JP2011202110A - Method for pre-expanding expandable thermoplastic resin particle, pre-expanded particle, and expanded molding - Google Patents

Method for pre-expanding expandable thermoplastic resin particle, pre-expanded particle, and expanded molding Download PDF

Info

Publication number
JP2011202110A
JP2011202110A JP2010072940A JP2010072940A JP2011202110A JP 2011202110 A JP2011202110 A JP 2011202110A JP 2010072940 A JP2010072940 A JP 2010072940A JP 2010072940 A JP2010072940 A JP 2010072940A JP 2011202110 A JP2011202110 A JP 2011202110A
Authority
JP
Japan
Prior art keywords
foaming
particles
thermoplastic resin
resin
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010072940A
Other languages
Japanese (ja)
Other versions
JP5486981B2 (en
Inventor
Koki Owaki
皓樹 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2010072940A priority Critical patent/JP5486981B2/en
Publication of JP2011202110A publication Critical patent/JP2011202110A/en
Application granted granted Critical
Publication of JP5486981B2 publication Critical patent/JP5486981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for pre-expanding expandable thermoplastic resin particles, in which the time of pre-expansion is drastically shortened without causing cohesion of the pre-expanded particles.SOLUTION: The method for pre-expanding expandable thermoplastic resin particles is characterized in that pre-expanded particles are obtained by pre-expanding expandable thermoplastic resin particles containing 100 to 400 pts.wt of a polystyrene resin relative to 100 pts.wt of a polyolefin resin having a melting point of 117 to 145°C, in a closed pre-expansion tank under a gauge pressure of 0.02 to 0.15 MPa in the pre-expansion tank.

Description

本発明は、発泡性熱可塑性樹脂粒子の予備発泡方法ならびに該予備発泡方法により得られる予備発泡粒子および発泡成形体に関する。さらに詳しくは、本発明は、予備発泡時において予備発泡粒子同士の合着を引き起こさず、予備発泡時間を大幅に短縮することができる発泡性熱可塑性樹脂粒子の予備発泡方法、ならびに該予備発泡方法により得られる予備発泡粒子および発泡成形体に関する。   The present invention relates to a pre-foaming method for foamable thermoplastic resin particles, and pre-foamed particles and a foam-molded product obtained by the pre-foaming method. More specifically, the present invention relates to a pre-foaming method of expandable thermoplastic resin particles that does not cause coalescence of pre-foamed particles during pre-foaming, and can greatly shorten the pre-foaming time, and the pre-foaming method The present invention relates to pre-expanded particles and a foam-molded product obtained by

ポリオレフィン系樹脂とポリスチレン系樹脂とを含む発泡性熱可塑性樹脂粒子(本発明では、発泡性熱可塑性樹脂粒子とも称する)から得られる発泡成形体は、従来のポリスチレン系単独樹脂粒子から得られる発泡成形体と比べて、その成形性、耐熱性等に優れるため、自動車部品等の通い箱、電気製品等の緩衝包装材として幅広く利用されている。   A foam molded article obtained from expandable thermoplastic resin particles (also referred to as expandable thermoplastic resin particles in the present invention) containing a polyolefin resin and a polystyrene resin is a foam molded article obtained from conventional polystyrene single resin particles. Since it is excellent in formability, heat resistance, etc., compared with the body, it is widely used as a returnable box for automobile parts, etc., and as a buffer packaging material for electrical products.

また、前記の発泡成形体の製造方法として、発泡性熱可塑性樹脂粒子を所定倍率まで予備発泡させ、次いで得られた予備発泡粒子を型内で発泡成形する発泡成形体の製造方法が一般に用いられている。   In addition, as a method for producing the foamed molded article, a foamed molded article producing method is generally used in which foamable thermoplastic resin particles are prefoamed to a predetermined magnification, and then the obtained prefoamed particles are foam-molded in a mold. ing.

前記の予備発泡方法として予備発泡粒子の品質維持等の観点からバッチ法が広く用いられ、具体的には、
予備発泡槽内に発泡性熱可塑性樹脂粒子を投入し;
予備発泡槽に、大気圧下、加圧されていない蒸気、または実質的に加圧されていない0.01MPa程度の加圧蒸気を流通させつつ、攪拌しながら発泡性熱可塑性樹脂粒子を加熱発泡させ;
発泡性熱可塑性樹脂粒子が所望の発泡倍率まで発泡した際、蒸気の流通を停止し、次いで空気を吹き込むことにより予備発泡粒子を冷却、乾燥し;
得られた予備発泡粒子を予備発泡槽内から回収する
方法が一般に用いられている。
The batch method is widely used from the viewpoint of maintaining the quality of the pre-foamed particles as the pre-foaming method, specifically,
Injecting foamable thermoplastic resin particles into the prefoaming tank;
In the pre-foaming tank, the foamed thermoplastic resin particles are heated and foamed with stirring while circulating unpressurized steam or substantially unpressurized steam of about 0.01 MPa under atmospheric pressure. Let;
When the expandable thermoplastic resin particles are expanded to a desired expansion ratio, the flow of steam is stopped, and then the pre-expanded particles are cooled and dried by blowing air;
A method of recovering the obtained prefoamed particles from the prefoaming tank is generally used.

しかしながら、前記の予備発泡は、予備発泡工程に要する時間が極めて長い等の製造工程上の問題点が認められていた。前記の問題点は単位時間当たりの発泡処理量の低下につながり、製造コスト、生産効率等の点で好ましいものではない。
よって、これらの問題点を解決する方法として、所定のゲージ圧力を有する加圧蒸気を用いた予備発泡方法が特許文献1に提案されている。
However, the pre-foaming has been found to have problems in the production process, such as the time required for the pre-foaming process being extremely long. The above problems lead to a decrease in the amount of foaming treatment per unit time, which is not preferable in terms of manufacturing cost, production efficiency, and the like.
Therefore, as a method for solving these problems, Patent Document 1 proposes a pre-foaming method using pressurized steam having a predetermined gauge pressure.

特許第4105195号公報Japanese Patent No. 4105195 特許第4085835号公報Japanese Patent No. 4085835 特許第4090932号公報Japanese Patent No. 4090932 特開2008−308668号公報JP 2008-308668 A

特許文献1には、ゲージ圧力0.01〜0.10MPaの加圧蒸気を流通させる発泡性熱可塑性樹脂粒子の予備発泡方法が開示されている。しかしながら、特許文献1に記載の発明は前記のゲージ圧力を有する加圧蒸気を用いているものの、従来の方法と同様に、発泡性熱可塑性樹脂粒子の予備発泡は、開放された予備発泡槽内で行われている。このため、予備発泡槽内は、実質的には加圧条件下ではなく、予備発泡槽内のゲージ圧力は従来のバッチ法の場合と同様であった。よって、この場合であっても、若干の予備発泡時間の短縮は確認されたものの、従来技術と比べて満足のいく予備発泡時間の短縮効果は認められなかった。   Patent Document 1 discloses a pre-foaming method for foamable thermoplastic resin particles in which pressurized steam having a gauge pressure of 0.01 to 0.10 MPa is circulated. However, although the invention described in Patent Document 1 uses pressurized steam having the gauge pressure described above, pre-foaming of expandable thermoplastic resin particles is performed in an open pre-foaming tank as in the conventional method. It is done in For this reason, the inside of the preliminary foaming tank is not substantially under the pressurized condition, and the gauge pressure in the preliminary foaming tank is the same as in the case of the conventional batch method. Therefore, even in this case, although a slight shortening of the prefoaming time was confirmed, a satisfactory effect of shortening the prefoaming time compared with the prior art was not recognized.

また、特許文献2および特許文献3には、若干加圧された条件(予備発泡槽内の蒸気圧力(ゲージ圧力)0.03MPa以下)下で予備発泡を行うことにより、高品質な予備発泡粒子を製造する、発泡性ポリスチレン系樹脂粒子の予備発泡方法が具体的に開示されている。   Patent Document 2 and Patent Document 3 disclose high-quality pre-expanded particles by performing pre-expansion under slightly pressurized conditions (steam pressure (gauge pressure) of 0.03 MPa or less in the pre-foaming tank). Specifically, a method for pre-expanding expandable polystyrene resin particles is disclosed.

しかしながら、発泡性ポリスチレン系樹脂粒子を発泡性熱可塑性樹脂粒子に置き換えて、同条件で予備発泡を行った場合、同様に予備発泡工程に長時間を要し、製造コスト等の観点から好ましいものではなかった。また、十分に発泡した予備発泡粒子を得ることができない場合もあり、品質の点でも好ましくない場合があった。さらに、特許文献2に記載の発明は予備発泡工程を2回以上に分けて実施しているため、予備発泡工程が複雑化し、生産性等の点でも満足のいくものではない。   However, when the expandable polystyrene resin particles are replaced with expandable thermoplastic resin particles and prefoaming is performed under the same conditions, a long time is required for the prefoaming process, which is preferable from the viewpoint of manufacturing cost and the like. There wasn't. In addition, it is sometimes impossible to obtain sufficiently expanded pre-expanded particles, which is not preferable in terms of quality. Furthermore, since the invention described in Patent Document 2 performs the pre-foaming process in two or more steps, the pre-foaming process becomes complicated, and the productivity and the like are not satisfactory.

他方、特許文献4には、所定の加圧条件(内圧(ゲージ圧力)0.27〜0.54MPa)下で行うことにより、高品質な予備発泡粒子を製造する、発泡性ポリオレフィン系樹脂粒子の予備発泡方法が具体的に開示されている。   On the other hand, Patent Document 4 discloses a foamable polyolefin resin particle that produces high-quality pre-expanded particles by performing under a predetermined pressure condition (internal pressure (gauge pressure) 0.27 to 0.54 MPa). A pre-foaming method is specifically disclosed.

同様に、発泡性ポリオレフィン系樹脂粒子を発泡性熱可塑性樹脂粒子に置き換えて、同条件で予備発泡を行った場合、その極めて高い加圧条件のため、予備発泡粒子同士の合着(本発明では、ブロッキングとも称する)の現象が多く認められた。前記のブロッキングは、発泡成形体製造時のキャビティやホッパー内での予備発泡粒子のブリッジ等を引き起こす原因ともなり、製造面で好ましい現象ではない。また、予備発泡粒子の凝集物の発生にもつながり、予備発泡粒子および発泡成形体の品質面でも好ましいものではない。   Similarly, when the expandable polyolefin resin particles are replaced with expandable thermoplastic resin particles and pre-expanded under the same conditions, the pre-expanded particles are bonded to each other due to the extremely high pressure conditions (in the present invention). (Also referred to as blocking). The blocking described above causes a cavity during the production of the foamed molded product, bridging of pre-expanded particles in the hopper, and the like, which is not a preferable phenomenon in terms of production. Moreover, it leads to generation | occurrence | production of the aggregate of a pre-expanded particle, and it is not preferable also in terms of the quality of a pre-expanded particle and a foaming molding.

従って、予備発泡時においてブロッキングを引き起こさず、予備発泡時間を大幅に短縮することができる発泡性熱可塑性樹脂粒子の予備発泡方法、ならびに該予備発泡方法により得られる予備発泡粒子および発泡成形体を提供することが求められている。   Accordingly, there is provided a pre-foaming method for foamable thermoplastic resin particles that does not cause blocking at the time of pre-foaming, and can significantly shorten the pre-foaming time, and pre-foamed particles and foam molded articles obtained by the pre-foaming method. It is requested to do.

かくして本発明によれば、融点が117〜145℃であるポリオレフィン系樹脂100重量部に対してポリスチレン系樹脂100〜400重量部を含有する発泡性熱可塑性樹脂粒子を、密閉した予備発泡槽内で、0.02〜0.15MPaの予備発泡槽内のゲージ圧力下で予備発泡させて予備発泡粒子を得ることを特徴とする発泡性熱可塑性樹脂粒子の予備発泡方法が提供される。   Thus, according to the present invention, expandable thermoplastic resin particles containing 100 to 400 parts by weight of a polystyrene resin with respect to 100 parts by weight of a polyolefin resin having a melting point of 117 to 145 ° C. are placed in a sealed prefoaming tank. There is provided a pre-foaming method of foamable thermoplastic resin particles, wherein pre-foamed particles are obtained by pre-foaming under a gauge pressure in a pre-foaming tank of 0.02 to 0.15 MPa.

また本発明によれば、前記の予備発泡方法により得られる予備発泡粒子も提供される。
さらに本発明によれば、前記の予備発泡粒子を型内成形することにより得られる発泡成形体が提供される。
Moreover, according to this invention, the pre-expanded particle obtained by the said pre-expansion method is also provided.
Furthermore, according to this invention, the foaming molding obtained by carrying out in-mold shaping | molding of the said pre-expanded particle is provided.

本発明では、予備発泡時に発泡性熱可塑性樹脂粒子同士のブロッキングを抑制し、予備発泡時間を大幅に短縮することができる。   In the present invention, blocking of the foamable thermoplastic resin particles during pre-foaming can be suppressed, and the pre-foaming time can be greatly shortened.

本発明では、予備発泡工程を1工程とすることもできる。この場合も、本発明の予備発泡方法は、多段階工程とすることを要さず、生産性、製造コスト等に優れたものである。   In the present invention, the pre-foaming step can be a single step. Also in this case, the preliminary foaming method of the present invention does not require a multi-step process, and is excellent in productivity, manufacturing cost, and the like.

ポリオレフィン系樹脂がポリエチレン系樹脂およびポリプロピレン系樹脂のいずれかであり、ポリスチレン系樹脂がポリスチレン単独重合体である場合、ブロッキングのより少ない良好な予備発泡粒子を得ることができる。   When the polyolefin resin is either a polyethylene resin or a polypropylene resin, and the polystyrene resin is a polystyrene homopolymer, good pre-expanded particles with less blocking can be obtained.

