JP2011202233A - TRACE ELEMENT-ADDED Ag ALLOY AND METHOD FOR PRODUCING THE SAME - Google Patents

TRACE ELEMENT-ADDED Ag ALLOY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2011202233A
JP2011202233A JP2010070912A JP2010070912A JP2011202233A JP 2011202233 A JP2011202233 A JP 2011202233A JP 2010070912 A JP2010070912 A JP 2010070912A JP 2010070912 A JP2010070912 A JP 2010070912A JP 2011202233 A JP2011202233 A JP 2011202233A
Authority
JP
Japan
Prior art keywords
added
alloy
pipe
purity
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010070912A
Other languages
Japanese (ja)
Other versions
JP5666156B2 (en
Inventor
Masaki Kurita
昌樹 栗田
Yusuke Endo
裕介 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP2010070912A priority Critical patent/JP5666156B2/en
Publication of JP2011202233A publication Critical patent/JP2011202233A/en
Application granted granted Critical
Publication of JP5666156B2 publication Critical patent/JP5666156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problems: in Ag dissolved by addition of a deoxidizer thereto, the deoxidizer remains in the Ag, however sometimes the remaining of the deoxidizer can not be allowed upon the production of Ag alloy admixed with a trace amount of element for alloying, and further, Ag has the characteristics of occluding oxygen upon dissolution, and when an element for alloying is added to Ag, the reaction of the element with oxygen to be absorbed into the Ag must be sufficiently considered.SOLUTION: The trace element-added Ag alloy is characterized in that Ag with ≥99.99 wt.% purity in which the content of oxygen is controlled to <10 ppm is blended with one or more kinds selected from among Al, Mg, Si, Zn, Bi, Ge and Pd in an amount of 0.005 to 0.1 wt.% as an additional element.

Description

本発明は、高反射率および耐熱性が要求される光記録ディスクや太陽電池のターゲット等に用いることができる微量元素添加Ag合金およびその製造方法に関する。   The present invention relates to a trace element-added Ag alloy that can be used for optical recording disks, solar cell targets, and the like that require high reflectivity and heat resistance, and a method for producing the same.

例えば、Agターゲットは、光の反射率に優れているために、主に純Agが用いられている。   For example, since Ag targets are excellent in light reflectance, pure Ag is mainly used.

しかし、純Agは大気中で硫化するためにその耐食性に問題がある。   However, since pure Ag is sulfided in the atmosphere, there is a problem in its corrosion resistance.

また、Agターゲットは、ガス溶解、高周波溶解等で溶解し、圧延、切削加工して指定の寸法に仕上げて用いられる。   The Ag target is dissolved by gas melting, high-frequency melting or the like, and is rolled and cut to finish to a specified dimension.

しかし、溶融したAgはその特性から酸素を吸蔵しやすく、凝固する際に酸素を放出するものの、鋳塊となってもなおAg組織内部に酸素が残存した状態となり易いという問題がある。   However, molten Ag easily absorbs oxygen due to its characteristics, and releases oxygen when solidified, but there is a problem that even if it becomes an ingot, oxygen remains in the Ag structure.

このため、一般に酸素の吸蔵を防ぐ対策として脱酸剤を微量添加して溶解することが行われている(例えば、特許文献1参照)。   For this reason, generally, as a measure for preventing oxygen storage, a small amount of a deoxidizer is added and dissolved (see, for example, Patent Document 1).

特開平7−258830号JP-A-7-258830

本願発明者は、高反射率および熱伝導性の特性を有し、しかも耐久性を向上させるために、極めて純Agに近い状態の微量元素添加Ag合金に着目した。   The inventor of the present application paid attention to a trace element-added Ag alloy in a state very close to pure Ag in order to have high reflectivity and thermal conductivity and to improve durability.

脱酸剤を添加して溶解したAgにおいては、Ag中に脱酸剤が残存することになるが、微量の合金用の元素を添加したAg合金を作製するに際してはAg中の脱酸剤の残存が許容できない場合があることから、脱酸剤を使用しないことが望まれる。   In Ag dissolved by adding a deoxidizing agent, the deoxidizing agent remains in the Ag. However, when producing an Ag alloy to which a small amount of an element for the alloy is added, the deoxidizing agent in the Ag is used. It is desirable not to use a deoxidizer because the residual may not be acceptable.

