JP2011204667A - Method of manufacturing titanium-oxide-based transparent conductive substrate - Google Patents

Method of manufacturing titanium-oxide-based transparent conductive substrate Download PDF

Info

Publication number
JP2011204667A
JP2011204667A JP2010241949A JP2010241949A JP2011204667A JP 2011204667 A JP2011204667 A JP 2011204667A JP 2010241949 A JP2010241949 A JP 2010241949A JP 2010241949 A JP2010241949 A JP 2010241949A JP 2011204667 A JP2011204667 A JP 2011204667A
Authority
JP
Japan
Prior art keywords
transparent conductive
niobium
titanium
conductive substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010241949A
Other languages
Japanese (ja)
Inventor
Naofumi Kamikawa
直文 上川
Koji Nishioka
宏司 西岡
Kenichiro Sugawara
健一朗 菅原
Kunihiko Nakada
邦彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Sumitomo Chemical Co Ltd
Original Assignee
Chiba University NUC
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Sumitomo Chemical Co Ltd filed Critical Chiba University NUC
Priority to JP2010241949A priority Critical patent/JP2011204667A/en
Publication of JP2011204667A publication Critical patent/JP2011204667A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a transparent conductive substrate forming a titanium-oxide-based transparent conductive substrate having excellent conductivity by a simple applying method with a specific coating liquid for a transparent conductive film.SOLUTION: The method of manufacturing a titanium-oxide-based transparent conductive substrate includes applying an coating liquid containing a titanium compound and a niobium compound on a transparent substrate and annealing the substrate under a reducing atmosphere within 24 hours after the application so as to form a transparent conductive film composed of niobium-doped titanium oxide on the transparent substrate. The coating liquid contains a titanium compound, a niobium compound, an inorganic acid, water and an alcohol.

Description

本発明は、良好な導電性を有する酸化チタン系透明導電性膜を備えた透明導電性基板を製造する方法に関する。   The present invention relates to a method for producing a transparent conductive substrate provided with a titanium oxide-based transparent conductive film having good conductivity.

従来から、太陽電池や液晶表示装置に用いられる透明導電性基板としては、酸化インジウム錫(ITO)膜が汎用されている。しかし、原料のInが枯渇する可能性があり、資源的にもコスト的にもITOに替わる材料の探索が課題となっている。ITO代替として期待される透明導電材の一種として、ニオブやタンタルがドープされた酸化チタン系透明導電材が知られている。   Conventionally, indium tin oxide (ITO) films have been widely used as transparent conductive substrates used in solar cells and liquid crystal display devices. However, there is a possibility that the raw material In may be depleted, and the search for a material that can replace ITO in terms of resources and costs has become an issue. A titanium oxide transparent conductive material doped with niobium or tantalum is known as a kind of transparent conductive material expected as a substitute for ITO.

酸化チタン系透明導電膜を備えた透明導電性基板およびその製造方法として、チタン化合物に過酸化水素を反応させてペルオキシ化した反応生成物とニオブ化合物またはタンタル化合物に過酸化水素を反応させてペルオキシ化した反応生成物とを含む前駆体液を、透明基材上に塗布後、還元雰囲気下にてアニール処理を施すことにより、ニオブまたはタンタルがドープされた酸化チタンからなる透明導電性膜を形成する方法が提案されている(特許文献1参照)。この製造方法では、抵抗率が10-3Ω・cmオーダーの透明導電性基板が作製可能である。
しかし、上記前駆体液である塗布液には、チタン、ニオブのペルオキシ錯体が用いられているため、塗布液の常温での保存安定性は著しく低く、ペルオキシ前駆体の熱分解により、縮合度が刻々と変化する可能性がある。つまりは塗布液が常温で安定に保存できないといった問題点がある。
A transparent conductive substrate provided with a titanium oxide-based transparent conductive film and a method for producing the transparent conductive substrate and a peroxylated reaction product obtained by reacting a titanium compound with hydrogen peroxide and a niobium compound or a tantalum compound with hydrogen peroxide. After applying the precursor solution containing the reaction product formed on the transparent substrate, annealing is performed in a reducing atmosphere to form a transparent conductive film made of titanium oxide doped with niobium or tantalum. A method has been proposed (see Patent Document 1). In this manufacturing method, a transparent conductive substrate having a resistivity of the order of 10 −3 Ω · cm can be produced.
However, since the coating liquid that is the precursor liquid uses a peroxy complex of titanium and niobium, the storage stability of the coating liquid at room temperature is extremely low, and the degree of condensation is constantly increasing due to thermal decomposition of the peroxy precursor. And may change. That is, there is a problem that the coating solution cannot be stably stored at room temperature.

すなわち、ペルオキシ錯体は、熱的安定性が低いため、十分に冷却していないと、増粘し、縮合が起こってポリマーが粒子として析出する、すなわち重合度が上がる傾向のあることが知られている(特許文献2参照)。   In other words, it is known that peroxy complexes have low thermal stability, so if they are not cooled sufficiently, they thicken and condensation occurs and the polymer precipitates as particles, that is, the degree of polymerization tends to increase. (See Patent Document 2).

一方、チタン有機化合物を出発原料とし、これに酸、水、アルコールを加えて加水分解と縮合反応脱水反応により酸化チタン薄膜を形成するいわゆるゾル−ゲル法は、有望な成膜方法であることが知られている。例えば、チタン有機化合物、水、酸およびアルコールを含むチタンゾルを塗布液として用いた酸化チタン薄膜の製法が提案されている(特許文献3参照)。
しかし、特許文献3では、沈殿やゲルが生成しない安定なチタンゾルが作製可能であり、酸化チタン薄膜が作製可能であるが、導電性の発現した膜の作製という提案には至っていない。
On the other hand, a so-called sol-gel method in which a titanium oxide thin film is formed by adding hydrolysis, condensation reaction and dehydration reaction by adding an acid, water, and alcohol to a titanium organic compound as a starting material is a promising film formation method. Are known. For example, a method for producing a titanium oxide thin film using a titanium sol containing a titanium organic compound, water, acid, and alcohol as a coating solution has been proposed (see Patent Document 3).
However, in Patent Document 3, it is possible to produce a stable titanium sol that does not generate precipitates or gels, and it is possible to produce a titanium oxide thin film, but no proposal has been made to produce a film that exhibits conductivity.

また、チタン化合物と遷移元素化合物とを含有する溶液又は分散液を基材上に塗布し、ついで焼成して遷移元素がドープされたチタン酸化物の透明被膜を形成した後、この透明被膜を還元雰囲気下で加熱処理することにより、透明導電膜を製造する方法が提案されている(特許文献4参照)。
しかし、特許文献4に記載の方法で得られる透明導電膜は、抵抗率がせいぜい10-2Ω・cmのオーダーでしかない。そのため、より高い導電性を有する透明導電性膜を形成することが要望されている。
In addition, a solution or dispersion containing a titanium compound and a transition element compound is applied onto a substrate, then baked to form a transparent film of titanium oxide doped with a transition element, and then the transparent film is reduced. A method of manufacturing a transparent conductive film by heat treatment in an atmosphere has been proposed (see Patent Document 4).
However, the transparent conductive film obtained by the method described in Patent Document 4 has a resistivity on the order of at most 10 -2 Ω · cm. Therefore, it is desired to form a transparent conductive film having higher conductivity.

特開2009−135096号公報JP 2009-1335096 A 特開昭62−252319号公報Japanese Patent Laid-Open No. 62-252319 特開平5−59562号公報JP-A-5-59562 特開2008-288196号公報JP 2008-288196 A

本発明の課題は、簡便な塗布法にて優れた導電性を有する酸化チタン系透明導電性膜を形成することができる透明導電性基板の製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of the transparent conductive substrate which can form the titanium oxide type transparent conductive film which has the outstanding electroconductivity with a simple coating method.

