JP2011202709A - Check valve - Google Patents

Check valve Download PDF

Info

Publication number
JP2011202709A
JP2011202709A JP2010069211A JP2010069211A JP2011202709A JP 2011202709 A JP2011202709 A JP 2011202709A JP 2010069211 A JP2010069211 A JP 2010069211A JP 2010069211 A JP2010069211 A JP 2010069211A JP 2011202709 A JP2011202709 A JP 2011202709A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
valve portion
opened
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010069211A
Other languages
Japanese (ja)
Inventor
Shinji Saeki
真司 佐伯
Moritaka Matsuura
守崇 松浦
Yoichi Miura
洋一 三浦
Ryosuke Yoshihiro
良介 吉廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2010069211A priority Critical patent/JP2011202709A/en
Priority to KR1020100132800A priority patent/KR20110107726A/en
Publication of JP2011202709A publication Critical patent/JP2011202709A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/042Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with locking or disconnecting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0209Check valves or pivoted valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Check Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively suppress a hunting phenomenon even in when the differential pressure between the front and rear of a check valve is small.SOLUTION: This check valve 1 includes: a cylindrical body 10 having an introduction port 23 of a refrigerant on an upstream side and a lead-out hole 24 of the refrigerant on a side part; a valve seat 22 provided between the introduction port 23 in the body 10 and the lead-out hole 24; and a valve element 12 having an attachment/detachment part 32 slidably stored in the body 10 and attached and detached to and from the valve seat 22 in order to open and close a first valve part, and a sliding part opening and closing a second valve part having an effective pressure receiving diameter larger than the first valve part depending on a slidable contact position with an inner peripheral surface of the body 10, and opening and closing the lead-out hole 24. When the length of the sliding part on the first valve part side compared to the lead-out hole 24 in the valve close state of the first valve part is L, the effective pressure receiving diameter of the first valve part is a, an inside diameter of the body is b, and an outside diameter of the sliding part is c, the following relationship is satisfied; L≥4b(b-c)/a.

Description

本発明は、冷媒通路に配設されて冷媒の流れを一方向に規制する逆止弁に関する。   The present invention relates to a check valve that is disposed in a refrigerant passage and restricts the flow of refrigerant in one direction.

自動車用空調装置は、一般に、エンジンの回転数によらず一定の冷房能力が維持されるように、冷媒の吐出容量を可変できる可変容量圧縮機(単に「圧縮機」ともいう)を備えている。この圧縮機は、エンジンによって回転駆動される回転軸に取り付けられた揺動板に圧縮用のピストンが連結され、揺動板の角度を変化させてピストンのストロークを変えることにより冷媒の吐出量を調整する。揺動板の角度は、密閉されたクランク室内に吐出冷媒の一部を導入し、ピストンの両面にかかる圧力の釣り合いを変化させることで連続的に変えられる。   In general, an air conditioner for an automobile includes a variable capacity compressor (also simply referred to as a “compressor”) capable of varying a refrigerant discharge capacity so that a constant cooling capacity is maintained regardless of the engine speed. . In this compressor, a piston for compression is connected to a swing plate attached to a rotary shaft that is driven to rotate by an engine, and the discharge amount of the refrigerant is changed by changing the stroke of the piston by changing the angle of the swing plate. adjust. The angle of the swing plate can be continuously changed by introducing a part of the discharged refrigerant into the sealed crank chamber and changing the balance of pressure applied to both surfaces of the piston.

このような圧縮機はエンジンの大きな負荷になり得るため、車両の急加速時や登坂走行時などエンジンの動力を車両の推進力に振り向けたい高負荷時には、その圧縮機の負荷トルクを低減する必要がある。従来はこの負荷トルクを一時的にカットできるようにエンジンの駆動力を伝達または遮断する電磁クラッチを備えた圧縮機が広く採用されていたが、低コスト化等の観点から近年ではエンジンと回転軸とを直結したいわゆるクラッチレス式の圧縮機が主流になりつつある。エンジンの高負荷時にはクランク室内の圧力を高くして揺動板の角度を極小にし、圧縮機を最小容量運転状態へ移行させる。それにより圧縮機の負荷トルクを最小状態とするものである。   Since such a compressor can be a heavy load on the engine, it is necessary to reduce the load torque of the compressor at a high load when the engine power is to be directed to the driving force of the vehicle, such as when the vehicle is accelerating or running uphill. There is. Conventionally, compressors equipped with electromagnetic clutches that transmit or cut off the driving force of the engine so that this load torque can be temporarily cut have been widely adopted. So-called clutchless compressors that are directly connected to each other are becoming mainstream. When the engine is heavily loaded, the pressure in the crank chamber is increased to minimize the angle of the swing plate, and the compressor is shifted to the minimum capacity operation state. This minimizes the load torque of the compressor.

しかし、このようにして圧縮機が最小容量運転に移行しても、揺動板に若干の傾きがあるため、通常はその吐出容量を完全にゼロにすることはできない。このため、特に冬場などの低温環境下においてはその僅かな冷媒の流れによって圧縮機の下流側に位置する蒸発器が凍結する可能性もある。また、圧縮機の吐出容量が急激に低下すると、一時的にその圧縮機出口の圧力が吐出室の圧力よりも高くなり、吐出冷媒が吐出室へ逆流する可能性がある。そこで、一般には圧縮機の出口と吐出室との間の通路に逆止弁を設け、最小容量運転時における圧縮機からの吐出冷媒の流出や、吐出室への冷媒の逆流を防止している。   However, even if the compressor shifts to the minimum capacity operation in this manner, the discharge capacity cannot normally be completely zero because the swinging plate has a slight inclination. For this reason, the evaporator located in the downstream of a compressor may freeze by the slight refrigerant | coolant flow especially in low temperature environments, such as winter. Further, when the discharge capacity of the compressor rapidly decreases, there is a possibility that the pressure at the outlet of the compressor temporarily becomes higher than the pressure in the discharge chamber and the discharged refrigerant flows back to the discharge chamber. Therefore, in general, a check valve is provided in the passage between the outlet of the compressor and the discharge chamber to prevent outflow of the refrigerant discharged from the compressor and the reverse flow of the refrigerant to the discharge chamber during the minimum capacity operation. .

ところで、このように最小容量運転状態において逆止弁が吐出室の出口を閉塞しても、圧縮機はその最小容量の圧縮を行っているため、吐出室の圧力(吐出圧力)は徐々に高まっていく。そして、逆止弁の弁体に作用する吐出圧力による開弁方向の力がスプリングによる閉弁方向の力を上回ると、逆止弁は開き始める。一方、そのようにして逆止弁が開くと、冷媒が下流側に流れて吐出室の圧力が低下するため、逆止弁は閉じ始める。つまり、圧縮機が最小容量運転状態にあるとき、逆止弁には、微少開度の開閉を繰り返すというハンチング現象が発生し、それが異音を発生させる原因となる。   By the way, even if the check valve closes the outlet of the discharge chamber in the minimum capacity operation state as described above, the pressure in the discharge chamber (discharge pressure) gradually increases because the compressor compresses the minimum capacity. To go. When the force in the valve opening direction due to the discharge pressure acting on the valve body of the check valve exceeds the force in the valve closing direction due to the spring, the check valve starts to open. On the other hand, when the check valve is opened in this way, the refrigerant flows downstream and the pressure in the discharge chamber decreases, so the check valve starts to close. That is, when the compressor is in the minimum capacity operation state, a hunting phenomenon in which opening and closing of the minute opening is repeated occurs in the check valve, which causes noise.

そこで、漸増する吐出圧力によって逆止弁が開弁するときの開口面積を可変にしてその寸開時に下流側へ流出する冷媒流量を制限する流量調整機能を持たせることによりハンチング現象を抑える技術が提案されている(例えば、特許文献1参照)。具体的には、逆止弁の上流側から第1の弁部とそれより有効受圧径が大きい第2の弁部とが段階的に設けられ、第2の弁部の弁体には第1の弁部に向かってテーパ部が形成されている。これにより、第1の弁部が開いて第2の弁部が寸開するときにその第2の弁部の開度が漸増するようになり、冷媒の流量が絞られてハンチング減少が抑制される。   Therefore, there is a technology that suppresses the hunting phenomenon by varying the opening area when the check valve is opened by the gradually increasing discharge pressure and providing a flow rate adjustment function that restricts the flow rate of refrigerant flowing downstream when the check valve is opened. It has been proposed (see, for example, Patent Document 1). Specifically, the first valve portion and the second valve portion having a larger effective pressure receiving diameter are provided in stages from the upstream side of the check valve, and the valve body of the second valve portion includes a first valve portion. A tapered portion is formed toward the valve portion. As a result, when the first valve portion is opened and the second valve portion is opened, the opening degree of the second valve portion gradually increases, the flow rate of the refrigerant is reduced, and hunting reduction is suppressed. The

特開2005−249154号公報JP-A-2005-249154

しかしながら、このような構成においても、第2の弁部の開度が開弁すると上流側の圧力が低下するため、第1の弁部が再び閉弁方向に動作する。つまり、段階的な弁部の開放によって開弁性能は良好になるものの、第1の弁部の開弁後間もなく第2の弁部が開弁する構成とすると、依然として冷媒流量の脈動が残存する可能性がある。   However, even in such a configuration, when the opening degree of the second valve portion is opened, the pressure on the upstream side decreases, so that the first valve portion again operates in the valve closing direction. That is, although the valve opening performance is improved by gradually opening the valve portion, if the second valve portion opens soon after the first valve portion opens, the pulsation of the refrigerant flow still remains. there is a possibility.

本発明はこのような問題に鑑みてなされたものであり、逆止弁のハンチング現象をより効果的に抑制することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to more effectively suppress the hunting phenomenon of the check valve.

上記課題を解決するために、本発明のある態様の逆止弁は、冷媒通路に配設されて冷媒の流れを一方向に規制するものであり、上流側に冷媒の導入口を有し、側部に冷媒の導出孔が設けられた筒状のボディと、ボディ内の導入口と導出孔との間に設けられた弁座と、ボディ内に摺動可能に収容されるとともに、弁座に着脱して第1の弁部を開閉する着脱部と、ボディの内周面との摺接位置によって第1の弁部よりも有効受圧径の大きい第2の弁部を開閉して導出孔を開閉させる摺動部とを有し、第1の弁部が所定量開弁された後に第2の弁部が開弁されるように構成された弁体と、ボディにおける弁体の背部に区画形成された背圧室と、背圧室に配設されて弁体を閉弁方向に付勢する付勢部材と、を備える。   In order to solve the above problems, a check valve according to an aspect of the present invention is disposed in a refrigerant passage to restrict the flow of refrigerant in one direction, and has an inlet for refrigerant on the upstream side. A cylindrical body provided with a refrigerant outlet hole on the side, a valve seat provided between the inlet and the outlet hole in the body, and slidably accommodated in the body. The opening / closing opening and closing of the second valve portion having an effective pressure receiving diameter larger than that of the first valve portion is determined by the sliding contact position between the body and the inner peripheral surface of the body. A valve body configured to open the second valve part after the first valve part is opened by a predetermined amount, and a back part of the valve body in the body. A compartment-formed back pressure chamber, and a biasing member that is disposed in the back pressure chamber and biases the valve body in the valve closing direction.

そして、第1の弁部の閉弁状態において導出孔よりも第1の弁部側にある摺動部の長さをL、第1の弁部の有効受圧径をa、ボディの内径をb、摺動部の外径をcとしたときに下記式(1)の関係を有する。
L≧4b(b−c)/a ・・・(1)
なお、ここでいう「有効受圧径」は、各弁部においてその上流側の圧力と下流側の圧力との差圧を実質的に受ける部分の径であってよい。
In the closed state of the first valve portion, the length of the sliding portion on the first valve portion side of the lead-out hole is L, the effective pressure receiving diameter of the first valve portion is a, and the inner diameter of the body is b When the outer diameter of the sliding portion is c, the following equation (1) is satisfied.
L ≧ 4b (bc) / a (1)
Here, the “effective pressure receiving diameter” may be a diameter of a portion that substantially receives a differential pressure between an upstream pressure and a downstream pressure in each valve portion.

この態様によると、第1の弁部が開弁された後、弁体が長さL分だけ開弁方向に変位しなければ第2の弁部が開弁を開始しない。つまり、弁体が長さLだけ変位するまでは冷媒流量が大きくならず、第2の弁部の上流側の圧力を高めることができる。すなわち、第1の弁部が開弁されてから第2の弁部が開弁される前に弁体の上流側の圧力が十分に高められる。その結果、第2の弁部の開弁後に第1の弁部が閉弁方向に動作する際に、その圧力上昇による抵抗が付与され、その閉弁動作が鋭敏となるのが抑制される。それにより弁体の振動を抑制し、冷媒流量の脈動を抑制することができる。   According to this aspect, after the first valve portion is opened, the second valve portion does not start opening unless the valve body is displaced in the valve opening direction by the length L. That is, the refrigerant flow rate does not increase until the valve body is displaced by the length L, and the pressure on the upstream side of the second valve portion can be increased. That is, the pressure on the upstream side of the valve body is sufficiently increased before the second valve portion is opened after the first valve portion is opened. As a result, when the first valve portion operates in the valve closing direction after the second valve portion is opened, resistance due to the pressure increase is applied, and the valve closing operation is suppressed from becoming sharp. Thereby, vibration of the valve body can be suppressed and pulsation of the refrigerant flow rate can be suppressed.

本発明によれば、逆止弁のハンチング現象をより効果的に抑制することができる。   According to the present invention, the hunting phenomenon of the check valve can be more effectively suppressed.

実施形態に係る逆止弁の正面図である。It is a front view of the check valve concerning an embodiment. 逆止弁の底面図である。It is a bottom view of a check valve. 図1のA−A矢視断面図である。It is AA arrow sectional drawing of FIG. 図3のB部拡大図である。It is the B section enlarged view of FIG. 逆止弁の構造の詳細を説明するための図である。It is a figure for demonstrating the detail of the structure of a non-return valve.

以下、本発明の実施形態を、図面を参照して詳細に説明する。
本実施形態に係る逆止弁は、車両用空調装置の冷凍サイクルを循環する冷媒を圧縮する可変容量圧縮機(単に「圧縮機」という)に設置され、その圧縮機の出口と吐出室との間の冷媒通路に配設されて冷媒の逆流を規制するものである。この車両用空調装置は、その圧縮機のほか、凝縮器またはガスクーラ等の外部熱交換器、膨張装置および蒸発器等を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The check valve according to the present embodiment is installed in a variable capacity compressor (simply referred to as “compressor”) that compresses the refrigerant circulating in the refrigeration cycle of the vehicle air conditioner, and includes an outlet between the compressor and a discharge chamber. It is arrange | positioned by the refrigerant | coolant channel | path between them, and controls the reverse flow of a refrigerant | coolant. In addition to the compressor, the vehicle air conditioner includes an external heat exchanger such as a condenser or a gas cooler, an expansion device, an evaporator, and the like.

圧縮機は、蒸発器側から吸入室に導入された冷媒ガスをシリンダに導入して圧縮し、吐出室から凝縮器側へ高温・高圧の冷媒を吐出する。この吐出冷媒の一部は可変容量圧縮機用制御弁(単に「制御弁」という)を介してクランク室内に導入され、圧縮機の容量制御に供される。制御弁は、ソレノイド駆動の電磁弁として構成され、図示しない制御部により所定の駆動回路を介して通電制御される。逆止弁は、圧縮機のハウジングに設けられた冷媒通路に固定される。なお、逆止弁を除く圧縮機の構成、また冷凍サイクルを構成するその他の装置の構成については一般的であるため、その説明については省略する。   The compressor introduces refrigerant gas introduced from the evaporator side into the suction chamber into the cylinder and compresses it, and discharges high-temperature and high-pressure refrigerant from the discharge chamber to the condenser side. Part of the discharged refrigerant is introduced into the crank chamber via a variable displacement compressor control valve (simply referred to as “control valve”), and is used for compressor capacity control. The control valve is configured as a solenoid-driven electromagnetic valve, and is energized and controlled by a control unit (not shown) via a predetermined drive circuit. The check valve is fixed to a refrigerant passage provided in the housing of the compressor. In addition, since it is common about the structure of the compressor except a non-return valve, and the structure of the other apparatus which comprises a refrigerating cycle, it abbreviate | omits about the description.

図1は、実施形態に係る逆止弁の正面図である。図2は、逆止弁の底面図である。また、図3は、図1のA−A矢視断面図である。図4は、図3のB部拡大図である。図5は、逆止弁の構造の詳細を説明するための図である。なお、以下の説明においては便宜上、図示の状態を基準に各構成の位置関係を表すことがある。   FIG. 1 is a front view of a check valve according to the embodiment. FIG. 2 is a bottom view of the check valve. 3 is a cross-sectional view taken along arrow AA in FIG. FIG. 4 is an enlarged view of a portion B in FIG. FIG. 5 is a diagram for explaining the details of the structure of the check valve. In the following description, for the sake of convenience, the positional relationship of each component may be expressed based on the illustrated state.

図3に示すように、逆止弁1は、有底円筒状のボディ10に弁体12を摺動可能に収容するように構成されている。逆止弁1は、冷媒の導入口に設けられた第1の弁部と、冷媒の導出口に設けられた第2の弁部を有する。第1の弁部よりも第2の弁部のほうが有効受圧径が大きく、弁体12がボディ10内でストロークすることにより、これらの弁部が段階的に開弁するように構成されている。   As shown in FIG. 3, the check valve 1 is configured to slidably accommodate a valve body 12 in a bottomed cylindrical body 10. The check valve 1 has a first valve portion provided at the refrigerant inlet and a second valve portion provided at the refrigerant outlet. The effective pressure receiving diameter of the second valve portion is larger than that of the first valve portion, and when the valve body 12 strokes in the body 10, these valve portions are configured to open in stages. .

ボディ10は、段付円筒状の第1ボディ14と有底円筒状の第2ボディ16とを、互いの開口部を突き合わせるように軸線方向に連設して構成されている。第1ボディ14は、第2ボディ16側に外径が縮径された縮径部18を有する。第2ボディ16は、その上端開口部が縮径部18に外挿されて外方から加締められることにより第1ボディ14に接合されている。縮径部18の下端開口縁にはボス部20が突設されており、そのボス部20の先端面により弁座22が構成されている。弁体12と弁座22とにより「第1の弁部」が構成される。第1ボディ14のボス部20とは反対側の上端開口部が導入口23となっており、圧縮機の吐出室から吐出された吐出室圧力Pdhの冷媒を導入する。   The body 10 is configured by connecting a stepped cylindrical first body 14 and a bottomed cylindrical second body 16 in the axial direction so as to abut each other's opening. The first body 14 has a reduced diameter portion 18 whose outer diameter is reduced on the second body 16 side. The second body 16 is joined to the first body 14 by the upper end opening of the second body 16 being extrapolated to the reduced diameter portion 18 and being caulked from the outside. A boss portion 20 protrudes from the lower end opening edge of the reduced diameter portion 18, and a valve seat 22 is constituted by the tip surface of the boss portion 20. The valve body 12 and the valve seat 22 constitute a “first valve portion”. The upper end opening of the first body 14 opposite to the boss 20 is an introduction port 23, and introduces a refrigerant having a discharge chamber pressure Pdh discharged from the discharge chamber of the compressor.

図1にも示すように、第2ボディ16の側部には、内外を連通する4つの導出孔24が周方向に等間隔で形成されている。各導出孔24は、概ね長方形状をなし、第2ボディ16における長手方向の長さ(「導出孔24の長さ」ともいう)よりも周方向の長さ(「導出孔24の幅」ともいう)が大きく形成されている。4つの導出孔24は、第2ボディ16の周方向に90度おきに形成され、弁体12のストローク位置により開閉される。この4つの導出孔24の上部に形成される弁孔25と弁体12とにより「第2の弁部」が構成される。導出孔24からは出口圧力Pdlの冷媒が導出される。また、図2に示すように、第2ボディ16の底部周縁部にも内外を連通する連通孔26が等間隔で形成されている。図3に示すように、第2ボディ16の底部中央には、内方に突出するボス部28が設けられている。   As shown in FIG. 1, four lead-out holes 24 communicating between the inside and the outside are formed in the side portion of the second body 16 at equal intervals in the circumferential direction. Each lead-out hole 24 has a substantially rectangular shape, and is longer than the length in the longitudinal direction of the second body 16 (also referred to as “length of the lead-out hole 24”) (also referred to as “width of the lead-out hole 24”). Are large). The four outlet holes 24 are formed every 90 degrees in the circumferential direction of the second body 16 and are opened and closed depending on the stroke position of the valve body 12. The valve hole 25 and the valve body 12 formed in the upper part of the four outlet holes 24 constitute a “second valve portion”. A refrigerant having an outlet pressure Pdl is led out from the outlet hole 24. As shown in FIG. 2, communication holes 26 communicating the inside and the outside are also formed at equal intervals in the peripheral edge of the bottom of the second body 16. As shown in FIG. 3, a boss portion 28 projecting inward is provided at the center of the bottom portion of the second body 16.

弁体12は、有底円筒状の本体30を有し、第2ボディ16の内壁に沿って軸線方向に摺動可能に支持されている。本体30の底部は、その外径が段階的に小径化されており、その底面の周縁部が弁座22に着脱する着脱部32を形成している。弁体12は、この着脱部32にて弁座22に着脱して第1の弁部を開閉する。なお、第1の弁部の閉弁状態においては図示のように、着脱部32と弁座22とが面接触状態となり、両者は半径方向に所定幅を有する環状の当接部を形成する。   The valve body 12 has a bottomed cylindrical main body 30 and is supported so as to be slidable in the axial direction along the inner wall of the second body 16. The outer diameter of the bottom portion of the main body 30 is reduced stepwise, and the peripheral portion of the bottom surface forms an attachment / detachment portion 32 that is attached to and detached from the valve seat 22. The valve body 12 is attached to and detached from the valve seat 22 by the attaching / detaching portion 32 to open and close the first valve portion. In the closed state of the first valve portion, as shown in the figure, the attaching / detaching portion 32 and the valve seat 22 are in a surface contact state, and both form an annular contact portion having a predetermined width in the radial direction.

図4に示すように、弁体12は、第2ボディ16の内周面33に沿って摺動する摺動部34と、摺動部34から底部に向けて小径化するテーパ部35を有する。テーパ部35は、第1テーパ部36と第2テーパ部38を有する。摺動部34に対するテーパ部35の傾斜角度は、第1テーパ部36において微小であり、第2テーパ部38においてやや大きくなっている。このような構成により、第1の弁部が開いて第2の弁部が寸開するときにその第2の弁部の開度が漸増するようになり、冷媒の流量が絞られてハンチング減少が抑制される。   As shown in FIG. 4, the valve body 12 includes a sliding portion 34 that slides along the inner peripheral surface 33 of the second body 16 and a tapered portion 35 that decreases in diameter from the sliding portion 34 toward the bottom. . The taper portion 35 has a first taper portion 36 and a second taper portion 38. The inclination angle of the taper part 35 with respect to the sliding part 34 is very small in the first taper part 36 and slightly larger in the second taper part 38. With such a configuration, when the first valve portion is opened and the second valve portion is opened, the opening degree of the second valve portion gradually increases, and the flow rate of the refrigerant is reduced to reduce hunting. Is suppressed.

図3に戻り、弁体12の第1の弁部における有効受圧径aよりも、第2の弁部における有効受圧径cのほうが大きくなっている。弁体12は、図示のような第1の弁部の閉弁状態においては、その摺動部34が導出孔24より上流側にも位置して第2の弁部を閉弁状態に保持する。第1の弁部が開弁して弁体12がその開度を大きくする方向にストロークすると、第1テーパ部36および第2テーパ部38が順次導出孔24に位置するようにして第2の弁部を徐々に開放し、導入口23と導出孔24とを連通させる。   Returning to FIG. 3, the effective pressure receiving diameter “c” in the second valve portion is larger than the effective pressure receiving diameter “a” in the first valve portion of the valve body 12. In the valve closing state of the first valve portion as shown in the drawing, the valve body 12 has its sliding portion 34 located on the upstream side of the lead-out hole 24 to hold the second valve portion in the valve closing state. . When the first valve portion is opened and the valve body 12 is stroked in the direction of increasing the opening degree, the second taper portion 36 and the second taper portion 38 are sequentially positioned in the outlet hole 24 so that the second The valve portion is gradually opened to allow the introduction port 23 and the outlet hole 24 to communicate with each other.

