JP2011200834A - Method for manufacturing conductive carrier, catalyst carrying carrier and electrode catalyst - Google Patents

Method for manufacturing conductive carrier, catalyst carrying carrier and electrode catalyst Download PDF

Info

Publication number
JP2011200834A
JP2011200834A JP2010072666A JP2010072666A JP2011200834A JP 2011200834 A JP2011200834 A JP 2011200834A JP 2010072666 A JP2010072666 A JP 2010072666A JP 2010072666 A JP2010072666 A JP 2010072666A JP 2011200834 A JP2011200834 A JP 2011200834A
Authority
JP
Japan
Prior art keywords
catalyst
metal
carrier
support
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010072666A
Other languages
Japanese (ja)
Inventor
Hiroaki Takahashi
宏明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010072666A priority Critical patent/JP2011200834A/en
Publication of JP2011200834A publication Critical patent/JP2011200834A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst carrying carrier and a method for manufacturing the same capable of enhancing the activity and durability of a catalytic metal, and to provide an electrode catalyst and a method for manufacturing the same.SOLUTION: There is provided a method for manufacturing a conductive carrier where a metal precursor 2 is supported on the surface of a carbon-based conductive carrier 1, the metal precursor 2 is reduced to form a metal by simultaneously performing reduction treatment and heat treatment, metal carbide particles 2A are formed by carbonizing the metal, and the metal carbide particles 2A are modified on the surface of the conductive carrier 1.

Description

本発明は、燃料電池用の電極触媒を形成する導電性担体の製造方法、この導電性担体から形成される触媒担持担体の製造方法と、この触媒担持担体から形成される電極触媒の製造方法に関するものである。   The present invention relates to a method for producing a conductive carrier for forming an electrode catalyst for a fuel cell, a method for producing a catalyst carrier formed from the conductive carrier, and a method for producing an electrode catalyst formed from the catalyst carrier. Is.

固体高分子型燃料電池の燃料電池セルは、イオン透過性の電解質膜と、該電解質膜を挟持するアノード側およびカソード側の各電極触媒層(電極触媒)と、から膜電極接合体(MEA:Membrane Electrode Assembly)を成し、各電極触媒層の外側にガス流れの促進と集電効率を高めるためのガス拡散層(GDL)が設けられて電極体(MEGA:MEAとGDLの接合体)を成し、このガス拡散層の外側にセパレータが配されて燃料電池セルが形成されている。実際には、これらの燃料電池セルが発電性能に応じた基数だけ積層され、燃料電池スタックが形成されることになる。   A fuel cell of a polymer electrolyte fuel cell includes a membrane electrode assembly (MEA: an ion permeable electrolyte membrane) and electrode catalyst layers (electrode catalysts) on the anode side and the cathode side that sandwich the electrolyte membrane. Membrane Electrode Assembly), gas diffusion layers (GDL) for promoting gas flow and increasing current collection efficiency are provided outside each electrode catalyst layer, and an electrode body (MEGA: MEA and GDL joined body) is formed. And a fuel cell is formed by arranging a separator outside the gas diffusion layer. Actually, these fuel cells are stacked in the number corresponding to the power generation performance to form a fuel cell stack.

上記する従来の触媒層の形成方法は、たとえば、テフロンシート(テフロン:登録商標、デュポン社)等の基材表面に、触媒を担持した触媒担持担体、高分子電解質(アイオノマ)、分散溶媒を含んだ触媒溶液(触媒インク)を塗工し、次いで該触媒溶液表面をホットプレート等で乾燥させること(湿式塗工法)で、触媒層が形成されている。なお、この塗工作業においては、スプレーで塗布する方法やドクターブレードを使用する方法などがある。   The above-described conventional method for forming a catalyst layer includes, for example, a catalyst-supported carrier supporting a catalyst, a polymer electrolyte (ionomer), and a dispersion solvent on the surface of a substrate such as a Teflon sheet (Teflon: registered trademark, DuPont). The catalyst layer is formed by applying a catalyst solution (catalyst ink) and then drying the surface of the catalyst solution with a hot plate or the like (wet coating method). In addition, in this coating operation, there are a method of applying by spray, a method of using a doctor blade, and the like.

ところで、燃料電池の発電性能向上の重要な要素の一つとして、電極触媒の効率もしくは活性の向上が挙げられる。また、それと同時に、燃料電池の発電経過における導電性担体の酸化劣化の抑制が電極触媒の耐久向上にも繋がることから、この酸化劣化対策も重要な要素である。   By the way, as one of the important elements for improving the power generation performance of the fuel cell, there is an improvement in the efficiency or activity of the electrode catalyst. At the same time, suppression of oxidative degradation of the conductive carrier during the power generation process of the fuel cell also leads to improvement in durability of the electrode catalyst, so this countermeasure against oxidative degradation is an important factor.

ここで、特許文献1には、炭素触媒担体の腐食を防止するべく、炭素触媒担体表面がタングステンやチタン、モリブデン等で金属表面処理された触媒担持担体を有する燃料電池が開示されている。そして、この金属表面処理方法は、まず、モリブデン等の金属前駆体を還元処理し、次いで加熱処理する方法でおこなわれるものである。   Here, Patent Document 1 discloses a fuel cell having a catalyst-supported carrier whose surface is treated with metal such as tungsten, titanium, or molybdenum in order to prevent corrosion of the carbon catalyst carrier. This metal surface treatment method is performed by first reducing a metal precursor such as molybdenum and then heat-treating it.

しかし、本発明者等によれば、上記する金属表面処理方法にてカーボン担体表面上に形成される金属炭化物層は、カーボン担体表面上に均一に形成され難く、したがって、さらにこの金属炭化物に担持される触媒金属との間での相互作用効果が大きく期待できず、もって効果的な電極触媒の活性向上が得られ難いとの結論が得られている。   However, according to the present inventors, the metal carbide layer formed on the surface of the carbon support by the above-described metal surface treatment method is difficult to form uniformly on the surface of the carbon support. It has been concluded that the effect of interaction with the catalytic metal is not expected to be large, and that it is difficult to effectively improve the activity of the electrode catalyst.

特開2008−503869号公報JP 2008-503869 A

本発明は、上記する問題に鑑みてなされたものであり、燃料電池の発電経過における触媒担持担体の酸化劣化を抑制することに加えて、触媒金属の活性向上と耐久向上を図ることのできる導電性担体の製造方法、触媒担持担体の製造方法と電極触媒の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and in addition to suppressing the oxidative deterioration of the catalyst-supporting support during the power generation process of the fuel cell, the conductivity that can improve the activity and durability of the catalyst metal. It is an object to provide a method for producing a conductive carrier, a method for producing a catalyst-carrying carrier, and a method for producing an electrode catalyst.

前記目的を達成すべく、本発明による導電性担体の製造方法は、炭素系の導電性担体の表面に金属前駆体を担持させ、還元処理と熱処理を同時におこなうことにより、金属前駆体を還元して金属を形成し、該金属を炭化して金属カーバイド粒子を形成し、該金属カーバイド粒子を該導電性担体表面に修飾するものである。   In order to achieve the above object, the method for producing a conductive support according to the present invention reduces the metal precursor by supporting a metal precursor on the surface of a carbon-based conductive support and simultaneously performing a reduction treatment and a heat treatment. Forming a metal, carbonizing the metal to form metal carbide particles, and modifying the metal carbide particles on the surface of the conductive support.

本発明の導電性担体の製造方法は、カーボン粒子等の導電性担体の表面に金属前駆体を担持させておき、次いで還元雰囲気下にて熱処理をおこなうこと、すなわち、還元処理と熱処理を同時におこなうことで、導電性担体表面に金属カーバイド粒子を均一に形成することのできる製造方法である。なお、使用される金属前駆体の量により、導電性担体表面に形成される金属カーバイド粒子は、担体表面に金属カーバイド粒子が均一に分散した修飾形態や、担体表面に金属カーバイド粒子が密に配されて層を成す修飾形態などがある。   In the method for producing a conductive carrier according to the present invention, a metal precursor is supported on the surface of a conductive carrier such as carbon particles, and then heat treatment is performed in a reducing atmosphere, that is, the reduction treatment and the heat treatment are performed simultaneously. In this way, the metal carbide particles can be uniformly formed on the surface of the conductive carrier. Depending on the amount of the metal precursor used, the metal carbide particles formed on the surface of the conductive support may be modified in a form in which the metal carbide particles are uniformly dispersed on the support surface or the metal carbide particles are densely arranged on the support surface. There are modified forms that are layered.

金属前駆体は、金属炭化塩や金属酸化物などの還元可能な化合物であり、この金属前駆体を形成する金属素材としては、タングステン、モリブデン、チタンのいずれか一種が使用され、これらの金属素材が炭化(固溶)されることにより、タングステンカーバイド(WCx)、モリブデンカーバイド(MoCx)、チタンカーバイド(TiCx)等の金属カーバイドが形成される。中でも、白金やカーボン素材の導電性担体との間の相互作用の高いタングステンカーバイドが好適である。   The metal precursor is a reducible compound such as a metal carbide salt or metal oxide, and any one of tungsten, molybdenum, and titanium is used as the metal material forming the metal precursor. Is carbonized (solid solution) to form metal carbides such as tungsten carbide (WCx), molybdenum carbide (MoCx), titanium carbide (TiCx) and the like. Among these, tungsten carbide having a high interaction with a conductive carrier made of platinum or carbon is preferable.

ここで、「導電性担体表面に金属カーバイド粒子が修飾される」における「修飾」とは、化学結合もしくは付着等を意味するものである。   Here, “modification” in “the metal carbide particles are modified on the surface of the conductive carrier” means chemical bonding or adhesion.

従来一般の触媒担持担体、すなわち、カーボン素材の導電性担体表面に白金等の触媒金属が担持された触媒担持担体は、触媒金属自体の有する触媒活性に期待するものである。しかし、カーボン素材の導電性担体と白金触媒との電子の授受(相互作用ともいう)がほとんどなく、白金触媒自体が有する触媒活性効果以上の活性効果を期待することはできない。これに対して、本発明の製造方法で得られた導電性担体からなる触媒担持担体においては、触媒金属自体の触媒活性に加えて、触媒金属と金属カーバイド粒子の間の相互作用によって触媒金属の活性をさらに高めることが可能となる。しかも、この金属カーバイド粒子が導電性担体表面に可及的均一に担持されていることで、触媒活性効果は極めて高い。   A conventional catalyst support, that is, a catalyst support in which a catalyst metal such as platinum is supported on the surface of a carbon-based conductive support is expected for the catalytic activity of the catalyst metal itself. However, there is almost no electron transfer (also referred to as interaction) between the conductive support of the carbon material and the platinum catalyst, and it is not possible to expect an activity effect higher than the catalytic activity effect of the platinum catalyst itself. On the other hand, in the catalyst-supported carrier comprising the conductive carrier obtained by the production method of the present invention, in addition to the catalytic activity of the catalyst metal itself, the interaction between the catalyst metal and the metal carbide particles causes The activity can be further increased. In addition, since the metal carbide particles are supported as uniformly as possible on the surface of the conductive support, the catalytic activity effect is extremely high.

また、上記する相互作用によって触媒の耐久も向上し、さらには、金属カーバイド粒子が導電性担体表面に可及的均一に担持されていることで導電性担体の酸化劣化の抑制にも繋がる。   Further, the durability of the catalyst is improved by the above-described interaction, and furthermore, the metal carbide particles are supported as uniformly as possible on the surface of the conductive support, which leads to the suppression of the oxidative deterioration of the conductive support.

また、本発明者等による検証と経験則によれば、金属前駆体の還元と同時におこなわれる熱処理時の温度は700℃以上であるのがよい。これは、還元反応と炭化反応の双方を実現するための温度条件であり、熱処理時の温度が700℃を下回ると、還元反応はおこなわれるものの、十分な炭化反応がおこなわれないためである。   Further, according to the verification by the present inventors and empirical rules, the temperature during the heat treatment performed simultaneously with the reduction of the metal precursor is preferably 700 ° C. or higher. This is a temperature condition for realizing both the reduction reaction and the carbonization reaction. When the temperature during the heat treatment is lower than 700 ° C., the reduction reaction is performed, but the sufficient carbonization reaction is not performed.

さらに本発明者等の検証によれば、上記製造方法にて製造された触媒担持担体を使用して最終的に電極触媒を製造し、この電極触媒を有する燃料電池セルの発電性能(I−V特性)を検証したところ、従来の製造方法で得られた電極触媒を有する燃料電池セルの発電性能に比して、高い発電性能が奏されることが実証されている。   Further, according to the verification by the present inventors, an electrode catalyst is finally produced using the catalyst-supported carrier produced by the above production method, and the power generation performance (IV) of the fuel cell having this electrode catalyst is obtained. (Characteristics) has been verified, and it has been proved that the power generation performance is higher than the power generation performance of the fuel cell having the electrode catalyst obtained by the conventional manufacturing method.

上記方法で得られた触媒担持担体を使用し、触媒担持担体と、高分子電解質を分散溶媒に投入し、攪拌して触媒溶液(触媒インク)を生成する。そして、生成された触媒溶液は、電解質膜やガス拡散層等の基材にたとえば塗工ブレードにて層状に引き伸ばされて塗膜が形成され、温風乾燥炉等で熱処理および乾燥されることで、アノード側およびカソード側の触媒層(電極触媒)が形成される。   Using the catalyst-carrying carrier obtained by the above method, the catalyst-carrying carrier and the polymer electrolyte are put into a dispersion solvent and stirred to produce a catalyst solution (catalyst ink). Then, the produced catalyst solution is stretched in a layer shape with a coating blade, for example, on a substrate such as an electrolyte membrane or a gas diffusion layer to form a coating film, and is heat-treated and dried in a hot air drying furnace or the like. Then, catalyst layers (electrode catalysts) on the anode side and the cathode side are formed.

既述するように、本発明の製造方法にて得られた触媒担持担体を使用して触媒インクを生成し、これを使用して製造された電極触媒を有する燃料電池セルは、従来製法による電極触媒を有する燃料電池セルに比してその発電性能が高い。このことは、発電に寄与する触媒の活性が高められていることを示すものである。
本発明の製造方法で得られた触媒担持担体からなる電極触媒を有する燃料電池は、発電性能に優れてしかも高耐久であることから、近時その生産が拡大しており、車載機器に一層の高性能および高耐久を要求している電気自動車やハイブリッド車用の燃料電池に好適である。
As described above, a fuel cell having an electrode catalyst produced by using a catalyst-supported carrier obtained by the production method of the present invention and having an electrode catalyst produced by using the catalyst-supported carrier is an electrode produced by a conventional production method. Its power generation performance is higher than that of a fuel cell having a catalyst. This indicates that the activity of the catalyst contributing to power generation is enhanced.
A fuel cell having an electrode catalyst made of a catalyst-supported carrier obtained by the production method of the present invention has excellent power generation performance and high durability, and its production has recently been expanded. It is suitable for fuel cells for electric vehicles and hybrid vehicles that require high performance and high durability.

以上の説明から理解できるように、本発明の製造方法で得られた導電性担体、この導電性担体を使用して得られた触媒担持担体によれば、導電性担体の表面に金属カーバイド粒子が可及的均一に修飾され、この表面に触媒金属粒子が担持された構造の触媒担持担体であることから、触媒金属と金属カーバイド粒子の間の相互作用によって触媒活性を一層高めることができ、もって、発電性能に優れた燃料電池に供されるものである。   As can be understood from the above description, according to the conductive carrier obtained by the production method of the present invention and the catalyst-carrying carrier obtained by using this conductive carrier, metal carbide particles are formed on the surface of the conductive carrier. Since it is a catalyst-carrying support that is modified as uniformly as possible and has catalytic metal particles supported on this surface, the catalytic activity can be further enhanced by the interaction between the catalytic metal and the metal carbide particles. The fuel cell is excellent in power generation performance.

(a)は、本発明の導電性担体の製造方法を説明した模式図であり、(b)、(c)はともに金属前駆体が担持された導電性担体を示す模式図である。(A) is the schematic diagram explaining the manufacturing method of the electroconductive support | carrier of this invention, (b), (c) is a schematic diagram which shows the electroconductive support | carrier with which the metal precursor was carry | supported together. (a)は、図1aに続いて導電性担体の製造方法を説明した模式図であり、(b)は、金属カーバイド粒子が修飾された導電性担体を示す模式図である。(A) is the schematic diagram explaining the manufacturing method of a conductive support following FIG. 1a, (b) is a schematic diagram which shows the conductive support by which the metal carbide particle was modified. (a)は、製造された導電性担体を使用する本発明の触媒担持担体の製造方法を説明した模式図であり、(b)は触媒金属が担持された触媒担持担体を示す模式図である。(A) is the schematic diagram explaining the manufacturing method of the catalyst support | carrier of this invention using the manufactured electroconductive support | carrier, (b) is a schematic diagram which shows the catalyst support | carrier with which the catalyst metal was carry | supported. .

以下、図1〜3を参照して、本発明の導電性担体の製造方法と触媒担持担体の製造方法を概説する。   Hereinafter, with reference to FIGS. 1-3, the manufacturing method of the electroconductive support | carrier of this invention and the manufacturing method of a catalyst support | carrier are outlined.

図1aは、本発明の導電性担体の製造方法を説明した模式図であり、図1b、cはともに、金属前駆体が担持された導電性担体を示す模式図である。また、図2aは、図1aに続いて導電性担体の製造方法を説明した模式図であり、図2bは、金属カーバイド粒子が修飾された導電性担体を示す模式図である。   FIG. 1a is a schematic diagram illustrating a method for producing a conductive carrier according to the present invention. FIGS. 1b and 1c are schematic diagrams each showing a conductive carrier carrying a metal precursor. FIG. 2a is a schematic diagram illustrating a method for producing a conductive carrier following FIG. 1a, and FIG. 2b is a schematic diagram illustrating the conductive carrier in which metal carbide particles are modified.

まず、容器Y内に収容された水等からなる分散溶媒Wへ、カーボン素材の導電性担体1(カーボン担体)と、水溶性のタングステン酸アンモニウム2’を投入し、十分に攪拌して溶解させる。ここで、上記する導電性担体1としては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のほか、炭化ケイ素などに代表される炭素化合物などを挙げることができる。   First, a carbon material conductive carrier 1 (carbon carrier) and a water-soluble ammonium tungstate 2 'are introduced into a dispersion solvent W made of water or the like contained in a container Y, and dissolved by sufficiently stirring. . Here, examples of the conductive carrier 1 include carbon compounds such as carbon carbide, in addition to carbon materials such as carbon black, carbon nanotubes, and carbon nanofibers.

次に、溶液を加熱処理して分散溶媒を蒸発させることにより、図1bで示すタングステン前駆体2がカーボン担体1の表面に担持された導電性担体10が得られる。
また、タングステン酸アンモニウム2’の投入量を増加させることで、タングステン前駆体2が密に担持されて層を成す図1cで示すような導電性担体10Aを得ることもできる。
Next, the conductive support 10 in which the tungsten precursor 2 shown in FIG. 1 b is supported on the surface of the carbon support 1 is obtained by heat-treating the solution and evaporating the dispersion solvent.
Further, by increasing the input amount of ammonium tungstate 2 ′, it is possible to obtain a conductive carrier 10A as shown in FIG. 1c in which the tungsten precursor 2 is densely supported to form a layer.

上記する溶液を加熱し、乾燥させながら溶媒を蒸発除去して導電性担体10の粉末が得られる。   The above-mentioned solution is heated and dried to evaporate and remove the solvent, whereby the conductive carrier 10 powder is obtained.

次いで、図2に示すように、この導電性担体10を加熱炉R内に収容し、この加熱炉R内に連通する配管系Kを介して還元ガスであるHガス、もしくはCOガスを炉内に提供し(X1方向)、これと同時に炉R内を高温雰囲気として熱処理をおこなう。なお、HガスやCOガスの濃度設定は任意であるが、還元ガスの濃度バランスを調整する場合には、窒素ガスやアルゴンガス、ヘリウムガス等の不活性ガスをさらに炉内に提供すればよい。 Next, as shown in FIG. 2, the conductive carrier 10 is accommodated in a heating furnace R, and H 2 gas or CO gas, which is a reducing gas, is supplied to the furnace through a piping system K communicating with the heating furnace R. At the same time, heat treatment is performed in the furnace R with a high temperature atmosphere. The concentration of H 2 gas and CO gas can be set arbitrarily. However, when adjusting the concentration balance of the reducing gas, an inert gas such as nitrogen gas, argon gas or helium gas can be further provided in the furnace. Good.

上記熱処理により、図2bで示すごとく、カーボン担体1の表面に、タングステン前駆体2が還元され、かつ炭化(もしくは固溶)されてできるタングステンカーバイド粒子2A(WCx粒子)が修飾されてなる導電性担体20が得られる。なお、上記熱処理時の温度は、タングステン前駆体の還元反応と炭化反応の双方を可能とする温度である、700℃以上の温度が適用される。   Conductivity obtained by modifying tungsten carbide particles 2A (WCx particles) formed by reduction and carbonization (or solid solution) of tungsten precursor 2 on the surface of carbon support 1 by the heat treatment as shown in FIG. 2b. A carrier 20 is obtained. In addition, the temperature at the time of the heat treatment is a temperature of 700 ° C. or higher, which is a temperature that enables both a reduction reaction and a carbonization reaction of the tungsten precursor.

タングステン前駆体の還元と炭化を同時におこなう上記方法により、カーボン担体1の表面に、均一にタングステンカーバイド粒子2Aを修飾させることができる。   The tungsten carbide particles 2A can be uniformly modified on the surface of the carbon support 1 by the above method in which the tungsten precursor is reduced and carbonized simultaneously.

カーボン担体1を修飾する金属カーバイドとしては、タングステン以外にもモリブデンやチタンを挙げることができ、これらを使用する場合には、モリブデンカーバイド粒子やチタンカーバイド粒子がカーボン担体表面を修飾することになる。   As the metal carbide for modifying the carbon support 1, molybdenum and titanium can be used in addition to tungsten. When these are used, the molybdenum carbide particles and the titanium carbide particles modify the surface of the carbon support.

タングステンカーバイド粒子にて修飾された導電性担体20が得られたら、図3aで示すごとく、水等の分散溶媒W内に、導電性担体20と、触媒金属塩3’を投入し、十分に混合攪拌し、触媒金属塩3’から触媒金属3をタングステンカーバイド粒子2Aの表面、さらにはカーボン担体1の表面に還元担持させることにより、図3bで示すような触媒担持担体30が得られる。   When the conductive carrier 20 modified with tungsten carbide particles is obtained, as shown in FIG. 3a, the conductive carrier 20 and the catalytic metal salt 3 ′ are put into a dispersion solvent W such as water and mixed thoroughly. By stirring, the catalyst metal 3 from the catalyst metal salt 3 ′ is reduced and supported on the surface of the tungsten carbide particles 2A, and further on the surface of the carbon carrier 1, whereby a catalyst-supported carrier 30 as shown in FIG. 3b is obtained.

ここで、触媒金属塩3’を形成する触媒金属としては、たとえば、白金や白金合金、パラジウム、ロジウム、金、銀、オスミウム、イリジウムなどのうちのいずれか一種を使用することができ、好ましくは白金または白金合金を使用するのがよい。さらに、この白金合金としては、たとえば、白金と、アルミニウム、クロム、マンガン、鉄、コバルト、ニッケル、ガリウム、ジルコニウム、モリブデン、ルテニウム、ロジウム、パラジウム、バナジウム、タングステン、レニウム、オスミウム、イリジウム、チタンおよび鉛のうちの少なくとも一種との合金を挙げることができる。   Here, as the catalyst metal forming the catalyst metal salt 3 ′, for example, any one of platinum, platinum alloy, palladium, rhodium, gold, silver, osmium, iridium and the like can be used, preferably Platinum or a platinum alloy is preferably used. Further, examples of the platinum alloy include platinum, aluminum, chromium, manganese, iron, cobalt, nickel, gallium, zirconium, molybdenum, ruthenium, rhodium, palladium, vanadium, tungsten, rhenium, osmium, iridium, titanium, and lead. An alloy with at least one of them can be mentioned.

さらに、分散溶媒Wとしては、水のほか、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、ジエチレングリコール等のアルコール類、アセトン、メチルエチルケトン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルアセトアミド、N−メチルピロリドン、プロピレンカーボネート、酢酸エチルや酢酸ブチルなどのエステル類、芳香族系あるいはハロゲン系の種々の溶媒を挙げることができ、さらには、これらを単独で、もしくは混合液として使用することができる。   Further, as the dispersion solvent W, in addition to water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, diethylene glycol, acetone, methyl ethyl ketone, dimethylformamide, dimethylimidazolidinone, dimethyl sulfoxide, dimethylacetamide , N-methylpyrrolidone, propylene carbonate, esters such as ethyl acetate and butyl acetate, various aromatic solvents or halogen solvents, and these may be used alone or as a mixture. Can do.

図3bで示す触媒担持担体30では、白金等の触媒金属3自体の触媒活性に加えて、触媒金属3とタングステンカーバイド粒子2Aの間の相互作用により、触媒金属の活性をさらに高めることが可能となるものである。   In the catalyst carrier 30 shown in FIG. 3b, in addition to the catalytic activity of the catalytic metal 3 itself such as platinum, the interaction between the catalytic metal 3 and the tungsten carbide particles 2A can further enhance the activity of the catalytic metal. It will be.

製造された触媒担持担体30を分散溶媒内に投入し、さらに高分子電解質を投入して、超音波ホモジナイザーやビーズミル、ボールミルなどを使用して攪拌等することにより、触媒溶液(触媒インク)が生成される。   The produced catalyst-supporting carrier 30 is put into a dispersion solvent, and a polymer electrolyte is further added, followed by stirring using an ultrasonic homogenizer, a bead mill, a ball mill, etc., thereby producing a catalyst solution (catalyst ink). Is done.

この高分子電解質としては、プロトン伝導性ポリマーである、有機系の含フッ素高分子を骨格とするイオン交換樹脂、例えばパーフルオロカーボンスルフォン酸樹脂、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等のスルホン化プラスチック系電解質、スルホアルキル化ポリエーテルエーテルケトン、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリエーテルエーテルスルホン、スルホアルキル化ポリスルホン、スルホアルキル化ポリスルフィド、スルホアルキル化ポリフェニレンなどのスルホアルキル化プラスチック系電解質などを挙げることができる。なお、市販素材としては、ナフィオン(Nafion)(登録商標、デュポン社製)やフレミオン(Flemion)(登録商標、旭硝子株式会社製)などを使用することができる。   As this polymer electrolyte, an ion exchange resin having a skeleton of an organic fluorine-containing polymer, which is a proton conductive polymer, for example, perfluorocarbon sulfonic acid resin, sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated Sulfonated plastic electrolytes such as polyetherethersulfone, sulfonated polysulfone, sulfonated polysulfide, sulfonated polyphenylene, sulfoalkylated polyetheretherketone, sulfoalkylated polyethersulfone, sulfoalkylated polyetherethersulfone, sulfoalkylated Examples thereof include sulfoalkylated plastic electrolytes such as polysulfone, sulfoalkylated polysulfide, and sulfoalkylated polyphenylene. As commercially available materials, Nafion (registered trademark, manufactured by DuPont), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like can be used.

生成された触媒溶液は、基材である電解質膜、ガス拡散層、支持フィルムのいずれか一種に塗工等され、温風乾燥、ホットプレス等されることによって基材表面に触媒層(電極触媒)が形成される。ここで、この電解質膜は、たとえば、スルホン酸基やカルボニル基を持つフッ素系イオン交換膜、置換フェニレンオキサイドやスルホン化ポリアリールエーテルケトン、スルホン化ポリアリールエーテルスルホン、スルホン化フェニレンスルファイドなどの非フッ素系のポリマーなどから形成されるものである。また、ガス拡散層は、ポリアクリロニトリルからの焼成体、ピッチからの焼成体、黒鉛及び膨張黒鉛等の炭素材やこれらのナノカーボン材料、ステンレススチール、モリブデン、チタン等から形成されるものである。さらに、支持フィルムは、ポリエチレンフィルム、ポリプロピレンフィルム、ポリテトラフルオロエチレンフィルム、エチレン/テトラフルオロエチレン共重合体フィルム、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体フィルム、ポリフッ化ビニリデンフィルム、ポリイミドフィルム、ポリアミドフィルム、ポリエチレンテレフタレートフィルムなどを挙げることができ、これらの素材からなるシートを2層以上積層して基材としてもよい。なお、市販素材としては、テフロンシート(テフロン:登録商標、デュポン社)などから形成されるものである。   The produced catalyst solution is applied to any one of an electrolyte membrane, a gas diffusion layer, and a support film, which is a base material, and is dried on a hot air, hot pressed, etc., to form a catalyst layer (electrode catalyst) on the surface of the base material. ) Is formed. Here, this electrolyte membrane is, for example, a non-fluorine ion exchange membrane having a sulfonic acid group or a carbonyl group, a substituted phenylene oxide, a sulfonated polyaryletherketone, a sulfonated polyarylethersulfone, a sulfonated phenylenesulfide or the like. It is formed from a fluorine-based polymer or the like. The gas diffusion layer is formed from a fired body made of polyacrylonitrile, a fired body made of pitch, carbon materials such as graphite and expanded graphite, nanocarbon materials thereof, stainless steel, molybdenum, titanium, and the like. Furthermore, the support film is a polyethylene film, a polypropylene film, a polytetrafluoroethylene film, an ethylene / tetrafluoroethylene copolymer film, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer film, a polyvinylidene fluoride film, a polyimide film. , Polyamide film, polyethylene terephthalate film, and the like. Two or more sheets made of these materials may be laminated to form a base material. In addition, as a commercially available material, it forms from a Teflon sheet (Teflon: a registered trademark, DuPont) etc.

[発電性能実験とその結果]
本発明者等は、本発明の製造方法で得られた触媒担持担体を使用して触媒溶液を生成し、これを使用して形成された電極触媒(触媒層)を具備する燃料電池セル(実施例1,2)と、従来の製造方法にて製造された電極触媒を具備する燃料電池セル(比較例1,2)を試作し、双方の発電性能比較をおこなった。
[Power generation performance experiment and results]
The inventors of the present invention have produced a catalyst solution using the catalyst-supported carrier obtained by the production method of the present invention, and a fuel cell comprising an electrode catalyst (catalyst layer) formed using the catalyst solution (implementation) A fuel cell (Comparative Examples 1 and 2) having an electrode catalyst manufactured by Examples 1 and 2 and a conventional manufacturing method was prototyped, and the power generation performance of both was compared.

[実施例1の製造方法]
市販の導電性担体であるケッチェンEC(ケッチェンブラックインターナショナル製)5.0gを純水1.2L(リットル)に加えて分散させ、ここにタングステン酸アンモニウムを加えて攪拌し、純水に溶解させた。室温で1時間攪拌した後に溶液を加熱し、純水を蒸発除去した。次いで、100℃で乾燥して得られた粉末を石英製の反応容器に収容し、還元ガスである4%Hガスを容器内に提供しながら700℃まで昇温して同温度にて2時間残置した。その後、容器内へのガス提供を窒素ガスに切換えて降温し、熱処理を終了した。
[Production Method of Example 1]
Commercially available conductive carrier Ketjen EC (manufactured by Ketjen Black International) (5.0 g) is added to 1.2 L (liter) of pure water and dispersed. It was. After stirring at room temperature for 1 hour, the solution was heated to remove pure water by evaporation. Next, the powder obtained by drying at 100 ° C. is accommodated in a quartz reaction vessel, and the temperature is raised to 700 ° C. while supplying 4% H 2 gas, which is a reducing gas, into the vessel. Left behind for hours. Thereafter, the gas supply into the container was switched to nitrogen gas to lower the temperature, and the heat treatment was completed.

上記方法にて得られた、タングステンカーバイド粒子にて表面が修飾されたカーボン粉末を純水1.2Lに加えて分散させた。この分散液に白金量:5.0gを含むヘキサヒドロキソ白金硝酸(白金塩、触媒金属塩)の溶液を滴下し、十分に攪拌した。そして、この溶液に0.1Nアンモニア約100mLを添加し、溶液pHを約10として水酸化物を形成し、カーボン表面に析出させ、さらに、エタノールを用いて90℃でヘキサヒドロキソ白金硝酸から白金を還元して分散液を濾過し、得られた粉末を100℃で10時間真空乾燥させた。この方法で得られた触媒担持担体粉末の白金担持密度は、廃液分析の結果、白金50質量%であった。   The carbon powder obtained by the above method and having a surface modified with tungsten carbide particles was added to 1.2 L of pure water and dispersed. To this dispersion, a solution of hexahydroxoplatinum nitrate (platinum salt, catalytic metal salt) containing 5.0 g of platinum was added dropwise and stirred sufficiently. Then, about 100 mL of 0.1N ammonia is added to this solution, a hydroxide is formed with a solution pH of about 10, and precipitated on the carbon surface. Further, using ethanol, platinum is removed from hexahydroxoplatinum nitrate at 90 ° C. The dispersion was filtered after reduction, and the obtained powder was vacuum-dried at 100 ° C. for 10 hours. The platinum carrying density of the catalyst carrying carrier powder obtained by this method was 50% by mass of platinum as a result of waste liquid analysis.

[実施例2の製造方法]
実施例2の製造方法は原則として実施例1と同様であるが、熱処理時の温度条件を800℃としている点が実施例1(700℃)と相違する。実施例2においても、実施例1のものと同様に、得られた触媒担持担体粉末の白金担持密度は、廃液分析の結果、白金50質量%であった。
[Production Method of Example 2]
The manufacturing method of Example 2 is basically the same as that of Example 1, but differs from Example 1 (700 ° C) in that the temperature condition during the heat treatment is 800 ° C. Also in Example 2, as in Example 1, the platinum support density of the obtained catalyst support carrier powder was 50% by mass of platinum as a result of waste liquid analysis.

[比較例1の製造方法]
ケッチェンEC5.0gを純水1.2Lに加えて分散させ、この分散液に、白金5.0gを含むヘキサヒドロキソ白金硝酸の溶液を滴下し、十分に攪拌した。そして、この溶液に0.1Nアンモニア約100mLを添加し、溶液pHを約10として水酸化物を形成し、カーボン表面に析出させ、さらに、エタノールを用いて90℃でヘキサヒドロキソ白金硝酸から白金を還元して分散液を濾過し、得られた粉末を100℃で10時間真空乾燥させた。この方法で得られた触媒担持担体粉末の白金担持密度も実施例1,2のものと同様、廃液分析の結果、白金50質量%であった。
[Production Method of Comparative Example 1]
Ketjen EC 5.0 g was added to 1.2 L of pure water and dispersed, and a solution of hexahydroxoplatinic nitric acid containing 5.0 g of platinum was dropped into this dispersion and stirred sufficiently. Then, about 100 mL of 0.1N ammonia is added to this solution, a hydroxide is formed with a solution pH of about 10, and precipitated on the carbon surface. Further, using ethanol, platinum is removed from hexahydroxoplatinum nitrate at 90 ° C. The dispersion was filtered after reduction, and the obtained powder was vacuum-dried at 100 ° C. for 10 hours. The platinum carrying density of the catalyst carrying carrier powder obtained by this method was 50% by mass of platinum as a result of waste liquid analysis as in Examples 1 and 2.

[比較例2の製造方法]
ケッチェンEC5.0gを純水1.2L(リットル)に加えて分散させ、ここにタングステン酸アンモニウムを加えて攪拌し、純水に溶解させた。室温で1時間攪拌した後に、純水に溶解した水素化ホウ素ナトリウム溶液を投入し、タングステンの還元反応をおこなった。次いで、室温で30分溶液を攪拌し、濾過と純水洗浄をおこなった。次いで、100℃で乾燥して得られた粉末を石英製の反応容器に収容し、Nガスを容器内に提供しながら800℃まで昇温して同温度にて2時間残置した。その後、容器内へのガス提供を窒素ガスに切換えて降温し、熱処理を終了した。すなわち、比較例2では、その製造過程で還元処理と炭化処理が同時に実施されていない。
[Production Method of Comparative Example 2]
Ketjen EC 5.0 g was added and dispersed in 1.2 L (liter) of pure water, and ammonium tungstate was added thereto and stirred to dissolve in pure water. After stirring at room temperature for 1 hour, a sodium borohydride solution dissolved in pure water was added to perform a reduction reaction of tungsten. Next, the solution was stirred for 30 minutes at room temperature, and filtered and washed with pure water. Next, the powder obtained by drying at 100 ° C. was placed in a quartz reaction vessel, heated to 800 ° C. while providing N 2 gas in the vessel, and left at the same temperature for 2 hours. Thereafter, the gas supply into the container was switched to nitrogen gas to lower the temperature, and the heat treatment was completed. That is, in Comparative Example 2, the reduction process and the carbonization process are not performed simultaneously in the manufacturing process.

上記方法にて得られた、炭化が不十分なタングステンカーバイド粒子にて表面が修飾されたカーボン粉末を純水1.2Lに加えて分散させた。この分散液に白金量:5.0gを含むヘキサヒドロキソ白金硝酸(白金塩、触媒金属塩)の溶液を滴下し、十分に攪拌した。そして、この溶液に0.1Nアンモニア約100mLを添加し、溶液pHを約10として水酸化物を形成し、カーボン表面に析出させ、さらに、エタノールを用いて90℃でヘキサヒドロキソ白金硝酸から白金を還元して分散液を濾過し、得られた粉末を100℃で10時間真空乾燥させた。この方法で得られた触媒担持担体粉末の白金担持密度は、廃液分析の結果、白金50質量%であった。   The carbon powder obtained by the above method, the surface of which was modified with tungsten carbide particles with insufficient carbonization, was added to 1.2 L of pure water and dispersed. To this dispersion, a solution of hexahydroxoplatinum nitrate (platinum salt, catalytic metal salt) containing 5.0 g of platinum was added dropwise and stirred sufficiently. Then, about 100 mL of 0.1N ammonia is added to this solution, a hydroxide is formed with a solution pH of about 10, and precipitated on the carbon surface. Further, using ethanol, platinum is removed from hexahydroxoplatinum nitrate at 90 ° C. The dispersion was filtered after reduction, and the obtained powder was vacuum-dried at 100 ° C. for 10 hours. The platinum carrying density of the catalyst carrying carrier powder obtained by this method was 50% by mass of platinum as a result of waste liquid analysis.

[電極触媒(触媒層)の製作方法]
上記する実施例1,2、比較例1,2それぞれの触媒担持担体を使用して、以下、同様の方法で電極触媒を製造した。具体的には、それぞれ調整された触媒担持担体を蒸留水に加え、さらに、エタノールやエチレングリコールもしくはプロピレングリコールなどを加え、高分子電解質であるナフィオンをさらに加えた。そして、上記溶液を十分に攪拌し、超音波照射やビーズミルなどによる分散処理をおこない、実施例1,2、比較例1,2それぞれの触媒溶液(触媒インク)を生成した。
[Production method of electrode catalyst (catalyst layer)]
Using the catalyst-supported carriers of Examples 1 and 2 and Comparative Examples 1 and 2 described above, an electrode catalyst was produced in the same manner. Specifically, the catalyst carrier thus prepared was added to distilled water, ethanol, ethylene glycol, propylene glycol, or the like was further added, and Nafion, which is a polymer electrolyte, was further added. Then, the above solution was sufficiently stirred and subjected to dispersion treatment by ultrasonic irradiation, bead milling, etc. to produce catalyst solutions (catalyst inks) of Examples 1 and 2 and Comparative Examples 1 and 2, respectively.

生成された触媒インクをテフロン等の基材上に塗布し、乾燥させて触媒層を得、これを電解質膜(ナフィオン)のアノード、カソードの両極にホットプレスによって熱圧着し、テフロンを剥がして膜電極接合体を得、これを用いて実施例および比較例双方の燃料電池セルを試作した。   The produced catalyst ink is coated on a substrate such as Teflon and dried to obtain a catalyst layer, which is hot-pressed by hot pressing on both the anode and cathode of the electrolyte membrane (Nafion), and the Teflon is peeled off to form a membrane. An electrode assembly was obtained, and fuel cell cells of both the examples and the comparative examples were produced using this.

[実験結果]
初期段階での触媒性能を比較するべく、初期電圧測定を次のように実施した。まず、燃料電池セルのセル温度を80℃に設定し、カソード側電極に加温バブラを通過させた加湿空気をRH40%、ストイキ比7.5で提供するとともに、アノード側電極に加温バブラを通過させた加湿水素をRH40%、ストイキ比7.5で提供し、電子負荷を用いて電流電圧特性(I−V特性)を測定した。なお、各電極の白金量は、ともに0.3mg/cmとしている。
[Experimental result]
In order to compare the catalyst performance at the initial stage, the initial voltage measurement was performed as follows. First, the cell temperature of the fuel cell is set to 80 ° C., humidified air that has been passed through the heating bubbler to the cathode side electrode is provided at RH 40%, stoichiometric ratio 7.5, and a heating bubbler is provided to the anode side electrode. Passed humidified hydrogen was provided at RH 40% and stoichiometric ratio 7.5, and current-voltage characteristics (IV characteristics) were measured using an electronic load. The platinum amount of each electrode is set to 0.3 mg / cm 2 .

実験の結果、比較例1,2の燃料電池セルの発電性能はそれぞれ、0.780(V/(0.2A/cm))、0.788(V/(0.2A/cm))であったのに対して、実施例1,2の発電性能はそれぞれ、0.793(V/(0.2A/cm))、0.802(V/(0.2A/cm))であり、1〜3%程度もの発電性能の向上が確認された。なお、比較例1,2双方を比較すると、比較例2では、金属前駆体の炭化が不十分であるものの、金属カーバイド粒子が形成されているために比較例1よりも高い活性が得られている。
この実験結果より、導電性担体の製造に際し、金属前駆体の還元反応と炭化反応を同時に実施して金属カーバイド粒子を修飾させることで、カーボン担体等の表面に金属カーバイド粒子が均一に修飾され、この金属カーバイド粒子の表面に触媒金属を担持させることで、触媒活性の高い触媒担持担体が得られ、これが燃料電池セルの発電性能向上に繋がることが実証された。
As a result of the experiment, the power generation performances of the fuel cells of Comparative Examples 1 and 2 were 0.780 (V / (0.2 A / cm 2 )) and 0.788 (V / (0.2 A / cm 2 )), respectively. In contrast, the power generation performances of Examples 1 and 2 were 0.793 (V / (0.2 A / cm 2 )) and 0.802 (V / (0.2 A / cm 2 )), respectively. An improvement in power generation performance of about 3% was confirmed. In addition, when both Comparative Examples 1 and 2 are compared, in Comparative Example 2, the carbonization of the metal precursor is insufficient, but the activity higher than that of Comparative Example 1 is obtained because the metal carbide particles are formed. Yes.
From this experimental result, in the production of the conductive support, the metal carbide particles are uniformly modified on the surface of the carbon support, etc., by modifying the metal carbide particles by simultaneously performing the reduction reaction and the carbonization reaction of the metal precursor, It was demonstrated that a catalyst-supporting carrier having high catalytic activity was obtained by supporting a catalyst metal on the surface of the metal carbide particles, which led to an improvement in power generation performance of the fuel cell.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…導電性担体(カーボン担体)、2…タングステン前駆体、2’…タングステン酸アンモニウム、2A…タングステンカーバイド粒子、3…触媒金属、3’… 触媒金属塩、10…タングステン前駆体が担持された導電性担体、20…タングステンカーバイド粒子で修飾された導電性担体、30…触媒担持担体 DESCRIPTION OF SYMBOLS 1 ... Conductive support | carrier (carbon support | carrier), 2 ... Tungsten precursor, 2 '... Ammonium tungstate, 2A ... Tungsten carbide particle, 3 ... Catalyst metal, 3' ... Catalyst metal salt, 10 ... Tungsten precursor was carry | supported Conductive carrier, 20 ... conductive carrier modified with tungsten carbide particles, 30 ... catalyst-supported carrier

Claims (6)

炭素系の導電性担体の表面に金属前駆体を担持させ、還元処理と熱処理を同時におこなうことにより、金属前駆体を還元して金属を形成し、該金属を炭化して金属カーバイド粒子を形成し、該金属カーバイド粒子を該導電性担体表面に修飾する導電性担体の製造方法。   By carrying a metal precursor on the surface of a carbon-based conductive support and simultaneously performing a reduction treatment and a heat treatment, the metal precursor is reduced to form a metal, and the metal is carbonized to form metal carbide particles. A method for producing a conductive carrier, wherein the metal carbide particles are modified on the surface of the conductive carrier. 前記金属が、タングステン、モリブデン、チタンのいずれか一種からなり、前記金属カーバイドが、タングステンカーバイド、モリブデンカーバイド、チタンカーバイドのいずれか一種からなる、請求項1に記載の導電性担体の製造方法。   The method for producing a conductive carrier according to claim 1, wherein the metal is made of any one of tungsten, molybdenum, and titanium, and the metal carbide is made of any one of tungsten carbide, molybdenum carbide, and titanium carbide. 前記熱処理が700℃以上の高温雰囲気下でおこなわれる、請求項1または2に記載の導電性担体の製造方法。   The manufacturing method of the electroconductive support | carrier of Claim 1 or 2 with which the said heat processing is performed in 700 degreeC or more high temperature atmosphere. 前記還元処理は、HガスもしくはCOガスのいずれか一種を導電性担体に提供することである、請求項1〜3のいずれかに記載の導電性担体の製造方法。 The reduction treatment is is to provide any kind of H 2 gas or CO gas to the conductive support, method for producing a conductive carrier according to any one of claims 1 to 3. 請求項1〜4のいずれかに記載の製造方法で得られた導電性担体のうち、少なくとも金属カーバイド粒子に触媒金属を担持させる触媒担持担体の製造方法。   The manufacturing method of the catalyst support | carrier which makes a metal carbide particle carry | support a catalyst metal among the electroconductive support | carriers obtained with the manufacturing method in any one of Claims 1-4. 請求項5に記載の製造方法で得られた触媒担持担体と高分子電解質と分散溶媒とから触媒溶液を生成し、
基材表面上で前記触媒溶液からなる層を形成し、熱処理して電極触媒を得る電極触媒の製造方法。
A catalyst solution is produced from the catalyst-supported carrier obtained by the production method according to claim 5, a polymer electrolyte, and a dispersion solvent,
A method for producing an electrode catalyst, wherein a layer composed of the catalyst solution is formed on a surface of a substrate and heat-treated to obtain an electrode catalyst.
JP2010072666A 2010-03-26 2010-03-26 Method for manufacturing conductive carrier, catalyst carrying carrier and electrode catalyst Withdrawn JP2011200834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072666A JP2011200834A (en) 2010-03-26 2010-03-26 Method for manufacturing conductive carrier, catalyst carrying carrier and electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072666A JP2011200834A (en) 2010-03-26 2010-03-26 Method for manufacturing conductive carrier, catalyst carrying carrier and electrode catalyst

Publications (1)

Publication Number Publication Date
JP2011200834A true JP2011200834A (en) 2011-10-13

Family

ID=44878133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072666A Withdrawn JP2011200834A (en) 2010-03-26 2010-03-26 Method for manufacturing conductive carrier, catalyst carrying carrier and electrode catalyst

Country Status (1)

Country Link
JP (1) JP2011200834A (en)

Similar Documents

Publication Publication Date Title
US8323847B2 (en) Catalyst for a fuel cell, method of preparing the same, and membrane-electrode assembly and fuel cell system including the same
JP4772741B2 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
US20070099069A1 (en) Catalyst for a fuel cell, a method for preparing the same, and a membrane-electrode assembly for a fuel cell including the same
JP2020500096A (en) Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell including the same
US10916781B2 (en) Composition for manufacturing electrode of membrane-electrode assembly for fuel cells and method for manufacturing electrode of membrane-electrode assembly for fuel cells using the same
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
US8124297B2 (en) Solid polymer fuel cell and method for producing MEA used for solid polymer fuel cell
JP5417288B2 (en) Electrode catalyst on anode side and cathode side, membrane electrode assembly and fuel cell
JP2011255336A (en) Method for manufacturing catalyst support carrier, and method for manufacturing electrode catalyst
JP5565135B2 (en) Method for producing catalyst-supported carrier and method for producing electrode catalyst
JP2019204700A (en) Fuel cell manufacturing method
JP2007184140A (en) Method of manufacturing electrolyte membrane-electrode assembly
JP2008047472A (en) Electrode catalyst
JP6297939B2 (en) Cathode electrode structure and membrane / electrode assembly
JP5928072B2 (en) Manufacturing method of membrane electrode assembly
CN114342129A (en) Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly comprising the same
KR102187990B1 (en) Manufacturing method of catalyst ink for forming fuel cell electrode catalyst layer
JP2011206627A (en) Catalyst carrying carrier and method for manufacturing the same, electrode catalyst and method for manufacturing the same
JP2011240245A (en) Method for manufacturing of catalyst carrying carrier, and method for manufacturing of electrode catalyst
JP2011200834A (en) Method for manufacturing conductive carrier, catalyst carrying carrier and electrode catalyst
JP2012054140A (en) Method of producing catalyst supporting carrier and method of producing electrode catalyst
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP2019139952A (en) Membrane electrode assembly and polymer electrolyte fuel cell having the same
JP2005190887A (en) Electrode catalyst having surface constitution to structure catalyst layer having high performance and durability, and its manufacturing method
JP2009151980A (en) Diffusion electrode for fuel cell, and electrolyte membrane-electrode assembly

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604