JP2011204728A - Anode for electrolytic capacitor, and electrolytic capacitor - Google Patents

Anode for electrolytic capacitor, and electrolytic capacitor Download PDF

Info

Publication number
JP2011204728A
JP2011204728A JP2010067796A JP2010067796A JP2011204728A JP 2011204728 A JP2011204728 A JP 2011204728A JP 2010067796 A JP2010067796 A JP 2010067796A JP 2010067796 A JP2010067796 A JP 2010067796A JP 2011204728 A JP2011204728 A JP 2011204728A
Authority
JP
Japan
Prior art keywords
sintered body
anode
electrolytic capacitor
powder sintered
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010067796A
Other languages
Japanese (ja)
Other versions
JP5570262B2 (en
Inventor
Ryo Higashine
亮 東根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2010067796A priority Critical patent/JP5570262B2/en
Publication of JP2011204728A publication Critical patent/JP2011204728A/en
Application granted granted Critical
Publication of JP5570262B2 publication Critical patent/JP5570262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a compact capacitor in which a powder sintered body for an electrode and a connection with an external are provided easily on the anode surface thereof, in order to solve such problems that a work for providing a powder sintered body becomes complicated and an overall shape of a capacitor also becomes larger since it is necessary to use a portion that is not provided with the powder sintered body and protrudes from the powder sintered body when covered with a masking tape since the control of a boundary between a part of the powder sintered body and a part not including the powder sintered body is difficult, in providing a powder sintered body for an electrode on a supporting foil surface to form an oxide film by formation, as an electrode, in particular an anode, for an electrolytic capacitor.SOLUTION: In the anode for an electrolytic capacitor including a sintered body layer provided on a supporting foil surface, a protruding thick part projecting from the supporting foil surface is provided.

Description

本発明は、電解コンデンサ用陽極および電解コンデンサに関するものである。   The present invention relates to an electrolytic capacitor anode and an electrolytic capacitor.

電解コンデンサ用の電極、特に陽極には、単位面積当たりの静電容量を高めるため、電気化学的または化学的にエッチング処理することにより、エッチングピットを形成したエッチング箔の表面に、化成により酸化皮膜を設けるタイプと、支持箔表面に電極用の粉末焼結体を設け、化成により酸化皮膜を設けるタイプとがある。そして、外部との接続には、別部品としてリードタブ端子を陽極に重ね、ハトメまたはコールドウエル等により、陽極の化成により生じた酸化皮膜を貫いてリードタブ端子と電気的な接続をとっている。
また、エッチングピットの深さの限界や、エッチング処理を省けるメリットから、支持箔表面に電極用の粉末焼結体を設けるタイプの陽極の提案が盛んになってきている。
Electrodes for electrolytic capacitors, especially anodes, are subjected to electrochemical or chemical etching to increase the capacitance per unit area, thereby forming an oxide film on the surface of the etching foil formed with etching pits by chemical conversion. There is a type in which a powder sintered body for electrodes is provided on the surface of the support foil, and an oxide film is provided by chemical conversion. For connection to the outside, a lead tab terminal is stacked on the anode as a separate component, and is electrically connected to the lead tab terminal through an oxide film formed by the formation of the anode by eyelet or cold well.
In addition, due to the limitation of the depth of the etching pit and the merit of omitting the etching process, proposals of a type of anode in which a powder sintered body for an electrode is provided on the surface of a support foil have become popular.

ところで、小形のコンデンサの場合には、リードタブ端子の使用が困難であるため、特許文献1では、陽極箔表面内の一部に、エッチング前にマスキングすることにより、接続用の未エッチング部を設けることが記載されている。
また、支持箔表面に陽極用の粉末焼結体を設ける場合には、化成前にマスキングしようとしてもマスキング部の粉末焼結体内部に化成液がしみ込んでしまうために、外部接続用のマスキングが難しい。そのため、特許文献2には、格子状のマスク器具を使用して、陽極用の粉末とバインダとのスラリーをディスペンサーにより支持箔上に部分的に塗布し、焼結して陽極用の粉末焼結体を設け、次に粉末焼結体を設けていないそれより外側の支持箔部分をマスキングテープで被うことで化成処理することが記載されている。
By the way, in the case of a small capacitor, it is difficult to use a lead tab terminal. Therefore, in Patent Document 1, a part of the surface of the anode foil is masked before etching to provide an unetched portion for connection. It is described.
In addition, when a powder sintered body for an anode is provided on the surface of the support foil, the chemical conversion liquid will permeate into the powder sintered body in the masking portion even if masking is attempted before chemical conversion. difficult. Therefore, in Patent Document 2, using a lattice-shaped mask device, a slurry of anode powder and binder is partially applied onto a support foil by a dispenser, and sintered to powder sintering for the anode. It is described that a chemical conversion treatment is performed by providing a body and then covering a portion of the supporting foil outside the powder sintered body with a masking tape.