本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、本発明を完成するに至った。すなわち本発明は下記の構成を有する。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention has the following configuration.

(1)チタン化合物、ニオブ化合物、無機酸、水およびアルコールを含有した塗布液を透明基板上に塗布し、塗布後24時間以内に、還元雰囲気下にて加熱によるアニールを施して、ニオブがドープされた酸化チタンからなる透明導電性膜を透明基板上に形成することを特徴とする透明導電性基板の製造方法。   (1) A coating solution containing a titanium compound, niobium compound, inorganic acid, water and alcohol is applied onto a transparent substrate, and within 24 hours after coating, annealing is performed by heating in a reducing atmosphere, and niobium is doped. A method for producing a transparent conductive substrate, comprising: forming a transparent conductive film made of titanium oxide on a transparent substrate.

(2)前記塗布液が、チタン化合物としてチタンアルコキシドを、ニオブ化合物としてニオブアルコキシドを、無機酸として塩酸および硝酸からなる群より選ばれる少なくとも一種を、アルコールとしてエタノールを、それぞれ含有するものである上記(1)に記載の透明導電性基板の製造方法。   (2) The coating liquid contains titanium alkoxide as the titanium compound, niobium alkoxide as the niobium compound, at least one selected from the group consisting of hydrochloric acid and nitric acid as the inorganic acid, and ethanol as the alcohol. The manufacturing method of the transparent conductive substrate as described in (1).

(3)塗布液中のニオブ/チタンのモル比が0.01〜0.7である上記(1)または(2)に記載の透明導電性基板の製造方法。   (3) The manufacturing method of the transparent conductive substrate as described in said (1) or (2) whose molar ratio of niobium / titanium in a coating liquid is 0.01-0.7.

(4)還元雰囲気下におけるアニール処理の加熱温度が、350〜1000℃である上記(1)〜(3)のいずれかに記載の透明導電性基板の製造方法。   (4) The method for producing a transparent conductive substrate according to any one of (1) to (3) above, wherein the heating temperature of the annealing treatment in a reducing atmosphere is 350 to 1000 ° C.

(5)上記(1)〜(4)のいずれかに記載の方法によって得られた透明導電性基板。   (5) The transparent conductive substrate obtained by the method in any one of said (1)-(4).

本発明によれば、特定の透明導電性膜作製用塗布液を用いて、簡便な塗布法により、透明基板上に、抵抗率が10-3Ω・cm以下という優れた導電性を有する、ニオブがドープされた酸化チタンからなる透明導電性膜を形成できるという効果がある。 According to the present invention, niobium having an excellent conductivity of 10 −3 Ω · cm or less on a transparent substrate by a simple coating method using a specific transparent conductive film-forming coating solution. There is an effect that a transparent conductive film made of titanium oxide doped with can be formed.

本発明の透明導電性基板の製造方法においては、まず、膜形成材料として、チタン化合物とニオブ化合物を溶解させたアルコール溶液に、無機酸および水を添加した塗布液を得る。得られた塗布液は、大気下での長期間の保存後も低抵抗な導電膜が作製可能である。この塗布液に含まれたチタン化合物およびニオブ化合物は、加熱により、ニオブがドープされた酸化チタンとなる金属酸化物前駆体である。本発明においては、膜形成を、周期表のVA族に属する5価のニオブが酸化チタンにドープされた金属酸化物で行うことによって、良好な導電性を発現させる。   In the method for producing a transparent conductive substrate of the present invention, first, as a film forming material, a coating solution is obtained in which an inorganic acid and water are added to an alcohol solution in which a titanium compound and a niobium compound are dissolved. The obtained coating liquid can produce a low-resistance conductive film even after long-term storage in the atmosphere. The titanium compound and niobium compound contained in this coating solution are metal oxide precursors that become titanium oxide doped with niobium by heating. In the present invention, the film formation is performed with a metal oxide in which pentavalent niobium belonging to group VA of the periodic table is doped with titanium oxide, thereby exhibiting good conductivity.

前記塗布液は、チタン化合物およびニオブ化合物を順にアルコール中に所望の割合で溶解させて得られるものであってもよいし、チタン化合物とニオブ化合物とを予め所望の割合で混合した混合物をアルコールに溶解させることにより得られたものであっても良い。   The coating solution may be obtained by sequentially dissolving a titanium compound and a niobium compound in alcohol at a desired ratio, or a mixture obtained by previously mixing a titanium compound and a niobium compound at a desired ratio in alcohol. What was obtained by making it melt | dissolve may be used.

前記塗布液を得るに際し、チタン化合物とニオブ化合物との混合割合は、特に制限されないが、最終的に形成された酸化チタン膜におけるニオブ/チタンのモル比が0.01〜0.7となるようにすればよい。ニオブの含有量がこの範囲より少ないと、ドープ効果が不十分となり、導電性が低下するおそれがある。一方、ニオブの含有量がこの範囲より多くても、導電性の低下、膜の透明性の低下が生じるおそれがある。   In obtaining the coating solution, the mixing ratio of the titanium compound and the niobium compound is not particularly limited, but the niobium / titanium molar ratio in the finally formed titanium oxide film is 0.01 to 0.7. You can do it. If the niobium content is less than this range, the doping effect becomes insufficient and the conductivity may be lowered. On the other hand, even if the niobium content is more than this range, there is a possibility that the conductivity is lowered and the transparency of the film is lowered.

前記塗布液に用いることのできるアルコールとしては、特に制限はないが、不純物混入による導電性低下を懸念して、成膜した際に残留カーボン量の少ないアルコール、もしくはそれらの混合溶媒を用いるのが好ましい。そのため、揮発性のある程度高いアルコールを用いることが望ましく、具体的には、例えばメタノール、エタノール、プロパノール、ブタノール、3−メトキシ−1−ブタノール、ジアセトンアルコール、2−エトキシエタノール等の炭素数1〜6の脂肪族低級アルコールが挙げられる。   The alcohol that can be used in the coating solution is not particularly limited, but in view of the decrease in conductivity due to contamination with impurities, it is preferable to use alcohol with a small amount of residual carbon or a mixed solvent thereof when forming a film. preferable. Therefore, it is desirable to use an alcohol having a certain degree of volatility. Specifically, for example, methanol, ethanol, propanol, butanol, 3-methoxy-1-butanol, diacetone alcohol, 2-ethoxyethanol, etc. 6 aliphatic lower alcohols.

前記チタン化合物は、チタン源としてTi原子を含むものであれば特に制限はなく、例えば、塩化チタン(二塩化チタン、三塩化チタン、四塩化チタン等)、チタンアルコキシド(メトキシド、エトキシド、イソプロポキシド等)、硫酸チタニル、金属チタン、水酸化チタン(オルトチタン酸等)、オキシ硫酸チタン等を用いることができる。
前記ニオブ化合物は、ニオブ源としてNb原子を含むものであれば特に制限はなく、例えば、塩化ニオブ、ニオブアルコキシド(メトキシド、エトキシド等)、金属ニオブ、水酸化ニオブ等を用いることができる。
なお、上記のうち、チタンアルコキシドおよびニオブアルコキシドは、水分と接触すると直ちに反応する不安定な物質なので、乾燥(低湿度)雰囲気下で扱うことが好ましい。
The titanium compound is not particularly limited as long as it contains Ti atoms as a titanium source. For example, titanium chloride (titanium dichloride, titanium trichloride, titanium tetrachloride, etc.), titanium alkoxide (methoxide, ethoxide, isopropoxide). Etc.), titanyl sulfate, metallic titanium, titanium hydroxide (ortho titanic acid etc.), titanium oxysulfate and the like can be used.
The niobium compound is not particularly limited as long as it contains an Nb atom as a niobium source. For example, niobium chloride, niobium alkoxide (methoxide, ethoxide, etc.), niobium metal, niobium hydroxide, and the like can be used.
Of the above, titanium alkoxide and niobium alkoxide are unstable substances that react immediately upon contact with moisture, and thus are preferably handled in a dry (low humidity) atmosphere.

前記無機酸としては、塩酸、硝酸等を用いることができるが、塩酸が好ましい。水は、通常、無機酸の水溶液として塗布液に含有されるが、無機酸とは別に添加してもよい。   As the inorganic acid, hydrochloric acid, nitric acid and the like can be used, but hydrochloric acid is preferable. Water is usually contained in the coating solution as an aqueous solution of an inorganic acid, but may be added separately from the inorganic acid.

前記塗布液の固形分濃度は、特に制限は無く、酸化物や水酸化物の沈殿およびゲル化が生じない固形分濃度であればよい。選択した溶媒や塗布方法によって最終的に形成される膜厚を考慮し、適宜固形分濃度を選択すればよく、通常、1〜30重量%、好ましくは5〜30重量%程度とすればよい。なお、ここでいう固形分濃度は、前駆体液を得る際に用いたチタン化合物およびニオブ化合物の合計重量が、塗布液の全重量中に占める割合(重量%)を意味するものである。   There is no restriction | limiting in particular in the solid content concentration of the said coating liquid, What is necessary is just a solid content concentration which does not precipitate and gelatinize an oxide or a hydroxide. The solid content concentration may be appropriately selected in consideration of the film thickness finally formed by the selected solvent and coating method, and is usually 1 to 30% by weight, preferably about 5 to 30% by weight. In addition, solid content concentration here means the ratio (weight%) which the total weight of the titanium compound and niobium compound used when obtaining a precursor liquid accounts to the total weight of a coating liquid.

前記塗布液を得るに際し、塗布液中の水/固形分(チタン化合物とニオブ化合物の和)のモル比を0.1〜10、好ましくは0.1〜5、より好ましくは0.1〜3、水/無機酸の当量比を2〜40、好ましくは2〜20、より好ましくは2〜10とすることにより、チタン酸化物、チタン水酸化物、ニオブ酸化物およびニオブ水酸化物の沈殿およびゲルの生成を防止できるので、透明な塗布液が得られる。塗布液中の水/固形分(チタン化合物とニオブ化合物の和)のモル比および水/無機酸の当量比を前記範囲とすることにより、一ヶ月以上粘度変化の無い塗布液が作製できる。
また、無機酸の添加により、通常発熱反応が生じるため、発熱による影響を低下させるには、無機酸添加時の塗布液の温度を20℃以下、好ましくは10℃以下、より好ましくは5℃以下にすることが望ましい。
In obtaining the coating solution, the molar ratio of water / solid content (sum of titanium compound and niobium compound) in the coating solution is 0.1 to 10, preferably 0.1 to 5, more preferably 0.1 to 3. By setting the equivalent ratio of water / inorganic acid to 2 to 40, preferably 2 to 20, more preferably 2 to 10, precipitation of titanium oxide, titanium hydroxide, niobium oxide and niobium hydroxide and Since the formation of gel can be prevented, a transparent coating solution can be obtained. By setting the molar ratio of water / solid content (sum of titanium compound and niobium compound) and the equivalent ratio of water / inorganic acid in the coating solution to the above ranges, a coating solution having no viscosity change for one month or more can be prepared.
In addition, since an exothermic reaction usually occurs due to the addition of an inorganic acid, the temperature of the coating solution when adding an inorganic acid is 20 ° C. or lower, preferably 10 ° C. or lower, more preferably 5 ° C. or lower, in order to reduce the influence of heat generation. It is desirable to make it.

本発明の透明導電性基板の製造方法においては、次に、得られた前記塗布液を透明基材上に塗布し、特定条件下、アニール処理を施す。前記透明基材としては、熱が付加されるアニール処理工程における加熱温度において形状を維持しうるものであり、かつ透明性を有するものであれば、特に制限はない。例えば、各種ガラス等の無機材料、熱可塑性樹脂や熱硬化性樹脂(例えば、エポキシ樹脂、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリイミドなどのプラスチック類)等の高分子材料などで形成された板状物、シート状物、フィルム状物等を用いることができる。ただし、比較的高温でのアニール処理を実施することから、各種ガラス等の無機材料を使用するのがより好ましい。透明基材の可視光透過率は、通常、90%以上であるのが好ましく、95%以上であるのがより好ましい。   In the method for producing a transparent conductive substrate of the present invention, next, the obtained coating solution is applied onto a transparent substrate and annealed under specific conditions. The transparent substrate is not particularly limited as long as it can maintain its shape at the heating temperature in the annealing process to which heat is applied and has transparency. For example, inorganic materials such as various glasses, thermoplastic resins and thermosetting resins (for example, epoxy resin, polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose) Further, a plate-like material, a sheet-like material, a film-like material or the like formed of a polymer material such as plastics such as polyimide) can be used. However, it is more preferable to use inorganic materials such as various glasses because annealing is performed at a relatively high temperature. In general, the visible light transmittance of the transparent substrate is preferably 90% or more, and more preferably 95% or more.

前記塗布液を透明基材上に塗布する際の塗布方法は、均一にウェットコーティングできる方法であれば特に制限はなく、従来公知の方法を採用することができ、例えばキャピラリーコート法、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法等を採用することができる。   There is no particular limitation on the coating method when the coating solution is applied onto the transparent substrate, and any conventionally known method can be adopted as long as it is a method capable of uniformly wet coating, for example, a capillary coating method, a spin coating method, and the like. A slit die coating method, a spray coating method, a dip coating method, a roll coating method, a screen printing method, a flexographic printing method, a bar coater method and the like can be employed.

前記塗布液を塗布するに際し、塗布量は特に制限されるものではなく、例えば、最終的に形成される膜の厚み(ドライ膜厚)が10nm〜300nmとなるようにすればよい。最終的に形成されたドライ膜厚が前記範囲よりも小さいと、基材に凹凸が存在する場合などに部分的に塗布されにくい箇所や実際に塗布されていない箇所が生じるおそれがあり、一方、前記範囲よりも大きいと透明性が低下するおそれがある。なお、上記のような厚みに前駆体液を塗布する際には、1回の塗布作業で行ってもよいし、複数回の塗布作業を重ねて行うようにしてもよい。   When applying the coating solution, the coating amount is not particularly limited. For example, the thickness of the finally formed film (dry film thickness) may be 10 nm to 300 nm. If the dry film thickness that is finally formed is smaller than the above range, there may be a place that is difficult to apply partially or a place that is not actually applied, such as when there is unevenness on the substrate, If it is larger than the above range, the transparency may be lowered. In addition, when apply | coating a precursor liquid to the above thickness, you may make it carry out by one application | coating operation | work, and may be performed in multiple times.

本発明においては、塗布後の基板に対し、塗布後24時間以内に、還元雰囲気下にて加熱によるアニール処理を施す。これにより、膜を形成するニオブドープ酸化チタンはアモルファス相となり、引き続く、アナターゼ相への結晶転移とともに、結晶相中に酸素欠損を生じ、高い導電性を発現させることができる。基板への塗布から24時間経過後に上記アニール処理を行った場合には、高い導電性を発現させることが困難になる。
なお、塗布後24時間以内とは、塗布直後に上記アニール処理を行う場合も包含する。
In the present invention, the substrate after coating is annealed by heating in a reducing atmosphere within 24 hours after coating. As a result, the niobium-doped titanium oxide forming the film becomes an amorphous phase, and with the subsequent crystal transition to the anatase phase, oxygen deficiency occurs in the crystal phase, and high conductivity can be expressed. When the annealing treatment is performed 24 hours after the application to the substrate, it is difficult to develop high conductivity.
The term “within 24 hours after coating” includes the case where the annealing treatment is performed immediately after coating.

前記アニール処理の際の還元雰囲気には、特に制限はなく、例えば、窒素、一酸化炭素、アルゴンプラズマ、水素プラズマ、水素、真空、アンモニア、不活性ガス(アルゴン等)、あるいはこれらの混合ガスの雰囲気など、一般的な還元雰囲気であればよい。好ましくは、強還元性雰囲気である水素雰囲気(好ましくは水素ガス100%雰囲気)を採用するのがよい。   There is no particular limitation on the reducing atmosphere in the annealing treatment, and for example, nitrogen, carbon monoxide, argon plasma, hydrogen plasma, hydrogen, vacuum, ammonia, inert gas (such as argon), or a mixed gas thereof. A general reducing atmosphere such as an atmosphere may be used. Preferably, a hydrogen atmosphere (preferably 100% hydrogen gas atmosphere) that is a strongly reducing atmosphere is employed.

前記アニール処理における加熱温度は、基板上に塗布されたニオブをドープした酸化チタンの結晶相が高い導電性を発現するアナターゼ型に変化し得る温度であればよく、ニオブの含有比率などに応じて適宜設定すればよい。アナターゼ結晶相に変化させるために必要な温度は、酸化チタンへのニオブのドープ量が多いほど高くなるのであり、アニール処理における加熱温度は、通常350℃以上、好ましくは400℃以上、より好ましくは500℃以上である。   The heating temperature in the annealing process may be a temperature at which the crystal phase of the niobium-doped titanium oxide coated on the substrate can be changed to an anatase type that expresses high conductivity, depending on the content ratio of niobium, etc. What is necessary is just to set suitably. The temperature required to change to the anatase crystal phase increases as the amount of niobium doped into titanium oxide increases, and the heating temperature in the annealing treatment is usually 350 ° C. or higher, preferably 400 ° C. or higher, more preferably It is 500 ° C. or higher.

アニール処理の加熱温度の上限は、アナタ−ゼ結晶相が、導電性の低いルチル結晶相に変化し始める温度未満であればよい。しかし、通常、酸素欠損を導入すると抵抗値の高いルチル相に変化しやすい傾向となるが、本発明においては、酸化チタンにドープしたニオブが、酸素欠損を導入してもアナターゼ相を安定化させる作用をなすため、ルチル結晶相に相転移して導電性が低下するおそれはほとんどない。従って、導電特性をより向上させたい場合、アニール処理温度は、導電特性が高くなる傾向にある高温の1000℃を上限として、好ましくは600℃以下の高い温度範囲で設定することが望ましい。   The upper limit of the heating temperature of the annealing treatment may be less than the temperature at which the anatase crystal phase starts to change to a rutile crystal phase with low conductivity. However, when oxygen deficiency is introduced, it tends to change to a rutile phase having a high resistance value, but in the present invention, niobium doped in titanium oxide stabilizes the anatase phase even if oxygen deficiency is introduced. Because of its action, there is almost no risk of phase transition to the rutile crystal phase and a decrease in conductivity. Therefore, when it is desired to further improve the conductive characteristics, the annealing temperature is desirably set in a high temperature range of 600 ° C. or less, preferably with a high temperature of 1000 ° C. at which the conductive characteristics tend to be high as the upper limit.

具体的には、ニオブの含有比率(形成される透明導電性膜におけるニオブの含有比率)が20モル%である場合、前記アニール処理の加熱温度が600℃、加熱時間が30分程度で、良好な透明導電性膜が得られる。また、アニール処理の加熱温度の設定には、上記に加えて、使用する透明基材の耐熱温度も考慮される。例えば、無アルカリガラスを透明基材として用いる場合、軟化点が975℃であるから、通常950℃以下、好ましくは800℃以下で用いる。   Specifically, when the content ratio of niobium (the content ratio of niobium in the formed transparent conductive film) is 20 mol%, the annealing temperature is 600 ° C. and the heating time is about 30 minutes. A transparent conductive film can be obtained. In addition to the above, the heat resistance temperature of the transparent substrate to be used is also taken into consideration when setting the heating temperature for the annealing treatment. For example, when alkali-free glass is used as the transparent substrate, since the softening point is 975 ° C., it is usually used at 950 ° C. or less, preferably 800 ° C. or less.

アニール処理時間(加熱時間)は、加熱温度等に応じて適宜設定すればよいが、通常、1分〜1時間程度であり、好ましくは3分〜30分程度である。   The annealing time (heating time) may be appropriately set according to the heating temperature or the like, but is usually about 1 minute to 1 hour, preferably about 3 minutes to 30 minutes.

塗布液を透明基材上に塗布後、上記還元雰囲気下でのアニール処理前に、室温において24時間以上放置すると、得られる透明導電性膜の抵抗値は増加する傾向にある。これは、透明基材上に塗布されたチタン、ニオブの前駆体が、基板上での熱分解により、縮合が進行し、ポリマーが大きな粒子として析出して、膜の均一性を低下させるためであり、その結果、導電性の低下が生じると推測される。従って、良好な導電性を得るためには、塗布液を塗布後、還元雰囲気下でのアニール処理前の、室温での放置時間は24時間以内であるのが好ましく、20時間以内であるのがより好ましい。   If the coating liquid is applied on a transparent substrate and then allowed to stand at room temperature for 24 hours or more before the annealing treatment in the reducing atmosphere, the resistance value of the obtained transparent conductive film tends to increase. This is because the titanium and niobium precursors coated on the transparent base material undergoes condensation by thermal decomposition on the substrate, and the polymer precipitates as large particles, reducing the uniformity of the film. As a result, it is estimated that the conductivity is lowered. Therefore, in order to obtain good conductivity, the standing time at room temperature after applying the coating solution and before annealing in a reducing atmosphere is preferably within 24 hours, and preferably within 20 hours. More preferred.

以上のような方法によって、ニオブがドープされた酸化チタンからなる透明導電性膜が、透明基板上に形成される。この透明導電性膜は、アナターゼ型結晶相を有し、ニオブドープ酸化チタンの多結晶体からなる薄膜であり、高い導電性を発現するものである。具体的には、本発明の製造方法で得られた透明導電性基板は、抵抗率が10-3Ω・cm以下である。また、本発明により得られた透明導電性基板の透過率は、可視域で、通常65%以上、好ましくは70%以上、より好ましくは75%以上である。なお、抵抗率は、例えば実施例で後述する方法によって測定することができる。 By the method as described above, a transparent conductive film made of titanium oxide doped with niobium is formed on a transparent substrate. This transparent conductive film is a thin film having an anatase-type crystal phase and made of a polycrystal of niobium-doped titanium oxide, and exhibits high conductivity. Specifically, the transparent conductive substrate obtained by the production method of the present invention has a resistivity of 10 −3 Ω · cm or less. Further, the transmittance of the transparent conductive substrate obtained by the present invention is usually 65% or more, preferably 70% or more, more preferably 75% or more in the visible region. In addition, a resistivity can be measured by the method mentioned later in an Example, for example.

本発明の製造方法により得られた透明導電性基板は、例えば、タッチパネル、液晶ディスプレイ、LED(発光素子)、有機ELディスプレイ、フレキシブルディスプレイ、プラズマディスプレイ等のディスプレイ電極、太陽電池の電極、窓ガラスの熱線反射膜、帯電防止膜等の用途に好適に用いられる。さらに、本発明の製造方法により得られた透明導電性は、屈折率が高いという特長を活かして、反射防止機能を有した帯電防止膜としても有効である。   The transparent conductive substrate obtained by the production method of the present invention is, for example, a touch panel, a liquid crystal display, an LED (light emitting element), an organic EL display, a flexible display, a display electrode such as a plasma display, a solar cell electrode, or a window glass. It is suitably used for applications such as heat ray reflective films and antistatic films. Furthermore, the transparent conductivity obtained by the production method of the present invention is effective as an antistatic film having an antireflection function, taking advantage of its high refractive index.

なお、上述した本発明の製造方法では、塗布液は透明基材上に直接塗布しているが、例えば液晶ディスプレイのようなデバイス等の透明電極用途においては、透明基材の上に着色膜(カラーフィルター)等の中間膜を介在させ、それらの上に直接前駆体液を塗布するようにしてもよく、このように透明基材と透明導電性膜との間に中間膜を介在させた態様も本発明に包含される。   In the production method of the present invention described above, the coating liquid is applied directly on the transparent substrate. However, in the use of a transparent electrode such as a device such as a liquid crystal display, a colored film ( An intermediate film such as a color filter) may be interposed, and the precursor liquid may be applied directly on the intermediate film. In this manner, an intermediate film is interposed between the transparent substrate and the transparent conductive film. Included in the present invention.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。
なお、各実施例において、塗布液の粘度変化、透明導電性基板の物性は以下の方法で測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
In addition, in each Example, the viscosity change of the coating liquid and the physical properties of the transparent conductive substrate were measured by the following methods.

<シート抵抗(表面抵抗)>
シート抵抗(Ω/□)は、抵抗率計(三菱化学(株)製「LORESTA−GP,MCP−T160」)を用いて、四端子四探針法により測定した。詳しくは、サンプルに4本の針状電極を直線状に置き、外側の二探針間に一定の電流を流し、内側の二探針間に生じる電位差を測定して、抵抗を求めた。測定は5cm角の成膜した基板内について9点測定を行い、測定値の平均をその膜の抵抗値とした。
<Sheet resistance (surface resistance)>
Sheet resistance (Ω / □) was measured by a four-terminal four-probe method using a resistivity meter (“LORESTA-GP, MCP-T160” manufactured by Mitsubishi Chemical Corporation). Specifically, four needle electrodes were placed in a straight line on the sample, a constant current was passed between the two outer probes, and the potential difference generated between the two inner probes was measured to determine the resistance. The measurement was performed at 9 points on a 5 cm square film-formed substrate, and the average of the measured values was taken as the resistance value of the film.

<抵抗率(比抵抗)>
抵抗率(Ω・cm)は、シート抵抗と膜厚(cm)とを乗算することにより算出した。
<Resistivity (specific resistance)>
The resistivity (Ω · cm) was calculated by multiplying the sheet resistance and the film thickness (cm).

<透過率>
透過率は、紫外可視近赤外分光光度計(日本分光(株)製「V−670」)を用いて、波長190nm〜2700nmの範囲で測定した。
<Transmissivity>
The transmittance was measured in a wavelength range of 190 nm to 2700 nm using an ultraviolet-visible-near infrared spectrophotometer (“V-670” manufactured by JASCO Corporation).

<膜の表面観察>
膜表面の観察は、電解放射型電子顕微鏡(FE−SEM)を用いて行った。
<Observation of film surface>
The observation of the film surface was performed using an electrolytic emission electron microscope (FE-SEM).

(実施例1)
まず、窒素雰囲気中でチタンテトライソプロポキシド2.00g、ニオブエトキシド0.56gを脱水エタノール27.68g中に溶解させ、アルコキシドが溶解したエタノール溶液を得た。溶液を入れたフラスコの周囲を氷水で2℃に冷却した後、溶液に濃度35重量%の塩酸水0.32gを攪拌下で一気に添加し、塩酸の添加によって溶液の急激な内温上昇が起こらないように制御した。塩酸添加終了後、内温上昇が停止し、再び液温が2℃になった時点で氷浴からはずし、室温にまで戻した。この間、攪拌は行っていた。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度8.4重量%の塗布液が作製できた。
この塗布液を、透明基材{無アルカリガラス(コーニング社製の1737)、5cm角、厚さ0.7mm}上に、ドライ膜厚60nmとなるようにスピンコーターで1回塗布し、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板は、シート抵抗が290Ω/□、抵抗率が1.74×10-3Ω・cmであり、透過率が可視域で70%、赤外域で60%であった。この透明性基板における導電性膜の結晶構造をFE−SEMで観察したところ、一つのグレインが500nmであるニオブがドープされた酸化チタンの多結晶体であった。
Example 1
First, in a nitrogen atmosphere, 2.00 g of titanium tetraisopropoxide and 0.56 g of niobium ethoxide were dissolved in 27.68 g of dehydrated ethanol to obtain an ethanol solution in which the alkoxide was dissolved. After the flask containing the solution was cooled to 2 ° C. with ice water, 0.32 g of 35% by weight hydrochloric acid was added to the solution all at once with stirring. The addition of hydrochloric acid caused a sudden rise in the internal temperature of the solution. Controlled not to. After completion of the addition of hydrochloric acid, the rise in the internal temperature was stopped, and when the liquid temperature reached 2 ° C. again, it was removed from the ice bath and returned to room temperature. During this time, stirring was performed. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 8.4% by weight was prepared.
This coating solution was applied once on a transparent substrate {non-alkali glass (Corning Corporation 1737), 5 cm square, thickness 0.7 mm} with a spin coater to a dry film thickness of 60 nm, and immediately hydrogenated. An annealing treatment was performed at 600 ° C. for 30 minutes in a 100% reducing atmosphere to obtain a transparent conductive substrate.
The obtained transparent conductive substrate had a sheet resistance of 290Ω / □, a resistivity of 1.74 × 10 −3 Ω · cm, and a transmittance of 70% in the visible region and 60% in the infrared region. When the crystal structure of the conductive film in this transparent substrate was observed by FE-SEM, it was a polycrystal of titanium oxide doped with niobium having one grain of 500 nm.

(実施例2)
窒素雰囲気中でチタンテトライソプロポキシド2.00g、ニオブエトキシド0.56gを2−エトキシエタノール27.68g中に溶解させ、アルコキシドが溶解したアルコール溶液を得た。溶液を入れたフラスコの周囲を氷水で2℃に冷却した後、溶液に濃度35重量%の塩酸水0.32gを攪拌下で一気に添加し、塩酸の添加によって溶液の急激な内温上昇が起こらないように制御した。塩酸添加終了後、内温上昇が停止し、再び液温が2℃になった時点で氷浴からはずし、室温にまで戻した。この間、攪拌は行っていた。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度8.4重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にドライ膜厚が60nmとなるようにスピンコーターで1回塗布し、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は1137Ω/□、抵抗率が6.82×10-3Ω・cmであり、透過率が可視域で70%、赤外域で80%であった。
(Example 2)
In a nitrogen atmosphere, 2.00 g of titanium tetraisopropoxide and 0.56 g of niobium ethoxide were dissolved in 27.68 g of 2-ethoxyethanol to obtain an alcohol solution in which the alkoxide was dissolved. After the flask containing the solution was cooled to 2 ° C. with ice water, 0.32 g of 35% by weight hydrochloric acid was added to the solution all at once with stirring. The addition of hydrochloric acid caused a sudden rise in the internal temperature of the solution. Controlled not to. After completion of the addition of hydrochloric acid, the rise in the internal temperature was stopped, and when the liquid temperature reached 2 ° C. again, it was removed from the ice bath and returned to room temperature. During this time, stirring was performed. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 8.4% by weight was prepared.
This coating solution was applied once on the same transparent substrate as in Example 1 with a spin coater so that the dry film thickness was 60 nm, and immediately annealed at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen. And a transparent conductive substrate was obtained.
The sheet resistance of the obtained transparent conductive substrate was 1137Ω / □, the resistivity was 6.82 × 10 −3 Ω · cm, and the transmittance was 70% in the visible region and 80% in the infrared region.

(実施例3)
窒素雰囲気中でチタンテトライソプロポキシド4.03g、ニオブエトキシド1.13gを脱水エタノール55.36g中に溶解させ、アルコキシドが溶解したエタノール溶液を得た。溶液を入れたフラスコの周囲を氷水で2℃に冷却した後、溶液に濃度69重量%の硝酸0.57g、続いて超純水0.24gを攪拌下で一気に添加し、硝酸の添加によって溶液の急激な内温上昇が起こらないように制御した。硝酸添加終了後、内温上昇が停止し、再び液温が2℃になった時点で氷浴からはずし、室温にまで戻した。この間、攪拌は行っていた。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度8.4重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にドライ膜厚が60nmとなるようにスピンコーターで1回塗布し、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板は、シート抵抗が931Ω/□、抵抗率が5.59×10-3Ω・cmであり、透過率が可視域で70%、赤外域で65%であった。
(Example 3)
In a nitrogen atmosphere, 4.03 g of titanium tetraisopropoxide and 1.13 g of niobium ethoxide were dissolved in 55.36 g of dehydrated ethanol to obtain an ethanol solution in which the alkoxide was dissolved. After the flask containing the solution was cooled to 2 ° C. with ice water, 0.57 g of nitric acid having a concentration of 69% by weight and then 0.24 g of ultrapure water were added all at once to the solution with stirring. The internal temperature was controlled so as not to occur. After completion of the addition of nitric acid, the rise in the internal temperature stopped, and when the liquid temperature reached 2 ° C. again, it was removed from the ice bath and returned to room temperature. During this time, stirring was performed. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 8.4% by weight was prepared.
This coating solution was applied once on the same transparent substrate as in Example 1 with a spin coater so that the dry film thickness was 60 nm, and immediately annealed at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen. And a transparent conductive substrate was obtained.
The obtained transparent conductive substrate had a sheet resistance of 931 Ω / □, a resistivity of 5.59 × 10 −3 Ω · cm, and a transmittance of 70% in the visible region and 65% in the infrared region.

(実施例4)
窒素雰囲気中でチタンテトライソプロポキシド4.00g、ニオブエトキシド0.80gを脱水エタノール51.90g中に溶解させ、アルコキシドが溶解したエタノール溶液を得た。溶液を入れたフラスコの周囲を氷水で2℃に冷却した後、溶液に濃度35重量%の塩酸水0.61gを攪拌下で一気に添加し、塩酸の添加によって溶液の急激な内温上昇が起こらないように制御した。塩酸添加終了後、内温上昇が停止し、再び液温が2℃になった時点で氷浴からはずし、室温にまで戻した。この間、攪拌は行っていた。この条件での塗布液作製により、チタン:ニオブ=85:15(モル比)、固形分濃度8.4重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にドライ膜厚が60nmとなるようにスピンコーターで1回塗布し、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は540.9Ω/□、抵抗率が3.25×10-3Ω・cmであり、透過率は可視域で70%、赤外域で65%であった。
Example 4
In a nitrogen atmosphere, 4.00 g of titanium tetraisopropoxide and 0.80 g of niobium ethoxide were dissolved in 51.90 g of dehydrated ethanol to obtain an ethanol solution in which the alkoxide was dissolved. After the flask containing the solution was cooled to 2 ° C. with ice water, 0.61 g of 35% by weight hydrochloric acid was added to the solution all at once with stirring. The addition of hydrochloric acid caused a sudden rise in the internal temperature of the solution. Controlled not to. After completion of the addition of hydrochloric acid, the rise in the internal temperature was stopped, and when the liquid temperature reached 2 ° C. again, it was removed from the ice bath and returned to room temperature. During this time, stirring was performed. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 85: 15 (molar ratio) and a solid content concentration of 8.4% by weight was prepared.
This coating solution was applied once on the same transparent substrate as in Example 1 with a spin coater so that the dry film thickness was 60 nm, and immediately annealed at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen. And a transparent conductive substrate was obtained.
The sheet resistance of the obtained transparent conductive substrate was 540.9Ω / □, the resistivity was 3.25 × 10 −3 Ω · cm, and the transmittance was 70% in the visible region and 65% in the infrared region. .

(実施例5)
窒素雰囲気中でチタンテトライソプロポキシド2.00g、ニオブエトキシド0.96gを脱水エタノール32.00g中に溶解させ、アルコキシドが溶解したエタノール溶液を得た。溶液を入れたフラスコの周囲を氷水で2℃に冷却した後、溶液に濃度35重量%の塩酸水0.37gを攪拌下で一気に添加し、塩酸の添加によって溶液の急激な内温上昇が起こらないように制御した。塩酸添加終了後、内温上昇が停止し、再び液温が2℃になった時点で氷浴からはずし、室温にまで戻した。この間、攪拌は行っていた。この条件での塗布液作製により、チタン:ニオブ=70:30(モル比)、固形分濃度8.4重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にドライ膜厚が60nmとなるようにスピンコーターで1回塗布し、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は365.5 Ω/□、抵抗率が2.19×10-3Ω・cmであり、透過率は可視域で70%、赤外域で65%であった。
(Example 5)
In a nitrogen atmosphere, 2.00 g of titanium tetraisopropoxide and 0.96 g of niobium ethoxide were dissolved in 32.00 g of dehydrated ethanol to obtain an ethanol solution in which the alkoxide was dissolved. After the flask containing the solution was cooled to 2 ° C. with ice water, 0.37 g of hydrochloric acid having a concentration of 35% by weight was added all at once to the solution while stirring. The addition of hydrochloric acid caused a sudden rise in the internal temperature of the solution. Controlled not to. After completion of the addition of hydrochloric acid, the rise in the internal temperature was stopped, and when the liquid temperature reached 2 ° C. again, it was removed from the ice bath and returned to room temperature. During this time, stirring was performed. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 70: 30 (molar ratio) and a solid content concentration of 8.4% by weight was prepared.
This coating solution was applied once on the same transparent substrate as in Example 1 with a spin coater so that the dry film thickness was 60 nm, and immediately annealed at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen. And a transparent conductive substrate was obtained.
The obtained transparent conductive substrate had a sheet resistance of 365.5 Ω / □, a resistivity of 2.19 × 10 −3 Ω · cm, and a transmittance of 70% in the visible region and 65% in the infrared region. It was.

(実施例6)
大気雰囲気中でチタンテトライソプロポキシド2.00g、ニオブエトキシド0.56gをエタノール22.70g中に溶解させ、アルコキシドが溶解したエタノール溶液を得た。続いて、濃度35重量%の塩酸0.32gを攪拌下で一気に添加した。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度10重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にスピンコーティング(150rpm×5sec、引き続き800rpm×20sec)を行い、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は202.8Ω/□、抵抗率が1.5×10-3Ω・cmであり、透過率は可視域で70%、赤外域で60%であった。
(Example 6)
Titanium tetraisopropoxide (2.00 g) and niobium ethoxide (0.56 g) were dissolved in 22.70 g of ethanol in an air atmosphere to obtain an ethanol solution in which the alkoxide was dissolved. Subsequently, 0.32 g of hydrochloric acid having a concentration of 35% by weight was added all at once with stirring. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 10% by weight was prepared.
This coating solution was spin coated (150 rpm × 5 sec, then 800 rpm × 20 sec) on the same transparent substrate as in Example 1, and immediately annealed at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen. A transparent conductive substrate was obtained.
The sheet resistance of the obtained transparent conductive substrate was 202.8Ω / □, the resistivity was 1.5 × 10 −3 Ω · cm, and the transmittance was 70% in the visible region and 60% in the infrared region. .

(実施例7)
大気雰囲気中でチタンテトライソプロポキシド2.00g、ニオブエトキシド0.56gをエタノール14.18g中に溶解させ、アルコキシドが溶解したエタノール溶液を得た。続いて、濃度35重量%の塩酸0.32gを攪拌下で一気に添加した。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度15重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にスピンコーティング(150rpm×5sec、引き続き800rpm×20sec)を行い、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は203.9Ω/□、抵抗率が2.3×10-3Ω・cmであり、透過率は可視域で75%、赤外域で50%であった。
(Example 7)
In an air atmosphere, 2.00 g of titanium tetraisopropoxide and 0.56 g of niobium ethoxide were dissolved in 14.18 g of ethanol to obtain an ethanol solution in which the alkoxide was dissolved. Subsequently, 0.32 g of hydrochloric acid having a concentration of 35% by weight was added all at once with stirring. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 15% by weight was prepared.
This coating solution was spin coated (150 rpm × 5 sec, then 800 rpm × 20 sec) on the same transparent substrate as in Example 1, and immediately annealed at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen. A transparent conductive substrate was obtained.
The sheet resistance of the obtained transparent conductive substrate was 203.9Ω / □, the resistivity was 2.3 × 10 −3 Ω · cm, and the transmittance was 75% in the visible region and 50% in the infrared region. .

(実施例8)
大気雰囲気中でチタンテトライソプロポキシド4.00g、ニオブエトキシド1.12gをエタノール55.36g中に溶解させ、アルコキシドが溶解したエタノール溶液を得た。続いて、濃度35重量%の塩酸0.64gを攪拌下で一気に添加した。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度8.4重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にドライ厚膜が60nmになるようにスピンコーティングで一回塗布し、直ちに水素3%の還元雰囲気下にて600℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は1171Ω/□、抵抗率が7.0×10-3Ω・cmであり、透過率は可視域で70%、赤外域で70%であった。
(Example 8)
In an air atmosphere, 4.00 g of titanium tetraisopropoxide and 1.12 g of niobium ethoxide were dissolved in 55.36 g of ethanol to obtain an ethanol solution in which the alkoxide was dissolved. Subsequently, 0.64 g of hydrochloric acid having a concentration of 35% by weight was added all at once with stirring. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 8.4% by weight was prepared.
This coating solution was applied once by spin coating on the same transparent substrate as in Example 1 so that the dry thick film had a thickness of 60 nm, and immediately annealed at 600 ° C. for 60 minutes in a reducing atmosphere of 3% hydrogen. And a transparent conductive substrate was obtained.
The sheet resistance of the obtained transparent conductive substrate was 1171 Ω / □, the resistivity was 7.0 × 10 −3 Ω · cm, and the transmittance was 70% in the visible region and 70% in the infrared region.

(実施例9)
大気雰囲気中でチタンテトライソプロポキシド2.00g、ニオブエトキシド0.56gを3−メトキシ−1−ブタノール13.50g中に溶解させ、アルコキシドが溶解した溶液を得た。続いて、濃度35重量%の塩酸0.32gを攪拌下で一気に添加した。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度16重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にスピンコーティング(800rpm×60sec)を行い、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は679Ω/□、抵抗率が3.2×10-3Ω・cmであり、透過率は可視域で70%、赤外域で70%であった。
Example 9
In an air atmosphere, 2.00 g of titanium tetraisopropoxide and 0.56 g of niobium ethoxide were dissolved in 13.50 g of 3-methoxy-1-butanol to obtain a solution in which the alkoxide was dissolved. Subsequently, 0.32 g of hydrochloric acid having a concentration of 35% by weight was added all at once with stirring. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 16% by weight was prepared.
This coating solution is spin-coated (800 rpm × 60 sec) on the same transparent substrate as in Example 1, and immediately subjected to an annealing treatment at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen to obtain a transparent conductive substrate. Got.
The obtained transparent conductive substrate had a sheet resistance of 679 Ω / □, a resistivity of 3.2 × 10 −3 Ω · cm, and a transmittance of 70% in the visible region and 70% in the infrared region.

(実施例10)
大気雰囲気中でチタンテトライソプロポキシド2.00g、ニオブエトキシド0.56gを3−メトキシ−1−ブタノール6.80g中に溶解させ、アルコキシドが溶解した溶液を得た。続いて、濃度35重量%の塩酸0.32gを攪拌下で一気に添加した。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度26重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にスピンコーティング(800rpm×60sec)を行い、直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は485Ω/□、抵抗率が5.1×10-3Ω・cmであり、透過率は可視域で70%、赤外域で70%であった。
(Example 10)
In an air atmosphere, 2.00 g of titanium tetraisopropoxide and 0.56 g of niobium ethoxide were dissolved in 6.80 g of 3-methoxy-1-butanol to obtain a solution in which the alkoxide was dissolved. Subsequently, 0.32 g of hydrochloric acid having a concentration of 35% by weight was added all at once with stirring. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 26% by weight was prepared.
This coating solution is spin-coated (800 rpm × 60 sec) on the same transparent substrate as in Example 1, and immediately subjected to an annealing treatment at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen to obtain a transparent conductive substrate. Got.
The obtained transparent conductive substrate had a sheet resistance of 485 Ω / □, a resistivity of 5.1 × 10 −3 Ω · cm, and a transmittance of 70% in the visible region and 70% in the infrared region.

(実施例11)
大気雰囲気中でチタンテトライソプロポキシド2.00g、ニオブエトキシド0.56gをエタノール27.68g中に溶解させ、アルコキシドが溶解したエタノール溶液を得た。続いて、濃度35重量%の塩酸0.32gを攪拌下で一気に添加した。この条件での塗布液作製により、チタン:ニオブ=80:20(モル比)、固形分濃度8.4重量%の塗布液が作製できた。
この塗布液を、実施例1と同じ透明基材上にスピンコーティング(800rpm×60sec)を行い、直ちに水素100%の還元雰囲気下にて500℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板のシート抵抗は825Ω/□、抵抗率が4.9×10-3Ω・cmであり、透過率は可視域で70%、赤外域で75%であった。
(Example 11)
In an air atmosphere, 2.00 g of titanium tetraisopropoxide and 0.56 g of niobium ethoxide were dissolved in 27.68 g of ethanol to obtain an ethanol solution in which the alkoxide was dissolved. Subsequently, 0.32 g of hydrochloric acid having a concentration of 35% by weight was added all at once with stirring. By preparing the coating solution under these conditions, a coating solution having titanium: niobium = 80: 20 (molar ratio) and a solid content concentration of 8.4% by weight was prepared.
This coating solution is spin-coated (800 rpm × 60 sec) on the same transparent substrate as in Example 1, and immediately subjected to an annealing treatment at 500 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen to obtain a transparent conductive substrate. Got.
The sheet resistance of the obtained transparent conductive substrate was 825Ω / □, the resistivity was 4.9 × 10 −3 Ω · cm, and the transmittance was 70% in the visible region and 75% in the infrared region.

(試験例1)
塗布後アニール処理前の塗膜の保存安定性を評価した、すなわち実施例1で得られた塗布液を、実施例1と同じ透明基材上にドライ膜厚が60nmとなるようにスピンコーターで1回塗布し、室温において下記に示す放置時間を設けた後、水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。得られた透明導電性基板のアニール処理前の熟成時間によらず、可視域で70%であり、赤外領域では、60%であった。各保存時間におけるシート抵抗(膜平均)および抵抗率を表1に示す。
(Test Example 1)
After the coating, the storage stability of the coating film before the annealing treatment was evaluated, that is, the coating solution obtained in Example 1 was spin coated on the same transparent substrate as in Example 1 so that the dry film thickness was 60 nm. After coating once and providing the following standing time at room temperature, an annealing treatment was performed at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen to obtain a transparent conductive substrate. Regardless of the aging time before annealing of the obtained transparent conductive substrate, it was 70% in the visible region and 60% in the infrared region. Table 1 shows the sheet resistance (film average) and resistivity at each storage time.

Figure 2011204667

表1から明らかなように、塗布後24時間以内、とりわけ17時間以内にアニール処理を施すことにより、低抵抗の透明導電性膜を透明基板上に形成することができることがわかる。
Figure 2011204667

As is apparent from Table 1, it can be seen that a low resistance transparent conductive film can be formed on a transparent substrate by performing an annealing treatment within 24 hours, especially within 17 hours after coating.

(試験例2)
塗布液の保持安定性を評価した、すなわち実施例1で得られた塗布液を、大気中で下記に示す保持時間を設けた後、実施例1と同じ透明基材上にドライ膜厚が60nmとなるようにスピンコーターで1回塗布した。塗布後直ちに水素100%の還元雰囲気下にて600℃で30分間アニール処理を施して、透明導電性基板を得た。塗布液の大気中での保持時間によらず、可視域で70%であり、赤外領域では、60%であった。各保存時間におけるシート抵抗(膜平均)および抵抗率を表2に示す。
(Test Example 2)
The holding stability of the coating solution was evaluated, that is, the coating solution obtained in Example 1 was provided with the holding time shown below in the atmosphere, and then the dry film thickness was 60 nm on the same transparent substrate as in Example 1. It applied once with the spin coater so that it might become. Immediately after coating, annealing was performed at 600 ° C. for 30 minutes in a reducing atmosphere of 100% hydrogen to obtain a transparent conductive substrate. Regardless of the retention time of the coating solution in the atmosphere, it was 70% in the visible region and 60% in the infrared region. Table 2 shows the sheet resistance (film average) and resistivity at each storage time.

Figure 2011204667

表2から明らかなように、本発明における塗布液は保存安定性に優れ、大気下での長い保存時間を設けた後も低抵抗な透明導電性膜を透明基板上に形成することができることがわかる。
Figure 2011204667

As is apparent from Table 2, the coating liquid in the present invention is excellent in storage stability, and can form a low-resistance transparent conductive film on a transparent substrate even after providing a long storage time in the atmosphere. Recognize.

上記実施例から明らかな如く、本発明によれば、透明導電膜形成用塗布液として常に安定な導電特性を有する透明導電膜を、基板上に作製することが可能であるため、その産業上の価値は頗る大である。   As is clear from the above examples, according to the present invention, it is possible to produce a transparent conductive film having a stable conductive property as a coating liquid for forming a transparent conductive film on a substrate. The value is great.

Claims (5)

チタン化合物、ニオブ化合物、無機酸、水およびアルコールを含有した塗布液を、透明基板上に塗布し、塗布後24時間以内に、還元雰囲気下にて加熱によるアニールを施して、ニオブがドープされた酸化チタンからなる透明導電性膜を透明基板上に形成することを特徴とする透明導電性基板の製造方法。   A coating solution containing a titanium compound, niobium compound, inorganic acid, water and alcohol was applied on a transparent substrate, and within 24 hours after coating, annealing was performed by heating in a reducing atmosphere, and niobium was doped. A method for producing a transparent conductive substrate, comprising forming a transparent conductive film made of titanium oxide on a transparent substrate. 前記塗布液が、チタン化合物としてチタンアルコキシドを、ニオブ化合物としてニオブアルコキシドを、無機酸として塩酸および硝酸からなる群より選ばれる少なくとも一種を、アルコールとしてエタノールを、それぞれ含有する請求項1に記載の透明導電性基板の製造方法。   The transparent coating according to claim 1, wherein the coating solution contains titanium alkoxide as the titanium compound, niobium alkoxide as the niobium compound, at least one selected from the group consisting of hydrochloric acid and nitric acid as the inorganic acid, and ethanol as the alcohol. A method for manufacturing a conductive substrate. 塗布液中のニオブ/チタンのモル比が0.01〜0.7である請求項1または2に記載の透明導電性基板の製造方法。   The method for producing a transparent conductive substrate according to claim 1 or 2, wherein the niobium / titanium molar ratio in the coating solution is 0.01 to 0.7. 還元雰囲気下におけるアニール処理の加熱温度が、350〜1000℃である請求項1〜3のいずれかに記載の透明導電性基板の製造方法。   The method for producing a transparent conductive substrate according to any one of claims 1 to 3, wherein a heating temperature of the annealing treatment in a reducing atmosphere is 350 to 1000 ° C. 請求項1〜4のいずれかに記載の方法によって得られた透明導電性基板。   The transparent conductive substrate obtained by the method in any one of Claims 1-4.
JP2010241949A 2010-03-04 2010-10-28 Method of manufacturing titanium-oxide-based transparent conductive substrate Withdrawn JP2011204667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241949A JP2011204667A (en) 2010-03-04 2010-10-28 Method of manufacturing titanium-oxide-based transparent conductive substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010047887 2010-03-04
JP2010047887 2010-03-04
JP2010241949A JP2011204667A (en) 2010-03-04 2010-10-28 Method of manufacturing titanium-oxide-based transparent conductive substrate

Publications (1)

Publication Number Publication Date
JP2011204667A true JP2011204667A (en) 2011-10-13

Family

ID=44881085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241949A Withdrawn JP2011204667A (en) 2010-03-04 2010-10-28 Method of manufacturing titanium-oxide-based transparent conductive substrate

Country Status (1)

Country Link
JP (1) JP2011204667A (en)

Similar Documents

Publication Publication Date Title
Chen et al. Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties
Nadarajah et al. Aqueous solution processing of F-doped SnO2 transparent conducting oxide films using a reactive tin (II) hydroxide nitrate nanoscale cluster
Koo et al. Improvement of transparent conducting performance on oxygen-activated fluorine-doped tin oxide electrodes formed by horizontal ultrasonic spray pyrolysis deposition
Yang et al. Nature degradable, flexible, and transparent conductive substrates from green and earth-abundant materials
WO2013111681A1 (en) Substrate with transparent electrode and method for producing same
US20110094577A1 (en) Conductive metal oxide films and photovoltaic devices
Kumara et al. Preparation of fluoride-doped tin oxide films on soda–lime glass substrates by atomized spray pyrolysis technique and their subsequent use in dye-sensitized solar cells
TW201435927A (en) Transparent conductive film coating composition, transparent conductive film, and method for manufacturing transparent conductive film
Wochnik et al. Increasing crystallinity for improved electrical conductivity of TiO2 blocking layers
Moradi-Haji Jafan et al. The effect of solvents and the thickness on structural, optical and electrical properties of ITO thin films prepared by a sol–gel spin-coating process
Ito et al. Evaporation-driven deposition of ITO thin films from aqueous solutions with low-speed dip-coating technique
Koo et al. Optoelectronic multifunctionality of combustion-activated fluorine-doped tin oxide films with high optical transparency
JP5401142B2 (en) Method for producing transparent conductive substrate, precursor solution used therefor, and method for handling the same
Zhao et al. Fabrications of Nb-doped TiO 2 (TNO) transparent conductive oxide polycrystalline films on glass substrates by sol–gel method
CN101219860A (en) Method for producing nano-tin dioxide based conductive film with stannous oxalate neutral complexometry
JP5308117B2 (en) Method for producing transparent conductive substrate
JP2010050088A (en) Transparent conductive substrate and method of manufacturing the same
JP2011204667A (en) Method of manufacturing titanium-oxide-based transparent conductive substrate
JPWO2008117605A1 (en) Large-area transparent conductive film and method for producing the same
JP2011171082A (en) Transparent conductive substrate and method for manufacturing the same
Premalal et al. Development of quality FTO films by spray pyrolysis for dye-sensitized solar cell
JP2010053355A (en) Precursor liquid for forming transparent conductive film and use of the same
CN109704591B (en) Visible-near infrared double-frequency modulated single-phase electrochromic film and preparation method thereof
Nam et al. Characterization of F-and Al-codoped ZnO transparent conducting thin film prepared by sol-gel spin coating method
KR101968818B1 (en) Method for manufacturing transparent conducting electrodes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107