すなわち、弁体12は、第2ボディ16の内周面との摺接位置によって第2の弁部を開閉するが、その第2の弁部は、第1の弁部が所定量開弁された後に開弁される。圧縮機の吐出室から吐出された冷媒の吐出室圧力Pdhは、各弁部の開弁当初においては第1の弁部および第2の弁部を経て段階的に減圧され、出口圧力Pdlとなって圧縮機の出口から導出される。各弁部が全開状態にあるとき、吐出室圧力Pdhは出口圧力Pdlと実質的に等しくなる。   That is, the valve body 12 opens and closes the second valve portion depending on the sliding contact position with the inner peripheral surface of the second body 16, and the second valve portion has the first valve portion opened by a predetermined amount. It is opened after a while. The discharge chamber pressure Pdh of the refrigerant discharged from the discharge chamber of the compressor is gradually reduced through the first valve portion and the second valve portion at the beginning of opening of each valve portion, and becomes the outlet pressure Pdl. And is derived from the outlet of the compressor. When each valve part is fully open, the discharge chamber pressure Pdh is substantially equal to the outlet pressure Pdl.

ボディ10における弁体12の背部には、その弁体12と第2ボディ16とに囲まれるように背圧室40が区画形成されている。背圧室40における弁体12の底部と第2ボディ16の底部との間には、弁体12を閉弁方向に付勢するスプリング42(「付勢部材」に該当する)が介装されている。上述のように、第1の弁部の有効受圧径aが第2の弁部の有効受圧径cより小さく構成されているため、閉弁状態を保持するためのスプリング42の荷重を小さく設定することができる。つまり、スプリング42として荷重の小さなものを使用できる。また、上述のように第2ボディ16の底部に連通孔26を設けたことで、背圧室40の内外の差圧は実質的にゼロとなっている。   A back pressure chamber 40 is defined on the back portion of the valve body 12 in the body 10 so as to be surrounded by the valve body 12 and the second body 16. Between the bottom of the valve body 12 and the bottom of the second body 16 in the back pressure chamber 40, a spring 42 (corresponding to an “urging member”) that biases the valve body 12 in the valve closing direction is interposed. ing. As described above, since the effective pressure receiving diameter a of the first valve portion is smaller than the effective pressure receiving diameter c of the second valve portion, the load of the spring 42 for maintaining the valve closed state is set to be small. be able to. That is, a spring having a small load can be used. Further, by providing the communication hole 26 at the bottom of the second body 16 as described above, the differential pressure inside and outside the back pressure chamber 40 is substantially zero.

ところで、上述のように第1の弁部と第2の弁部とを段階的に開弁させることで、ハンチング現象を抑制することはできるものの、第2の弁部の開度が開弁すると上流側の圧力が低下するため、第1の弁部が再び閉弁方向に動作する。つまり、段階的な弁部の開放によって開弁性能は良好になるものの、第1の弁部の開弁後間もなく第2の弁部が開弁する構成とすると、依然として冷媒流量の脈動が残存する可能性がある。   By the way, although the hunting phenomenon can be suppressed by opening the first valve portion and the second valve portion in stages as described above, the opening degree of the second valve portion is opened. Since the upstream pressure decreases, the first valve portion operates again in the valve closing direction. That is, although the valve opening performance is improved by gradually opening the valve portion, if the second valve portion is opened soon after the first valve portion is opened, the refrigerant flow pulsation still remains. there is a possibility.

そこで本実施形態では、第1の弁部の開弁されてから第2の弁部が開弁される前に弁体12の上流側の圧力を十分に高めるようにする。そして、第2の弁部の開弁後に第1の弁部が閉弁方向に動作する際に、その圧力上昇による抵抗が付与されるようにしてその閉弁動作が鋭敏となるのを抑制する。それにより弁体12の振動を抑制し、冷媒流量の脈動を抑制する。   Therefore, in the present embodiment, the pressure on the upstream side of the valve body 12 is sufficiently increased after the first valve portion is opened and before the second valve portion is opened. And when the 1st valve part operates in the valve closing direction after the 2nd valve part opens, resistance by the pressure rise is given and it suppresses that valve closing operation becomes sharp. . Thereby, the vibration of the valve body 12 is suppressed, and the pulsation of the refrigerant flow rate is suppressed.

すなわち、図4に示すように、逆止弁1においては、第1の弁部の閉弁状態においてテーパ部35と導出孔24との距離が十分に大きくなるように構成されている。言い換えれば、導出孔24よりも第1の弁部側における摺動部34と第2ボディ16との摺動部分の長さ(「ラップ代の長さ」ともいう)Lが大きく、第1の弁部が開弁しても、弁体12がそのラップ代の長さLだけストロークしなければ第2の弁部が開弁しない構成となっている。本実施形態では、ラップ代の長さLがテーパ部35の長さTよりも大きくなるように構成されている。図示の状態から第1の弁部が開弁し、弁体12がラップ代の長さL分ストロークしたときに、第2の弁部が開弁し始めるようになる。   That is, as shown in FIG. 4, the check valve 1 is configured such that the distance between the tapered portion 35 and the outlet hole 24 is sufficiently large when the first valve portion is closed. In other words, the length L of the sliding portion between the sliding portion 34 and the second body 16 on the first valve portion side than the outlet hole 24 (also referred to as “the length of the lap allowance”) L is larger. Even if the valve portion opens, the second valve portion does not open unless the valve body 12 strokes the length L of the lapping margin. In the present embodiment, the length L of the lapping margin is configured to be larger than the length T of the tapered portion 35. When the first valve portion is opened from the state shown in the drawing and the valve body 12 is stroked by the length L of the lap allowance, the second valve portion begins to open.

本実施形態では、このラップ代の長さLを好適に設定することで、第1の弁部が開弁されてから第2の弁部が開弁されるまでに上流側の圧力を十分に高められるようにしている。すなわち、図4に示したように第1の弁部が閉弁状態のときのラップ代の長さをLとし、図5に示すように第1の弁部の有効受圧径をa、第2ボディ16の内径をb、弁体12の摺動部34の外径をcとすると、逆止弁1は下記式(1)が成立するように構成されている。
L≧4・b(b−c)/a ・・・(1)
In this embodiment, by appropriately setting the length L of the lap allowance, the upstream pressure is sufficiently increased from the opening of the first valve portion to the opening of the second valve portion. I try to increase it. That is, as shown in FIG. 4, the length of the lapping margin when the first valve portion is in the closed state is L, the effective pressure receiving diameter of the first valve portion is a, second, as shown in FIG. When the inner diameter of the body 16 is b and the outer diameter of the sliding portion 34 of the valve body 12 is c, the check valve 1 is configured so that the following formula (1) is established.
L ≧ 4 · b (bc) / a (1)

このように寸法設定をしたのは以下の理由による。まず、第1の弁部の寸開時において、弁体12とボディ10との間隙通路を流れる冷媒に流動抵抗を作用させる境界値を考える。ここで、第1の弁部の寸開時に第2の弁部が開弁されてしまうと、流動抵抗は発生しないため、その寸開時の間隙通路は、第2の弁部が閉弁状態にあるときに形成されるものとする。その場合、第1の弁部の開口面積が間隙通路の断面積と等しくなるときの弁体12の弁座22からのリフト量を図示のxとすると、下記式(2)が成立する。
π・a・x=π・b・(b−c) ・・・(2)
The reason for setting the dimensions in this way is as follows. First, consider a boundary value that causes flow resistance to act on the refrigerant flowing through the gap passage between the valve body 12 and the body 10 when the first valve portion is opened. Here, if the second valve portion is opened when the first valve portion is opened, flow resistance does not occur. Therefore, the second valve portion is closed in the gap passage when the first valve portion is opened. It shall be formed when In this case, if the lift amount from the valve seat 22 of the valve body 12 when the opening area of the first valve portion becomes equal to the cross-sectional area of the gap passage is x in the figure, the following formula (2) is established.
π · a · x = π · b · (bc) (2)

つまり、x=b(b−c)/aとなるときに、第1の弁部の開口面積と間隙通路の断面積とが等しくなる。このため、弁体12がそれ以上リフトしてもラップ代が存在していれば、冷媒に流動抵抗を与えられる。本実施形態では、上記式(1)のように、第1の弁部が閉弁状態のときのラップ代の長さLをそのxの4倍以上とし、冷媒に確実に流動抵抗を付与できるようにしたものである。なお、この係数「4」は、実験等を通じて適正値として設定されたものである。すなわち一般に、流体が狭い通路から広い通路に導出される場合、流路の断面積比が4倍以上あれば流動抵抗は発生しないとされている。ここでは、それを逆に利用し、冷媒が広い通路から狭い通路へ導かれる状況において流路の断面積比を4倍以上とすることで流動抵抗を確保し、その上流側の圧力を十分に蓄圧したうえで第2の弁部を開弁させるようにしたものである。   That is, when x = b (bc) / a, the opening area of the first valve portion is equal to the cross-sectional area of the gap passage. For this reason, even if the valve body 12 is lifted further, if the wrap margin exists, flow resistance is given to the refrigerant. In the present embodiment, the length L of the lap allowance when the first valve portion is in the closed state is set to be four times or more of x as in the above formula (1), and the flow resistance can be reliably imparted to the refrigerant. It is what I did. The coefficient “4” is set as an appropriate value through experiments and the like. That is, generally, when the fluid is led out from a narrow passage to a wide passage, flow resistance is not generated if the cross-sectional area ratio of the flow path is four times or more. Here, the flow resistance is ensured by making the cross-sectional area ratio of the flow path 4 times or more in the situation where the refrigerant is led from the wide passage to the narrow passage, and the upstream pressure is sufficiently increased. The second valve portion is opened after accumulating pressure.

以上のような構成により、逆止弁1は、着脱部32が弁座22に着座して第1の弁部が閉弁状態にあるとき、弁体12により導出孔24が閉じられるため、第2の弁部も閉弁状態にある。このとき、弁体12は、そのラップ代の長さLだけ第2の弁部の閉弁方向に位置するようになる。したがって、弁体12が弁座22からリフトして第1の弁部が開弁しても、第2の弁部は、弁体12がそのラップ代の長さLだけリフトするまでは閉弁状態を維持し、それ以上リフトして開弁し始めるようになる。すなわち、圧縮機が最小容量運転をしているときなど、吐出室圧力Pdhが小さい間は弁体12が小さな有効受圧径Cにてその圧力による荷重を受けるため、スプリング42の付勢力によって第1の弁部を閉弁状態に保持でき、逆止弁1としての機能を有効に発揮することができる。一方、吐出室圧力Pdhがある程度大きくなって第1の弁部が開き始めると、弁体12が大きな有効受圧径Dにてその圧力による荷重を受けるため、第2の弁部が比較的速やかに開弁されるようになる。その結果、逆止弁1を速やかに全開状態へ移行させ、大きな圧力損失を発生させることなく冷媒を流せるようになる。   With the above-described configuration, the check valve 1 is configured such that when the detachable portion 32 is seated on the valve seat 22 and the first valve portion is in the closed state, the outlet hole 24 is closed by the valve body 12. The valve part 2 is also closed. At this time, the valve body 12 is positioned in the valve closing direction of the second valve portion by the length L of the lapping margin. Therefore, even if the valve body 12 is lifted from the valve seat 22 and the first valve portion is opened, the second valve portion is closed until the valve body 12 is lifted by the length L of the lap allowance. The state is maintained, and the valve starts to open after further lifting. That is, when the compressor is operating at a minimum capacity and the like, while the discharge chamber pressure Pdh is small, the valve body 12 receives a load due to the pressure with a small effective pressure receiving diameter C. The valve portion can be held in a closed state, and the function as the check valve 1 can be effectively exhibited. On the other hand, when the discharge chamber pressure Pdh increases to some extent and the first valve portion starts to open, the valve body 12 receives a load due to the pressure with a large effective pressure receiving diameter D, so that the second valve portion relatively quickly. It will be opened. As a result, the check valve 1 can be promptly shifted to the fully open state, and the refrigerant can flow without causing a large pressure loss.

また、その第2の弁部の開弁の際、ボディ10と弁体12との間隙通路を徐々に大きくしつつ第2の弁部を開放することで冷媒の流動抵抗の変化を緩和し、それにより、各弁部を流れる冷媒の流量に脈動が発生することを抑制することができる。すなわち、第2の弁部の寸開時にはその弁開度が漸増するような流量調整機能を発揮させることができ、弁体12の自励振動によるハンチングを防止または抑制することができる。その結果、弁体12の開弁動作を安定に維持することができる。   In addition, when the second valve portion is opened, the second valve portion is opened while gradually increasing the gap passage between the body 10 and the valve body 12, thereby reducing the change in the flow resistance of the refrigerant. Thereby, it can suppress that a pulsation generate | occur | produces in the flow volume of the refrigerant | coolant which flows through each valve part. That is, when the second valve portion is opened, a flow rate adjusting function that gradually increases the valve opening degree can be exhibited, and hunting due to self-excited vibration of the valve body 12 can be prevented or suppressed. As a result, the valve opening operation of the valve body 12 can be stably maintained.

さらに、このようにして第1の弁部が開弁された後、弁体12が開弁方向に変位して第2の弁部が開弁を開始するまでに、その第2の弁部の上流側の圧力が高められる。その結果、第2の弁部の開弁後に第1の弁部が閉弁方向に動作する際に、その圧力上昇による抵抗が付与され、その閉弁動作が鋭敏となるのが抑制される。このような作用の繰り返しにより弁体12の振動を抑制し、冷媒流量の脈動を抑制することができる。   Furthermore, after the first valve portion is opened in this manner, the valve body 12 is displaced in the valve opening direction until the second valve portion starts to open. The upstream pressure is increased. As a result, when the first valve portion operates in the valve closing direction after the second valve portion is opened, resistance due to the pressure increase is applied, and the valve closing operation is suppressed from becoming sharp. By repeating such an action, the vibration of the valve body 12 can be suppressed and the pulsation of the refrigerant flow rate can be suppressed.

以上、本発明の好適な実施形態について説明したが、本発明はその特定の実施形態に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the specific embodiments, and various modifications can be made within the scope of the technical idea of the present invention. Nor.

上記実施形態では、逆止弁1をクラッチレス式の可変容量圧縮機のハウジング内に設置するものとして説明したが、クラッチ式の可変容量圧縮機に設置してもよいし、可変容量圧縮機以外の圧縮機に設置してもよい。あるいは、可変容量圧縮機と凝縮器とをつなぐ配管内など冷凍サイクルの他の部位に設置してもよい。また、内燃機関のエンジンを搭載した車両に限らず、内燃機関と電動機を併用したハイブリッド車両、あるいは電気自動車の冷凍サイクルに設置してもよい。さらに、自動車用空調装置の冷凍サイクルに限らず、屋内用その他の空調装置に設置してもよい。   In the above embodiment, the check valve 1 is described as being installed in the housing of the clutchless variable displacement compressor. However, the check valve 1 may be installed in the clutch variable displacement compressor or other than the variable displacement compressor. You may install in the compressor of. Or you may install in the other site | parts of the refrigerating cycle, such as in the piping which connects a variable capacity compressor and a condenser. Further, the present invention is not limited to a vehicle equipped with an engine of an internal combustion engine, and may be installed in a refrigeration cycle of a hybrid vehicle using an internal combustion engine and an electric motor or an electric vehicle. Furthermore, you may install not only in the refrigerating cycle of an automotive air conditioner but in an indoor other air conditioner.

1 逆止弁、 10 ボディ、 12 弁体、 22 弁座、 23 導入口、 24 導出孔、 26 連通孔、 30 本体、 32 着脱部、 33 内周面、 34 摺動部、 35 テーパ部、 40 背圧室、 42 スプリング。   DESCRIPTION OF SYMBOLS 1 Check valve, 10 body, 12 Valve body, 22 Valve seat, 23 Introduction port, 24 Outlet hole, 26 Communication hole, 30 Main body, 32 Detachable part, 33 Inner peripheral surface, 34 Sliding part, 35 Tapered part, 40 Back pressure chamber, 42 springs.

Claims (3)

冷媒通路に配設されて冷媒の流れを一方向に規制するための逆止弁において、
上流側に冷媒の導入口を有し、側部に冷媒の導出孔が設けられた筒状のボディと、
前記ボディ内の前記導入口と前記導出孔との間に設けられた弁座と、
前記ボディ内に摺動可能に収容されるとともに、前記弁座に着脱して第1の弁部を開閉する着脱部と、前記ボディの内周面との摺接位置によって前記第1の弁部よりも有効受圧径の大きい第2の弁部を開閉して前記導出孔を開閉させる摺動部とを有し、前記第1の弁部が所定量開弁された後に前記第2の弁部が開弁されるように構成された弁体と、
前記ボディにおける前記弁体の背部に区画形成された背圧室と、
前記背圧室に配設されて前記弁体を閉弁方向に付勢する付勢部材と、
を備え、
前記第1の弁部の閉弁状態において前記導出孔よりも前記第1の弁部側にある前記摺動部の長さをL、前記第1の弁部の有効受圧径をa、前記ボディの内径をb、前記摺動部の外径をcとしたときに下記式(1)の関係を有することを特徴とする逆止弁。
L≧4b(b−c)/a ・・・(1)
In a check valve disposed in the refrigerant passage to restrict the flow of the refrigerant in one direction,
A cylindrical body having a refrigerant inlet on the upstream side and a refrigerant outlet hole on the side,
A valve seat provided between the inlet and the outlet hole in the body;
The first valve portion is slidably housed in the body and is attached to and detached from the valve seat to open and close the first valve portion, and the sliding position between the inner peripheral surface of the body and the first valve portion. And a sliding portion that opens and closes the outlet hole by opening and closing the second valve portion having a larger effective pressure receiving diameter, and the second valve portion after the first valve portion is opened by a predetermined amount. A valve element configured to be opened,
A back pressure chamber defined in the back of the valve body in the body;
A biasing member disposed in the back pressure chamber and biasing the valve body in a valve closing direction;
With
In the closed state of the first valve portion, the length of the sliding portion that is closer to the first valve portion than the outlet hole is L, the effective pressure receiving diameter of the first valve portion is a, and the body A check valve characterized by having the relationship of the following formula (1) where b is the inner diameter and c is the outer diameter of the sliding portion.
L ≧ 4b (bc) / a (1)
前記背圧室の内外を連通させる連通孔が設けられ、前記背圧室の内外の差圧が実質的にゼロとなるように構成されていることを特徴とする請求項1に記載の逆止弁。   2. The check according to claim 1, wherein a communication hole that communicates the inside and outside of the back pressure chamber is provided, and the differential pressure inside and outside of the back pressure chamber is substantially zero. valve. 可変容量圧縮機の出口と吐出室との間の冷媒通路に配設され、その出口側から吐出室への冷媒の逆流を規制することを特徴とする請求項1または2に記載の逆止弁。   The check valve according to claim 1 or 2, wherein the check valve is disposed in a refrigerant passage between an outlet of the variable capacity compressor and the discharge chamber, and restricts a reverse flow of the refrigerant from the outlet side to the discharge chamber. .
JP2010069211A 2010-03-25 2010-03-25 Check valve Pending JP2011202709A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010069211A JP2011202709A (en) 2010-03-25 2010-03-25 Check valve
KR1020100132800A KR20110107726A (en) 2010-03-25 2010-12-22 Check valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069211A JP2011202709A (en) 2010-03-25 2010-03-25 Check valve

Publications (1)

Publication Number Publication Date
JP2011202709A true JP2011202709A (en) 2011-10-13

Family

ID=44879571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069211A Pending JP2011202709A (en) 2010-03-25 2010-03-25 Check valve

Country Status (2)

Country Link
JP (1) JP2011202709A (en)
KR (1) KR20110107726A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189163A (en) * 2011-03-11 2012-10-04 Honda Motor Co Ltd Non-return valve for high-pressure fluid
CN103343825A (en) * 2013-07-01 2013-10-09 重庆建设摩托车股份有限公司 Compressor high-pressure check valve
KR20150088256A (en) * 2012-11-26 2015-07-31 로베르트 보쉬 게엠베하 Valve device
CN111577907A (en) * 2019-02-19 2020-08-25 株式会社不二工机 Valve device
WO2023040315A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 One-way valve, heat exchanger, refrigeration circulation system, and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120835A (en) * 2001-10-09 2003-04-23 Sanden Corp Check valve
JP2003240141A (en) * 2002-02-08 2003-08-27 Bin Tamahide Back-flow preventing device
JP2005249154A (en) * 2004-03-08 2005-09-15 Tgk Co Ltd Non-return valve
JP2006057682A (en) * 2004-08-18 2006-03-02 Toyota Industries Corp Check valve
JP2007100814A (en) * 2005-10-04 2007-04-19 Tgk Co Ltd Differential pressure regulating valve
JP2009068633A (en) * 2007-09-14 2009-04-02 Tlv Co Ltd Check valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120835A (en) * 2001-10-09 2003-04-23 Sanden Corp Check valve
JP2003240141A (en) * 2002-02-08 2003-08-27 Bin Tamahide Back-flow preventing device
JP2005249154A (en) * 2004-03-08 2005-09-15 Tgk Co Ltd Non-return valve
JP2006057682A (en) * 2004-08-18 2006-03-02 Toyota Industries Corp Check valve
JP2007100814A (en) * 2005-10-04 2007-04-19 Tgk Co Ltd Differential pressure regulating valve
JP2009068633A (en) * 2007-09-14 2009-04-02 Tlv Co Ltd Check valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189163A (en) * 2011-03-11 2012-10-04 Honda Motor Co Ltd Non-return valve for high-pressure fluid
KR20150088256A (en) * 2012-11-26 2015-07-31 로베르트 보쉬 게엠베하 Valve device
JP2015536411A (en) * 2012-11-26 2015-12-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Valve device
KR102067395B1 (en) * 2012-11-26 2020-01-20 로베르트 보쉬 게엠베하 Valve device
CN103343825A (en) * 2013-07-01 2013-10-09 重庆建设摩托车股份有限公司 Compressor high-pressure check valve
CN111577907A (en) * 2019-02-19 2020-08-25 株式会社不二工机 Valve device
CN111577907B (en) * 2019-02-19 2023-12-01 株式会社不二工机 Valve device
WO2023040315A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 One-way valve, heat exchanger, refrigeration circulation system, and air conditioner

Also Published As

Publication number Publication date
KR20110107726A (en) 2011-10-04

Similar Documents

Publication Publication Date Title
JP5395713B2 (en) Vane pump
JP2010139031A (en) Check valve
EP3339643A1 (en) Control valve for variable displacement compressor
JP4431462B2 (en) Swash plate type variable capacity compressor and electromagnetic control valve
JP2011202709A (en) Check valve
EP2340405B1 (en) Internal heat exchanger assembly having an internal bleed valve assembly
JP2005249154A (en) Non-return valve
US8920149B2 (en) Single-screw compressor having an adjustment mechanism for adjusting a compression ratio of the compression chamber
US20080006331A1 (en) Differential pressure valve
JP4152674B2 (en) Capacity control valve for variable capacity compressor
KR101194431B1 (en) Variable capacity compressor
JP2006112417A (en) Control valve for variable displacement compressor
US20120247319A1 (en) Swash plate type variable displacement compressor
JP2001349278A (en) Control valve for variable displacement compressor
CN103511254B (en) Serial vane compressor
CN112444012A (en) Liquid storage device, compressor assembly and refrigerating system
WO2011001621A1 (en) Variable displacement swash plate-type compressor and air conditioning system using said compressor
JP2006051870A (en) Vehicle air-conditioner
JP5584476B2 (en) Compressor
JP4258069B2 (en) Variable capacity scroll compressor and refrigeration cycle for vehicle
JP3993998B2 (en) Variable capacity gas compressor
JP2009215911A (en) Differential pressure regulating valve
JP2016014334A (en) Variable displacement compressor control valve
KR20170126168A (en) Variable Rotational Speed type Compressor and Vehicle thereby
JP2004230974A (en) Compressor for vehicle air conditioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128