特開2002−231582号公報JP 2002-231582 A 特開2003−243262号公報JP 2003-243262 A

しかしながら、支持箔表面に部分的に陽極用の粉末焼結体を設ける方法では、粉末焼結体を設ける作業が煩雑になり、またマスキングテープで被うのに、粉末焼結体を設けていないそれより外側のはみ出した支持箔部分を使用する必要があるため全体形状が大きくなってしまう。   However, in the method of partially providing the anode powder sintered body on the surface of the support foil, the operation of providing the powder sintered body becomes complicated, and the powder sintered body is not provided to cover with the masking tape. Since it is necessary to use the support foil part which protruded outside it, the whole shape will become large.

本発明は、上記の問題点を解決するためになされたもので、支持箔表面に陽極用の粉末焼結体と外部との接続体とを容易にする小形対応の電解コンデンサ用陽極および電解コンデンサを得ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and is a small-sized electrolytic capacitor anode and electrolytic capacitor that facilitates a powder sintered body for an anode and a connection body to the outside on the surface of a support foil. The purpose is to obtain.

本発明は、支持箔表面に焼結体層を設けた電解コンデンサ用陽極において、前記支持箔にこの支持箔表面から突出した凸状の肉厚部を設けた電解コンデンサ用陽極を提供するものである。
また、上記記載の電解コンデンサ用陽極を一枚または複数枚積層して使用した電解コンデンサを提供するものである。
The present invention provides an anode for an electrolytic capacitor in which a sintered body layer is provided on a surface of a support foil, and the anode for an electrolytic capacitor in which a convex thick portion protruding from the surface of the support foil is provided on the support foil. is there.
The present invention also provides an electrolytic capacitor using one or more of the above-described electrolytic capacitor anodes.

本発明は、支持箔から突出した凸状の肉厚部の接続体を設けたことにより、粉末焼結体部分に少なくとも二方向に取り囲まれた外部との接続体を容易に設けることができるため、小形対応の電解コンデンサ用陽極および電解コンデンサを得ることができる。
According to the present invention, since the convex thick connecting body protruding from the support foil is provided, it is possible to easily provide an external connecting body surrounded at least in two directions in the powder sintered body portion. Thus, it is possible to obtain a small-sized electrolytic capacitor anode and electrolytic capacitor.

本発明の電解コンデンサ用陽極の作成方法を断面斜視図で示している。The manufacturing method of the anode for electrolytic capacitors of this invention is shown with the cross-sectional perspective view. 本発明の電解コンデンサ用陽極を使用した電解コンデンサ素子を示している。The electrolytic capacitor element using the anode for electrolytic capacitors of the present invention is shown.

本発明に述べる支持箔は、粉末焼結体を支持する支持体で、アルミニウム、タンタルなどの弁作用金属箔が使用できる。支持箔としては、特に限定されないが、加工が容易な点でアルミニウム箔が好ましい。また、支持箔の純度は、99.5質量%以上が好ましい。
また、支持箔は、その組成として、珪素、鉄、銅、マグネシウム、マンガン、チタン、クロム、亜鉛、ガリウム、バナジウム、ニッケル及びホウ素の少なくとも1種の合金元素を必要範囲内において添加した合金あるいは上記の不可避的不純物元素の含有量を限定したものも含まれる。
支持箔の厚みは、特に限定されないが、5μm以上100μm以下、特に、10μm以上50μm以下の範囲内とするのが好ましい。また、支持箔の表面は、粗面化しても良い。粗面化方法は、特に限定されず、エッチング、サンドブラスト等の公知の技術を用いることができる。
The support foil described in the present invention is a support for supporting a powder sintered body, and a valve action metal foil such as aluminum or tantalum can be used. Although it does not specifically limit as support foil, Aluminum foil is preferable at the point which is easy to process. The purity of the support foil is preferably 99.5% by mass or more.
In addition, the support foil has an alloy in which at least one alloy element of silicon, iron, copper, magnesium, manganese, titanium, chromium, zinc, gallium, vanadium, nickel and boron is added within a necessary range, or the above The content of the inevitable impurity element is limited.
The thickness of the support foil is not particularly limited, but is preferably in the range of 5 μm to 100 μm, particularly 10 μm to 50 μm. Further, the surface of the support foil may be roughened. The surface roughening method is not particularly limited, and known techniques such as etching and sandblasting can be used.

本発明に述べる焼結体層は、支持箔表面の片面または両面に設ける粉末の焼結体の層で、焼結体は弁作用金属からなる。陽極上の焼結体層は、外部接続部以外、支持箔の表面全面に設けるのが容量の点で好ましい。
上記焼結体は、純度99.8質量%以上のアルミニウム、タンタルなどの弁作用金属の少なくとも1種から構成される。また、例えば、珪素、鉄、銅、マグネシウム、マンガン、チタン、クロム、亜鉛、ガリウム、バナジウム、ニッケル及びホウ素の少なくとも1種の合金元素を必要範囲内において添加した合金あるいは上記の不可避的不純物元素の含有量を限定したものも含まれる。前記焼結体は、弁作用金属及び弁作用金属合金の少なくとも1種からなる粒子どうしが互いに空孔を維持しながら焼結したものであることが好ましい。この場合の気孔率は、通常30%以上70%以内の範囲内で所望の静電容量等に応じて適宜設定することができる。また、空孔率は、例えば出発材料の弁作用金属又は弁作用金属合金の粉末の粒径、添加するバインダ等により制御することができる。
焼結体層の厚さは特に制限されないが、一般的には平均厚み50μm以上1000μm以下、特に100μm以上500μm以下のシート状であることが好ましい。薄いと支持箔割合が増え、電極抵抗は減少するが単位当たりの容量が減少する。厚いと焼結体層内部まで電解液が浸透しづらく容量の増加が抑えられてしまう。
The sintered body layer described in the present invention is a powder sintered body layer provided on one or both sides of the surface of the support foil, and the sintered body is made of a valve metal. The sintered body layer on the anode is preferably provided on the entire surface of the support foil except for the external connection portion from the viewpoint of capacity.
The sintered body is composed of at least one valve action metal such as aluminum or tantalum having a purity of 99.8% by mass or more. Further, for example, an alloy in which at least one alloy element of silicon, iron, copper, magnesium, manganese, titanium, chromium, zinc, gallium, vanadium, nickel and boron is added within a necessary range or the above inevitable impurity element Those with limited contents are also included. It is preferable that the sintered body is obtained by sintering particles made of at least one of a valve action metal and a valve action metal alloy while maintaining pores. The porosity in this case can be appropriately set in accordance with a desired capacitance or the like, usually within a range of 30% to 70%. The porosity can be controlled by, for example, the particle diameter of the starting metal valve action metal or valve action metal alloy powder, the binder to be added, and the like.
The thickness of the sintered body layer is not particularly limited, but is generally preferably a sheet shape having an average thickness of 50 μm to 1000 μm, particularly 100 μm to 500 μm. If it is thin, the ratio of the supporting foil increases and the electrode resistance decreases, but the capacity per unit decreases. If it is thick, it is difficult for the electrolyte to penetrate into the sintered body layer, and the increase in capacity is suppressed.

焼結体は、弁作用金属粉末、必要に応じてバインダ、溶剤、焼結助剤、界面活性剤等が含まれる分散体を焼結することにより得られる。
弁作用金属粉末の形状は、特に限定されず、球状、不定形状、鱗片状、繊維状等のいずれも使用できる。粉末の平均粒径は0.1μm以上30μm以下、特に1μm以上20μmが好ましい。平均粒径が0.1μmより小さいと、所望の耐電圧が得られないおそれがある。また、30μmより大きいと、所望の静電容量が得られない場合がある。
バインダは、たとえばポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、フェノール樹脂、アクリル樹脂、尿素樹脂、酢酸ビニルエマルジョン、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、エポキシ樹脂、メラミン樹脂、アルキド樹脂、ニトロセルロース樹脂、樟脳などがあげられ、これらの樹脂は単独、あるいは、上記お互いの樹脂を2種以上混合して利用することができる。
溶媒は、80℃以上200℃以下が好ましく使用できる。具体的な溶剤としてはシクロヘキサノン、メチルセルソルブ、アニソール、キシレン、ベンジルアルコール、ジエチレングリコールなどがあげられる。この他、水、あるいはメタノール、イソプロパノール等のアルコール類、セルソルブ類、アセトン、メチルエチルケトン、イソホロン等のケトン類、N,N−ジメチルホルムアミド等のアミド類、酢酸エチル等のエステル類、ジオキサン等のエーテル類、塩化メチル等の塩素系溶媒、トルエン等の芳香族系炭化水素類等が挙げられるが、これらに限定されるものではない。これらの溶剤は、単独又は2種類以上混合して用いてもよい。
上述の分散体は、各種の混練・分散機を用いて分散することができる。混練・分散にあたっては、攪拌機、二本ロール、三本ロール等のロール型混練機、縦型ニーダー、加圧ニーダー、プラネタリーミキサー等の羽根型混練機、ボール型回転ミル、サンドミル、アトライター等の分散機、超音波分散機、ナノマイザー等が使用できる。
このようにして作製された金属粉末分散体は、種々の塗布方法により塗布物として形成することができる。例えば、公知のロール塗布方法等により支持箔上に塗布物を形成することができる。また、塗布物を乾燥後、単位体積当たりの金属粉末の密度を上げるためにまた膜厚を平均化するために、プレスあるいはカレンダー処理をしてもよい。
The sintered body can be obtained by sintering a dispersion containing a valve action metal powder and, if necessary, a binder, a solvent, a sintering aid, a surfactant and the like.
The shape of the valve action metal powder is not particularly limited, and any of a spherical shape, an indefinite shape, a scale shape, a fiber shape, and the like can be used. The average particle size of the powder is preferably 0.1 μm or more and 30 μm or less, particularly preferably 1 μm or more and 20 μm. If the average particle size is less than 0.1 μm, the desired withstand voltage may not be obtained. On the other hand, if it is larger than 30 μm, a desired capacitance may not be obtained.
The binder is, for example, polyvinyl alcohol resin, polyvinyl acetal resin, butyral resin, phenol resin, acrylic resin, urea resin, vinyl acetate emulsion, polyurethane resin, polyvinyl acetate resin, epoxy resin, melamine resin, alkyd resin, nitrocellulose resin, camphor. These resins can be used alone or in combination of two or more of the above resins.
The solvent is preferably used at 80 ° C. or higher and 200 ° C. or lower. Specific examples of the solvent include cyclohexanone, methyl cellosolve, anisole, xylene, benzyl alcohol, and diethylene glycol. Other than these, water, alcohols such as methanol and isopropanol, cersolves, ketones such as acetone, methyl ethyl ketone and isophorone, amides such as N, N-dimethylformamide, esters such as ethyl acetate, ethers such as dioxane Examples thereof include, but are not limited to, chlorine solvents such as methyl chloride, and aromatic hydrocarbons such as toluene. These solvents may be used alone or in combination of two or more.
The above dispersion can be dispersed using various kneading and dispersing machines. In kneading and dispersing, roll type kneaders such as stirrers, two rolls, three rolls, vertical type kneaders, pressure kneaders, blade type kneaders such as planetary mixers, ball type rotary mills, sand mills, attritors, etc. No. disperser, ultrasonic disperser, nanomizer and the like can be used.
The metal powder dispersion produced in this way can be formed as a coating by various coating methods. For example, the coated material can be formed on the support foil by a known roll coating method or the like. In addition, after drying the coated material, press or calendar treatment may be performed to increase the density of the metal powder per unit volume and to average the film thickness.

本発明に述べる凸状の肉厚部は、支持箔表面の片面または両面から一体的に突出した凸形状部分で、陽極同士または陽極から引き出される引き出し電極などの外部との接続に使用する。
形状は、陽極同士の接続の場合には、直径が1mmから5mm程度の円柱、引き出し電極との接続の場合には、一辺が1mmから10mm程度の四角柱などとなるが、凸状の肉厚部のおおきさ、形状には特に限定はない。高さはいずれも焼結体層の厚さ程度となる。
設置場所は、実際には、個々の陽極は小さいく、複数個同時に作成され後で個々の陽極に切り分けされるため、陽極同士の接続の場合には、陽極の中央部分、引き出し電極との接続の場合には、陽極の角または辺の等の周辺部分となり、焼結体に少なくとも二方に囲まれているように設ける。
作成方法は、支持箔がコイル状で供給される場合には、圧延ローラに凸状の肉厚部に対応する凹部を複数設け、連続的に複数個作成する。支持箔が枚様で供給される場合には平板プレスヘッドに凸状の肉厚部に対応する凹部を複数設け、プレスする方法で作成することができる。加工性が悪い場合には、200℃から300℃ほど加熱しながら成形を行ってもよい。
The convex thick portion described in the present invention is a convex portion integrally projecting from one or both surfaces of the surface of the support foil, and is used for connection with the outside such as the anodes or the lead electrodes drawn from the anode.
The shape is a cylinder with a diameter of about 1 mm to 5 mm in the case of connection between anodes, and a square column with a side of about 1 mm to 10 mm in the case of connection with an extraction electrode. There is no particular limitation on the size and shape of the part. The height is about the thickness of the sintered body layer.
The installation location is actually small for each anode. Since a plurality of anodes are created at the same time and then separated into individual anodes, when connecting anodes, the center part of the anode and the connection with the extraction electrode are used. In this case, it is a peripheral portion such as a corner or a side of the anode, and is provided so as to be surrounded at least in two directions by the sintered body.
In the production method, when the support foil is supplied in a coil shape, the rolling roller is provided with a plurality of concave portions corresponding to the convex thick portion, and a plurality of the concave portions are continuously produced. When the support foil is supplied in a sheet form, a plurality of concave portions corresponding to the convex thick portion are provided on the flat plate press head, and the support foil can be formed by pressing. If the workability is poor, the molding may be performed while heating at about 200 ° C to 300 ° C.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の電解コンデンサ用陽極の作成方法を断面斜視図で示している。
図1(a)は、支持箔を、図1(b)は、支持箔に凸状の肉厚部を設けた後を、図1(c)は、支持箔表面に焼結体層を設けた後を、図1(d)は、切断して個々の陽極にする前を、図1(e)は、切断して個々の陽極にした後を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional perspective view showing a method for producing an electrolytic capacitor anode of the present invention.
FIG. 1 (a) shows a support foil, FIG. 1 (b) shows a state after a convex thick portion is provided on the support foil, and FIG. 1 (c) shows a sintered body layer provided on the surface of the support foil. FIG. 1D shows a state before cutting into individual anodes, and FIG. 1E shows a state after cutting into individual anodes.

以下、10mm×20mm程度の大きさの陽極の作成する方法を詳しく説明する。
支持箔1は、図1(a)に示すように、複数の陽極が一度に作成できる大きさたとえば幅が500mm程度の弁作用金属箔の枚様またはコイル状で供給する。
Hereinafter, a method for producing an anode having a size of about 10 mm × 20 mm will be described in detail.
As shown in FIG. 1 (a), the support foil 1 is supplied in the form of a valve-acting metal foil having a size capable of forming a plurality of anodes at a time, for example, a width of about 500 mm, or in the form of a coil.

次に、図1(b)に示すように、凸状の肉厚部2は、圧延ローラに凸状の肉厚部に対応する凹部を複数設け、連続的に複数個の凸状の肉厚部を片面または両面同時場所に作成する。支持箔1が枚様の場合には平板プレスヘッドに凸状の肉厚部に対応する凹部を複数設け、プレスする方法で作成することもできる。
凸状の肉厚部2は、陽極同士との接続の凸状の肉厚部2aを直径が1mmから5mm程度の円柱形状で、陽極から引き出される引き出し電極との接続の凸状の肉厚部2bを一辺が2mmから10mm程度の四角注形状で示している。また、このほかに焼結体層の層厚が金属粉末分散体の塗布時に安定するように、スペーサとしての凸状の肉厚部を分散してまたは周辺部に設けてもよい。
Next, as shown in FIG. 1B, the convex thick portion 2 is provided with a plurality of concave portions corresponding to the convex thick portion on the rolling roller, and a plurality of convex thick portions are continuously provided. Create a part on one or both sides at the same time. When the support foil 1 is sheet-like, it can be formed by a method in which a flat plate press head is provided with a plurality of concave portions corresponding to convex thick portions and pressed.
The convex thick part 2 is a cylindrical part having a diameter of about 1 mm to 5 mm in the convex thick part 2a connected to the anodes, and is connected to the extraction electrode drawn from the anode. 2b is shown in a square shape with a side of about 2 mm to 10 mm. In addition to this, a convex thick portion as a spacer may be dispersed or provided at the peripheral portion so that the thickness of the sintered body layer is stabilized when the metal powder dispersion is applied.

次に、図1(c)に示すように、金属粉末分散体を塗布し、焼結させ焼結体層3を設ける。金属粉末分散体の塗布厚は、金属粉末分散体を塗布後、凸状の肉厚部2の高さになるようにスキジー等でかきとってそろえてもよい。
次に、化成処理によって焼結体の表面全体に誘電体である酸化皮膜を形成する。一般的に化成処理は、沸騰した純水中に浸漬し、表面に擬似ベーマイトを形成する。次に、ホウ酸、リン酸等の無機酸イオンや、モノカルボン酸、ジカルボン酸、オキシカルボン酸等の有機酸イオンを含む水溶液中に積層箔を浸漬し、所定の電圧を印加し、陽極酸化を行う。その後、熱処理、減極処理、陽極酸化を繰り返し、その後、洗浄、乾燥して化成工程を終了する。
Next, as shown in FIG.1 (c), a metal powder dispersion is apply | coated and sintered, and the sintered compact layer 3 is provided. The coating thickness of the metal powder dispersion may be adjusted by scraping with a squeegee or the like so as to be the height of the convex thick portion 2 after coating the metal powder dispersion.
Next, an oxide film as a dielectric is formed on the entire surface of the sintered body by chemical conversion treatment. In general, the chemical conversion treatment is immersed in boiling pure water to form pseudo boehmite on the surface. Next, the laminated foil is immersed in an aqueous solution containing inorganic acid ions such as boric acid and phosphoric acid, and organic acid ions such as monocarboxylic acid, dicarboxylic acid, and oxycarboxylic acid, and a predetermined voltage is applied, and anodization is performed. I do. Thereafter, heat treatment, depolarization treatment, and anodization are repeated, and then cleaning and drying are performed to complete the chemical conversion step.

次に、図1(d)に示すように、切断して個々の陽極にする前を示している。点線で示す部分で切断して個々の陽極4にする。凸状の肉厚部2は、陽極同士との接続の凸状の肉厚部2aは個々の陽極の中央部分、陽極から引き出される引き出し電極との接続の凸状の肉厚部2bは、切断部分で2分割されることを示している。   Next, as shown in FIG. 1 (d), it is shown before cutting into individual anodes. Each anode 4 is cut by a portion indicated by a dotted line. The projecting thick part 2 is connected to the anodes, the projecting thick part 2a is connected to the central part of each anode, and the projecting thick part 2b connected to the extraction electrode drawn from the anode is cut. It is shown that the portion is divided into two.

図1(e)は、切断して個々の陽極にした後のひとつを示している。   FIG. 1 (e) shows one after cutting into individual anodes.

図2は、本発明の電解コンデンサ用陽極を使用した電解コンデンサ素子の断面図を示している。   FIG. 2 shows a cross-sectional view of an electrolytic capacitor element using the electrolytic capacitor anode of the present invention.

4は陽極、5はセパレータ、6は陰極を示している。
陽極4は、支持箔1に貫通穴7を設けていて、陽極4同士2枚をかさね合わせ、陽極4同士との接続の凸状の肉厚部2aと引き出し電極との接続の凸状の肉厚部2bがはそれぞれのとことで、コールドウエル等で圧接し接続部8を設けておく。貫通穴7は陽極4同士2枚以上かさね合わせる場合特に必要になる。貫通穴7の大きさは特に限定はなく、1μmから1mm程度の直径が使用できる。
セパレータ5は、陽極箔と、陰極箔とを物理的にわけると共に、電解液を保持する役目をする多孔質シートで、マニラ紙、ヘンプ紙、クラフト紙などの従来から使用されてきた電解紙を主材料としたものである。大きさはコンデンサ素子の大きさにより選定されるが、おおよそ幅は、陽陰極箔幅より広く、トータル厚さは数μmから数100μmほど、密度は0.2g/cm〜1.0g/cm程度のものである。電解紙は、繊維密度が均一な単層紙のほか、相対的に繊維が密な高密度な層と、相対的に繊維が粗な低密度な層の複層紙を、重ねたものも使用できる。複層紙は、紙製造中の抄合わせ工程中に複層させることができる。
陰極6は、アルミニウム電解コンデンサに使用される一般的な陰極箔で、厚さ20μmから100μm程度のアルミニウム箔等をそのまま、または酸水溶液中に浸漬し、その表面をエッチング処理、またはエッチング処理後化成した箔を使用できる。
4 is an anode, 5 is a separator, and 6 is a cathode.
The anode 4 is provided with a through hole 7 in the support foil 1, two anodes 4 are overlapped, and the convex thick part 2 a for connection between the anodes 4 and the convex wall for connection between the lead electrodes is provided. The thick portions 2b are respectively connected to each other, and are brought into pressure contact with a cold well or the like to provide a connection portion 8. The through hole 7 is particularly necessary when two or more anodes 4 are put together. The size of the through hole 7 is not particularly limited, and a diameter of about 1 μm to 1 mm can be used.
The separator 5 is a porous sheet that physically separates the anode foil and the cathode foil and holds the electrolytic solution. The separator 5 is made of conventional electrolytic paper such as Manila paper, hemp paper, and kraft paper. The main material. The size is selected according to the size of the capacitor element, but the width is broader than the positive cathode foil width, the total thickness is several μm to several hundred μm, and the density is 0.2 g / cm 3 to 1.0 g / cm. About three . In addition to single-layer paper with uniform fiber density, electrolytic paper also uses a stack of high-density layers with relatively dense fibers and low-density layers with relatively coarse fibers. it can. Multi-layer paper can be multi-layered during the assembling process during paper manufacture.
The cathode 6 is a common cathode foil used for an aluminum electrolytic capacitor. An aluminum foil or the like having a thickness of about 20 μm to 100 μm is immersed as it is or in an acid aqueous solution, and the surface thereof is subjected to etching treatment or chemical conversion after etching treatment. Foil can be used.

電解コンデンサ素子は、陽極4と、陰極6とを、セパレータ5を介して積層し、ケースに収納後、陽極4と、陰極6とはそれぞれ引き出し電極と接続し、電解液を注入し、最後にケースを封口する。
電解液は、主に溶媒と溶質とからなり、通常のアルミニウム電解コンデンサ用の電解液が使用できる。
In the electrolytic capacitor element, the anode 4 and the cathode 6 are laminated via the separator 5 and housed in the case. Then, the anode 4 and the cathode 6 are connected to the lead electrodes, respectively, and the electrolytic solution is injected. Seal the case.
The electrolytic solution mainly includes a solvent and a solute, and a normal electrolytic solution for an aluminum electrolytic capacitor can be used.

(陽極の作成)
支持箔は、幅が500mmのアルミニウム箔をコイル状で供給する。
次に、凸状の肉厚部は、圧延ローラに凸状の肉厚部に対応する凹部を複数設け、連続的に複数個の凸状の肉厚部を両面同時場所に作成する。
凸状の肉厚部は、陽極同士との接続の凸状の肉厚部を直径が1.5mmの円柱形状で、陽極から引き出される引き出し電極との接続の凸状の肉厚部は、一辺が3mmの四角注形状で形成する。
次に、凸状の肉厚部以外の部分に直径が100μmの貫通穴を5mmピッチで形成する。
次に、平均粒径5μmのアルミニウム粉末100質量部にバインダとしてアクリル樹脂30質量部を混合し、溶剤としてのメチルセルソルブ50質量部に分散させ塗工液を準備する。次に、塗工液を塗布し、片面厚さ100μmの両面焼結体層を得た。
次に、化成処理によって焼結体の表面全体に誘電体である酸化皮膜を形成する。まず、沸騰した純水中に浸漬し、表面に擬似ベーマイトを形成する。
次に、ホウ酸を含む水溶液中に積層箔を浸漬し、200Vの電圧を印加し、陽極酸化を行う。その後、熱処理、減極処理、陽極酸化を繰り返し、その後、洗浄、乾燥して化成工程を終了した。
次に、10mm×20mmの大きさで切断して個々の陽極にする。
(Create anode)
As the support foil, an aluminum foil having a width of 500 mm is supplied in a coil shape.
Next, the convex thick portion is provided with a plurality of concave portions corresponding to the convex thick portion on the rolling roller, and a plurality of convex thick portions are continuously created at both sides simultaneously.
The convex thick part is a columnar shape with a diameter of 1.5 mm, and the convex thick part connected to the extraction electrode drawn from the anode is one side. Is formed in a 3 mm square shape.
Next, through holes having a diameter of 100 μm are formed at a pitch of 5 mm in portions other than the convex thick portion.
Next, 100 parts by mass of aluminum powder having an average particle diameter of 5 μm is mixed with 30 parts by mass of an acrylic resin as a binder, and dispersed in 50 parts by mass of methyl cellosolve as a solvent to prepare a coating solution. Next, the coating liquid was applied to obtain a double-sided sintered body layer having a thickness of 100 μm on one side.
Next, an oxide film as a dielectric is formed on the entire surface of the sintered body by chemical conversion treatment. First, it is immersed in boiling pure water to form pseudo boehmite on the surface.
Next, the laminated foil is immersed in an aqueous solution containing boric acid, and a voltage of 200 V is applied to perform anodization. Thereafter, heat treatment, depolarization treatment, and anodization were repeated, and then the chemical conversion process was completed by washing and drying.
Next, it cut | disconnects by the magnitude | size of 10 mm x 20 mm, and is set to each anode.

(電解コンデンサ素子と電解コンデンサの作成)
陽極は、陽極同士2枚をかさね合わせ、陽極同士との接続の凸状の肉厚部と引き出し電極との接続の凸状の肉厚部とのとことで、コールドウエルで圧接しておく。セパレータは、厚さ50μmのマニラ紙の電解紙を使用し、陰極は、厚さ50μmのアルミニウム箔を使用し、陽極と、陰極とを、セパレータを介して3組積層し、電解コンデンサ素子を作成した。
次に、電解コンデンサ素子をケースに収納後、陽極と、陰極とはそれぞれ引き出し電極と接続し、電解液を注入し、最後にケースを封口した。
(Creation of electrolytic capacitor element and electrolytic capacitor)
The anode is formed by rolling two anodes together and is pressed with a cold well by means of a convex thick portion connected to the anodes and a convex thick portion connected to the lead electrodes. The separator uses electrolytic paper made of manila paper with a thickness of 50 μm, the cathode uses aluminum foil with a thickness of 50 μm, and three sets of anodes and cathodes are laminated via the separator to create an electrolytic capacitor element. did.
Next, after the electrolytic capacitor element was housed in the case, the anode and the cathode were respectively connected to the lead electrodes, the electrolytic solution was injected, and finally the case was sealed.

1…支持箔、2…凸状の肉厚部、2a…陽極同士との接続の凸状の肉厚部、2b…引き出し電極との接続の凸状の肉厚部、3…焼結体層、4…陽極、5…セパレータ、6…陰極、7…貫通穴、8…接続部   DESCRIPTION OF SYMBOLS 1 ... Support foil, 2 ... Convex thick part, 2a ... Convex thick part of connection with anodes, 2b ... Convex thick part of connection with extraction electrode, 3 ... Sintered body layer 4 ... anode, 5 ... separator, 6 ... cathode, 7 ... through hole, 8 ... connection

Claims (2)

支持箔表面に焼結体層を設けた電解コンデンサ用陽極において、前記支持箔にこの支持箔表面から突出した凸状の肉厚部を設けた電解コンデンサ用陽極。   An electrolytic capacitor anode in which a sintered body layer is provided on a support foil surface, wherein the support foil is provided with a convex thick portion protruding from the support foil surface. 請求項1記載の電解コンデンサ用陽極を一枚または複数枚積層して使用した電解コンデンサ。   An electrolytic capacitor using one or more laminated anodes for electrolytic capacitors according to claim 1.
JP2010067796A 2010-03-24 2010-03-24 Anode for electrolytic capacitor and electrolytic capacitor Expired - Fee Related JP5570262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067796A JP5570262B2 (en) 2010-03-24 2010-03-24 Anode for electrolytic capacitor and electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067796A JP5570262B2 (en) 2010-03-24 2010-03-24 Anode for electrolytic capacitor and electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2011204728A true JP2011204728A (en) 2011-10-13
JP5570262B2 JP5570262B2 (en) 2014-08-13

Family

ID=44881121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067796A Expired - Fee Related JP5570262B2 (en) 2010-03-24 2010-03-24 Anode for electrolytic capacitor and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5570262B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026316A1 (en) * 2015-08-12 2017-02-16 株式会社村田製作所 Capacitor and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524457A (en) * 1978-08-08 1980-02-21 Nippon Electric Co Solid electrolytic capacitor and method of manufacturing same
JP2001015117A (en) * 1999-06-30 2001-01-19 Ishikawajima Harima Heavy Ind Co Ltd Core of secondary battery, core of negative electrode plate, and manufacture of negative electrode plate
JP2001185460A (en) * 1999-12-27 2001-07-06 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method and substrate of an integrated circuitfor it
JP2003272958A (en) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor electrode member and solid electrolytic capacitor using the same
JP2007201239A (en) * 2006-01-27 2007-08-09 Hitachi Aic Inc Etching foil for electrolytic capacitor and method for manufacturing positive electrode foil using it
JP2009194258A (en) * 2008-02-15 2009-08-27 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2009246236A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Solid electrolytic capacitor, and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524457A (en) * 1978-08-08 1980-02-21 Nippon Electric Co Solid electrolytic capacitor and method of manufacturing same
JP2001015117A (en) * 1999-06-30 2001-01-19 Ishikawajima Harima Heavy Ind Co Ltd Core of secondary battery, core of negative electrode plate, and manufacture of negative electrode plate
JP2001185460A (en) * 1999-12-27 2001-07-06 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method and substrate of an integrated circuitfor it
JP2003272958A (en) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor electrode member and solid electrolytic capacitor using the same
JP2007201239A (en) * 2006-01-27 2007-08-09 Hitachi Aic Inc Etching foil for electrolytic capacitor and method for manufacturing positive electrode foil using it
JP2009194258A (en) * 2008-02-15 2009-08-27 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2009246236A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Solid electrolytic capacitor, and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026316A1 (en) * 2015-08-12 2017-02-16 株式会社村田製作所 Capacitor and method for manufacturing same
TWI616910B (en) * 2015-08-12 2018-03-01 村田製作所股份有限公司 Capacitor and manufacturing method thereof
CN107924763A (en) * 2015-08-12 2018-04-17 株式会社村田制作所 Capacitor and its manufacture method
JPWO2017026316A1 (en) * 2015-08-12 2018-06-07 株式会社村田製作所 Capacitor and manufacturing method thereof
JP2019169715A (en) * 2015-08-12 2019-10-03 株式会社村田製作所 Capacitor and manufacturing method of the same
JP2019169714A (en) * 2015-08-12 2019-10-03 株式会社村田製作所 Capacitor and manufacturing method of the same
US10546691B2 (en) 2015-08-12 2020-01-28 Murata Manufacturing Co., Ltd. Capacitor and method for manufacturing the same
CN107924763B (en) * 2015-08-12 2020-04-17 株式会社村田制作所 Capacitor, method for manufacturing the same, substrate, and capacitor assembly substrate

Also Published As

Publication number Publication date
JP5570262B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
US4562511A (en) Electric double layer capacitor
TW459256B (en) Solid electrolytic capacitor and method of fabricating the same
JP5570263B2 (en) Electrode capacitor anode
KR20080085757A (en) Wet electrolytic capacitor containing a plurality of thin powder-formed anodes
CN102714098B (en) Electrode material for aluminum electrolytic capacitor and production method therefor
JP2007243202A5 (en)
KR20080085756A (en) Anode for use in electrolytic capacitors
TWI226072B (en) Capacitor and production method therefor
CN102804302A (en) Electrode material for aluminum electrolytic capacitor and method for manufacturing the material
CN108369868B (en) Method for manufacturing electrode for aluminum electrolytic capacitor
JP2006049760A (en) Wet electrolytic capacitor
JP6164875B2 (en) Electrode for electrolytic capacitors
US8422200B2 (en) Conductive structure having an embedded electrode, and solid capacitor having an embedded electrode and method of making the same
JP5570262B2 (en) Anode for electrolytic capacitor and electrolytic capacitor
CN101339849B (en) Non solid electrolyte all tantalum capacitor and preparation thereof
WO2019026701A1 (en) Electrode for electrolytic capacitors, method for producing electrode for electrolytic capacitors, and electrolytic capacitor
KR20210066237A (en) Solid Electrolyte Capacitor and fabrication method thereof
JP2011176232A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2013074081A (en) Method for manufacturing sintered body electrode for electrolytic capacitor
JP2013074092A (en) Electrolytic capacitor
JP5471738B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2016192505A (en) Wet electrolytic capacitor
WO2015076079A1 (en) Capacitor
KR102016481B1 (en) Solid Electrolyte Capacitor and fabrication method thereof
JP2008270754A (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees