axis direction. W-phase coil 56.

共通ギャップ体60は、6方向にそれぞれ突出する突出部42,43,44,45,46,47の先端面に配置される非磁性体の板材である。図4では、突出部42,43,44,45,46,47にそれぞれ対応して、共通ギャップ体62,63,64,65,66,67が示されている。ここでは、各突出部の軸方向に垂直な断面が円形であるので、共通ギャップ体60は、円板形状を有する。円板の直径は、各突出部の軸方向断面の直径と同じとされる。   The common gap body 60 is a non-magnetic plate material disposed on the front end surfaces of the projecting portions 42, 43, 44, 45, 46, and 47 that project in six directions. In FIG. 4, common gap bodies 62, 63, 64, 65, 66, and 67 are shown corresponding to the protrusions 42, 43, 44, 45, 46, and 47, respectively. Here, since the cross section perpendicular | vertical to the axial direction of each protrusion part is circular, the common gap body 60 has disk shape. The diameter of the disc is the same as the diameter of the axial section of each protrusion.

上記のように、3軸コア40を6面体コア20の収納空間24に収納すると、6面体コア20の6つの内壁面は、6つの突出部42,43,44,45,46,47と、一定の隙間を開けて、対向する。共通ギャップ体60の厚さは、この一定の隙間寸法に対応するように設定される。これによって、3軸コア40は、共通ギャップ体60を挟んで、6面体コア20の収納空間24の内壁面にしっかりと接触することができる。そのために、3軸コア40の6つの突出部42,43,44,45,46,47の先端面は、平坦面に仕上げられ、共通ギャップ体60の両側の円板面も平坦面に仕上げられる。   As described above, when the triaxial core 40 is stored in the storage space 24 of the hexahedral core 20, the six inner wall surfaces of the hexahedral core 20 have six protrusions 42, 43, 44, 45, 46, 47, Oppose each other with a certain gap. The thickness of the common gap body 60 is set so as to correspond to this constant gap size. Thus, the triaxial core 40 can firmly contact the inner wall surface of the storage space 24 of the hexahedral core 20 with the common gap body 60 interposed therebetween. Therefore, the tip surfaces of the six projecting portions 42, 43, 44, 45, 46, 47 of the triaxial core 40 are finished to be flat surfaces, and the disk surfaces on both sides of the common gap body 60 are also finished to flat surfaces. .

上記構成の3相磁気結合リアクトル10の製造手順の1例を以下に説明する。最初に、所定の形状に打ち抜き成形された電磁鋼板を積層して、4面筒部コア22と、2つの蓋部コア26,28を製作する。4面筒部コア22と、底面側の蓋部コア28とは、適当な結合手段で一体化する。結合手段としては、ネジ止め等の機械的結合でもよく、接着材をもちいてもよい。絶縁材料の接着材を用いるときは、この接着材層がギャップ層として働くことになるので、適当な磁性粉を混合した接着材を用いてもよい。   An example of the manufacturing procedure of the three-phase magnetically coupled reactor 10 having the above configuration will be described below. First, the electromagnetic steel plates punched and formed into a predetermined shape are laminated to produce the four-surface cylindrical core 22 and the two lid cores 26 and 28. The four-sided cylinder core 22 and the bottom-side lid core 28 are integrated by an appropriate coupling means. The coupling means may be mechanical coupling such as screwing or may use an adhesive. When an insulating material adhesive is used, the adhesive layer serves as a gap layer, and therefore an adhesive mixed with an appropriate magnetic powder may be used.

次に、粉末成形技術によって3軸コア40を製作する。そして、3軸コア40について各相コイル50を巻回する。具体的には、U相コイル52を突出部42,43に巻回し、V相コイル54を突出部44,45に巻回し、W相コイル56を突出部46,47に巻回する。   Next, the triaxial core 40 is manufactured by a powder molding technique. Then, each phase coil 50 is wound around the triaxial core 40. Specifically, the U-phase coil 52 is wound around the protrusions 42 and 43, the V-phase coil 54 is wound around the protrusions 44 and 45, and the W-phase coil 56 is wound around the protrusions 46 and 47.