発泡性熱可塑性樹脂粒子が、発泡性熱可塑性樹脂100重量部に対して8〜20重量部の易揮発性発泡剤を含む場合、より発泡性に優れた予備発泡粒子を得ることができる。   When the foamable thermoplastic resin particles contain 8 to 20 parts by weight of a readily volatile foaming agent with respect to 100 parts by weight of the foamable thermoplastic resin, it is possible to obtain pre-foamed particles having more excellent foamability.

発泡性熱可塑性樹脂粒子が、ポリオレフィン系樹脂にスチレン系単量体を含浸重合させることによりポリオレフィン系樹脂およびポリスチレン系樹脂を含む熱可塑性樹脂粒子を製造し、次いで該熱可塑性樹脂粒子に易揮発性発泡剤を含浸させる場合、熱可塑性重合性樹脂粒子および予備発泡粒子の表層におけるポリオレフィン系樹脂の比率を高め、その結果、得られる発泡成形体の成形性、耐熱性をより向上させることができる。   Expandable thermoplastic resin particles are produced by impregnating and polymerizing a polyolefin resin with a styrene monomer to produce thermoplastic resin particles containing a polyolefin resin and a polystyrene resin, and then readily volatile to the thermoplastic resin particles. In the case of impregnating the foaming agent, the ratio of the polyolefin resin in the surface layer of the thermoplastic polymerizable resin particles and the pre-expanded particles can be increased, and as a result, the moldability and heat resistance of the obtained foamed molded product can be further improved.

また、本発明の予備発泡方法を行うことによりブロッキング等の少ない、品質面に優れた予備発泡粒子を得ることもできる。   In addition, by performing the pre-foaming method of the present invention, pre-foamed particles with less quality such as blocking and excellent quality can be obtained.

本発明では、予備発泡粒子表面のポリスチレン系樹脂比率が40質量%以下である場合、予備発泡粒子表面が必要以上に軟化することを抑制し、さらにブロッキング等の少ない、品質面に優れた予備発泡粒子を得ることができる。   In the present invention, when the ratio of the polystyrene resin on the surface of the pre-foamed particle is 40% by mass or less, the pre-foamed particle surface is suppressed from being unnecessarily softened, and further, pre-foamed with excellent quality in terms of blocking and the like. Particles can be obtained.

また、本発明で得られる予備発泡粒子は、ブロッキングした発泡性熱可塑性樹脂粒子の量が極めて少なく、耐熱性等の品質に優れるため、成形性、耐熱性等に優れた発泡成形体を得ることもできる。   In addition, the pre-expanded particles obtained in the present invention have an extremely small amount of blocked expandable thermoplastic resin particles and are excellent in quality such as heat resistance, so that a foamed molded article excellent in moldability and heat resistance is obtained. You can also.

予備発泡槽を示す概略図である。It is the schematic which shows a preliminary | backup foaming tank. ポリプロピレン系樹脂を含む予備発泡粒子表層のポリスチレン系樹脂比率を測定するための検量線を示すグラフである。It is a graph which shows the analytical curve for measuring the polystyrene-type resin ratio of the pre-expanded particle surface layer containing a polypropylene-type resin.

本発明は、融点が117〜145℃であるポリオレフィン系樹脂100重量部に対してポリスチレン系樹脂100〜400重量部を含有する発泡性熱可塑性樹脂粒子を、密閉した予備発泡槽内で、0.02〜0.15MPaの予備発泡槽内のゲージ圧力下で予備発泡を行うことを特徴とする発泡性熱可塑性樹脂粒子の予備発泡方法である。   The present invention provides a foamed thermoplastic resin particle containing 100 to 400 parts by weight of a polystyrene resin to 100 parts by weight of a polyolefin resin having a melting point of 117 to 145 ° C. A pre-foaming method for foamable thermoplastic resin particles, wherein pre-foaming is performed under a gauge pressure in a pre-foaming tank of 02 to 0.15 MPa.

本発明において、密閉した予備発泡槽とは、図1に示すような開閉バルブ等の調整により予備発泡槽内を1つの閉じられた空間とすることができ、所望のゲージ圧力下で発泡性熱可塑性樹脂粒子の予備発泡を行うことができる予備発泡槽を意味する。前記の予備発泡槽は、その系内を一定のゲージ圧力条件下に保つことができるため、発泡性熱可塑性樹脂粒子中から易揮発性発泡剤が多量に放出せず、より品質面に優れた予備発泡粒子を得ることができる。また、樹脂粒子の軟化を促進し、その結果予備発泡時間をより短縮することもできる。   In the present invention, the sealed pre-foaming tank can be a closed space inside the pre-foaming tank by adjusting an on-off valve or the like as shown in FIG. It means a pre-foaming tank that can pre-foam plastic resin particles. Since the pre-foaming tank can maintain the system under a constant gauge pressure condition, a large amount of readily volatile foaming agent is not released from the foamable thermoplastic resin particles, and the quality is superior. Pre-expanded particles can be obtained. Moreover, softening of the resin particles can be promoted, and as a result, the pre-foaming time can be further shortened.

本発明においては、予備発泡槽内を0.02〜0.15MPa、好ましくは0.03
〜0.08MPa、より好ましくは0.04〜0.06MPaのゲージ圧力下で予備発泡を行う。0.02MPaより低いゲージ圧力下で予備発泡を行った場合、前記の易揮発性発泡剤の放出を引き起こすことがある。他方、0.15MPaより高いゲージ圧力下で予備発泡を行った場合、樹脂粒子が必要以上に軟化するため、ブロッキングを引き起こすことがある。
なお、本発明において、ゲージ圧力とは、予備発泡槽内に備えた圧力計が示す圧力を意味する。よって、本発明の予備発泡は、大気圧とゲージ圧力との合算圧力下で行われる。
In the present invention, the inside of the preliminary foaming tank is 0.02 to 0.15 MPa, preferably 0.03.
The preliminary foaming is performed under a gauge pressure of ˜0.08 MPa, more preferably 0.04 to 0.06 MPa. When pre-foaming is performed under a gauge pressure lower than 0.02 MPa, the above-mentioned readily volatile foaming agent may be released. On the other hand, when prefoaming is performed under a gauge pressure higher than 0.15 MPa, the resin particles soften more than necessary, which may cause blocking.
In the present invention, the gauge pressure means a pressure indicated by a pressure gauge provided in the preliminary foaming tank. Therefore, the preliminary foaming of the present invention is performed under a combined pressure of the atmospheric pressure and the gauge pressure.

以下に本発明で用いる発泡性熱可塑性樹脂粒子について説明する。
本発明の発泡性熱可塑性樹脂粒子は、ポリオレフィン系樹脂にポリスチレン系樹脂が含まれた粒子である。
The expandable thermoplastic resin particles used in the present invention will be described below.
The expandable thermoplastic resin particles of the present invention are particles in which a polystyrene resin is contained in a polyolefin resin.

本発明においてポリオレフィン系樹脂とは、二重結合を有するオレフィン系重合性単量体を重合させることにより得られる樹脂をいう。ポリオレフィン系樹脂として、例えば、分枝鎖状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂、ポリプロピレン単独重合体、エチレン−プロピレンランダム共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−ブテンランダム共重合体、ポリプロピレン単独重合体等のポリプロピレン系樹脂が挙げられる。   In the present invention, the polyolefin resin refers to a resin obtained by polymerizing an olefin polymerizable monomer having a double bond. Examples of polyolefin resins include branched low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, Polypropylene resins such as cross-linked polyethylene resins, polypropylene homopolymers, ethylene-propylene random copolymers, propylene-1-butene copolymers, ethylene-propylene-butene random copolymers, polypropylene homopolymers, etc. Can be mentioned.

本発明においては、予備発泡時のゲージ圧力とポリオレフィン系樹脂の融点との相関関係から、ポリオレフィン系樹脂としてポリエチレン系樹脂およびポリプロピレン系樹脂のいずれかが好ましい。   In the present invention, from the correlation between the gauge pressure at the time of pre-foaming and the melting point of the polyolefin resin, either a polyethylene resin or a polypropylene resin is preferable as the polyolefin resin.

本発明においては、予備発泡工程等に影響を与えない限り前記のポリオレフィン系樹脂を単独で使用しても、2種以上を使用してもよい。なお、前記の例示中、低密度とは0.91〜0.94g/cm3であることが好ましく、0.91〜0.93g/cm3であることがより好ましい。高密度とは0.95〜0.97g/cm3であることが好ましく、0.95〜0.96g/cm3であることがより好ましい。中密度とはこれら低密度と高密度の中間の密度である。 In the present invention, the above polyolefin resins may be used alone or in combination of two or more as long as they do not affect the preliminary foaming step and the like. Incidentally, in the illustration, it is preferred that the low density, which is 0.91~0.94g / cm 3, more preferably 0.91~0.93g / cm 3. Preferably high density and is 0.95~0.97g / cm 3, more preferably 0.95~0.96g / cm 3. The medium density is an intermediate density between the low density and the high density.

また、本発明のポリオレフィン系樹脂は、117〜145℃、好ましくは125〜140℃、より好ましくは138〜142℃の融点を有する。前記の融点を有するポリオレフィン系樹脂を用いることにより、予備発泡時のゲージ圧力と調和を図り、その結果、本発明の課題である予備発泡時間の短縮およびブロッキングの防止をより容易に解決することができる。   The polyolefin resin of the present invention has a melting point of 117 to 145 ° C, preferably 125 to 140 ° C, more preferably 138 to 142 ° C. By using the polyolefin-based resin having the above melting point, it is possible to harmonize with the gauge pressure at the time of pre-foaming, and as a result, it is possible to more easily solve the shortening of pre-foaming time and prevention of blocking, which are the problems of the present invention. it can.

本発明においては、前記の融点が117℃より低い場合、発泡性熱可塑性樹脂粒子が軟化し過ぎることによりブロッキングを引き起こすことがある。また、易揮発性発泡剤の保持能が低下するため、予備発泡時間の調整等を安定に行い得ないことがある。他方、前記の融点が145℃より高い場合、発泡性熱可塑性樹脂粒子が十分に軟化せず、所定の発泡倍数を得ることができないことがある。なお、融点の測定方法等の詳細については実施例において詳説する。   In the present invention, when the melting point is lower than 117 ° C., the foamable thermoplastic resin particles may be too soft to cause blocking. Moreover, since the retention capability of a readily volatile foaming agent falls, adjustment of a preliminary foaming time may not be performed stably. On the other hand, when the melting point is higher than 145 ° C., the expandable thermoplastic resin particles may not be sufficiently softened to obtain a predetermined expansion ratio. Details of the melting point measurement method and the like will be described in detail in Examples.

また、ポリスチレン系樹脂とは、ポリスチレン単独重合体、またはスチレンを主成分とし、スチレンと共重合可能な他の単量体との共重合体である。ここでスチレンを主成分とするとは、スチレンが全単量体の70重量%以上を占めることを意味する。他の単量体として、α−メチルスチレン、p−メチルスチレン、アクリロニトリル、メタクリロニトリル、アクリル酸、メタクリル酸、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、ジビニルベンゼン、ポリエチレングリコールジメタクリレート等が例示される。例示中、アルキルとは炭素数1〜8のアルキルを意味する。
本発明においては、発泡性熱可塑性樹脂粒子を安定に予備発泡させることができるポリスチレン単独重合体が好ましい。
The polystyrene-based resin is a polystyrene homopolymer or a copolymer of styrene as a main component and another monomer copolymerizable with styrene. Here, styrene as a main component means that styrene accounts for 70% by weight or more of all monomers. Examples of other monomers include α-methylstyrene, p-methylstyrene, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, alkyl acrylate ester, alkyl methacrylate ester, divinylbenzene, and polyethylene glycol dimethacrylate. The In the examples, alkyl means alkyl having 1 to 8 carbon atoms.
In the present invention, a polystyrene homopolymer capable of stably pre-foaming expandable thermoplastic resin particles is preferable.

ポリオレフィン系樹脂およびポリスチレン系樹脂は、予備発泡工程等に影響を与えない限り、それぞれ、ビニル基、カルボニル基、芳香族基、エステル基、エーテル基、アルデヒド基、アミノ基、ニトリル基、ニトロ基等の官能基を含んでいてもよく、2以上のビニル基を有する架橋剤等により架橋されていてもよく、単独で使用しても2種以上を併用してもよい。   Polyolefin resin and polystyrene resin are vinyl group, carbonyl group, aromatic group, ester group, ether group, aldehyde group, amino group, nitrile group, nitro group, etc. These functional groups may be contained, may be cross-linked by a cross-linking agent having two or more vinyl groups, and may be used alone or in combination of two or more.

ポリスチレン系樹脂は、発泡性熱可塑性樹脂粒子中に、ポリオレフィン系樹脂100重量部に対して100〜400重量部の範囲で含まれる。また、ポリオレフィン系樹脂粒子100重量部に対するポリスチレン系樹脂の、原料のスチレン系単量体の配合量も、同様にポリスチレン系樹脂と同じ100〜400重量部である。ポリスチレン系樹脂の含有量が400重量部より多いと、予備発泡粒子および発泡成形体の耐熱性が低下し、ブロッキングを起こすことがある。一方、100重量部より少ないと、発泡性熱可塑性樹脂粒子の表面層からの易揮発性発泡剤の逸散が速くなり所望の発泡性を得ることができず、易揮発性発泡剤の保持性が低下することがある。また、前記の範囲内である場合、予備発泡槽内の蒸気圧力(ゲージ圧力)を0.02〜0.03MPaに保った場合であっても、長期の工程時間を要することなく、ブロッキングの少ない所望の予備発泡粒子を得ることができる。   The polystyrene resin is contained in the foamable thermoplastic resin particles in the range of 100 to 400 parts by weight with respect to 100 parts by weight of the polyolefin resin. Moreover, the compounding quantity of the raw material styrene-type monomer of the polystyrene-type resin with respect to 100 weight part of polyolefin-type resin particles is also 100-400 weight part similarly to a polystyrene-type resin. When the content of the polystyrene-based resin is more than 400 parts by weight, the heat resistance of the pre-expanded particles and the foamed molded product is lowered, and blocking may occur. On the other hand, if the amount is less than 100 parts by weight, the volatile foaming agent is rapidly dissipated from the surface layer of the foamable thermoplastic resin particles and the desired foamability cannot be obtained, and the retention of the easily volatile foaming agent is not possible. May decrease. Moreover, even if it is a case where it is a case where the vapor | steam pressure (gauge pressure) in a preliminary foaming tank is kept at 0.02-0.03 MPa when it is in the said range, there is little blocking, without requiring a long process time. Desired pre-expanded particles can be obtained.