また、上記の如く、Agは溶解の際に酸素を吸蔵する特性があり、合金用の元素を添加する場合は、Ag中に吸蔵される酸素との反応を考慮しなければならない。特に、添加する元素が酸素と結合しやすい元素であると、溶解時に添加元素が酸化されて酸化物となってしまうためにその酸化物が溶湯から遊離して浮いてしまい、所望する配合値の組成通りにAg合金の組成を安定させることができない。   Further, as described above, Ag has a characteristic of storing oxygen when dissolved, and when an alloying element is added, a reaction with oxygen stored in Ag must be considered. In particular, if the element to be added is an element that easily binds to oxygen, the added element is oxidized and becomes an oxide at the time of dissolution, so that the oxide is released from the molten metal and floats. The composition of the Ag alloy cannot be stabilized according to the composition.

さらに、Ag溶解時の雰囲気を、酸素が存在しない状態、つまり、ArやN2等の不活性ガスの雰囲気にして酸素を遮断しても、既に酸素が吸蔵されたAgインゴットを使用したのでは効果が少ない。雰囲気を真空状態にした場合は、Agの沸点が低くなり気化する現象が発生するため、やはり安定した組成を得ることが困難となる。 Furthermore, even if the atmosphere during the dissolution of Ag is in a state where oxygen is not present, that is, an atmosphere of an inert gas such as Ar or N 2 is used to block oxygen, an Ag ingot that has already occluded oxygen is used. Less effective. When the atmosphere is in a vacuum state, the boiling point of Ag is lowered and a vaporization phenomenon occurs, so that it is difficult to obtain a stable composition.

本発明は、このような問題を解決することを課題とする。   An object of the present invention is to solve such a problem.

そこで本発明は、純度99.99wt%以上のAgをArやN2等の不活性ガス中にて400°C〜700°Cで1時間以上加熱して酸素含有量を10ppm未満にし、そのAgに対してAl、Mg、Si、Zn、Bi、Ge、Pdの内の1種類以上を、微量添加元素として0.005wt%〜0.1wt%配合して溶解することにより、所望する配合値の組成によるAg合金を得ることができるようにした。 Therefore, the present invention is to heat Ag at a purity of 99.99 wt% or more in an inert gas such as Ar or N 2 at 400 ° C. to 700 ° C. for 1 hour or more to reduce the oxygen content to less than 10 ppm. By mixing one or more of Al, Mg, Si, Zn, Bi, Ge, and Pd as a trace additive element and mixing 0.005 wt% to 0.1 wt%, the desired blending value can be obtained. An Ag alloy having a composition can be obtained.

微量添加元素の配合に際しては、微量添加元素を、酸素含有量10ppm未満にした純度99.99wt%以上のAgを用いて作製したAgパイプに入れ、そのAgパイプ内部を真空にした後または不活性ガスを充填した後に封止し、Ag合金溶解時の雰囲気をArやN2等の不活性ガスに置換した状態で溶解して酸化を抑制する。なお、配合値調整の必要に応じて、溶解時に、Agパイプと同様のAgインゴットを秤量して溶解する。 At the time of blending the trace additive element, the trace additive element is put into an Ag pipe made using Ag with an oxygen content of less than 10 ppm and having a purity of 99.99 wt% or more, and the inside of the Ag pipe is evacuated or inactive. Sealing is performed after filling with the gas, and dissolution is performed in a state where the atmosphere during dissolution of the Ag alloy is replaced with an inert gas such as Ar or N 2 to suppress oxidation. If necessary, the same Ag ingot as that of the Ag pipe is weighed and dissolved as required for adjusting the blending value.

ここで、配合用Agの酸素含有量を10ppmとした理由は、Agの酸素含有量が10ppm以上の場合では、酸素との親和力の強い微量添加元素と含有した酸素との反応により、配合値の組成と溶解後の組成においてずれが生じるためである。   Here, the reason for setting the oxygen content of Ag for blending to 10 ppm is that, when the oxygen content of Ag is 10 ppm or more, the blended value of This is because there is a difference between the composition and the composition after dissolution.

また、添加元素の添加量を0.005wt%〜0.1wt%とした理由は、下限を0.005wt%より少なくすると耐食性の改良が得られないからであり、上限を0.1wt%より多くするとAg本来の高反射率および熱伝導性が得られなくなるからである。   The reason why the additive element addition amount is 0.005 wt% to 0.1 wt% is that if the lower limit is less than 0.005 wt%, the corrosion resistance cannot be improved, and the upper limit is more than 0.1 wt%. This is because the high reflectivity and thermal conductivity inherent in Ag cannot be obtained.

また、微量添加元素をAgパイプに入れて、パイプ内部を真空または不活性ガスを充填した状態にする理由は、溶解時に微量添加元素が空気中の酸素と反応することを抑止し、微量添加元素が酸化して溶湯から遊離してしまうことを防ぐためである。さらに、溶解時の雰囲気を不活性ガスに置換する理由も空気中の酸素との反応を抑止するためである。   The reason why the trace additive element is put in the Ag pipe and the inside of the pipe is filled with a vacuum or an inert gas is that the trace additive element is prevented from reacting with oxygen in the air when dissolved, This is to prevent oxidation and liberation from the molten metal. Furthermore, the reason for substituting the atmosphere at the time of dissolution with an inert gas is to suppress the reaction with oxygen in the air.

このようにした本発明によると、不活性ガス中にて400°C〜700°Cで1時間以上加熱して酸素含有量を10ppm未満にしたAgを用い、Ag合金溶解時に極力酸素との反応を抑止させることにより、所望する配合値の組成通りのAg合金を作製することが可能となる。これによって、例えば、高反射率でかつ均一な反射率が求められる光記録ディスクや太陽電池のターゲットに用いることが可能な、耐久性のあるAg合金を作成することができる。   According to the present invention as described above, the reaction with oxygen as much as possible at the time of dissolution of the Ag alloy is performed using Ag with an oxygen content of less than 10 ppm by heating at 400 ° C. to 700 ° C. for 1 hour or more in an inert gas. By suppressing the above, it becomes possible to produce an Ag alloy having a composition with a desired blending value. As a result, for example, a durable Ag alloy that can be used for an optical recording disk or a solar cell target that is required to have a high reflectance and a uniform reflectance can be produced.

実施例1の高周波連続鋳造機を用いたAg合金の分析用サンプル採取の説明図。Explanatory drawing of the sample collection for the analysis of Ag alloy using the high frequency continuous casting machine of Example 1. FIG. 実施例2の高周波連続鋳造機を用いたAg合金の分析用サンプル採取の説明図。Explanatory drawing of the sampling collection for the analysis of Ag alloy using the high frequency continuous casting machine of Example 2. FIG. 従来例の高周波溶解炉を用いたAg合金の分析用サンプル採取の説明図。Explanatory drawing of the sample collection for the analysis of Ag alloy using the high frequency melting furnace of a prior art example. 従来例の高周波連続鋳造機を用いたAg合金の分析用サンプル採取の説明図。Explanatory drawing of the sample collection for the analysis of Ag alloy using the high frequency continuous casting machine of a prior art example.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

本実施例の目標組成を、Ag99.995wt%〜99.90wt%、微量添加元素0.005wt%〜0.1wt%とする。   The target composition of this example is set to Ag 99.995 wt% to 99.90 wt%, and trace added elements 0.005 wt% to 0.1 wt%.

本実施例は、配合用Agとして酸素含有量が10ppm未満、純度99.99wt%のパイプおよびインゴットを用いる。   In this example, a pipe and an ingot having an oxygen content of less than 10 ppm and a purity of 99.99 wt% are used as the mixing Ag.

まず、目標組成とするように所定量に秤量した純度99.99wt%以上のAgを不活性ガス雰囲気としてのN2雰囲気中で700°Cで1時間保持して酸素含有量を10ppm未満にする。 First, Ag having a purity of 99.99 wt% or more weighed to a predetermined amount so as to have a target composition is maintained at 700 ° C. for 1 hour in an N 2 atmosphere as an inert gas atmosphere to make the oxygen content less than 10 ppm. .

この酸素含有量を10ppm未満にしたAgを使用してAgパイプおよびAgインゴットを作製する。   Ag pipes and Ag ingots are produced using Ag with an oxygen content of less than 10 ppm.

つぎに、目標組成になるように所定の量に秤量した微量添加元素を上記Agパイプ内に入れ、真空引きを行い、封止して酸素との接触を抑止する。   Next, a small amount of additive element weighed to a predetermined amount so as to have a target composition is put into the Ag pipe, vacuumed, sealed, and prevented from contacting with oxygen.

その後、カーボン製のるつぼに上記封止Agパイプ材料および必要に応じて配合値調整に秤量した上記Agインゴットを入れ、るつぼを高周波連続鋳造機の溶解炉内に入れる。炉蓋は閉め切りにし、炉蓋の開放は厳禁とする。   Thereafter, the above-mentioned sealed Ag pipe material and the above-mentioned Ag ingot weighed for adjusting the blending value as necessary are put into a carbon crucible, and the crucible is put into a melting furnace of a high-frequency continuous casting machine. The furnace lid should be closed and opening of the furnace lid is strictly prohibited.

そこで、不活性ガスとしてのN2により十分に雰囲気の置換を行い、高周波誘導加熱によってAgおよび微量添加元素を溶融させる。溶融後、N2ガスを溶湯中に入れて攪拌を行う。攪拌後、設定温度に到達した後、指定のダイスで引き出す。 Therefore, the atmosphere is sufficiently replaced with N 2 as an inert gas, and Ag and a trace amount of additive element are melted by high frequency induction heating. After melting, N 2 gas is put into the molten metal and stirred. After stirring, after reaching the set temperature, pull it out with the specified die.

その後、図1に示す如く、1、2、3の個所でサンプリングを行い、Agと微量添加元素の定量分析を実施した。ICP分析装置にて分析した結果を表1に示す。なお、評価は、分析値が上記の目標組成値範囲内か否かの評価である。   Thereafter, as shown in FIG. 1, sampling was performed at 1, 2, and 3 locations, and quantitative analysis of Ag and trace added elements was performed. Table 1 shows the results of analysis using an ICP analyzer. In addition, evaluation is evaluation of whether an analysis value is in said target composition value range.

Figure 2011202233
Figure 2011202233

上記の工程により製造した、微量添加元素Mgを用いたAg合金の製造例について数値を用いて説明する。   A production example of an Ag alloy produced by the above-described process and using an additive element Mg will be described using numerical values.

60Kgの微量添加元素Ag合金の製造例について示す。   A production example of a 60 kg trace additive element Ag alloy will be described.

59,997gに秤量した純度99.99wt%以上のAgインゴットを不活性ガスとしてN2雰囲気中にて700°Cで1時間保持し、酸素含有量を10ppm未満にする。 An Ag ingot having a purity of 99.99 wt% or more weighed to 59,997 g is maintained as an inert gas at 700 ° C. for 1 hour in an N 2 atmosphere, so that the oxygen content is less than 10 ppm.

つぎに、0.005wt%の配合となるよう、添加元素であるMgを3.0gに秤量する。   Next, Mg as an additive element is weighed to 3.0 g so as to have a composition of 0.005 wt%.

つぎに、酸素含有量を10ppm未満にした上記Agインゴットの内の300gを用いてパイプを作製した。具体的には、Agインゴットを圧延して板状にした後、筒状に曲げ、ドローベンチを用いて外径φ43mm、内径φ40mm、長さL150mmのパイプとした。   Next, a pipe was produced using 300 g of the Ag ingot having an oxygen content of less than 10 ppm. Specifically, the Ag ingot was rolled into a plate shape, bent into a cylindrical shape, and a pipe having an outer diameter φ43 mm, an inner diameter φ40 mm, and a length L150 mm was formed using a draw bench.

パイプ作製後、そのパイプを有機溶剤のアセトンにて洗浄した。洗浄後、パイプの片側の口を常温溶接によって封止を行い、上記3.0gに秤量したMgを添加元素としてパイプ内に入れる。なお、この際、この添加元素の大きさ(粒径)には指定はなく、パイプに入る大きさであればよい。   After producing the pipe, the pipe was washed with an organic solvent acetone. After cleaning, the mouth on one side of the pipe is sealed by ordinary temperature welding, and Mg weighed to 3.0 g is added as an additive element into the pipe. At this time, the size (particle size) of the additive element is not specified, and may be any size that can fit in the pipe.

その後、パイプ内部の真空引きを行い、パイプ口を常温溶接によって封止を行い、酸素との接触を抑制する。   Thereafter, the inside of the pipe is evacuated, and the pipe opening is sealed by ordinary temperature welding to suppress contact with oxygen.

カーボン製のるつぼに上記封止Agパイプと残りのインゴットを入れ、るつぼを高周波連続鋳造機の高周波溶解炉内に入れる。   The sealed Ag pipe and the remaining ingot are placed in a carbon crucible, and the crucible is placed in a high frequency melting furnace of a high frequency continuous casting machine.

その後、炉蓋を閉め、不活性ガスであるN2ガスにて置換を行い、酸素との接触を抑制する。炉蓋は閉め切りとし、開放は厳禁とする。N2ガスは微量元素添加Ag合金の引き出しが終わるまで出し続ける。 Thereafter, the furnace lid is closed, and replacement with N 2 gas, which is an inert gas, is performed to suppress contact with oxygen. The furnace lid should be closed and not open. N 2 gas continues to be extracted until the trace element-added Ag alloy is completely extracted.

置換開始から5分後、高周波の電源を入れて設定温度1100°Cとし、溶解を行う。材料が完全に溶け、湯になった後、N2ガスの噴射口を湯中に入れ、N2ガスにて3分間攪拌を行う。 Five minutes after the start of replacement, the high frequency power supply is turned on to a set temperature of 1100 ° C. and melting is performed. After the material is completely melted and turned into hot water, the N 2 gas injection port is placed in the hot water and stirred with N 2 gas for 3 minutes.

3分後、N2ガスの噴出口を湯中から出し、湯面の沈静化を5分間行う。沈静化後、所定温度に到達させた後、ダイスで引き出しを行う。 After 3 minutes, the N 2 gas outlet is taken out of the hot water and the surface of the hot water is calmed for 5 minutes. After calming down, after reaching a predetermined temperature, it is pulled out with a die.

なお、表1に示す他の微量添加元素Ag合金についても上記と同様の方法により製造した。   The other trace additive element Ag alloys shown in Table 1 were also produced by the same method as described above.

本実施例の目標組成を、Ag99.999wt%〜99.91wt%、微量添加元素0.001wt%〜0.09wt%とする。   The target composition of this example is set to Ag 99.999 wt% to 99.91 wt%, and trace added elements 0.001 wt% to 0.09 wt%.

所望する微量の元素を添加したAg合金を製造することは極めて難しい。   It is extremely difficult to produce an Ag alloy to which a desired trace amount of element is added.

本実施例は、上記実施例1によって製造したAg合金(以下、母合金という。)を用いて、さらに二次希釈した微量元素添加のAg合金を作製する製造方法である。Ag−0.005wt%Mgを例に用いて説明する。   This example is a manufacturing method for producing a second-diluted addition of trace element-added Ag alloy using the Ag alloy manufactured in Example 1 (hereinafter referred to as a master alloy). A description will be given using Ag-0.005 wt% Mg as an example.

まず、不活性ガス雰囲気としてのN2雰囲気中で700°Cで1時間保持し、酸素含有量を10ppm未満にしたAgを、所定の量に秤量して、AgパイプおよびAgインゴットを作製する。 First, Ag pipe and Ag ingot are prepared by weighing Ag, which is held at 700 ° C. for 1 hour in an N 2 atmosphere as an inert gas atmosphere, and having an oxygen content of less than 10 ppm, to a predetermined amount.

つぎに、目標組成になるように所定量に秤量した母合金を上記Agパイプに入れ、真空引きを行い、封止して酸素との接触を抑止する。   Next, the mother alloy weighed in a predetermined amount so as to have a target composition is put into the Ag pipe, vacuumed, sealed, and deterred from contact with oxygen.

その後、カーボン製のるつぼに上記封止Agパイプ材料および必要に応じて配合値調整に秤量した上記Agインゴットを入れ、るつぼを高周波連続鋳造機による溶解炉内に入れる。炉蓋は閉め切りにし、炉蓋の開放は厳禁とする。   Thereafter, the above-mentioned sealed Ag pipe material and the above-mentioned Ag ingot weighed to adjust the blending value as required are placed in a carbon crucible, and the crucible is placed in a melting furnace using a high-frequency continuous casting machine. The furnace lid should be closed and opening of the furnace lid is strictly prohibited.

そこで、不活性ガスとしてのN2ガスにて十分に雰囲気の置換を行い、高周波誘導加熱によって添加元素の二次希釈を行う。溶融後、N2ガスを溶湯中に入れて攪拌を行う。攪拌後、設定温度に到達した後、Ag合金を指定のダイスで引き出す。 Therefore, the atmosphere is sufficiently replaced with N 2 gas as an inert gas, and the additive element is secondarily diluted by high frequency induction heating. After melting, N 2 gas is put into the molten metal and stirred. After stirring, after reaching the set temperature, the Ag alloy is drawn out with a specified die.

その後、図2に示す如く、4、5、6の個所でサンプリングを行い、Agと微量添加元素の定量分析を実施した。ICP分析装置にて分析した結果を表2に示す。なお、評価は、分析値が上記の目標組成値範囲内か否かの評価である。   Thereafter, as shown in FIG. 2, sampling was performed at 4, 5, and 6 to quantitatively analyze Ag and trace added elements. Table 2 shows the results of analysis using an ICP analyzer. In addition, evaluation is evaluation of whether an analysis value is in said target composition value range.

Figure 2011202233
Figure 2011202233

比較例
比較例として従来の脱酸剤を使用した作製方法による例を説明する。
Comparative Example An example of a production method using a conventional deoxidizer will be described as a comparative example.

目標組成を、Ag99.920wt%、微量添加元素としてMg0.005wt%とする。   The target composition is Ag 99.920 wt% and Mg is 0.005 wt% as a trace additive element.

使用材料は、純度99.99wt%で酸素含有量10ppm以上のAg、純度99.9wt%のMgである。   The materials used are Ag having a purity of 99.99 wt% and an oxygen content of 10 ppm or more, and Mg having a purity of 99.9 wt%.

目標組成になるように所定の量に秤量したAg、Mgを、高周波溶解炉のカーボン製るつぼに入れ、そのるつぼを溶解炉内に入れる。この時、脱酸剤としてシリコン系フラックスを入れる。   Ag and Mg weighed to a predetermined amount so as to have a target composition are put into a carbon crucible of a high-frequency melting furnace, and the crucible is put into the melting furnace. At this time, silicon-based flux is added as a deoxidizer.

つぎに、N2にて十分に置換を行い、高周波溶解炉にて溶融させ、炉蓋をあけてN2雰囲気を開放し、カーボン製の攪拌棒によって攪拌を行う。 Next, it is sufficiently substituted with N 2 , melted in a high-frequency melting furnace, the furnace lid is opened, the N 2 atmosphere is opened, and stirring is performed with a carbon stirring rod.

その後、雰囲気の置換を行い、融点以上の所定温度で溶融し後、指定の鋳型に鋳込んで作製した。その後、図3に示す7、8、9の個所でサンプリングを行い、AgとMgの定量分析を行った。ICP分析装置にて分析した結果を表3に示す。なお、評価は、分析値が上記の目標組成値範囲内か否かの評価である。   Thereafter, the atmosphere was replaced, and after melting at a predetermined temperature equal to or higher than the melting point, it was cast into a specified mold. Thereafter, sampling was performed at 7, 8, and 9 shown in FIG. 3, and quantitative analysis of Ag and Mg was performed. Table 3 shows the results of analysis using an ICP analyzer. In addition, evaluation is evaluation of whether an analysis value is in said target composition value range.

Figure 2011202233
Figure 2011202233

次に、上記比較例により作製された材料により高周波連続鋳造機を使用した場合を説明する。   Next, the case where a high frequency continuous casting machine is used with the material produced by the said comparative example is demonstrated.

目標組成を、Ag99.920wt%、微量添加元素としてMg0.005wt%とする。   The target composition is Ag 99.920 wt% and Mg is 0.005 wt% as a trace additive element.

使用材料は、純度99.99wt%で酸素含有量10ppm以上のAg、純度99.9wt%のMgである。   The materials used are Ag having a purity of 99.99 wt% and an oxygen content of 10 ppm or more, and Mg having a purity of 99.9 wt%.

高周波連続鋳造機用のカーボン製るつぼに、目標組成になるように秤量した所定量のAg、Mgを入れる。   A predetermined amount of Ag and Mg weighed so as to have a target composition is put into a carbon crucible for a high-frequency continuous casting machine.

つぎに、N2ガスにて十分に置換を行い、高周波誘導加熱によって溶融させ、炉蓋をあけてN2雰囲気を開放し、カーボン製の攪拌棒によって攪拌を行う。 Next, the gas is sufficiently replaced with N 2 gas, melted by high frequency induction heating, the furnace lid is opened, the N 2 atmosphere is opened, and stirring is performed with a carbon stirring rod.

その後、雰囲気の置換を行い、所定温度になった後、指定のダイスによって引き出す。その後、図4に示す10、11、12の個所でサンプリングを行い、AgとMgの定量分析を行った。ICP分析装置にて分析した結果を表4に示す。なお、評価は、分析値が上記の目標組成値範囲内か否かの評価である。   Thereafter, the atmosphere is replaced, and after reaching a predetermined temperature, it is pulled out by a designated die. Thereafter, sampling was performed at 10, 11, and 12 shown in FIG. 4, and quantitative analysis of Ag and Mg was performed. Table 4 shows the results of analysis using an ICP analyzer. In addition, evaluation is evaluation of whether an analysis value is in said target composition value range.

Figure 2011202233
Figure 2011202233

1〜6 サンプリング箇所   1-6 sampling points

Claims (6)

酸素含有量が10ppm未満とした純度99.99wt%以上のAgに、添加元素としてAl、Mg、Si、Zn、Bi、Ge、Pdの内の1種類以上を0.005wt%〜0.1wt%配合したことを特徴とする微量元素添加Ag合金。   0.005 wt% to 0.1 wt% of one or more of Al, Mg, Si, Zn, Bi, Ge, and Pd as additive elements to Ag with an oxygen content of less than 10 ppm and a purity of 99.99 wt% or more A trace element-added Ag alloy characterized by being blended. 純度99.99wt%以上のAgを不活性ガス中で400°C〜700°Cで加熱して酸素含有量を10ppm未満にし、この純度99.99wt%以上のAgに、添加元素としてAl、Mg、Si、Zn、Bi、Ge、Pdの内の1種類以上を0.005wt%〜0.1wt%配合し、溶解したことを特徴とする微量元素添加Ag合金の製造方法。   Ag having a purity of 99.99 wt% or more is heated in an inert gas at 400 ° C. to 700 ° C. to reduce the oxygen content to less than 10 ppm. To this Ag having a purity of 99.99 wt% or more, Al, Mg , Si, Zn, Bi, Ge, Pd is mixed with 0.005 wt% to 0.1 wt% and dissolved, and a trace element-added Ag alloy is produced. 純度99.99wt%以上のAgを不活性ガス中で400°C〜700°Cで加熱して酸素含有量を10ppm未満にし、この純度99.99wt%以上のAgによりパイプおよびインゴットを作製し、前記Agパイプ内に、添加元素としてAl、Mg、Si、Zn、Bi、Ge、Pdの内の1種類以上を0.005wt%〜0.1wt%入れ、パイプ内部を真空または不活性ガスを充填してから前記Agパイプを封止して酸素との接触を抑止し、その後、必要に応じて配合値調整に秤量した上記Agインゴットと共にるつぼ内で溶解したことを特徴とする微量元素添加Ag合金の製造方法。   Ag having a purity of 99.99 wt% or more is heated in an inert gas at 400 ° C. to 700 ° C. to reduce the oxygen content to less than 10 ppm, and pipes and ingots are produced from the Ag having a purity of 99.99 wt% or more. One or more of Al, Mg, Si, Zn, Bi, Ge, and Pd are added as additive elements in the Ag pipe in an amount of 0.005 wt% to 0.1 wt%, and the pipe is filled with vacuum or an inert gas. Then, the Ag pipe is sealed to prevent contact with oxygen, and then dissolved in a crucible together with the Ag ingot weighed to adjust the blending value as necessary. Manufacturing method. 請求項2もしくは請求項3で作製した微量元素添加Ag合金に、さらに酸素含有量を10ppm未満とした純度99.99wt%以上のAgを添加して添加元素が0.001wt%〜0.09wt%の組成とした微量元素添加Ag合金。   The trace element-added Ag alloy produced in claim 2 or claim 3 is further added with Ag having a purity of 99.99 wt% or more with an oxygen content of less than 10 ppm, so that the added element is 0.001 wt% to 0.09 wt%. A trace element-added Ag alloy having a composition of 純度99.99wt%以上のAgを不活性ガス中で400°C〜700°Cで加熱して酸素含有量を10ppm未満にし、この純度99.99wt%以上のAgによりパイプを作製し、このAgパイプ内に、請求項2もしくは請求項3で作製した微量元素添加Ag合金を入れ、パイプ内部を真空または不活性ガスを充填してから前記Agパイプを封止して酸素との接触を抑止し、その後、溶解したことを特徴とする微量元素添加Ag合金の製造方法。   Ag having a purity of 99.99 wt% or more is heated at 400 ° C. to 700 ° C. in an inert gas to reduce the oxygen content to less than 10 ppm, and a pipe is produced from the Ag having a purity of 99.99 wt% or more. The trace element-added Ag alloy prepared in claim 2 or 3 is placed in the pipe, and the pipe is filled with a vacuum or an inert gas, and then the Ag pipe is sealed to prevent contact with oxygen. Then, the trace element addition Ag alloy manufacturing method characterized by melt | dissolving after that. 純度99.99wt%以上のAgを不活性ガス中で400°C〜700°Cで加熱して酸素含有量を10ppm未満にし、この純度99.99wt%以上のAgによりパイプおよびインゴットを作製し、このAgパイプ内に、請求項2もしくは請求項3で作製した微量元素添加Ag合金を入れ、パイプ内部を真空または不活性ガスを充填してから前記Agパイプを封止して酸素との接触を抑止し、その後、配合値調整に秤量した上記Agインゴットと共にるつぼ内で溶解したことを特徴とする微量元素添加Ag合金の製造方法。   Ag having a purity of 99.99 wt% or more is heated in an inert gas at 400 ° C. to 700 ° C. to reduce the oxygen content to less than 10 ppm, and pipes and ingots are produced from the Ag having a purity of 99.99 wt% or more. The trace element-added Ag alloy prepared in claim 2 or claim 3 is placed in the Ag pipe, and the pipe is filled with a vacuum or an inert gas, and then the Ag pipe is sealed to make contact with oxygen. A method for producing a trace element-added Ag alloy, characterized by being dissolved in a crucible together with the above Ag ingot weighed to adjust the blending value.
JP2010070912A 2010-03-25 2010-03-25 Trace element-added Ag alloy and method for producing the same Active JP5666156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070912A JP5666156B2 (en) 2010-03-25 2010-03-25 Trace element-added Ag alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070912A JP5666156B2 (en) 2010-03-25 2010-03-25 Trace element-added Ag alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011202233A true JP2011202233A (en) 2011-10-13
JP5666156B2 JP5666156B2 (en) 2015-02-12

Family

ID=44879176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070912A Active JP5666156B2 (en) 2010-03-25 2010-03-25 Trace element-added Ag alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP5666156B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143931A (en) * 2020-09-18 2020-12-29 国金黄金股份有限公司 Low-heat-conductivity silver material, preparation method thereof and silverware
JP7306277B2 (en) 2020-01-20 2023-07-11 住友金属鉱山株式会社 Valuable metal recovery method from waste batteries

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251261A (en) * 1984-05-29 1985-12-11 Mitsubishi Metal Corp Manufacture of ultrathin silver foil without material quality variation with lapse of time
JPS63282219A (en) * 1987-05-14 1988-11-18 Furukawa Electric Co Ltd:The Method for adding alloy additive
JPH0748638A (en) * 1993-08-04 1995-02-21 Nikko Kinzoku Kk Melting method for copper alloy
JPH07258830A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Ag material for vapor deposition and its production
WO2005056849A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy with excellent reflectance-maintaining characteristics
WO2005056851A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy excelling in performance of reflectance maintenance
WO2005056848A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy for reflective film
JP2006342366A (en) * 2005-06-07 2006-12-21 Tanaka Kikinzoku Kogyo Kk Pure silver material and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251261A (en) * 1984-05-29 1985-12-11 Mitsubishi Metal Corp Manufacture of ultrathin silver foil without material quality variation with lapse of time
JPS63282219A (en) * 1987-05-14 1988-11-18 Furukawa Electric Co Ltd:The Method for adding alloy additive
JPH0748638A (en) * 1993-08-04 1995-02-21 Nikko Kinzoku Kk Melting method for copper alloy
JPH07258830A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Ag material for vapor deposition and its production
WO2005056849A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy with excellent reflectance-maintaining characteristics
WO2005056851A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy excelling in performance of reflectance maintenance
WO2005056848A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy for reflective film
JP2006342366A (en) * 2005-06-07 2006-12-21 Tanaka Kikinzoku Kogyo Kk Pure silver material and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306277B2 (en) 2020-01-20 2023-07-11 住友金属鉱山株式会社 Valuable metal recovery method from waste batteries
CN112143931A (en) * 2020-09-18 2020-12-29 国金黄金股份有限公司 Low-heat-conductivity silver material, preparation method thereof and silverware
CN112143931B (en) * 2020-09-18 2022-03-11 国金黄金股份有限公司 Low-heat-conductivity silver material, preparation method thereof and silverware

Also Published As

Publication number Publication date
JP5666156B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
Zeng et al. The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7 Cu/Cu solder joints
TWI607093B (en) Metal alloy composite material and method for making the same
Ali et al. The influence of CaO addition on grain refinement of cast magnesium alloys
CN101781720B (en) Preparation method of Mg2Si reinforced magnesium alloy
CN103146943B (en) Red impure copper refining agent and preparation method thereof
JPS6137351B2 (en)
CN103691912A (en) Gold base alloy casting blank melting and casting integrated device and utilization method thereof
JP2006161082A (en) Sputtering target manufacturing method
TWI518183B (en) Corrosion resistant high nickel alloy and its manufacturing method
JP5666156B2 (en) Trace element-added Ag alloy and method for producing the same
JP2007204812A (en) Method for producing metallic glass alloy and method for producing metallic glass alloy product
JP2006312200A (en) Continuous casting powder and continuous casting method for al-containing ni-based alloy
CN100469913C (en) Liquid state hydrogen-replacing thinning solidifying tissue method in Ti-6Al-4V alloy induction shell smelting process
CN105002409B (en) A kind of Mg Mn intermediate alloys and preparation method thereof
JP4956826B2 (en) Method for melting high vapor pressure metal-containing alloys
CN102912185B (en) A kind of environment protection type high-strength automatic steel bismuth zircaloy
Berthod et al. Thermodynamic and experimental study of cobalt-based alloys designed to contain TiC carbides
RU2549040C2 (en) Magnesium alloy suitable to be used at high temperature, and method for its obtaining
CN105817607A (en) Method for raising combination intensity of liquid and solid compound interface of aluminum/copper double metal
CN102605202B (en) Zn-Al-Mg-RE zinc ingot preparation method
JP2001262247A (en) Method for producing magnesium series hydrogen storage alloy
CN110885935B (en) Casting method suitable for Mg-Al alloy grain refinement
Gao et al. Structure transitions near liquidus and the nucleation of undercooled melt of Ni–Cr–W superalloy
CN108330338B (en) Aluminum-manganese-niobium three-element intermediate alloy and preparation method thereof
CN106399771B (en) A kind of preparation method of molten steel magnesium processing slow-release magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141210

R150 Certificate of patent or registration of utility model

Ref document number: 5666156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250