そして、3軸コア40の6つの突出部42,43,44,45,46,47のそれぞれの先端面に、対応する共通ギャップ体62,63,64,65,66,67 を適当な接着材で取り付け固定する。適当な接着材としては、4面筒部コア22と、底面側の蓋部コア28との結合に用いたものと同じものを用いることができる。   A corresponding common gap body 62, 63, 64, 65, 66, 67 is attached to each tip surface of each of the six projecting portions 42, 43, 44, 45, 46, 47 of the triaxial core 40. Attach and fix with. As a suitable adhesive material, the same material as that used for coupling the four-surface cylindrical core 22 and the lid core 28 on the bottom surface side can be used.

そして、底面側の蓋部コア28と一体化された4面筒部コア22の開口部に、各相コイル50が巻回され、各突出部の先端面にそれぞれ共通ギャップ体60が取り付けられた3軸コア40を挿入して配置する。そして、天井面側に対応する蓋部コア26をかぶせる。その際に、各共通ギャップ体60は、収納空間24の6つの内壁面にそれぞれ対向するように配置されるので、適当な接着材を用いて、各共通ギャップ体60の先端側の表面と、収納空間の内壁面との間を固定する。適当な接着材としては、4面筒部コア22と、底面側の蓋部コア28との結合に用いたものと同じものを用いることができる。このようにして、3相磁気結合リアクトル10を組み立て、製造することができる。   And each phase coil 50 was wound by the opening part of the four-surface cylinder part core 22 integrated with the cover part core 28 of the bottom face side, and the common gap body 60 was attached to the front end surface of each protrusion part, respectively. The triaxial core 40 is inserted and arranged. And the cover core 26 corresponding to the ceiling surface side is covered. At that time, each common gap body 60 is disposed so as to oppose each of the six inner wall surfaces of the storage space 24, and therefore, using a suitable adhesive, the front-side surface of each common gap body 60, Fix the space between the inner wall of the storage space. As a suitable adhesive material, the same material as that used for coupling the four-surface cylindrical core 22 and the lid core 28 on the bottom surface side can be used. In this way, the three-phase magnetically coupled reactor 10 can be assembled and manufactured.

上記構成の作用について、図5、図6を用いて、従来技術と比較しながら説明する。この3相磁気結合リアクトル10は、直交する3軸方向の寸法関係が同じである立方体の外形を有し、その内部にやはり直交する3軸方向の寸法関係が同じである立方体の収納空間を有し、その収納関係に、直交する3軸方向の寸法関係が同じである3軸コアが配置される。したがって、その3軸コアの直交する3軸にそれぞれ同じ巻数の各相コイルを巻回すれば、各相間の磁気結合を容易に同じとできる。   The operation of the above configuration will be described using FIG. 5 and FIG. 6 in comparison with the prior art. The three-phase magnetically coupled reactor 10 has a cubic outer shape having the same dimensional relation in three orthogonal axes, and has a cubic storage space having the same dimensional relation in the three orthogonal directions inside. In addition, a triaxial core having the same dimensional relation in the three axial directions orthogonal to each other is disposed. Therefore, if each phase coil having the same number of turns is wound around three orthogonal axes of the three-axis core, the magnetic coupling between the phases can be easily made the same.

図5は、3相磁気結合リアクトル10の中心点を通る断面を用いて、各相間の磁気結合の様子を説明する図である。XY平面に平行な断面には、X軸に平行に配置されるU相コイル52の磁場と、Y軸に平行に配置されるV相コイル54の磁場との間に磁気結合72,73が生じる。この磁気結合72,74によって、U相とV相との間の相互インダクタンスが形成されるので、リアクトルとしては、これらの磁気結合が生じない場合に比べ、高いインダクタンスが実現できる。   FIG. 5 is a diagram illustrating a state of magnetic coupling between the phases using a cross section passing through the center point of the three-phase magnetic coupling reactor 10. In a cross section parallel to the XY plane, magnetic couplings 72 and 73 are generated between the magnetic field of the U-phase coil 52 arranged parallel to the X-axis and the magnetic field of the V-phase coil 54 arranged parallel to the Y-axis. . A mutual inductance between the U phase and the V phase is formed by the magnetic couplings 72 and 74, so that a high inductance can be realized as a reactor as compared with a case where these magnetic couplings do not occur.

また、同様に、XZ平面に平行な断面には、X軸に平行に配置されるU相コイル52の磁場と、Z軸に平行に配置されるW相コイル56の磁場との間に磁気結合74,75が生じる。これによって、U相とW相との間の相互インダクタンスが形成される。また、YZ平面に平行な断面には、Y軸に平行に配置されるV相コイル54の磁場と、Z軸に平行に配置されるW相コイル56の磁場との間に磁気結合76,77が生じる。これによって、U相とW相との間の相互インダクタンスが形成される。これらによって、リアクトルとしては、さらに高いインダクタンスが実現できる。   Similarly, the cross section parallel to the XZ plane has a magnetic coupling between the magnetic field of the U-phase coil 52 arranged parallel to the X-axis and the magnetic field of the W-phase coil 56 arranged parallel to the Z-axis. 74,75 occur. Thereby, a mutual inductance between the U phase and the W phase is formed. Further, in the cross section parallel to the YZ plane, magnetic coupling 76, 77 between the magnetic field of the V-phase coil 54 arranged in parallel to the Y-axis and the magnetic field of the W-phase coil 56 arranged in parallel to the Z-axis. Occurs. Thereby, a mutual inductance between the U phase and the W phase is formed. As a result, a higher inductance can be realized as a reactor.

このようにして形成される相互インダクタンスを利用することで、リアクトルとして高いインダクタンスを実現できるので、リアクトルのさらなる小型化を図ることができる。また、上記寸法設定関係から、これらの磁気結合72,73,74,75,76,77は、全く同じ作用を有する。つまり、各相間の磁気結合の間に、大きさの相違、偏り、歪み、不均等等が生じない。このように、各相間の磁路長が同じとなり、各相間のインダクタンスが同じとなる。そして、図1から理解できるように、立方体の体積の中に、3相リアクトルがきちんと収納され、無駄な空間がなく、空間利用効率が高い。このように、3相磁気結合リアクトル10は、磁路長を同じにしつつ、従来技術の構成に比較して、空間利用効率をさらに向上することができる。   By utilizing the mutual inductance formed in this way, a high inductance can be realized as a reactor, and thus the reactor can be further reduced in size. Moreover, from the above dimension setting relationship, these magnetic couplings 72, 73, 74, 75, 76, 77 have exactly the same action. That is, there is no difference in size, bias, distortion, non-uniformity, etc. between the magnetic couplings between the phases. Thus, the magnetic path length between the phases is the same, and the inductance between the phases is the same. As can be understood from FIG. 1, the three-phase reactor is properly stored in the volume of the cube, there is no useless space, and the space utilization efficiency is high. As described above, the three-phase magnetically coupled reactor 10 can further improve the space utilization efficiency as compared with the configuration of the prior art while maintaining the same magnetic path length.

図6は、従来技術の3相磁気結合リアクトル80の例を示すもので、ここでは、平面的に各相用の鉄心が直線状に配置されている。ここでは、鉄心として、5つの脚部を有する上側鉄心82と下側鉄心83がギャップ体84を挟んで結合され手4つの窓部を形成するものが示されている。そして、U相コイル92、V相コイル94、W相コイル96が、5つの脚部について1つおきの脚部に巻回されている。   FIG. 6 shows an example of a conventional three-phase magnetically coupled reactor 80. Here, the iron cores for each phase are arranged in a straight line in a plane. Here, as the iron core, an upper iron core 82 having five legs and a lower iron core 83 are connected with a gap body 84 interposed therebetween to form four hand windows. And the U-phase coil 92, the V-phase coil 94, and the W-phase coil 96 are wound around every other leg for the five legs.

このような構成において、U相コイル92の磁場102とV相コイル94の磁場104の間の磁気結合は、U相コイル92が巻回される脚部とV相コイル94が巻回される脚部との間の中間脚部93において生じる。同様に、V相コイル94の磁場106とW相コイル96の磁場108の間の磁気結合は、V相コイル94が巻回される脚部とW相コイル96が巻回される脚部との間の中間脚部95において生じる。これらの磁気結合は、図6に示されるように、磁路長がいずれも同じ磁場の相互作用であるので、相互に同じ作用を示す。   In such a configuration, the magnetic coupling between the magnetic field 102 of the U-phase coil 92 and the magnetic field 104 of the V-phase coil 94 is such that the leg around which the U-phase coil 92 is wound and the leg around which the V-phase coil 94 is wound. It occurs at the intermediate leg 93 between the two parts. Similarly, the magnetic coupling between the magnetic field 106 of the V-phase coil 94 and the magnetic field 108 of the W-phase coil 96 is between the leg around which the V-phase coil 94 is wound and the leg around which the W-phase coil 96 is wound. In the middle leg 95 in between. As shown in FIG. 6, these magnetic couplings exhibit the same action as each other because the magnetic path lengths are interaction of the same magnetic field.

ところが、U相コイル92とW相コイル96との間の磁気結合は、複雑である。すなわち、U相コイル92の磁場102とW相コイル96の磁場107の間の磁気結合は、中間脚部93で生じ、また、U相コイル92の磁場103とW相コイル96の磁場108の間の磁気結合は、中間脚部95で生じる。このように、U相コイル92とW相コイル96との間の磁気結合は、2つの中間脚部93,95で生じ得ることになる。そして、図6に示されるように、磁場102と磁場107は磁路長が異なり、磁場103と磁場108は磁路長が異なる。   However, the magnetic coupling between the U-phase coil 92 and the W-phase coil 96 is complicated. That is, the magnetic coupling between the magnetic field 102 of the U-phase coil 92 and the magnetic field 107 of the W-phase coil 96 occurs at the intermediate leg 93, and between the magnetic field 103 of the U-phase coil 92 and the magnetic field 108 of the W-phase coil 96. The magnetic coupling occurs at the intermediate leg 95. Thus, the magnetic coupling between the U-phase coil 92 and the W-phase coil 96 can occur at the two intermediate legs 93 and 95. As shown in FIG. 6, the magnetic field 102 and the magnetic field 107 have different magnetic path lengths, and the magnetic field 103 and the magnetic field 108 have different magnetic path lengths.

このように、従来技術の3相磁気結合リアクトル80の構成では、各相間の磁路長が異なり、各相間のインダクタンスが同じとならない。そして、各相間の磁気結合の間に、大きさの相違、偏り、歪み、不均等等が生じることになる。   Thus, in the configuration of the conventional three-phase magnetically coupled reactor 80, the magnetic path lengths between the phases are different, and the inductances between the phases are not the same. Then, a difference in size, bias, distortion, non-uniformity, and the like occur between the magnetic couplings between the phases.

本発明に係る3相磁気結合リアクトルは、3相電圧変換器、3相変圧器等に利用できる。   The three-phase magnetic coupling reactor according to the present invention can be used for a three-phase voltage converter, a three-phase transformer, and the like.

10 3相磁気結合リアクトル、20 6面体コア、22 4面筒部コア、24 収納空間、26,28 蓋部コア、30 本体部、32,34,36 リアクトル、40 3軸コア、42,43,44,45,46,47 突出部、50 各相コイル、52 U相コイル、54 V相コイル、56 W相コイル、60,62,63,64,65,66,67 共通ギャップ体、72,73,74,75,76,77 磁気結合、80 (従来技術の)3相磁気結合リアクトル、82 上側鉄心、83 下側鉄心、84 ギャップ体、92 U相コイル、93、95 中間脚部、94 V相コイル、96 W相コイル、102,103,104,106,107,108 磁場。   10 three-phase magnetic coupling reactor, 20 hexahedron core, 22 4-sided cylinder core, 24 storage space, 26, 28 lid core, 30 main body, 32, 34, 36 reactor, 40 triaxial core, 42, 43, 44, 45, 46, 47 Protruding part, 50 Each phase coil, 52 U phase coil, 54 V phase coil, 56 W phase coil, 60, 62, 63, 64, 65, 66, 67 Common gap body, 72, 73 , 74, 75, 76, 77 Magnetic coupling, 80 (prior art) three-phase magnetic coupling reactor, 82 Upper iron core, 83 Lower iron core, 84 Gap body, 92 U phase coil, 93, 95 Intermediate leg, 94 V Phase coil, 96 W phase coil, 102, 103, 104, 106, 107, 108 magnetic field.

Claims (3)

相互に直交する3軸に沿い、中心部から6方向にそれぞれ突出する突出部を有する3軸コアと、
3軸コアの各軸にそれぞれ巻回される3つの各相コイルと、
各相コイルがそれぞれ巻回された3軸コアを内部に収納可能な収納空間を有し、3軸コアの6つの突出部に対向する6つの内壁面を有する6面体コアと、
を備えることを特徴とする3相磁気結合リアクトル。
A triaxial core having projecting portions projecting in six directions from the central portion along three axes orthogonal to each other;
Each of the three phase coils wound around each axis of the three-axis core;
A hexahedral core having a storage space capable of storing therein a triaxial core around which each phase coil is wound, and having six inner wall surfaces facing the six projecting portions of the triaxial core;
A three-phase magnetically coupled reactor comprising:
請求項1に記載の3相磁気結合リアクトルにおいて、
6面体コアは、
両端に開口部を有する貫通四角穴を含む4面筒部コアと、
4面筒部の両端の開口部を磁気的に閉じる2つの蓋部コアと、
を含むことを特徴とする3相磁気結合リアクトル。
The three-phase magnetically coupled reactor according to claim 1,
The hexahedral core is
A four-sided cylindrical core including a through-hole having openings at both ends;
Two lid cores that magnetically close the openings at both ends of the four-sided cylinder,
A three-phase magnetically coupled reactor.
請求項1に記載の3相磁気結合リアクトルにおいて、
6面体コアの6つの内壁面のそれぞれと、3軸コアの6つの突出部の先端面のそれぞれとの間に配置される6つの共通ギャップ体を備えることを特徴とする3相磁気結合リアクトル。
The three-phase magnetically coupled reactor according to claim 1,
A three-phase magnetically coupled reactor, comprising six common gap bodies arranged between each of six inner wall surfaces of a hexahedral core and each of tip surfaces of six projecting portions of the triaxial core.
JP2010071428A 2010-03-26 2010-03-26 Three-phase magnetic coupling reactor Pending JP2011204946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071428A JP2011204946A (en) 2010-03-26 2010-03-26 Three-phase magnetic coupling reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071428A JP2011204946A (en) 2010-03-26 2010-03-26 Three-phase magnetic coupling reactor

Publications (1)

Publication Number Publication Date
JP2011204946A true JP2011204946A (en) 2011-10-13

Family

ID=44881282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071428A Pending JP2011204946A (en) 2010-03-26 2010-03-26 Three-phase magnetic coupling reactor

Country Status (1)

Country Link
JP (1) JP2011204946A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130307856A1 (en) * 2012-05-16 2013-11-21 Brian E. Keane Synchronizing virtual actor's performances to a speaker's voice
CN110556235A (en) * 2019-10-19 2019-12-10 北京中热信息科技有限公司 Star-shaped folding iron core transformer
JP2019537257A (en) * 2016-11-04 2019-12-19 プレモ・エセ・アPremo, S.A. Small magnetic power unit for power electronics system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130307856A1 (en) * 2012-05-16 2013-11-21 Brian E. Keane Synchronizing virtual actor's performances to a speaker's voice
JP2019537257A (en) * 2016-11-04 2019-12-19 プレモ・エセ・アPremo, S.A. Small magnetic power unit for power electronics system
JP7277362B2 (en) 2016-11-04 2023-05-18 プレモ・エセ・ア Compact magnetic power unit for power electronics systems
CN110556235A (en) * 2019-10-19 2019-12-10 北京中热信息科技有限公司 Star-shaped folding iron core transformer

Similar Documents

Publication Publication Date Title
JP4962033B2 (en) Axial gap type motor
JP5827851B2 (en) stator
WO2012169043A1 (en) Rotor for rotating electrical machine, rotating electric machine, and method for producing rotor for rotating electrical machine
JP2009246221A (en) Reactor
JP6530788B2 (en) Method of manufacturing reactor and core body
JP2014003125A (en) Reactor
JP5176225B2 (en) Rotary electromagnetic generator
JP2018133492A (en) Reactor including iron core part and coil, motor drive device, power conditioner, and machine
JP5740873B2 (en) Trance
JP7277362B2 (en) Compact magnetic power unit for power electronics systems
JP2011204946A (en) Three-phase magnetic coupling reactor
JP6490129B2 (en) An iron core consisting of a first iron core block and a second iron core block
US6819015B2 (en) Stator fastening structure of reciprocating motor
JP6490147B2 (en) Reactor with terminal and pedestal
JP2014138045A (en) Common mode choke
WO2003107515A1 (en) Linear actuator, and pump and compressor devices using the actuator
JP2012109296A (en) Coil device
JP2014090541A (en) Inner rotor type motor
JP6484068B2 (en) Resin case for inductance element and inductance element
JP6075678B2 (en) Composite magnetic core, reactor and power supply
EP3319174B1 (en) A magnetic power unit
JP2012146927A (en) Reactor
JP2001035723A (en) Drum core, drum-type rectangular core and variable type linearity chock coil using them, variable type linearity choke coil with base, and rectangular transformer
JP2008218465A (en) Coil part
JP2016092201A (en) Reactor