本発明においては、ポリスチレン系樹脂の含有量は、ポリオレフィン系樹脂100重量部に対して125〜240重量部が好ましく、140〜190重量部がより好ましい。他方、ブロッキングのより少ない良好な予備発泡粒子を得うることがあるため、ポリオレフィン系樹脂とポリスチレン系樹脂との組合せとして、ポリエチレン系樹脂およびポリプロピレン系樹脂のいずれかとポリスチレン単独重合体との組合せが好ましい。   In this invention, 125-240 weight part is preferable with respect to 100 weight part of polyolefin resin, and, as for content of polystyrene resin, 140-190 weight part is more preferable. On the other hand, since good pre-expanded particles with less blocking may be obtained, a combination of either a polyethylene resin or a polypropylene resin and a polystyrene homopolymer is preferable as a combination of a polyolefin resin and a polystyrene resin. .

易揮発性発泡剤として、公知の種々の揮発性発泡剤を使用することができる。特に、発泡性能付与の観点からブタンを用いることが好ましい。ブタンとして、ノルマルブタンおよびイソブタンが挙げられる。また、プロパン、ペンタン、ヘキサン、シクロヘキサン、シクロペンタン等のその他の炭化水素を少量併用してもよい。易揮発性発泡剤中、ブタンの含量は80重量%以上であることが好ましい。さらに、発泡助剤を用いてもよい。発泡助剤として、例えば、トルエン、キシレン、シクロヘキサン、d−リモネン等の溶剤、ジイソブチルアジペート、グリセリン、ジアセチル化モノラウレート、やし油等の可塑剤(高沸点溶剤)が挙げられる。なお、前記の易揮発性発泡剤および発泡助剤は、予備発泡工程等に影響を与えない限り、ビニル基、カルボニル基、芳香族基、エステル基、エーテル基、アルデヒド基、アミノ基、ニトリル基、ニトロ基等の官能基を含んでいてもよい。   As the readily volatile foaming agent, various known volatile foaming agents can be used. In particular, it is preferable to use butane from the viewpoint of imparting foaming performance. Examples of butane include normal butane and isobutane. A small amount of other hydrocarbons such as propane, pentane, hexane, cyclohexane and cyclopentane may be used in combination. In the readily volatile blowing agent, the butane content is preferably 80% by weight or more. Further, a foaming aid may be used. Examples of the foaming aid include solvents such as toluene, xylene, cyclohexane, and d-limonene, and plasticizers (high-boiling solvents) such as diisobutyl adipate, glycerin, diacetylated monolaurate, and palm oil. The readily volatile foaming agent and the foaming aid are vinyl group, carbonyl group, aromatic group, ester group, ether group, aldehyde group, amino group, nitrile group as long as they do not affect the preliminary foaming process. And may contain a functional group such as a nitro group.

易揮発性発泡剤の含有量は、発泡性熱可塑性樹脂粒子100重量部に対して、好ましくは8〜20重量部、より好ましくは10〜17重量部、さらにより好ましくは12〜15重量部である。易揮発性発泡剤の含有量が8重量部より低いと、発泡性熱可塑性樹脂粒子の発泡性が低下することがある。発泡性が低下すると、嵩倍数の高い低嵩密度の予備発泡粒子が得られ難くなると共に、この予備発泡粒子を型内成形して得られる発泡成形体は、合着率が低下し、耐割れ性が低下することがある。一方、20重量部より高いと、成形性の低下や、得られる発泡成形体の圧縮、曲げ等の強度特性の低下が発生することがある。   The content of the readily volatile foaming agent is preferably 8 to 20 parts by weight, more preferably 10 to 17 parts by weight, and even more preferably 12 to 15 parts by weight with respect to 100 parts by weight of the foamable thermoplastic resin particles. is there. If the content of the easily volatile foaming agent is lower than 8 parts by weight, the foamability of the foamable thermoplastic resin particles may be lowered. When foamability is lowered, it becomes difficult to obtain low-bulk density pre-expanded particles having a high bulk ratio, and the foam-molded product obtained by in-mold molding of the pre-expanded particles has a low coalescence rate and is resistant to cracking May decrease. On the other hand, when the content is higher than 20 parts by weight, the moldability may be lowered and the strength characteristics such as compression and bending of the obtained foamed molded article may be lowered.

また、所望の予備発泡粒子を得ることができる限り、予備発泡粒子は添加剤等を含んでいてもよい。添加剤として、具体的には、難燃剤、難燃助剤、被覆剤、連鎖移動剤、光安定剤、紫外線吸収剤、顔料、染料、消泡剤、増粘剤、熱安定剤、レベリング剤、滑剤、帯電防止剤等が挙げられる。   Moreover, as long as a desired pre-expanded particle can be obtained, the pre-expanded particle may contain the additive etc. Specific additives include flame retardants, flame retardant aids, coating agents, chain transfer agents, light stabilizers, UV absorbers, pigments, dyes, antifoaming agents, thickeners, heat stabilizers, leveling agents. , Lubricants, antistatic agents and the like.

予備発泡時に使用する発泡性熱可塑性樹脂粒子の製造方法について以下に説明する。
発泡性熱可塑性樹脂粒子の製造時に使用する熱可塑性樹脂粒子の製造には、公知の重合法、即ち、懸濁重合法、乳化重合法、溶液重合法、シード重合法等を適宜使用することができる。本発明においては、重合時の過度な発熱、圧力上昇を抑制しつつ、より容易かつ安全に熱可塑性樹脂粒子を製造することができるため、重合法として懸濁重合法を用いることが好ましい。
A method for producing expandable thermoplastic resin particles used at the time of preliminary foaming will be described below.
A known polymerization method, that is, a suspension polymerization method, an emulsion polymerization method, a solution polymerization method, a seed polymerization method, or the like may be used as appropriate for the production of the thermoplastic resin particles used in the production of the expandable thermoplastic resin particles. it can. In the present invention, it is preferable to use a suspension polymerization method as a polymerization method because thermoplastic resin particles can be more easily and safely produced while suppressing excessive heat generation and pressure increase during polymerization.

特に、懸濁重合法として、ポリオレフィン系樹脂粒子中にスチレン系単量体を水性媒体中で含浸、重合させることにより熱可塑性樹脂粒子を製造する含浸重合法が好ましい。前記の含浸重合により、熱可塑性重合性樹脂粒子および予備発泡粒子の表層におけるポリオレフィン系樹脂の比率がより高くなることがある。   In particular, the suspension polymerization method is preferably an impregnation polymerization method in which thermoplastic resin particles are produced by impregnating and polymerizing a styrene monomer in an aqueous medium in polyolefin resin particles. By the impregnation polymerization, the ratio of the polyolefin resin in the surface layer of the thermoplastic polymerizable resin particles and the pre-expanded particles may be higher.

次いで、得られた熱可塑性樹脂粒子に易揮発性発泡剤を含浸させることにより、発泡性熱可塑性樹脂粒子を得ることができる。易揮発性発泡剤の含浸は、易揮発性発泡剤存在下、水性媒体の存在下または非存在下に行うことができる。前記の含浸は熱可塑性樹脂粒子を過剰量の易揮発性発泡剤に接触、浸漬することで、熱可塑性樹脂粒子に易揮発性発泡剤を含浸させることに対応している。
含浸法の例として、
易揮発性発泡剤と熱可塑性樹脂粒子とを攪拌下に混合させる方法;
熱可塑性樹脂粒子が保持された容器中に易揮発性発泡剤を循環させる方法;
熱可塑性樹脂粒子が分散している水性媒体中に発泡剤を注入して熱可塑性樹脂粒子に発泡剤を含浸させる方法等が挙げられる。
Next, the thermoplastic resin particles obtained are impregnated with a readily volatile foaming agent, whereby foamable thermoplastic resin particles can be obtained. The impregnation of the readily volatile blowing agent can be carried out in the presence of an easily volatile blowing agent, in the presence or absence of an aqueous medium. The impregnation corresponds to impregnating the thermoplastic resin particles with the volatile foaming agent by contacting and immersing the thermoplastic resin particles in an excessive amount of the volatile foaming agent.
As an example of impregnation method,
A method of mixing the readily volatile foaming agent and the thermoplastic resin particles with stirring;
Circulating a readily volatile blowing agent in a container holding thermoplastic resin particles;
Examples thereof include a method of injecting a foaming agent into an aqueous medium in which thermoplastic resin particles are dispersed and impregnating the thermoplastic resin particles with the foaming agent.

発泡性熱可塑性樹脂粒子の予備発泡方法について以下に説明する。
本発明においては、図1に示すような開閉バルブ等により系内を閉じられた空間とし、系内のゲージ圧力を一定とすることができる予備発泡槽中で発泡性熱可塑性樹脂粒子の予備発泡を行うことができるが、本発明は図1の予備発泡槽に限定されるものではない。
A method for pre-foaming the expandable thermoplastic resin particles will be described below.
In the present invention, the foamed thermoplastic resin particles are prefoamed in a prefoaming tank in which the inside of the system is closed by an on-off valve or the like as shown in FIG. 1 and the gauge pressure in the system can be constant. However, the present invention is not limited to the pre-foaming tank of FIG.

図1において、1は予備発泡槽に蒸気を送り込むラインを示しており、バルブの開閉により送り込む蒸気の圧力を調節することができる。
2は予備発泡槽のジャケットに蒸気を送り込むラインを示しており、1と同様に、ジャケットに送り込む蒸気の圧力をバルブで調節することができる。
3は予備発泡を行う予備発泡槽を示している。
4は予備発泡の際、予備発泡粒子同士の合着を防ぐための攪拌翼を示している。
5は1から予備発泡槽内に送り込んだ蒸気を排出するためのラインを示しており、バルブ操作により開閉度を調節することができる。
6は予備発泡槽内に発泡性熱可塑性樹脂粒子を入れる際に用いる投入口を示している。
7は予備発泡終了後、予備発泡粒子を取り出す際の排出口を示している。
8は予備発泡槽内のゲージ圧力および温度を測定する際の計測計を示している。
9は蒸気配管内の加圧蒸気のゲージ圧力および温度を測定する際の計測計を示している。
前記の予備発泡槽は、5の蒸気排出バルブの開閉度を調節することで8の予備発泡槽内のゲージ圧力をゼロから9の蒸気配管の蒸気圧と同等のゲージ圧力まで任意に調節することができる。
In FIG. 1, reference numeral 1 denotes a line for sending steam to the preliminary foaming tank, and the pressure of the sent steam can be adjusted by opening and closing the valve.
Reference numeral 2 denotes a line for sending steam to the jacket of the pre-foaming tank. Like 1, the pressure of the steam sent to the jacket can be adjusted by a valve.
Reference numeral 3 denotes a preliminary foaming tank for performing preliminary foaming.
Reference numeral 4 denotes a stirring blade for preventing coalescence of the pre-foamed particles during pre-foaming.
Reference numeral 5 denotes a line for discharging the steam sent from 1 into the preliminary foaming tank, and the degree of opening and closing can be adjusted by operating the valve.
Reference numeral 6 denotes a charging port used when foaming thermoplastic resin particles are placed in the preliminary foaming tank.
Reference numeral 7 denotes an outlet for taking out the pre-foamed particles after the pre-foaming is completed.
Reference numeral 8 denotes a measuring instrument for measuring the gauge pressure and temperature in the preliminary foaming tank.
Reference numeral 9 denotes a measuring instrument for measuring the gauge pressure and temperature of the pressurized steam in the steam pipe.
The pre-foaming tank can be arbitrarily adjusted to a gauge pressure in the pre-foaming tank of 8 to a gauge pressure equivalent to the vapor pressure of the steam pipe by adjusting the opening / closing degree of the steam discharge valve of 5 Can do.

本発明においては、前記のごとく、バルブの開閉等により系内を大気圧下、密閉調整とし、次いで加圧蒸気を導入し、予備発泡槽内を0.02〜0.15MPaのゲージ圧力下とすることにより予備発泡を行う。0.02MPaより低いゲージ圧力下で予備発泡を行った場合、易揮発性発泡剤の放出を引き起こすことがある。他方、0.15MPaより高いゲージ圧力下で予備発泡を行った場合、樹脂粒子が必要以上に軟化し、ブロッキングを引き起こすことがある。   In the present invention, as described above, the inside of the system is adjusted to be sealed under atmospheric pressure by opening and closing the valve, etc., and then pressurized steam is introduced, and the inside of the preliminary foaming tank is under a gauge pressure of 0.02 to 0.15 MPa. To perform pre-foaming. When pre-foaming is performed under a gauge pressure lower than 0.02 MPa, release of a readily volatile foaming agent may be caused. On the other hand, when pre-foaming is performed under a gauge pressure higher than 0.15 MPa, the resin particles may soften more than necessary and cause blocking.

また、予備発泡槽内のゲージ圧力P(MPa)はポリオレフィン樹脂の融点をT(℃)とした場合、式:
0.02<P<10(8.027-1705/(T+220))×1.33×10-4−0.1013MPa
であることが好ましい。
The gauge pressure P (MPa) in the pre-foaming tank is expressed by the formula:
0.02 <P <10 (8.027-1705 / (T + 220)) × 1.33 × 10 −4 −0.1013 MPa
It is preferable that

前記の式は、アントワン式:
log10P[mmHg]=A−B/(t[℃]+C)
によって、算出される。なお、A、BおよびCはアントワン定数を意味する。
前記の式を満たさない場合、予備発泡粒子がブロッキングを起こすことがある。
The above formula is the Antoine formula:
log10P [mmHg] = AB / (t [° C.] + C)
Is calculated by A, B, and C mean Antoine constants.
If the above formula is not satisfied, the pre-expanded particles may cause blocking.

本発明においては、予備発泡槽内をより均一な温度条件下とし得る場合があるため、好ましくは0.02〜0.15MPa、より好ましくは0.02〜0.06MPaのゲージ圧力の加圧蒸気を用いて予備発泡槽を加熱する。0.02MPaより低いゲージ圧力の加圧蒸気を用いた場合、槽内温度を均一にできないことがある。他方、0.15MPaより高いゲージ圧力の加圧蒸気を用いた場合、製造コスト面で問題となることがある。   In the present invention, since the inside of the pre-foaming tank may be brought to a more uniform temperature condition, it is preferably pressurized steam having a gauge pressure of 0.02 to 0.15 MPa, more preferably 0.02 to 0.06 MPa. Is used to heat the pre-foaming tank. When pressurized steam with a gauge pressure lower than 0.02 MPa is used, the temperature in the tank may not be uniform. On the other hand, when pressurized steam having a gauge pressure higher than 0.15 MPa is used, there may be a problem in terms of manufacturing cost.

また、予備発泡槽内の温度は105〜127℃が好ましく、109〜114℃がより好ましい。105℃より低い温度で予備発泡を行った場合、十分に発泡性熱可塑性樹脂粒子を予備発泡させることができない場合がある。他方、127℃より高い温度で予備発泡を行った場合、樹脂粒子が必要以上に軟化し、ブロッキングを引き起こすことがある。さらに、ブロッキング防止の観点から、予備発泡槽内に穏やかな攪拌を加えることが好ましい。   Moreover, 105-127 degreeC is preferable and the temperature in a preliminary foaming tank has more preferable 109-114 degreeC. When pre-foaming is performed at a temperature lower than 105 ° C., the foamable thermoplastic resin particles may not be sufficiently pre-foamed. On the other hand, when pre-foaming is performed at a temperature higher than 127 ° C., the resin particles may soften more than necessary and cause blocking. Further, from the viewpoint of preventing blocking, it is preferable to add gentle stirring to the preliminary foaming tank.

本発明の予備発泡を行うことにより、予備発泡時間を好ましくは120秒以下、より好ましくは65秒以下とすることもできる。また本発明を用いなくとも120秒以下の予備発泡時間で予備発泡が可能な組成を有する発泡性熱可塑性樹脂粒子は、本発明を用いることで更に予備発泡時間を2分の1以下にすることも出来る場合がある。これらは、従来技術と比較して予備発泡時間を大幅に短縮することができることを意味し、バッチ法においては製造コスト等の点から極めて好ましい。なお、予備発泡時間とは、発泡性熱可塑性樹脂粒子を系内に投入し、予備発泡槽内に加圧蒸気の導入を開始した時点から、予備発泡粒子の嵩倍数が35倍となるまでに要した時間をいう。予備発泡時間の測定方法等は実施例に詳説する。   By performing the pre-foaming of the present invention, the pre-foaming time can be preferably 120 seconds or shorter, more preferably 65 seconds or shorter. Further, the foamable thermoplastic resin particles having a composition capable of being prefoamed with a prefoaming time of 120 seconds or less without using the present invention can further reduce the prefoaming time to one half or less by using the present invention. May also be possible. These mean that the pre-foaming time can be greatly shortened as compared with the prior art, and the batch method is extremely preferable from the viewpoint of production cost and the like. The pre-foaming time refers to the time from when the expandable thermoplastic resin particles are introduced into the system and the introduction of pressurized steam into the pre-foaming tank is started until the bulk multiple of the pre-foamed particles becomes 35 times. This is the time required. The method for measuring the pre-foaming time will be described in detail in Examples.

前記の予備発泡時間経過後、バルブの開閉調整により予備発泡槽内の圧力を開放することにより、系内を大気圧下、得られた予備発泡粒子を予備発泡槽から回収する。   After the pre-foaming time has elapsed, the pressure in the pre-foaming tank is released by adjusting the opening and closing of the valve, whereby the pre-foamed particles obtained are recovered from the pre-foaming tank under atmospheric pressure in the system.

本発明においては、予備発泡工程を1工程で行うことが、生産性、製造コスト面で好ましい。また、予備発泡工程、品質等に影響を与えない限り、加圧条件、加熱条件、加熱時間等の予備発泡条件を多段階とし、予備発泡工程を2段階以上で行ってもよい。   In the present invention, it is preferable in terms of productivity and production cost that the preliminary foaming step is performed in one step. Moreover, as long as the preliminary foaming process, quality, etc. are not affected, the preliminary foaming process may be performed in two or more stages, with the prefoaming conditions such as pressurization conditions, heating conditions, and heating time being multistage.

本発明においては、予備発泡粒子の表層におけるポリスチレン系樹脂の比率が、好ましくは40質量%以下、より好ましくは25質量%以下となる発泡性熱可塑性樹脂粒子を用いる。前記の比率が40質量%より高い場合、予備樹脂粒子が必要以上に軟化し、ブロッキングを引き起こすことがある。よって、本発明においては、予備発泡粒子の表層におけるポリスチレン系樹脂の比率を調節することにより効果的にブロッキングを低減することもできる。なお、表層とは予備発泡粒子表面から深さ数μmまでの領域をいい、前記の比率の算出方法は実施例において詳説する。   In the present invention, expandable thermoplastic resin particles are used in which the ratio of the polystyrene-based resin in the surface layer of the pre-expanded particles is preferably 40% by mass or less, more preferably 25% by mass or less. When the said ratio is higher than 40 mass%, a preliminary resin particle may soften more than necessary and may cause blocking. Therefore, in this invention, blocking can also be effectively reduced by adjusting the ratio of the polystyrene-type resin in the surface layer of a pre-expanded particle. The surface layer refers to a region from the surface of the pre-foamed particles to a depth of several μm, and the method for calculating the ratio will be described in detail in the examples.

本発明の予備発泡粒子は、好ましくは嵩倍数25〜80倍(嵩密度0.04〜0.0125g/cm3)、より好ましくは嵩倍数35〜60倍(嵩密度0.029〜0.017g/cm3)を有する。嵩倍数が80倍より大きいと、得られる発泡成形体の強度が低下することがある。一方、25倍より小さいと、得られる発泡成形体の重量が増加することがある。 The pre-expanded particles of the present invention preferably have a bulk ratio of 25 to 80 times (bulk density of 0.04 to 0.0125 g / cm 3 ), more preferably a bulk ratio of 35 to 60 times (bulk density of 0.029 to 0.017 g). / Cm 3 ). If the bulk multiple is greater than 80 times, the strength of the resulting foamed molded product may be reduced. On the other hand, if it is less than 25 times, the weight of the obtained foamed molded product may increase.

また、予備発泡粒子の平均粒子径は8.4mm以下が好ましく、6.0mm以下がより好ましい。平均粒子径が8.4mmより大きいと、発泡成形機への予備発泡粒子の充填性が低下することがあり、得られる発泡成形体の強度が低下することがある。   Further, the average particle diameter of the pre-expanded particles is preferably 8.4 mm or less, and more preferably 6.0 mm or less. When the average particle diameter is larger than 8.4 mm, the filling property of the pre-expanded particles in the foam molding machine may be lowered, and the strength of the obtained foam molded product may be lowered.

さらに、予備発泡粒子を成型機の型内に充填し、加熱して二次発泡させ、予備発泡粒子同士を融着一体化させることにより、所望の形状を有する発泡成形体を得ることができる。前記成形機としては、ポリスチレン系樹脂予備発泡粒子から発泡成形体を製造する際に用いられるEPS成形機等を用いることができる。   Furthermore, the pre-expanded particles are filled into a mold of a molding machine, heated and subjected to secondary foaming, and the pre-expanded particles are fused and integrated with each other, whereby a foam-molded article having a desired shape can be obtained. As the molding machine, there can be used an EPS molding machine or the like used when producing a foam molded body from polystyrene resin pre-foamed particles.

本発明で得られる発泡成形体はブロッキングが低減された予備発泡粒子を使用しているため、成形性に優れ、その表面は美麗である。よって、得られる発泡成形体は、家電製品等の緩衝材(クッション材)、電子部品、各種工業資材、食品等の搬送容器等の用途に用いることができる。特に、自動車部品等の通い箱、電気製品等の緩衝包装材として好適に用いることができる。   Since the foamed molded product obtained by the present invention uses pre-expanded particles with reduced blocking, it has excellent moldability and a beautiful surface. Therefore, the foamed molded product obtained can be used for applications such as cushioning materials (cushion materials) for home appliances, electronic parts, various industrial materials, food containers and the like. In particular, it can be suitably used as a return packaging box for automobile parts and the like, and a shock-absorbing packaging material for electrical products and the like.

以下に実施例を挙げてさらに説明するが、本発明は、これら実施例により限定されるものではない。各種製造条件および評価方法について以下に説明する。
<ポリオレフィン系樹脂の融点>
JIS K 7122:1987「プラスチックの転移熱測定方法」に記載の方法に従ってポリオレフィン系樹脂の融点の測定を行う。具体的には、示差走査熱量計装置DSC220型(セイコー電子工業社製)を用い、測定容器に試料を7mg充填し、窒素ガス流量30ml/分のもと、室温から220℃の間で10℃/分の昇・降スピードにより昇温、降温、昇温を繰り返し、2回目の昇温時のDSC曲線の融解ピーク温度を融点とする。また、融解ピークが2つ以上ある場合は、低い側のピーク温度を融点とする。
The present invention will be further described below with reference to examples, but the present invention is not limited to these examples. Various manufacturing conditions and evaluation methods will be described below.
<Melting point of polyolefin resin>
The melting point of the polyolefin-based resin is measured according to the method described in JIS K 7122: 1987 “Method for measuring the transition heat of plastic”. Specifically, a differential scanning calorimeter DSC220 type (manufactured by Seiko Denshi Kogyo Co., Ltd.) is used. The temperature is raised, lowered, and raised repeatedly at an ascending / descending speed per minute, and the melting peak temperature of the DSC curve at the second raising temperature is taken as the melting point. Further, when there are two or more melting peaks, the lower peak temperature is taken as the melting point.

<発泡性熱可塑性樹脂粒子の易揮発性発泡剤内包量>
発泡性熱可塑性樹脂粒子20mg程度の量を精秤し、島津製作所社製熱分解炉PYR−1Aの分解炉入り口にセットし、15秒間ほどヘリウムでパージしてサンプルセット時の混入ガスを排出する。密閉後試料を200℃の炉心に挿入し、120秒間加熱してガスを放出させ、この放出ガスを島津製作所社製ガスクロマトグラフ GC−14B(検出器:TCD)を用いて定量する。その測定条件はカラムがジーエルサイエンス社製ポラパックQ(80/100)3mmf×1.5mを用い、カラム温度(100℃)、キャリアーガス(ヘリウム)、キャリアーガス流量(1ml/min)、注入口温度(120℃)、検出器温度(120℃)である。
<Easily volatile foaming agent inclusion amount of foamable thermoplastic resin particles>
Weigh accurately the amount of about 20 mg of expandable thermoplastic resin particles, set it at the decomposition furnace entrance of the pyrolysis furnace PYR-1A manufactured by Shimadzu Corporation, and purge with helium for about 15 seconds to discharge the mixed gas at the time of sample setting . After sealing, the sample is inserted into a 200 ° C. core and heated for 120 seconds to release the gas, and this released gas is quantified using a gas chromatograph GC-14B (detector: TCD) manufactured by Shimadzu Corporation. The measurement conditions were: Polapack Q (80/100) 3 mmf × 1.5 m manufactured by GL Sciences Inc., column temperature (100 ° C.), carrier gas (helium), carrier gas flow rate (1 ml / min), inlet temperature (120 ° C.) and detector temperature (120 ° C.).

<予備発泡時間>
本発明においては、発泡性熱可塑性樹脂粒子を系内に投入後、予備発泡槽内に加圧蒸気の導入を開始した時点から予備発泡粒子の嵩倍数が35倍となるまでの時間が65秒以下となる場合、合格(○)と判定する。前記の予備発泡時間は、予備発泡槽内の予備発泡粒子の全容積が、予備発泡粒子の嵩倍数が35倍に相当する所定の容積に達するまでの時間をいい、予備発泡粒子回収後、個々の予備発泡粒子の嵩倍数を評価することにより、予備発泡粒子の嵩倍数が実際に35倍であることを確認する。加圧蒸気の導入の終了は、予備発泡槽内に備えた発泡終了を検知するレベルセンサを用いて判断した。なお、予備発泡時に前記の所定の容積に達しなかった場合および65秒より長時間を要した場合、不合格(×)と判定する。
<Prefoaming time>
In the present invention, after the foamable thermoplastic resin particles are introduced into the system, the time from when the introduction of pressurized steam into the prefoaming tank is started until the bulk multiple of the prefoamed particles becomes 35 times is 65 seconds. When it becomes the following, it determines with a pass ((circle)). The pre-foaming time refers to the time required for the total volume of the pre-foamed particles in the pre-foaming tank to reach a predetermined volume corresponding to 35 times the bulk multiple of the pre-foamed particles. By evaluating the bulk multiple of the pre-expanded particles, it is confirmed that the bulk multiple of the pre-expanded particles is actually 35 times. The end of the introduction of the pressurized steam was judged using a level sensor that detects the end of foaming provided in the preliminary foaming tank. In addition, when the said predetermined volume is not reached at the time of preliminary foaming, and when it takes a long time from 65 seconds, it determines with disqualification (x).

<予備発泡粒子のブロッキング>
予備発泡実施後の予備発泡粒子を目視にて確認することにより、2粒子以上のブロッキングの有無を確認する。次いで、得られた予備発泡粒子を、ブロッキングの有無に関わらず、分級等の操作を行うことなく、キャビティ内に、予備発泡粒子を充填する充填器を備えた公知の発泡成形機を用いて発泡成形を行う。ここで、キャビティ内に予備発泡粒子を充填する際、ブリッジ等を引き起こすことなく良好に充填されるか否かを確認する。
以下の判定基準に従って、ブロッキングの評価を判定する。
1.ブロッキングが確認されず、良好に充填することができる:○(合格)
2.ブロッキングが確認されたが、良好に充填することができる:△(合格)
3.ブロッキングが確認され、良好に充填することもできない:×(不合格)
<Blocking of pre-expanded particles>
The presence or absence of blocking of two or more particles is confirmed by visually confirming the pre-foamed particles after the pre-foaming. Next, the obtained pre-foamed particles are foamed using a known foam molding machine equipped with a filling device for filling the pre-foamed particles in the cavities without performing classification or the like, regardless of the presence or absence of blocking. Perform molding. Here, when filling the pre-expanded particles in the cavity, it is confirmed whether or not the pre-expanded particles are satisfactorily filled without causing a bridge or the like.
The evaluation of blocking is determined according to the following criteria.
1. Blocking is not confirmed and can be filled well: ○ (pass)
2. Although blocking was confirmed, it can be filled well: △ (pass)
3. Blocking is confirmed and cannot be filled well: x (failed)

<予備発泡粒子の嵩密度および嵩倍数>
予備発泡粒子を500cm3のメスシリンダ内に500cm3の目盛りまで充填する。ここで、メスシリンダを水平から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達しているものがあれば、その時点で予備発泡粒子のメスシリンダ内への充填を終了する。次いで、メスシリンダ内に充填した予備発泡粒子の質量を少数点以下2位の有効数字で測定し、その質量をW(g)とする。
下式により予備発泡粒子の嵩密度および嵩倍数を算出する。
嵩密度(g/cm3)=W/500
嵩倍数=1/嵩密度
<Bulk density and bulk multiple of pre-expanded particles>
Filling the pre-expanded particles in a measuring cylinder of 500 cm 3 to the scale of 500 cm 3. Here, the graduated cylinder is visually observed from the horizontal, and if any pre-expanded particles reach the scale of 500 cm 3 , the filling of the pre-expanded particles into the graduated cylinder is terminated at that point. Next, the mass of the pre-expanded particles filled in the graduated cylinder is measured with the second significant figures after the decimal point, and the mass is defined as W (g).
The bulk density and bulk multiple of the pre-expanded particles are calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
Bulk multiple = 1 / bulk density

<予備発泡粒子の平均粒子径>
予備発泡粒子の平均粒子径は、予備発泡粒子の粒子径の平均をとることにより算出する。即ち、本発明の予備発泡粒子の平均粒子径は体積平均粒子径を意味する。なお、予備発泡粒子の平均粒子径は、例えば、べックマンコールター株式会社から製品名「コールターマルチサイザーII」として市販されている測定装置を用いて測定することができる。
<Average particle diameter of pre-expanded particles>
The average particle diameter of the pre-expanded particles is calculated by taking the average particle diameter of the pre-expanded particles. That is, the average particle size of the pre-expanded particles of the present invention means the volume average particle size. The average particle size of the pre-expanded particles can be measured, for example, using a measuring apparatus commercially available from Beckman Coulter, Inc. as a product name “Coulter Multisizer II”.

<予備発泡粒子表層のポリスチレン系樹脂比率>
粒子の表層とは、予備発泡粒子の表面から深さ数μmまでの領域をいい、以下の測定により予備発泡粒子表層部分のポリスチレン系樹脂の比率を算出することができる。
吸光度比からポリスチレン系樹脂とポリプロピレン系樹脂の組成割合を求める方法としては、ポリスチレン系樹脂とポリプロピレン系樹脂とを所定の組成割合に均一に混合してなる複数種類の標準試料を後述の要領で作製し、各標準試料についてATR法赤外分光分析により粒子表面分析を行って赤外線吸収スペクトルを得る。得られた赤外吸収スペクトルのそれぞれから吸光度比を算出する。そして、縦軸に組成割合(標準試料中のポリスチレン系樹脂比率(質量%))を、横軸に吸光度比(D698/D1376)をとることで、検量線を描く。この検量線に基づいて、本発明の予備発泡粒子におけるポリスチレン系樹脂とポリプロピレン系樹脂の組成割合を求めることができる。
例えば、ポリプロピレン系樹脂がサンアロマー社製、商品名「PC540R」、ポリスチレン系樹脂がポリスチレン(積水化成工業社製、商品名「SS142」)の場合、図2に示す検量線を用いることで、組成割合を知ることができる。例えば、吸光度比(D698/D1376)が10.0の場合、ポリプロピレン系樹脂が20.2質量%、ポリスチレン系樹脂が79.8質量%、吸光度比が15.0の場合にはポリプロピレン系樹脂が8.1質量%、ポリスチレン系樹脂が90.9質量%であると算出できる。
<Ratio of polystyrene-based resin on the surface of pre-expanded particles>
The surface layer of the particle refers to a region from the surface of the pre-foamed particle to a depth of several μm, and the ratio of the polystyrene resin in the surface layer of the pre-foamed particle can be calculated by the following measurement.
As a method for obtaining the composition ratio of polystyrene resin and polypropylene resin from the absorbance ratio, a plurality of types of standard samples prepared by uniformly mixing polystyrene resin and polypropylene resin at a predetermined composition ratio are prepared as described below. Then, each standard sample is subjected to particle surface analysis by ATR infrared spectroscopy to obtain an infrared absorption spectrum. The absorbance ratio is calculated from each of the obtained infrared absorption spectra. A calibration curve is drawn by taking the composition ratio (polystyrene resin ratio (% by mass) in the standard sample) on the vertical axis and the absorbance ratio (D698 / D1376) on the horizontal axis. Based on this calibration curve, the composition ratio of the polystyrene resin and the polypropylene resin in the pre-expanded particles of the present invention can be determined.
For example, when the polypropylene resin is made by Sun Allomer, trade name “PC540R”, and the polystyrene resin is polystyrene (made by Sekisui Chemical Co., Ltd., trade name “SS142”), the composition ratio is obtained by using the calibration curve shown in FIG. Can know. For example, when the absorbance ratio (D698 / D1376) is 10.0, the polypropylene resin is 20.2 mass%, the polystyrene resin is 79.8 mass%, and the absorbance ratio is 15.0, the polypropylene resin is It can be calculated that 8.1% by mass and the polystyrene resin is 90.9% by mass.

検量線の作成条件は以下の方法による。
上記標準試料は、次の方法により得られる。
まず、組成割合(ポリスチレン系樹脂/ポリプロピレン系樹脂)が下記比率になるようにポリスチレン系樹脂およびポリプロピレン系樹脂を合計2g精秤する。
これを小型射出成形機にて下記条件下に加熱混練して、直径が25mmでかつ高さが2mmの円柱状に成形することによって標準試料が得られる。
なお、小型射出成形機としては、例えば、CSI社から商品名「CS−183」で販売されているものを用いることができる。
The calibration curve is created by the following method.
The standard sample is obtained by the following method.
First, a total of 2 g of the polystyrene resin and the polypropylene resin are precisely weighed so that the composition ratio (polystyrene resin / polypropylene resin) becomes the following ratio.
This is heated and kneaded in a small injection molding machine under the following conditions and molded into a cylindrical shape having a diameter of 25 mm and a height of 2 mm to obtain a standard sample.
In addition, as a small-sized injection molding machine, what is sold with the brand name "CS-183" from CSI can be used, for example.

射出成形条件:加熱温度200〜250℃、混練時間10分
組成割合(ポリスチレン系樹脂/ポリプロピレン系樹脂;質量比):
0/10、1/9、2/8、3/7、4/6、5/5、6/4、7/3、8/2、9/1、10/0
前期比率の標準試料の吸光度比を測定し、ポリスチレン系樹脂比率(質量%)と吸光度比(D698/D1376)の関係をグラフ化することで、図2の検量線が得られる。
図2において、ポリスチレン系樹脂比率が40質量%以下の場合、検量線は下記の式(1)で近似される。
Y=−2.5119X2+22.966X・・・(1)
また、図2において、ポリスチレン系樹脂比率が40質量%以上の場合、検量線は下記の式(2)で近似される。
Y=27.591Ln(X)+16.225・・・(2)
なお、前記式において、Xは吸光度比(D698/D1376)を示し、Yはポリスチレン系樹脂比率を示す。予備発泡粒子のポリスチレン系樹脂比率(質量%)が、図2の検量線を基に算出される。
Injection molding conditions: heating temperature 200 to 250 ° C., kneading time 10 minutes Composition ratio (polystyrene resin / polypropylene resin; mass ratio):
0/10, 1/9, 2/8, 3/7, 4/6, 5/5, 6/4, 7/3, 8/2, 9/1, 10/0
The calibration curve of FIG. 2 is obtained by measuring the absorbance ratio of the standard sample of the previous ratio and graphing the relationship between the polystyrene resin ratio (mass%) and the absorbance ratio (D698 / D1376).
In FIG. 2, when the polystyrene resin ratio is 40% by mass or less, the calibration curve is approximated by the following formula (1).
Y = −2.5119X 2 + 22.966X (1)
In FIG. 2, when the polystyrene resin ratio is 40% by mass or more, the calibration curve is approximated by the following formula (2).
Y = 27.591Ln (X) +16.225 (2)
In the above formula, X represents an absorbance ratio (D698 / D1376), and Y represents a polystyrene resin ratio. The polystyrene resin ratio (mass%) of the pre-expanded particles is calculated based on the calibration curve in FIG.

同様に、吸光度比からポリスチレン系樹脂とポリエチレン系樹脂の組成割合を求める方法としては、横軸に吸光度比(D698/D2850)をとり、同様の検量線を描くことにより、本発明の予備発泡粒子におけるポリスチレン系樹脂とポリエチレン系樹脂の組成割合を求めることもできる。   Similarly, as a method for obtaining the composition ratio of the polystyrene resin and the polyethylene resin from the absorbance ratio, the horizontal axis represents the absorbance ratio (D698 / D2850), and a similar calibration curve is drawn. The composition ratio of polystyrene resin and polyethylene resin in can also be obtained.

実施例1
<ポリオレフィン系樹脂粒子の調製>
ポリオレフィン系樹脂(ポリプロピレン系樹脂、プライムポリマー社製、製品名F−744NP、融点140℃)100重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリオレフィン系樹脂粒子を得た。このときのポリオレフィン系樹脂粒子の平均質量を100粒当たり74mgに調整した。
Example 1
<Preparation of polyolefin resin particles>
100 parts by weight of polyolefin resin (polypropylene resin, manufactured by Prime Polymer Co., Ltd., product name F-744NP, melting point 140 ° C.) is supplied to an extruder, melted and kneaded, granulated by an underwater cutting method, and oval (egg-like) ) Polyolefin-based resin particles. The average mass of the polyolefin resin particles at this time was adjusted to 74 mg per 100 grains.

<第1の重合>
次いで、攪拌機付き5Lオートクレーブに、前記のポリオレフィン系樹脂粒子800gを入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水性懸濁液とした。次いで、この懸濁液中にジクミルパーオキサイド(dicumyl peroxide)0.7gを溶解させたスチレン単量体0.344kgを30分で滴下した。滴下後30分間保持し、ポリオレフィン系樹脂粒子にスチレン単量体を吸収させた。次いで、反応系の温度をポリオレフィン系樹脂の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリオレフィン系樹脂粒子中で重合させた。
<First polymerization>
Next, 800 g of the polyolefin resin particles are put into a 5 L autoclave equipped with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate and 0.5 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and suspended in the aqueous medium. Held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension. Next, 0.344 kg of a styrene monomer in which 0.7 g of dicumyl peroxide was dissolved in this suspension was dropped in 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polyolefin resin particles to absorb the styrene monomer. Next, the temperature of the reaction system was raised to 140 ° C., the same as the melting point of the polyolefin resin, and maintained for 2 hours, and the styrene monomer was polymerized in the polyolefin resin particles.

<第2の重合>
次いで、第1の重合の反応液をポリオレフィン系樹脂の融点より20℃低い120℃として、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド3.6gを溶解したスチレン単量体0.856kgを4時間かけて滴下し、ポリオレフィン系樹脂粒子に吸収させながら重合を行った。この滴下終了後、120℃で1時間保持した後に昇温し、3時間保持して重合を完結し、熱可塑性樹脂粒子を得た。
<Second polymerization>
Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polyolefin resin, and 1.5 g of sodium dodecylbenzenesulfonate was added to this suspension, and then dicumyl parsene was used as a polymerization initiator. Polymerization was carried out while 0.856 kg of a styrene monomer in which 3.6 g of oxide was dissolved was dropped over 4 hours and absorbed in polyolefin resin particles. After the completion of the dropping, the temperature was kept at 120 ° C. for 1 hour, and then the temperature was raised and kept for 3 hours to complete the polymerization to obtain thermoplastic resin particles.

<易揮発性発泡剤の含浸>
この後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリ(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)60gと、難燃助剤として2,3−ジメチルー2,3−ジフェニルブタン(化薬アクゾ社製)30gとを投入し、投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、熱可塑性樹脂粒子を得た。次いで、常温まで冷却し、熱可塑性樹脂粒子を5Lオートクレーブから取り出した。取り出し後の熱可塑性樹脂粒子2kgと水2Lを再び攪拌機付5Lオートクレーブに投入し、易揮発性発泡剤としてブタン520ml(300g)を攪拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性熱可塑性樹脂粒子を得た。易揮発性発泡剤の含有量は発泡性熱可塑性樹脂粒子100重量部に対して13重量部であった。
<Impregnation of volatile foaming agent>
Thereafter, the temperature of the reaction system was set to 60 ° C., and in this suspension, 60 g of tri (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant, and 2, 30 g of 3-dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added, and after the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain thermoplastic resin particles. . Subsequently, it cooled to normal temperature and took out the thermoplastic resin particle from the 5L autoclave. 2 kg of the thermoplastic resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 520 ml (300 g) of butane as a volatile foaming agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, after cooling to normal temperature and taking out from the 5 L autoclave, dehydrating and drying, expandable thermoplastic resin particles were obtained. The content of the readily volatile foaming agent was 13 parts by weight with respect to 100 parts by weight of the foamable thermoplastic resin particles.

<予備発泡>
次いで、得られた発泡性熱可塑性樹脂粒子を予備発泡機(笠原工業社製、製品名PSX40)に1000g投入し、系内を密閉後、PSX予備発泡槽内に加圧蒸気を導入するとともにPSX予備発泡槽内のゲージ圧力を0.14MPaに保ち、嵩倍数35倍に予備発泡させた予備発泡粒子を得た。予備発泡槽内のゲージ圧力を0.14MPaに保った場合、予備発泡槽内温度は126℃まで上昇した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
<Pre-foaming>
Next, 1000 g of the obtained expandable thermoplastic resin particles was put into a pre-foaming machine (product name: PSX40, manufactured by Kasahara Kogyo Co., Ltd.), the system was sealed, and pressurized steam was introduced into the PSX pre-foaming tank and PSX Pre-expanded particles pre-expanded to a bulk multiple of 35 times were obtained while maintaining the gauge pressure in the pre-expansion tank at 0.14 MPa. When the gauge pressure in the preliminary foaming tank was kept at 0.14 MPa, the temperature in the preliminary foaming tank rose to 126 ° C.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35であった。
予備発泡粒子表層のポリスチレン系樹脂比率は21質量%であった。
予備発泡粒子の平均粒子径は5.0mmであった。
The bulk magnification of the pre-expanded particles was 35.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 21% by mass.
The average particle diameter of the pre-expanded particles was 5.0 mm.

実施例2
ポリオレフィン系樹脂粒子の調製時のポリオレフィン系樹脂(ポリプロピレン系樹脂、プライムポリマー社製、製品名F−744NP、融点140℃)100重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリオレフィン系樹脂粒子を得、ポリオレフィン系樹脂粒子の平均質量を100粒当たり74mgに調整したことを、
ポリオレフィン系樹脂(直鎖状低密度ポリエチレン、日本ユニカー社製、製品名TUF−2032、融点126℃)100重量部を押出機に供給して造粒して、L/D=0.9のポリオレフィン系樹脂粒子を得、ポリオレフィン系樹脂粒子の平均質量を100粒当たり40mgに調整したこととした以外は実施例1と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 2
100 parts by weight of polyolefin resin (polypropylene resin, manufactured by Prime Polymer Co., Ltd., product name F-744NP, melting point 140 ° C.) at the time of preparation of polyolefin resin particles is supplied to an extruder, melted and kneaded, and manufactured by an underwater cutting method. It was granulated to obtain an oval (egg-like) polyolefin resin particle, and the average mass of the polyolefin resin particle was adjusted to 74 mg per 100 particles.
100 parts by weight of polyolefin resin (linear low density polyethylene, manufactured by Nippon Unicar Co., Ltd., product name TUF-2032, melting point 126 ° C.) is supplied to an extruder for granulation, and polyolefin having L / D = 0.9 System resin particles were obtained, and the same procedure as in Example 1 was carried out except that the average mass of the polyolefin resin particles was adjusted to 40 mg per 100 grains.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は13質量%であった。
予備発泡粒子の平均粒子径は4.1mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 13% by mass.
The average particle diameter of the pre-expanded particles was 4.1 mm.

実施例3
予備発泡時の予備発泡槽内のゲージ圧力を0.08MPaとした以外は実施例2と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 3
It implemented like Example 2 except the gauge pressure in the preliminary foaming tank at the time of preliminary foaming having been 0.08 MPa.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は13質量%であった。
予備発泡粒子の平均粒子径は4.1mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 13% by mass.
The average particle diameter of the pre-expanded particles was 4.1 mm.

実施例4
予備発泡時の予備発泡槽内のゲージ圧力を0.025MPaとした以外は実施例1と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 4
It implemented like Example 1 except the gauge pressure in the preliminary foaming tank at the time of preliminary foaming having been 0.025 Mpa.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35であった。
予備発泡粒子表層のポリスチレン系樹脂比率は21質量%であった。
予備発泡粒子の平均粒子径は5.0mmであった。
The bulk magnification of the pre-expanded particles was 35.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 21% by mass.
The average particle diameter of the pre-expanded particles was 5.0 mm.

実施例5
予備発泡時の予備発泡槽内のゲージ圧力を0.025MPaとした以外は実施例2と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 5
It implemented like Example 2 except the gauge pressure in the preliminary foaming tank at the time of preliminary foaming having been 0.025 Mpa.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は13質量%であった。
予備発泡粒子の平均粒子径は4.1mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 13% by mass.
The average particle diameter of the pre-expanded particles was 4.1 mm.

実施例6
(1)第1の重合時のポリオレフィン系樹脂粒子800gを600gとし;
(2)第1の重合時のジクミルパーオキサイド0.7gを0.6gとし;
(3)第1の重合時のスチレン単量体0.344kgを0.3kgとし;
(4)第2の重合時のジクミルパーオキサイド3.6gを4.2gとし;
(5)第2の重合時のスチレン単量体0.856kgを1.1kg
とした以外は実施例1と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 6
(1) 800 g of polyolefin resin particles at the time of the first polymerization is 600 g;
(2) 0.7 g of dicumyl peroxide during the first polymerization is 0.6 g;
(3) 0.344 kg of styrene monomer in the first polymerization is set to 0.3 kg;
(4) 3.6 g of dicumyl peroxide in the second polymerization is changed to 4.2 g;
(5) 1.1 kg of 0.856 kg of styrene monomer in the second polymerization
The same procedure as in Example 1 was performed except that.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は25質量%であった。
予備発泡粒子の平均粒子径は5.5mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 25% by mass.
The average particle diameter of the pre-expanded particles was 5.5 mm.

実施例7
(1)第1の重合時のポリオレフィン系樹脂粒子800gを400gとし;
(2)第1の重合時のジクミルパーオキサイド0.7gを0.4gとし;
(3)第1の重合時のスチレン単量体0.344kgを0.2kgとし;
(4)第2の重合時のジクミルパーオキサイド3.6gを4.8gとし;
(5)第2の重合時のスチレン単量体0.856kgを1.4kg
とした以外は実施例1と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 7
(1) 400 g of the polyolefin resin particles 800 g during the first polymerization;
(2) 0.7 g of dicumyl peroxide in the first polymerization is 0.4 g;
(3) 0.344 kg of styrene monomer in the first polymerization is 0.2 kg;
(4) 3.6 g of dicumyl peroxide in the second polymerization is changed to 4.8 g;
(5) 1.4kg of 0.856 kg of styrene monomer in the second polymerization
The same procedure as in Example 1 was performed except that.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は32質量%であった。
予備発泡粒子の平均粒子径は6.3mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 32% by mass.
The average particle diameter of the pre-expanded particles was 6.3 mm.

実施例8
(1)第1の重合時のポリオレフィン系樹脂粒子800gを400gとし;
(2)第1の重合時のジクミルパーオキサイド0.7gを0.4gとし;
(3)第1の重合時のスチレン単量体0.344kgを0.2kgとし;
(4)第2の重合時のジクミルパーオキサイド3.6gを4.8gとし;
(5)第2の重合時のスチレン単量体0.856kgを1.4kg
とした以外は実施例2と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 8
(1) 400 g of the polyolefin resin particles 800 g during the first polymerization;
(2) 0.7 g of dicumyl peroxide in the first polymerization is 0.4 g;
(3) 0.344 kg of styrene monomer in the first polymerization is 0.2 kg;
(4) 3.6 g of dicumyl peroxide in the second polymerization is changed to 4.8 g;
(5) 1.4kg of 0.856 kg of styrene monomer in the second polymerization
The same procedure as in Example 2 was performed except that.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は22質量%であった。
予備発泡粒子の平均粒子径は5.1mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 22% by mass.
The average particle size of the pre-expanded particles was 5.1 mm.

実施例9
予備発泡時の予備発泡槽内のゲージ圧力を0.05MPaとした以外は実施例8と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 9
The same operation as in Example 8 was performed except that the gauge pressure in the preliminary foaming tank at the time of preliminary foaming was set to 0.05 MPa.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は22質量%であった。
予備発泡粒子の平均粒子径は5.1mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 22% by mass.
The average particle size of the pre-expanded particles was 5.1 mm.

実施例10
予備発泡時の予備発泡槽内のゲージ圧力を0.025MPaとした以外は実施例7と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 10
The same operation as in Example 7 was performed except that the gauge pressure in the preliminary foaming tank at the time of preliminary foaming was set to 0.025 MPa.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は22質量%であった。
予備発泡粒子の平均粒子径は6.3mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 22% by mass.
The average particle diameter of the pre-expanded particles was 6.3 mm.

実施例11
予備発泡時の予備発泡槽内のゲージ圧力を0.025MPaとした以外は実施例8と同様に実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Example 11
The same operation as in Example 8 was performed except that the gauge pressure in the preliminary foaming tank at the time of preliminary foaming was set to 0.025 MPa.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は22質量%であった。
予備発泡粒子の平均粒子径は5.1mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 22% by mass.
The average particle size of the pre-expanded particles was 5.1 mm.

比較例1
予備発泡時の予備発泡槽内のゲージ圧力を0.17MPaとした以外は実施例1と同様に実施した。
予備発泡時にブロッキングが多く確認され、その後の成型は困難であった。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Comparative Example 1
It implemented like Example 1 except the gauge pressure in the preliminary foaming tank at the time of preliminary foaming having been 0.17 MPa.
Many blockings were confirmed during pre-foaming, and subsequent molding was difficult.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は21質量%であった。
予備発泡粒子の平均粒子径は5.0mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 21% by mass.
The average particle diameter of the pre-expanded particles was 5.0 mm.

比較例2
予備発泡時の予備発泡槽内のゲージ圧力を0.17MPaとした以外は実施例2と同様に実施した。
予備発泡時にブロッキングが多く確認され、その後の成型は困難であった。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Comparative Example 2
It implemented like Example 2 except the gauge pressure in the preliminary foaming tank at the time of preliminary foaming having been 0.17 MPa.
Many blockings were confirmed during pre-foaming, and subsequent molding was difficult.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は13質量%であった。
予備発泡粒子の平均粒子径は4.1mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 13% by mass.
The average particle diameter of the pre-expanded particles was 4.1 mm.

比較例3
予備発泡時の予備発泡槽内のゲージ圧力を0.17MPaとした以外は実施例7と同様に実施した。
予備発泡時にブロッキングが多く確認され、その後の成型は困難であった。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Comparative Example 3
The same operation as in Example 7 was performed except that the gauge pressure in the preliminary foaming tank at the time of preliminary foaming was 0.17 MPa.
Many blockings were confirmed during pre-foaming, and subsequent molding was difficult.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は32質量%であった。
予備発泡粒子の平均粒子径は6.3mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 32% by mass.
The average particle diameter of the pre-expanded particles was 6.3 mm.

比較例4
予備発泡時の予備発泡槽内のゲージ圧力を0.17MPaとした以外は実施例8と同様に実施した。
予備発泡時にブロッキングが多く確認され、その後の成型は困難であった。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Comparative Example 4
The same operation as in Example 8 was performed except that the gauge pressure in the preliminary foaming tank at the time of preliminary foaming was 0.17 MPa.
Many blockings were confirmed during pre-foaming, and subsequent molding was difficult.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は22質量%であった。
予備発泡粒子の平均粒子径は5.1mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 22% by mass.
The average particle size of the pre-expanded particles was 5.1 mm.

比較例5
予備発泡時の予備発泡槽内のゲージ圧力を0.01MPaとした以外は実施例8と同様に実施した。
しかし、予備発泡時間120秒で実施したが、発泡性熱可塑性樹脂粒子を所定の倍数まで予備発泡させることはできなかった。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Comparative Example 5
The same operation as in Example 8 was performed except that the gauge pressure in the preliminary foaming tank at the time of preliminary foaming was 0.01 MPa.
However, although the preliminary foaming time was 120 seconds, the foamable thermoplastic resin particles could not be prefoamed to a predetermined multiple.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は21であった。
予備発泡粒子表層のポリスチレン系樹脂比率は22質量%であった。
予備発泡粒子の平均粒子径は5.1mmであった。
The bulk magnification of the pre-expanded particles was 21.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 22% by mass.
The average particle size of the pre-expanded particles was 5.1 mm.

比較例6
予備発泡を、得られた発泡性熱可塑性樹脂粒子を予備発泡機(積水工機製作所社製、製品名SKK−70)に投入し、系内を密閉せず、大気圧下に開放した状態で、PSX予備発泡槽内に加圧蒸気圧0.05MPaの加圧蒸気を導入し、次いで同様に大気圧下に開放した状態で予備発泡を行った以外は実施例8と同様に実施した。
35倍の予備発泡粒子を得るのに82秒を必要とし、実施例8と比較して発泡時間に要する時間が長かった。
予備発泡工程時、予備発泡槽内のゲージ圧力は実質的に大気圧と同等であった。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Comparative Example 6
Pre-foaming is performed in a state where the obtained foamable thermoplastic resin particles are put into a pre-foaming machine (product name SKK-70, manufactured by Sekisui Koki Seisakusho Co., Ltd.), and the system is not sealed and opened to atmospheric pressure. Then, the same procedure as in Example 8 was performed except that pressurized steam having a pressurized steam pressure of 0.05 MPa was introduced into the PSX prefoaming tank and then prefoaming was performed in a state where the steam was released under atmospheric pressure.
82 seconds were required to obtain 35 times pre-expanded particles, and the time required for the foaming time was longer than that in Example 8.
During the pre-foaming step, the gauge pressure in the pre-foaming tank was substantially equal to atmospheric pressure.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35であった。
予備発泡粒子表層のポリスチレン系樹脂比率は22質量%であった。
予備発泡粒子の平均粒子径は5.1mmであった。
The bulk magnification of the pre-expanded particles was 35.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 22% by mass.
The average particle size of the pre-expanded particles was 5.1 mm.

比較例7
(1)第1の重合時のポリオレフィン系樹脂粒子800gを1200gとし;
(2)第1の重合時のジクミルパーオキサイド0.7gを0.96gとし;
(3)第1の重合時のスチレン単量体0.344kgを0.48kgとし;
(4)第2の重合時のジクミルパーオキサイド3.6gを2.4gとし;
(5)第2の重合時のスチレン単量体0.856kgを0.32kg
とした以外は実施例1と同様に実施した。
しかし、予備発泡時間が120秒経過した場合であっても、良好な予備発泡を起こすことはできなかった。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Comparative Example 7
(1) 800 g of polyolefin resin particles during the first polymerization are set to 1200 g;
(2) 0.7 g of dicumyl peroxide at the time of the first polymerization is 0.96 g;
(3) 0.38 kg of styrene monomer at the time of the first polymerization is changed to 0.48 kg;
(4) 3.6 g of dicumyl peroxide in the second polymerization is changed to 2.4 g;
(5) 0.32 kg of 0.856 kg of styrene monomer in the second polymerization
The same procedure as in Example 1 was performed except that.
However, even when the pre-foaming time was 120 seconds, good pre-foaming could not be caused.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は18倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は11質量%であった。
予備発泡粒子の平均粒子径は4.4mmであった。
The bulk expansion ratio of the pre-expanded particles was 18 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particle was 11% by mass.
The average particle diameter of the pre-expanded particles was 4.4 mm.

比較例8
ポリオレフィン系樹脂(直鎖状低密度ポリエチレン、日本ユニカー社製、製品名TUF−2032、融点126℃)100重量部を押出機に供給して造粒して、L/D=0.9のポリオレフィン系樹脂粒子を得、ポリオレフィン系樹脂粒子の平均質量を100粒当たり40mgに調整した。次いで、攪拌機付き5Lオートクレーブに、前記のポリオレフィン系樹脂粒子200gを入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水性懸濁液とした。次いで、この懸濁液中にジクミルパーオキサイド0.2gを溶解させたスチレン単量体0.1kgを15分で滴下した。滴下後30分保持し、ポリオレフィン系樹脂粒子にスチレン単量体を吸収させた。次いで、反応系の温度をポリオレフィン系樹脂の融点より17℃高い140℃に昇温して2時間保持し、スチレン単量体をポリオレフィン系樹脂粒子中で重合(第1の重合)させた。
Comparative Example 8
100 parts by weight of polyolefin resin (linear low density polyethylene, manufactured by Nippon Unicar Co., Ltd., product name TUF-2032, melting point 126 ° C.) is supplied to an extruder for granulation, and polyolefin having L / D = 0.9 System resin particles were obtained, and the average mass of polyolefin resin particles was adjusted to 40 mg per 100 grains. Next, 200 g of the polyolefin resin particles are put into a 5 L autoclave equipped with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate and 0.5 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and suspended in the aqueous medium. Held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension. Subsequently, 0.1 kg of a styrene monomer in which 0.2 g of dicumyl peroxide was dissolved in this suspension was dropped in 15 minutes. After dropping, the mixture was held for 30 minutes to allow the polyolefin resin particles to absorb the styrene monomer. Next, the temperature of the reaction system was raised to 140 ° C., which is 17 ° C. higher than the melting point of the polyolefin resin, and held for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polyolefin resin particles.

次いで、第1の重合の反応液をポリオレフィン系樹脂の融点より3℃低い120℃にして、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド5.4gを溶解したスチレン単量体1.7kgを5時間かけて滴下し、ポリオレフィン系樹脂粒子に吸収させながら重合(第2の重合)を行った。   Next, the reaction liquid of the first polymerization was set to 120 ° C. which was 3 ° C. lower than the melting point of the polyolefin resin, and 1.5 g of sodium dodecylbenzenesulfonate was added to this suspension, and then dicumyl was used as a polymerization initiator. 1.7 kg of styrene monomer in which 5.4 g of peroxide was dissolved was dropped over 5 hours, and polymerization (second polymerization) was performed while absorbing the polyolefin resin particles.

次いで、常温まで冷却し、熱可塑性樹脂粒子を5Lオートクレーブから取り出した。取り出し後の熱可塑性樹脂粒子2kgと水2Lを再び攪拌機付5Lオートクレーブに投入し、易揮発性発泡剤としてブタン520ml(300g)を攪拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性熱可塑性樹脂粒子を得た。   Subsequently, it cooled to normal temperature and took out the thermoplastic resin particle from the 5L autoclave. 2 kg of the thermoplastic resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 520 ml (300 g) of butane as a volatile foaming agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, after cooling to normal temperature and taking out from the 5 L autoclave, dehydrating and drying, expandable thermoplastic resin particles were obtained.

次いで、得られた発泡性熱可塑性樹脂粒子を予備発泡機(笠原工業社製、製品名PSX40)に1000g投入し、系内を密閉後、PSX予備発泡槽内に加圧蒸気圧0.08MPaの加圧蒸気を導入するとともに、PSX予備発泡槽内のゲージ圧力を0.08MPa、に保ち、嵩倍数35倍に予備発泡させた予備発泡粒子を得た。予備発泡槽内のゲージ圧力を0.08MPaに保った場合、予備発泡槽内温度は115℃まで上昇した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Next, 1000 g of the obtained expandable thermoplastic resin particles was put into a pre-foaming machine (product name PSX40, manufactured by Kasahara Kogyo Co., Ltd.), the system was hermetically sealed, and then the PSX pre-foaming tank had a pressurized vapor pressure of 0.08 MPa. While introducing the pressurized steam, the gauge pressure in the PSX pre-foaming tank was maintained at 0.08 MPa, and pre-foamed particles pre-foamed to a bulk multiple of 35 times were obtained. When the gauge pressure in the preliminary foaming tank was kept at 0.08 MPa, the temperature in the preliminary foaming tank rose to 115 ° C.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は29質量%であった。
予備発泡粒子の平均粒子径は6.4mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-expanded particles was 29% by mass.
The average particle diameter of the pre-expanded particles was 6.4 mm.

比較例9
<ポリオレフィン系樹脂粒子の調製>
ポリオレフィン系樹脂(エチレン−酢酸ビニル共重合体(EVA))(日本ユニカー社製、製品名NUC−3221、酢酸ビニル含有量:5重量%、融点107℃、密度:0.93g/cm3)100重量部および合成含水二酸化ケイ素0.5重量部を押出機に供給し、溶融混練し、水中カット方式により造粒して楕円球状(卵状)のポリオレフィン系樹脂粒子を得た。ポリオレフィン系樹脂粒子1粒の平均重量は0.60mgであった。
Comparative Example 9
<Preparation of polyolefin resin particles>
Polyolefin resin (ethylene-vinyl acetate copolymer (EVA)) (manufactured by Nippon Unicar Co., Ltd., product name NUC-3221, vinyl acetate content: 5 wt%, melting point 107 ° C., density: 0.93 g / cm 3 ) 100 Part by weight and 0.5 part by weight of synthetic hydrous silicon dioxide were supplied to an extruder, melt-kneaded, and granulated by an underwater cutting method to obtain elliptical (egg-like) polyolefin resin particles. The average weight of one polyolefin resin particle was 0.60 mg.

<第1の重合>
攪拌機付き5Lオートクレーブに、70℃の水2000kg、ピロリン酸マグネシウム16gおよびドデシルベンゼンスルホン酸0.4gを攪拌しながら水性媒体とした。次いで、水性媒体中に前記ポリオレフィン系樹脂粒子800gを攪拌しながら懸濁させた。次いで、水性媒体を85℃に昇温して水性懸濁液とした。重合開始剤としてベンゾイルパーオキサイド3g、t−ブチルパーオキシベンゾエート0.2gおよびジクミルパーオキサイド5gをスチレン単量体400gに溶解させて第1のスチレン単量体を作製した。また、スチレン単量体800gに気泡調整剤としてエチレンビスステアリン酸アミド2gを溶解させて第2のスチレン単量体を作製した。
次いで、第1のスチレン単量体を1時間当たり200gの割合で前期水性媒体中に連続的に滴下し、スチレン単量体、重合開始剤および架橋剤をポリオレフィン系樹脂粒子中に含浸させながら、スチレン単量体をポリオレフィン系樹脂粒子中に重合させた。
<First polymerization>
In a 5 L autoclave with a stirrer, 2000 kg of 70 ° C. water, 16 g of magnesium pyrophosphate and 0.4 g of dodecylbenzenesulfonic acid were used as an aqueous medium while stirring. Next, 800 g of the polyolefin resin particles were suspended in an aqueous medium while stirring. Next, the aqueous medium was heated to 85 ° C. to obtain an aqueous suspension. As a polymerization initiator, 3 g of benzoyl peroxide, 0.2 g of t-butylperoxybenzoate and 5 g of dicumyl peroxide were dissolved in 400 g of styrene monomer to prepare a first styrene monomer. In addition, 2 g of ethylenebisstearic acid amide as a bubble regulator was dissolved in 800 g of styrene monomer to prepare a second styrene monomer.
Next, the first styrene monomer is continuously dropped into the aqueous medium at a rate of 200 g per hour, and the polyolefin resin particles are impregnated with the styrene monomer, the polymerization initiator, and the crosslinking agent. A styrene monomer was polymerized into the polyolefin resin particles.

<第2の重合>
さらに、水性媒体を攪拌しつつ、第2のスチレン単量体の水性媒体への滴下が終了してから1時間放置した後、水性媒体を140℃に加熱して3時間保持した。次いで、重合容器を冷却して発泡性熱可塑性樹脂粒子を得た。
<Second polymerization>
Further, while stirring the aqueous medium, the dropping of the second styrene monomer to the aqueous medium was allowed to stand for 1 hour, and then the aqueous medium was heated to 140 ° C. and held for 3 hours. Next, the polymerization vessel was cooled to obtain expandable thermoplastic resin particles.

次いで、予備発泡時の予備発泡槽内のゲージ圧力を0.08MPaとした以外は実施例1と同様に易揮発性発泡剤の含浸および予備発泡を実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Subsequently, impregnation with a volatile foaming agent and preliminary foaming were performed in the same manner as in Example 1 except that the gauge pressure in the preliminary foaming tank at the time of preliminary foaming was 0.08 MPa.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は27質量%であった。
予備発泡粒子の平均粒子径は5.0mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 27% by mass.
The average particle diameter of the pre-expanded particles was 5.0 mm.

比較例10
ポリスチレン系樹脂(東洋スチレン社製、製品名HRM10N)40重量部とポリオレフィン系樹脂(ポリプロピレン系樹脂、サンアロマー社製、製品名PF734S、融点150℃)60重量部との混合樹脂100重量部に、気泡調整剤として微粉末タルク0.2重量部と共に押出機に供給し、溶液混合した。押出機は、かみ合い型同方向回転2軸スクリュー混練機(スクリュー外径37mm、L/D比31.1)を使用した。次いで、溶融混練物をストランド状に押出して、ペレタイズし、100粒子当たりの重量が200mgである熱可塑性樹脂粒子を得た。
Comparative Example 10
In 100 parts by weight of a mixed resin of 40 parts by weight of a polystyrene resin (product name: HRM10N, manufactured by Toyo Styrene Co., Ltd.) and 60 parts by weight of a polyolefin resin (polypropylene resin, manufactured by Sun Allomer, product name: PF734S, melting point: 150 ° C.) It was supplied to the extruder together with 0.2 parts by weight of fine powder talc as a regulator and mixed with the solution. As the extruder, a meshing type co-rotating twin screw kneader (screw outer diameter: 37 mm, L / D ratio: 31.1) was used. Next, the melt-kneaded product was extruded into a strand shape and pelletized to obtain thermoplastic resin particles having a weight per 100 particles of 200 mg.

次いで、予備発泡時の予備発泡槽内のゲージ圧力を0.07MPaとした以外は実施例1と同様に易揮発性発泡剤の含浸および予備発泡を実施した。
予備発泡時間およびブロッキングの評価結果については表1に示す。
Subsequently, impregnation with a readily volatile foaming agent and preliminary foaming were performed in the same manner as in Example 1 except that the gauge pressure in the preliminary foaming tank at the time of preliminary foaming was set to 0.07 MPa.
The preliminary foaming time and blocking evaluation results are shown in Table 1.

予備発泡粒子の嵩倍数は35倍であった。
予備発泡粒子表層のポリスチレン系樹脂比率は27質量%であった。
予備発泡粒子の平均粒子径は4.6mmであった。
The bulk expansion ratio of the pre-expanded particles was 35 times.
The ratio of the polystyrene resin in the surface layer of the pre-foamed particles was 27% by mass.
The average particle diameter of the pre-expanded particles was 4.6 mm.

表1に、実施例および比較例の原料種等を示す。   Table 1 shows the raw material species of the examples and comparative examples.

Figure 2011202110
Figure 2011202110

表1より、実施例1〜10で行った発泡性熱可塑性樹脂粒子の予備発泡方法により、工程時間として長時間を要することなく、かつ、ブロッキングを引き起こすことなく良好な予備発泡粒子を得ることができることを示している。特に、実施例8、9、11で行った予備発泡方法により、同一の組成を有する発泡性熱可塑性樹脂粒子の予備発泡においては、本発明を用いない場合と比較して予備発泡時間を2分の1以下に短縮することができることを示している。これは、本発明の予備発泡粒子は、融点が117〜145℃であるポリオレフィン系樹脂100重量部に対してポリオレフィン系樹脂100〜400重量部を含有する複合性発泡性熱可塑性樹脂粒子であるため、従来技術では行い得なかった予備発泡槽内のゲージ圧力(MPa)が0.02〜0.03MPaであっても、前記の問題を引き起こすことなく所望の予備発泡を行うことができることを示している。   From Table 1, the pre-foaming method of the expandable thermoplastic resin particles performed in Examples 1 to 10 can obtain good pre-foamed particles without requiring a long process time and without causing blocking. It shows what you can do. In particular, in the pre-foaming of the expandable thermoplastic resin particles having the same composition by the pre-foaming method performed in Examples 8, 9, and 11, the pre-foaming time was 2 minutes compared to the case of not using the present invention. It can be shortened to 1 or less. This is because the pre-expanded particles of the present invention are composite expandable thermoplastic resin particles containing 100 to 400 parts by weight of polyolefin resin with respect to 100 parts by weight of polyolefin resin having a melting point of 117 to 145 ° C. Even if the gauge pressure (MPa) in the pre-foaming tank, which could not be performed by the prior art, is 0.02 to 0.03 MPa, it shows that the desired pre-foaming can be performed without causing the above problem. Yes.

また、予備発泡槽内のゲージ圧力(MPa)とポリオレフィン樹脂の融点をT(℃)とが、式:
0.02<P<10(8.027-1705/(T+220))×1.33×10-4−0.1013MPa
を満たす場合、特に良好な予備発泡粒子を得ることができることを示している。
Further, the gauge pressure (MPa) in the preliminary foaming tank and the melting point of the polyolefin resin T (° C.) are expressed by the formula:
0.02 <P <10 (8.027-1705 / (T + 220)) × 1.33 × 10 −4 −0.1013 MPa
When satisfy | filling, it has shown that a particularly favorable pre-expanded particle can be obtained.

さらに、融点が117〜145℃であるポリオレフィン系樹脂100重量部とポリオレフィン系樹脂100〜400重量部とを含む発泡性熱可塑性樹脂粒子であれば、前記の比率に関わらず本発明を適用することができることを示している。   Furthermore, the present invention can be applied to any expandable thermoplastic resin particles containing 100 parts by weight of a polyolefin resin having a melting point of 117 to 145 ° C. and 100 to 400 parts by weight of a polyolefin resin. It shows that you can.

実施例12
実施例1〜11で得られた予備発泡粒子を用いて発泡成形体を製造した場合、発泡成型時に予備発泡粒子を成型機内でブリッジ等を引き起こすことなく、安定内に成型機内に導入することができた。
従って、本発明の予備発泡方法を用いることにより得られた発泡成形体は耐熱性に優れ、その外観は美麗であった。
Example 12
In the case of producing a foamed molded article using the pre-expanded particles obtained in Examples 1 to 11, the pre-expanded particles can be stably introduced into the molding machine without causing a bridge or the like in the molding machine during foam molding. did it.
Therefore, the foamed molded article obtained by using the pre-foaming method of the present invention was excellent in heat resistance and the appearance was beautiful.

1 予備発泡槽に蒸気を送り込むラインおよびその開閉バルブ
2 予備発泡槽のジャケットに蒸気を送り込むラインおよびその開閉バルブ
3 予備発泡槽
4 攪拌翼
5 予備発泡槽に送り込んだ蒸気を排出するためのラインおよびその開閉バルブ
6 予備発泡粒子の投入口
7 予備発泡粒子の排出口
8 予備発泡槽の計測計
9 予備発泡槽に蒸気を送り込むラインの計測計
1 Line for sending steam to the pre-foaming tank and its open / close valve 2 Line for sending steam to the jacket of the pre-foaming tank and its open / close valve 3 Pre-foaming tank 4 Stirring blade 5 Line for discharging the steam sent to the pre-foaming tank and The opening / closing valve 6 Pre-foamed particle inlet 7 Pre-foamed particle outlet 8 Pre-foaming tank meter 9 Line meter for feeding steam to the pre-foaming tank

Claims (8)

融点が117〜145℃であるポリオレフィン系樹脂100重量部に対してポリスチレン系樹脂100〜400重量部を含有する発泡性熱可塑性樹脂粒子を、密閉した予備発泡槽内で、0.02〜0.15MPaの予備発泡槽内のゲージ圧力下で予備発泡させて予備発泡粒子を得ることを特徴とする発泡性熱可塑性樹脂粒子の予備発泡方法。   The foamable thermoplastic resin particles containing 100 to 400 parts by weight of a polystyrene-based resin with respect to 100 parts by weight of a polyolefin-based resin having a melting point of 117 to 145 ° C. in a sealed pre-foaming tank are 0.02 to 0.0. A pre-foaming method for foamable thermoplastic resin particles, wherein pre-foamed particles are obtained by pre-foaming under a gauge pressure in a 15 MPa pre-foaming tank. 前記予備発泡が、1工程で行われる請求項1に記載の予備発泡方法。   The preliminary foaming method according to claim 1, wherein the preliminary foaming is performed in one step. 前記ポリオレフィン系樹脂が、ポリエチレン系樹脂およびポリプロピレン系樹脂のいずれかであり、前記ポリスチレン系樹脂が、ポリスチレン単独重合体である請求項1または2に記載の予備発泡方法。   The pre-foaming method according to claim 1 or 2, wherein the polyolefin resin is one of a polyethylene resin and a polypropylene resin, and the polystyrene resin is a polystyrene homopolymer. 前記発泡性熱可塑性樹脂粒子が、前記発泡性熱可塑性樹脂粒子100重量部に対して8〜20重量部の易揮発性発泡剤を含む請求項1〜3のいずれか1つに記載の予備発泡方法。   The pre-foaming according to any one of claims 1 to 3, wherein the foamable thermoplastic resin particles include 8 to 20 parts by weight of a readily volatile foaming agent with respect to 100 parts by weight of the foamable thermoplastic resin particles. Method. 前記発泡性熱可塑性樹脂粒子が、前記ポリオレフィン系樹脂にスチレン系単量体を含浸重合させることにより前記ポリオレフィン系樹脂および前記ポリスチレン系樹脂を含む熱可塑性樹脂粒子を製造し、次いで該熱可塑性樹脂粒子に前記易揮発性発泡剤を含浸させることにより製造される請求項1〜4のいずれか1つに記載の予備発泡方法。   The foamable thermoplastic resin particles are produced by impregnating and polymerizing the polyolefin resin with a styrene monomer to produce thermoplastic resin particles containing the polyolefin resin and the polystyrene resin, and then the thermoplastic resin particles. The pre-foaming method according to any one of claims 1 to 4, wherein the pre-foaming method is produced by impregnating the easily volatile foaming agent with the foaming agent. 請求項1〜5のいずれか1つに記載の方法により得られる予備発泡粒子。   Pre-expanded particles obtained by the method according to any one of claims 1-5. 前記予備発泡粒子が、その表層に40質量%以下のポリスチレン系樹脂比率を有する請求項6に記載の予備発泡粒子。   The pre-expanded particles according to claim 6, wherein the pre-expanded particles have a polystyrene resin ratio of 40% by mass or less on the surface layer thereof. 請求項6または7に記載の予備発泡粒子を型内成形することにより得られる発泡成形体。   A foam-molded product obtained by molding the pre-foamed particles according to claim 6 or 7 in a mold.
JP2010072940A 2010-03-26 2010-03-26 Pre-foaming method for expandable thermoplastic resin particles Expired - Fee Related JP5486981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072940A JP5486981B2 (en) 2010-03-26 2010-03-26 Pre-foaming method for expandable thermoplastic resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072940A JP5486981B2 (en) 2010-03-26 2010-03-26 Pre-foaming method for expandable thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JP2011202110A true JP2011202110A (en) 2011-10-13
JP5486981B2 JP5486981B2 (en) 2014-05-07

Family

ID=44879089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072940A Expired - Fee Related JP5486981B2 (en) 2010-03-26 2010-03-26 Pre-foaming method for expandable thermoplastic resin particles

Country Status (1)

Country Link
JP (1) JP5486981B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046227A1 (en) 2013-09-30 2015-04-02 積水化成品工業株式会社 Polystyrene-containing composite resin particles and method for producing same, expandable composite resin particles, pre-expanded particles, and expanded molded article
CN105579502A (en) * 2014-03-27 2016-05-11 株式会社Jsp Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
WO2017056743A1 (en) * 2015-09-29 2017-04-06 積水化成品工業株式会社 Styrene-modified polyolefin-based resin particles, method for producing same, foamable particles, foamed particles and foam molded body
JP2017066359A (en) * 2015-09-29 2017-04-06 積水化成品工業株式会社 Styrene modified polyolefin resin particle and manufacturing method therefor, expandable particle, foam particle and foam molded body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088456A (en) * 2004-09-22 2006-04-06 Sekisui Plastics Co Ltd Foamed molded product having voids
WO2007099833A1 (en) * 2006-02-28 2007-09-07 Sekisui Plastics Co., Ltd. Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088456A (en) * 2004-09-22 2006-04-06 Sekisui Plastics Co Ltd Foamed molded product having voids
WO2007099833A1 (en) * 2006-02-28 2007-09-07 Sekisui Plastics Co., Ltd. Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JPWO2007099833A1 (en) * 2006-02-28 2009-07-16 積水化成品工業株式会社 Styrene-modified polypropylene resin particles, expandable styrene-modified polypropylene resin particles, styrene-modified polypropylene resin foam particles, styrene-modified polypropylene resin foam moldings, and methods for producing them

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046227A1 (en) 2013-09-30 2015-04-02 積水化成品工業株式会社 Polystyrene-containing composite resin particles and method for producing same, expandable composite resin particles, pre-expanded particles, and expanded molded article
KR20160065859A (en) 2013-09-30 2016-06-09 세키스이가세이힝코교가부시키가이샤 Polystyrene-containing composite resin particles and method for producing same, expandable composite resin particles, pre-expanded particles, and expanded molded article
CN105579502A (en) * 2014-03-27 2016-05-11 株式会社Jsp Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
AU2015235182B2 (en) * 2014-03-27 2016-12-08 Jsp Corporation Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
CN105579502B (en) * 2014-03-27 2017-10-20 株式会社Jsp Polyolefin resin expanded particle and expanded particle formed body and the compound stack body with the formed body
WO2017056743A1 (en) * 2015-09-29 2017-04-06 積水化成品工業株式会社 Styrene-modified polyolefin-based resin particles, method for producing same, foamable particles, foamed particles and foam molded body
JP2017066359A (en) * 2015-09-29 2017-04-06 積水化成品工業株式会社 Styrene modified polyolefin resin particle and manufacturing method therefor, expandable particle, foam particle and foam molded body

Also Published As

Publication number Publication date
JP5486981B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
TWI391435B (en) Modified polystyrene type resin particle containing carbon, modified polystyrene type resin particle containing foamable carbon, foamed particle of modified polystyrene type resin containing carbon, foamed moldings of modified polystyrene type resin cont
JP5486981B2 (en) Pre-foaming method for expandable thermoplastic resin particles
JP2011074152A (en) Prefoamed particle and process for producing the same
JP2012214691A (en) Polyethylene-based resin particle for seed polymerization, composite resin particle, method for producing these, foamable composite resin particle, and preliminary foaming particle, and foamed article
JP5699018B2 (en) Method for producing polypropylene resin particles for seed polymerization and method for producing composite resin particles
JP2009263639A (en) Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
JP2011068776A (en) Foam-molded article
JP5690632B2 (en) Polypropylene resin particles for seed polymerization, process for producing the same, composite resin particles, expandable composite resin particles, pre-expanded particles, and expanded molded body
JP5731428B2 (en) Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles
JP2020050784A (en) Composite resin particle, expandable particle, expanded particle, and expanded molded body
JPH0598062A (en) Foamable styrene resin granule and production thereof
WO2013147040A1 (en) Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper
JP5401083B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP5957599B2 (en) Foamed particle manufacturing method and foamed particle manufacturing apparatus
JP2011208066A (en) Expansion-molded item, interior material for vehicle, tire spacer for vehicle and luggage box for vehicle
TW202222940A (en) Composite resin particle, composite resin foamed particle and foamed article
JP2011213900A (en) Method for producing pre-foamed particle, pre-foamed particle and foamed molded product
JP6698566B2 (en) Method for producing expanded beads and method for producing expanded molded article
JP5809902B2 (en) MODIFIED POLYPROPYLENE RESIN PARTICLE, ITS PREFOAMED PARTICLE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING FOAM MOLD
JP5511465B2 (en) Pre-foaming method for expandable thermoplastic resin particles
JP5731368B2 (en) Seed particles, composite resin particles, methods for producing the same, composite resin particles, expandable particles, pre-expanded particles, and foam molded article
TWI807710B (en) Composite resin particle, composite resin foamed particle and foam molded body
JP5732299B2 (en) Composite resin particles, expandable composite resin particles, pre-expanded particles and foamed molded body
JP5642003B2 (en) Method for producing pre-expanded resin particles containing polypropylene resin
WO2023243583A1 (en) Seed particles, composite resin particles, foam particles, molded foam, and method for producing composite resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R150 Certificate of patent or registration of utility model

Ref document number: 5486981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees