JP2011240245A - Method for manufacturing of catalyst carrying carrier, and method for manufacturing of electrode catalyst - Google Patents

Method for manufacturing of catalyst carrying carrier, and method for manufacturing of electrode catalyst Download PDF

Info

Publication number
JP2011240245A
JP2011240245A JP2010114275A JP2010114275A JP2011240245A JP 2011240245 A JP2011240245 A JP 2011240245A JP 2010114275 A JP2010114275 A JP 2010114275A JP 2010114275 A JP2010114275 A JP 2010114275A JP 2011240245 A JP2011240245 A JP 2011240245A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
platinum
salt
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010114275A
Other languages
Japanese (ja)
Inventor
Toshihiro Igai
俊広 五十井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010114275A priority Critical patent/JP2011240245A/en
Publication of JP2011240245A publication Critical patent/JP2011240245A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst carrying carrier that has a comparatively large particle size of a catalytic metal after being carried and has very few variations of the particle size, and to provide a method for manufacturing an electrode catalyst using the catalyst carrying carrier obtained by the above method, concerning a method of obtaining the catalyst carrying carrier by reducing and carrying the catalytic metal on a conductive carrier surface from a precursor of the catalytic metal.SOLUTION: The method is provided for manufacturing the catalyst carrying carrier 10, which is obtained by input of the conductive carrier 1 into a dispersion solvent, by input of an acid salt 2' and basic salt 3' of the catalytic metal, and by reducing and carrying the catalytic metals 2, 3 on the conductive carrier from the acid salt 2' and basic salt 3', respectively.

Description

本発明は、燃料電池用の電極触媒を形成する触媒担持担体の製造方法と、この方法で製造された触媒担持担体を使用してなる電極触媒の製造方法に関するものである。   The present invention relates to a method for producing a catalyst-carrying carrier that forms an electrode catalyst for a fuel cell, and a method for producing an electrode catalyst using the catalyst-carrying carrier produced by this method.

固体高分子型燃料電池の燃料電池セルは、イオン透過性の電解質膜と、該電解質膜を挟持するアノード側およびカソード側の各電極触媒層(電極触媒)と、から膜電極接合体(MEA:Membrane Electrode Assembly)を成し、各電極触媒層の外側にガス流れの促進と集電効率を高めるためのガス拡散層(GDL)が設けられて電極体(MEGA:MEAとGDLの接合体)を成し、このガス拡散層の外側にセパレータが配されて燃料電池セルが形成されている。実際には、これらの燃料電池セルが発電性能に応じた基数だけ積層され、燃料電池スタックが形成されることになる。   A fuel cell of a polymer electrolyte fuel cell includes a membrane electrode assembly (MEA: an ion permeable electrolyte membrane) and electrode catalyst layers (electrode catalysts) on the anode side and the cathode side that sandwich the electrolyte membrane. Membrane Electrode Assembly), gas diffusion layers (GDL) for promoting gas flow and increasing current collection efficiency are provided outside each electrode catalyst layer, and an electrode body (MEGA: MEA and GDL joined body) is formed. And a fuel cell is formed by arranging a separator outside the gas diffusion layer. Actually, these fuel cells are stacked in the number corresponding to the power generation performance to form a fuel cell stack.

上記する従来の触媒層の形成方法は、たとえば、テフロンシート(テフロン:登録商標、デュポン社)等の基材表面に、触媒を担持した触媒担持担体、高分子電解質(アイオノマ)、分散溶媒を含んだ触媒溶液(触媒インク)を塗工し、次いで該触媒溶液表面をホットプレート等で乾燥させること(湿式塗工法)で、触媒層が形成されている。なお、この塗工作業においては、スプレーで塗布する方法やドクターブレードを使用する方法などがある。   The above-described conventional method for forming a catalyst layer includes, for example, a catalyst-supported carrier supporting a catalyst, a polymer electrolyte (ionomer), and a dispersion solvent on the surface of a substrate such as a Teflon sheet (Teflon: registered trademark, DuPont). The catalyst layer is formed by applying a catalyst solution (catalyst ink) and then drying the surface of the catalyst solution with a hot plate or the like (wet coating method). In addition, in this coating operation, there are a method of applying by spray, a method of using a doctor blade, and the like.

ところで、燃料電池の発電性能向上の重要な要素である、電極触媒の効率もしくは活性を上げるべく、これを電極触媒の製造方法からのアプローチで達成せんとする技術が種々公開されており、たとえば、特許文献1,2に開示の触媒の製造方法を挙げることができる。ここで、特許文献1に開示の電極触媒の製造方法は、分散溶媒内にカーボン粉末を分散させ、ヘキサヒドロキソ白金硝酸水溶液(白金の酸性塩)を滴下して混合し、カーボン粉末表面に白金を担持させることで触媒担持担体を得るものである。   By the way, in order to increase the efficiency or activity of the electrocatalyst, which is an important factor for improving the power generation performance of the fuel cell, various techniques for achieving this with an approach from the production method of the electrocatalyst have been disclosed. Examples of the catalyst production method disclosed in Patent Documents 1 and 2 can be given. Here, in the method for producing an electrode catalyst disclosed in Patent Document 1, carbon powder is dispersed in a dispersion solvent, a hexahydroxoplatinum nitrate aqueous solution (platinum acid salt) is dropped and mixed, and platinum is added to the surface of the carbon powder. A catalyst-carrying carrier is obtained by carrying it.

一方、特許文献2に開示の電極触媒の製造方法は、分散溶媒内にカーボン粉末を分散させ、テトラアミン白金塩溶液やジニトロジアミン白金溶液(以上白金の塩基性塩)、もしくは、白金硝酸塩溶液や塩化白金酸溶液(以上白金の酸性塩)のいずれかを滴下して混合し、カーボン粉末表面に白金を担持させることで触媒担持担体を得るものである。   On the other hand, in the method for producing an electrode catalyst disclosed in Patent Document 2, carbon powder is dispersed in a dispersion solvent, and a tetraamine platinum salt solution, a dinitrodiamine platinum solution (basic platinum salt), or a platinum nitrate solution or chloride. One of a platinic acid solution (above platinum acid salt) is dropped and mixed, and platinum is supported on the surface of the carbon powder to obtain a catalyst-supporting carrier.

上記特許文献1,2では、これらの製造方法によって触媒活性が向上するとしているが、本発明者等の検証によれば、カーボン粉末に対して酸性塩もしくは塩基性塩のいずれを還元担持させた場合でも、得られた触媒担持担体を形成する白金の粒径のばらつきが大きいこと、および白金自体の粒径が所望する狙いの粒径に対して比較的小さくなること、が特定されている。   In the above Patent Documents 1 and 2, the catalytic activity is improved by these production methods. However, according to the verification by the present inventors, either an acidic salt or a basic salt is supported by reduction on the carbon powder. Even in this case, it is specified that the variation in the particle size of platinum forming the obtained catalyst-supporting carrier is large, and that the particle size of platinum itself is relatively small with respect to the desired target particle size.

たとえば、還元担持後の白金粒径が小さい場合には、熱処理して白金同士をシンタリングさせることで粒径成長を図るという方策が実行されるが、これによって粒径のばらつきが大きくなってしまう。したがって、所望する平均粒径の白金に対して微細な白金は、たとえば耐久試験中に溶出してしまい、これは電極触媒の性能低下に直結する。   For example, when the particle size of platinum after reduction loading is small, a measure of increasing the particle size by performing a heat treatment to sinter platinum together is performed, but this causes a large variation in particle size. . Therefore, fine platinum is eluted with respect to platinum having a desired average particle diameter, for example, during an endurance test, which directly leads to a decrease in performance of the electrode catalyst.

上記するように、熱処理のみによるシンタリングにて粒径を制御する方法では、カーボン粉末表面の担持サイトによっては白金粒子の移動のし易さに違いがあり、シンタリングしない微細な白金粒子が存在して特にこの微細な白金粒子が耐久試験中に溶出し易いというものである。また、たとえば窒素雰囲気下で熱処理のみによって粒径を制御しようとすると、カーボン中に残存している酸素の酸化や熱によってカーボンが劣化し得ることから、この熱処理のみによって担持後の触媒金属の粒径制御をおこなう方法に代わる粒径制御方法の開発が望まれている。   As described above, in the method of controlling the particle size by sintering only by heat treatment, there is a difference in the ease of movement of platinum particles depending on the support site on the surface of the carbon powder, and there are fine platinum particles that do not sinter. In particular, the fine platinum particles are easily eluted during the durability test. Further, for example, if the particle size is controlled only by heat treatment in a nitrogen atmosphere, the carbon may be deteriorated by oxidation or heat of oxygen remaining in the carbon. Development of a particle size control method that replaces the method of performing diameter control is desired.

特開2004−349113号公報JP 2004-349113 A 特開2008−41482号公報JP 2008-41482 A

本発明は、上記する問題に鑑みてなされたものであり、導電性担体表面に触媒金属の前駆体から触媒金属を還元担持させて触媒担持担体を得る方法に関し、担持後の触媒金属の粒径が比較的大きく、しかも粒径のばらつきが極めて少ない触媒担持担体の製造方法と、この方法で得られた触媒担持担体を使用する電極触媒の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and relates to a method for obtaining a catalyst-supported support by reducing and supporting a catalyst metal from a catalyst metal precursor on the surface of a conductive support. It is an object of the present invention to provide a method for producing a catalyst-supporting carrier having a relatively large particle size variation and a method for producing an electrode catalyst using the catalyst-supporting carrier obtained by this method.

前記目的を達成すべく、本発明による触媒担持担体の製造方法は、分散溶媒内に導電性担体を投入し、触媒金属の酸性塩と塩基性塩を投入して、酸性塩および塩基性塩のそれぞれから触媒金属を導電性担体に還元担持させるものである。   In order to achieve the above object, the method for producing a catalyst-supporting carrier according to the present invention comprises introducing a conductive carrier into a dispersion solvent, introducing an acidic salt and a basic salt of a catalytic metal, and forming an acidic salt and a basic salt. The catalyst metal is reduced and supported on a conductive support from each.

本発明の触媒担持担体の製造方法は、分散溶媒内に導電性担体と、触媒金属の酸性塩と塩基性塩の2種類の触媒金属前駆体を投入することにより、これら酸性塩と塩基性塩を中和させて双方の前駆体から触媒金属を析出させることにより、この中和と還元析出の段階で比較的大きな粒径を有する触媒金属を導電性担体表面に担持させることのできるものである。   The method for producing a catalyst-supporting carrier according to the present invention comprises introducing a conductive carrier and two kinds of catalyst metal precursors, ie, an acidic salt and a basic salt of a catalytic metal, into the dispersion solvent, thereby allowing the acidic salt and the basic salt to be introduced. By neutralizing the catalyst and precipitating the catalyst metal from both precursors, the catalyst metal having a relatively large particle size can be supported on the conductive support surface at the stage of neutralization and reduction precipitation. .

なお、触媒金属の還元析出の後に熱処理をおこなうことで、触媒金属の粒径をさらに成長させることができる。しかし、既述する従来の製造方法と異なり、この熱処理のみによって担持後の触媒金属の粒径制御をおこなうものではなく、熱処理の段階で既にある程度の大きさの粒径の触媒金属が担持されていることから、熱処理のみによる場合の課題であった導電性担体が劣化し得るという課題は生じ得ない。   In addition, the particle size of the catalyst metal can be further grown by performing a heat treatment after the reduction deposition of the catalyst metal. However, unlike the conventional manufacturing method described above, the particle size of the catalyst metal after loading is not controlled only by this heat treatment, and a catalyst metal having a certain size particle size is already loaded at the stage of heat treatment. Therefore, the problem that the conductive carrier, which has been a problem in the case of only heat treatment, can be deteriorated cannot occur.

また、本発明者等の検証によれば、導電性担体の表面に所望する大きさの粒径(平均粒径)の触媒金属を担持できることのほかに、触媒金属の粒径のばらつきを少なくすることができ、このことは、粒径が小さ過ぎて耐久性に乏しい触媒金属を解消できることに繋がる。   Further, according to the verification by the present inventors, in addition to being able to carry a catalyst metal having a desired particle size (average particle size) on the surface of the conductive support, variation in the particle size of the catalyst metal is reduced. This can lead to the elimination of catalytic metals that are too small in particle size and poor in durability.

ここで、触媒金属の酸性塩と塩基性塩の分散溶媒への投入タイミングは、双方を別々に投入する方法であっても同時に投入する方法であってもよい。   Here, the timing of adding the acidic salt and basic salt of the catalyst metal to the dispersion solvent may be a method in which both are added separately or a method in which both are added simultaneously.

たとえば、触媒金属の酸性塩と塩基性塩を別々に投入するに当たり、最初に酸性塩の前駆体を投入することとした場合に、この段階では、触媒金属の酸性塩は還元析出されておらず、したがって、この前駆体の状態で導電性担体の表面に物理吸着しているに過ぎない。   For example, in the case where the acidic salt and basic salt of the catalytic metal are separately added, and the initial precursor of the acidic salt is first introduced, the acidic salt of the catalytic metal is not reduced and precipitated at this stage. Therefore, it is only physically adsorbed on the surface of the conductive support in the state of this precursor.

次に、この溶媒内に触媒金属の塩基性塩を投入することにより、酸性塩と塩基性塩が中和して双方の触媒金属が還元析出され、還元析出した双方の触媒金属が一体となって導電性担体の表面の複数箇所に担持されることになる。すなわち、この段階で、導電性担体表面の任意箇所に担持された触媒金属は既にある程度の大きさで一体とされているのである。   Next, by introducing a basic salt of the catalytic metal into the solvent, the acidic salt and the basic salt are neutralized, both catalytic metals are reduced and precipitated, and both of the catalytic metals that are reduced and precipitated are united. Thus, it is carried at a plurality of locations on the surface of the conductive carrier. That is, at this stage, the catalyst metal supported at an arbitrary location on the surface of the conductive support is already integrated into a certain size.

なお、この還元に際して、還元剤を分散溶媒内に投入する方法や、加熱処理を実施する方法、もしくはそれらの組み合わせ方法などを適用して還元促進を図ってもよい。   In this reduction, reduction may be promoted by applying a method of introducing a reducing agent into the dispersion solvent, a method of performing heat treatment, or a combination thereof.

本発明者等の検証によれば、上記製造方法にて製造された触媒担持担体を使用して最終的に電極触媒を製造し、この電極触媒を有する燃料電池セルの耐久性能評価をおこなった結果、耐久試験後の触媒金属表面積維持率は従来の触媒担持担体に比して30〜40%程度も向上するとの知見が得られている。   According to the verification by the present inventors, an electrode catalyst was finally produced using the catalyst-supported carrier produced by the above production method, and the durability performance evaluation of the fuel cell having this electrode catalyst was performed. It has been found that the catalyst metal surface area retention rate after the durability test is improved by about 30 to 40% as compared with the conventional catalyst-supported carrier.

上記方法で得られた触媒担持担体を使用し、触媒担持担体と、高分子電解質を分散溶媒に投入し、攪拌して触媒溶液(触媒インク)を生成する。   Using the catalyst-carrying carrier obtained by the above method, the catalyst-carrying carrier and the polymer electrolyte are put into a dispersion solvent and stirred to produce a catalyst solution (catalyst ink).

そして、生成された触媒溶液は、電解質膜やガス拡散層等の基材にたとえば塗工ブレードにて層状に引き伸ばされて塗膜が形成され、温風乾燥炉等で乾燥することで、アノード側およびカソード側の触媒層(触媒電極)が形成される。   Then, the produced catalyst solution is stretched in layers with a coating blade, for example, on a substrate such as an electrolyte membrane or a gas diffusion layer to form a coating film, which is dried in a hot air drying furnace or the like, so that the anode side Then, a catalyst layer (catalyst electrode) on the cathode side is formed.

既述するように、本発明の製造方法にて得られた触媒担持担体を使用して触媒インクを生成し、これを使用して得られた電極触媒を有する燃料電池セルは、従来製法による電極触媒を有する燃料電池セルに比してその耐久性に優れている。このことは、発電に寄与する触媒が所望の大きさの粒径(平均粒径)を有し、かつその粒径のばらつきが小さく、さらには、粒径制御の段階で導電性担体が劣化していないことに依拠するものである。   As already described, a catalyst ink is produced using the catalyst-supported carrier obtained by the production method of the present invention, and a fuel cell having an electrode catalyst obtained by using the catalyst-supported carrier is an electrode produced by a conventional production method. The durability is superior to that of a fuel cell having a catalyst. This is because the catalyst that contributes to power generation has a desired particle size (average particle size), the variation in the particle size is small, and the conductive support deteriorates at the stage of particle size control. It depends on what is not.

本発明の導電性担体の製造方法、この方法で得られた導電性担体を使用してなる電極触媒の製造方法で得られた電極触媒を有する燃料電池は、上記のごとき効果を奏するものであることから、近時その生産が拡大しており、車載機器に一層の高性能を要求している電気自動車やハイブリッド車用の燃料電池に好適である。   The fuel cell having the electrode catalyst obtained by the method for producing a conductive carrier according to the present invention and the method for producing an electrode catalyst using the conductive carrier obtained by this method has the effects as described above. Therefore, its production has been increasing recently, and it is suitable for fuel cells for electric vehicles and hybrid vehicles that require even higher performance for in-vehicle devices.

以上の説明から理解できるように、本発明の触媒担持担体の製造方法と、この方法にて得られた触媒担持担体を使用してなる電極触媒の製造方法によれば、分散溶媒内に導電性担体と、触媒金属の酸性塩と塩基性塩の2種類の触媒金属前駆体を投入することにより、これら酸性塩と塩基性塩を中和させて双方の前駆体から触媒金属を析出させ、この中和と還元析出の段階で比較的大きな粒径を有し、かつ粒径のばらつきも少ない触媒金属を導電性担体表面に担持させることができ、触媒および燃料電池の耐久性の向上に寄与するものとなる。   As can be understood from the above description, according to the method for producing the catalyst-supported carrier of the present invention and the method for producing an electrode catalyst using the catalyst-supported carrier obtained by this method, the conductive solvent is dispersed in the dispersion solvent. By introducing the support and two types of catalyst metal precursors, an acidic salt and a basic salt of the catalytic metal, the acidic salt and the basic salt are neutralized to precipitate the catalytic metal from both precursors. Catalytic metal having a relatively large particle size at the stage of neutralization and reduction precipitation and with little variation in particle size can be supported on the surface of the conductive support, contributing to improvement in durability of the catalyst and the fuel cell. It will be a thing.

(a)は、本発明の触媒担持担体の製造方法を説明した図であって、分散溶媒内に導電性担体を投入し、触媒金属の酸性塩を投入している状態を説明した模式図であり、(b)は、この段階で生成される中間体を示した模式図である。(A) is the figure explaining the manufacturing method of the catalyst carrying | support carrier of this invention, Comprising: It is the schematic diagram explaining the state which introduce | transduced the electroconductive support | carrier in the dispersion | distribution solvent, and has injected the acidic salt of the catalyst metal. Yes, (b) is a schematic diagram showing the intermediate produced at this stage. 図1aに続いて、分散溶媒内に触媒金属の塩基性塩を投入している状態を説明した模式図であり、(b)は、製造された触媒担持担体を示した模式図である。FIG. 1B is a schematic diagram illustrating a state in which a basic salt of a catalyst metal is introduced into a dispersion solvent following FIG. 1A, and (b) is a schematic diagram illustrating a manufactured catalyst-supporting carrier. 実施例、比較例の各燃料電池セルの耐久試験における耐久サイクルと、各耐久サイクルにおける白金表面積維持率を測定した実験結果を示した図である。It is the figure which showed the experimental result which measured the endurance cycle in each endurance test of each fuel cell of an example and a comparative example, and the platinum surface area maintenance rate in each endurance cycle.

以下、図1,2を参照して本発明の触媒担持担体の製造方法を概説する。
図1a,図2aは順に、本発明の触媒担持担体の製造方法を説明した模式図であり、図1b,図2bはそれぞれ、図1aの段階で生成される中間体を示した模式図、図2aの段階で製造された触媒担持担体を示した模式図である。
Hereinafter, the method for producing the catalyst-supporting carrier of the present invention will be outlined with reference to FIGS.
FIG. 1a and FIG. 2a are schematic views illustrating the method for producing the catalyst-supporting carrier of the present invention in order, and FIG. 1b and FIG. 2b are schematic views showing intermediates produced at the stage of FIG. It is the schematic diagram which showed the catalyst carrying | support support manufactured at the stage of 2a.

まず、図1aで示すように、容器Y内に収容された分散溶媒へ、導電性担体1と、触媒金属の前駆体である酸性塩2’を投入して十分に混合する。   First, as shown in FIG. 1 a, the conductive carrier 1 and the acid salt 2 ′, which is a catalyst metal precursor, are introduced into the dispersion solvent accommodated in the container Y and mixed sufficiently.

この混合により、分散溶媒内では、図1bで示すように、導電性担体1の表面に酸性塩2’がそのままの状態で物理吸着してなる中間体10’が生成される。   By this mixing, as shown in FIG. 1 b, an intermediate 10 ′ formed by physical adsorption of the acidic salt 2 ′ as it is on the surface of the conductive carrier 1 is generated in the dispersion solvent.

次に、図2aで示すように、分散溶媒内に触媒金属の前駆体である塩基性塩3’を投入して十分に混合する。   Next, as shown in FIG. 2a, the basic salt 3 ', which is a precursor of the catalyst metal, is introduced into the dispersion solvent and sufficiently mixed.

分散溶媒内では、図2bで示すように、酸性塩2’と塩基性塩3’が中和して双方の触媒金属2,3が還元析出され、これらが一体となって全体寸法(粒径)の大きな触媒金属4を形成して導電性担体1の表面に担持され、触媒担持担体10が製造される。なお、塩基性塩3’を投入して十分に混合してできる溶液に対し、加熱処理や還元剤の投入などによって還元を促進させてもよい。   In the dispersion solvent, as shown in FIG. 2b, the acidic salt 2 ′ and the basic salt 3 ′ are neutralized, and both catalytic metals 2 and 3 are reduced and precipitated, and these are integrated into the overall dimensions (particle size). The large catalyst metal 4 is formed and supported on the surface of the conductive support 1 to produce the catalyst support 10. Note that reduction may be promoted by heat treatment or addition of a reducing agent for a solution obtained by adding and thoroughly mixing the basic salt 3 '.

また、この加熱処理により、還元析出された触媒金属2,3の一体化の促進や、形成された触媒金属4の最終的な粒径制御(粒径調整)、さらには、相対的に小径の触媒金属の粒径成長をおこなうこともできる。   Further, by this heat treatment, integration of the reduced and precipitated catalyst metals 2 and 3 is promoted, final particle size control (particle size adjustment) of the formed catalyst metal 4, and a relatively small diameter. The particle size growth of the catalyst metal can also be performed.

製造された触媒担持担体10は、酸性塩2’と塩基性塩3’の中和によって双方の塩を構成する触媒金属が同時に還元され、導電性担体表面上に担持されることで、一度に大きな粒径(平均粒径)の触媒金属を担持することができる。さらには、この方法で触媒金属を担持させることにより、触媒金属の粒径のばらつきも少なくでき、これらのことから、粒径が小さ過ぎて耐久性に乏しい触媒金属の生成を解消することができる。   The produced catalyst-supporting carrier 10 is obtained by simultaneously reducing the catalyst metal constituting both salts by neutralization of the acid salt 2 ′ and the basic salt 3 ′ and supporting it on the surface of the conductive carrier. A catalyst metal having a large particle diameter (average particle diameter) can be supported. Furthermore, by supporting the catalyst metal by this method, the variation in the particle size of the catalyst metal can be reduced, and from these, it is possible to eliminate the production of the catalyst metal having a too small particle size and poor durability. .

ここで、上記する導電性担体1としては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のほか、炭化ケイ素などに代表される炭素化合物などを挙げることができ、触媒金属の酸性塩2’、塩基性塩3’を形成する触媒金属としては、たとえば、白金や白金合金、パラジウム、ロジウム、金、銀、オスミウム、イリジウムなどのうちのいずれか一種を使用することができ、好ましくは白金または白金合金を使用するのがよい。さらに、この白金合金としては、たとえば、白金と、アルミニウム、クロム、マンガン、鉄、コバルト、ニッケル、ガリウム、ジルコニウム、モリブデン、ルテニウム、ロジウム、パラジウム、バナジウム、タングステン、レニウム、オスミウム、イリジウム、チタンおよび鉛のうちの少なくとも一種との合金を挙げることができる。   Here, examples of the conductive carrier 1 include carbon materials such as carbon black, carbon nanotubes, and carbon nanofibers, as well as carbon compounds typified by silicon carbide, and the like. As the catalytic metal for forming ', basic salt 3', for example, any one of platinum, platinum alloy, palladium, rhodium, gold, silver, osmium, iridium and the like can be used, preferably platinum. Alternatively, a platinum alloy is preferably used. Further, examples of the platinum alloy include platinum, aluminum, chromium, manganese, iron, cobalt, nickel, gallium, zirconium, molybdenum, ruthenium, rhodium, palladium, vanadium, tungsten, rhenium, osmium, iridium, titanium, and lead. An alloy with at least one of them can be mentioned.

さらに、分散溶媒としては、水のほか、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、ジエチレングリコール等のアルコール類、アセトン、メチルエチルケトン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルアセトアミド、N−メチルピロリドン、プロピレンカーボネート、酢酸エチルや酢酸ブチルなどのエステル類、芳香族系あるいはハロゲン系の種々の溶媒を挙げることができ、さらには、これらを単独で、もしくは混合液として使用することができる。   Furthermore, as a dispersion solvent, in addition to water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, diethylene glycol, acetone, methyl ethyl ketone, dimethylformamide, dimethylimidazolidinone, dimethyl sulfoxide, dimethylacetamide, Examples include N-methylpyrrolidone, propylene carbonate, esters such as ethyl acetate and butyl acetate, and various aromatic or halogen solvents, and these may be used alone or as a mixture. it can.

製造された触媒担持担体10を、分散溶媒内に投入し、さらに、高分子電解質を投入して、超音波ホモジナイザー、ビーズミル、ボールミルなどを使用して攪拌等することにより、触媒溶液(触媒インク)が生成される。   The produced catalyst-supporting carrier 10 is put into a dispersion solvent, and further, a polymer electrolyte is put into it, and stirred using an ultrasonic homogenizer, a bead mill, a ball mill, etc., thereby a catalyst solution (catalyst ink). Is generated.

この高分子電解質としては、プロトン伝導性ポリマーである、有機系の含フッ素高分子を骨格とするイオン交換樹脂、例えばパーフルオロカーボンスルフォン酸樹脂、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等のスルホン化プラスチック系電解質、スルホアルキル化ポリエーテルエーテルケトン、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリエーテルエーテルスルホン、スルホアルキル化ポリスルホン、スルホアルキル化ポリスルフィド、スルホアルキル化ポリフェニレンなどのスルホアルキル化プラスチック系電解質などを挙げることができる。なお、市販素材としては、ナフィオン(Nafion)(登録商標、デュポン社製)やフレミオン(Flemion)(登録商標、旭硝子株式会社製)などを使用することができる。   As this polymer electrolyte, an ion exchange resin having a skeleton of an organic fluorine-containing polymer, which is a proton conductive polymer, for example, perfluorocarbon sulfonic acid resin, sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated Sulfonated plastic electrolytes such as polyetherethersulfone, sulfonated polysulfone, sulfonated polysulfide, sulfonated polyphenylene, sulfoalkylated polyetheretherketone, sulfoalkylated polyethersulfone, sulfoalkylated polyetherethersulfone, sulfoalkylated Examples thereof include sulfoalkylated plastic electrolytes such as polysulfone, sulfoalkylated polysulfide, and sulfoalkylated polyphenylene. As commercially available materials, Nafion (registered trademark, manufactured by DuPont), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like can be used.

生成された触媒溶液は、基材である電解質膜、ガス拡散層、支持フィルムのいずれか一種に塗工等され、温風乾燥、ホットプレス等されることによって基材表面に触媒層(電極触媒)が形成される。ここで、この電解質膜は、たとえば、スルホン酸基やカルボニル基を持つフッ素系イオン交換膜、置換フェニレンオキサイドやスルホン化ポリアリールエーテルケトン、スルホン化ポリアリールエーテルスルホン、スルホン化フェニレンスルファイドなどの非フッ素系のポリマーなどから形成されるものである。また、ガス拡散層は、ポリアクリロニトリルからの焼成体、ピッチからの焼成体、黒鉛及び膨張黒鉛等の炭素材やこれらのナノカーボン材料、ステンレススチール、モリブデン、チタン等から形成されるものである。さらに、支持フィルムは、ポリエチレンフィルム、ポリプロピレンフィルム、ポリテトラフルオロエチレンフィルム、エチレン/テトラフルオロエチレン共重合体フィルム、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体フィルム、ポリフッ化ビニリデンフィルム、ポリイミドフィルム、ポリアミドフィルム、ポリエチレンテレフタレートフィルムなどを挙げることができ、これらの素材からなるシートを2層以上積層して基材としてもよい。なお、市販素材であるテフロンシート(テフロン:登録商標、デュポン社)などを使用することもできる。   The produced catalyst solution is applied to any one of an electrolyte membrane, a gas diffusion layer, and a support film, which is a base material, and is dried on a hot air, hot pressed, etc., to form a catalyst layer (electrode catalyst) on the surface of the base material. ) Is formed. Here, this electrolyte membrane is, for example, a non-fluorine ion exchange membrane having a sulfonic acid group or a carbonyl group, a substituted phenylene oxide, a sulfonated polyaryletherketone, a sulfonated polyarylethersulfone, a sulfonated phenylenesulfide or the like. It is formed from a fluorine-based polymer or the like. The gas diffusion layer is formed from a fired body made of polyacrylonitrile, a fired body made of pitch, carbon materials such as graphite and expanded graphite, nanocarbon materials thereof, stainless steel, molybdenum, titanium, and the like. Furthermore, the support film is a polyethylene film, a polypropylene film, a polytetrafluoroethylene film, an ethylene / tetrafluoroethylene copolymer film, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer film, a polyvinylidene fluoride film, a polyimide film. , Polyamide film, polyethylene terephthalate film, and the like. Two or more sheets made of these materials may be laminated to form a base material. A commercially available material such as a Teflon sheet (Teflon: registered trademark, DuPont) may also be used.

[耐久実験および白金の平均粒径とそのばらつきの測定とそれらの結果]
本発明者等は、本発明の製造方法で得られた触媒担持担体を使用して触媒溶液を生成し、これを使用して形成された触媒層を具備する燃料電池セル(実施例)と、従来の製造方法にて製造された触媒層を具備する燃料電池セル(比較例1,2)を試作し、それらの耐久試験後の白金表面積維持率を測定する実験をおこなった。なお、実施例、比較例1,2でそれぞれの平均粒径とそのばらつきを測定した。なお、この白金粒径とそのばらつきの測定にはX線小角散乱を用いた。
[Durability experiment and measurement of average particle size and variation of platinum and their results]
The present inventors produced a catalyst solution using the catalyst-supported support obtained by the production method of the present invention, and a fuel cell (Example) comprising a catalyst layer formed using the catalyst solution, A fuel cell (Comparative Examples 1 and 2) having a catalyst layer manufactured by a conventional manufacturing method was prototyped, and an experiment was conducted to measure the platinum surface area maintenance rate after the durability test. In addition, each average particle diameter and its variation were measured in Examples and Comparative Examples 1 and 2. X-ray small angle scattering was used to measure the platinum particle size and its variation.

(実施例の触媒担持担体の製造方法)
本発明の製造方法にて触媒担持担体を得る具体的な内容を説明すると、市販の導電性担体であるケッチェンEC(ケッチェンブラックインターナショナル製)5.0gを純粋1.2L(リットル)に加えて分散させ、この分散液に、白金2.5gを含むヘキサヒドロキソ白金硝酸(白金塩、触媒金属塩)の溶液と、テトラアンミン白金水酸化物の混合液を滴下し、十分に攪拌した。これにギ酸を加えて100℃で還元をおこない、還元後の分散液を濾過し、得られた粉末を100℃で10時間真空乾燥させた。そして、乾燥後の粉末を窒素雰囲気下、300℃で1時間熱処理をおこなった。この方法で得られた触媒担持担体粉末の白金担持密度は、廃液分析の結果、白金50質量%であった。
(Method for producing catalyst-supporting carrier of Example)
The specific content of obtaining the catalyst-supported carrier by the production method of the present invention will be explained. A commercially available conductive carrier, Ketjen EC (manufactured by Ketjen Black International) (5.0 g) was added to pure 1.2 L (liter). A dispersion of hexahydroxoplatinum nitrate (platinum salt, catalytic metal salt) containing 2.5 g of platinum and tetraammineplatinum hydroxide was added dropwise to this dispersion and stirred well. Formic acid was added thereto, reduction was performed at 100 ° C., the dispersion after reduction was filtered, and the obtained powder was vacuum-dried at 100 ° C. for 10 hours. And the powder after drying was heat-processed at 300 degreeC by nitrogen atmosphere for 1 hour. The platinum carrying density of the catalyst carrying carrier powder obtained by this method was 50% by mass of platinum as a result of waste liquid analysis.

(比較例1の触媒担持担体の製造方法)
一方、比較例1の触媒担持担体の製造に関し、ケッチェンEC5.0gを純粋1.2L(リットル)に加えて分散させ、この分散液に、白金5.0gを含むヘキサヒドロキソ白金硝酸(白金塩、触媒金属塩)の溶液を滴下し、十分に攪拌した。そして、この溶液に0.1Nアンモニア約100mLを添加し、溶液pHを約10として水酸化物を形成し、カーボン表面に析出させ、さらに、エタノールを用いて90℃でヘキサヒドロキソ白金硝酸から白金を還元して分散液を濾過し、得られた粉末を100℃で10時間真空乾燥させた。そして、乾燥後の粉末を窒素雰囲気下、300℃で1時間熱処理をおこない、触媒担持担体を得た。この方法で得られた触媒担持担体粉末の白金担持密度も実施例のものと同様、廃液分析の結果、白金50質量%であった。
(Method for Producing Catalyst-Supported Carrier of Comparative Example 1)
On the other hand, regarding the production of the catalyst-supported carrier of Comparative Example 1, 5.0 g of Ketjen EC was added to 1.2 L (liter) of pure and dispersed, and hexahydroxo platinum nitric acid (platinum salt, containing 5.0 g of platinum) was dispersed in this dispersion. Catalyst metal salt) solution was added dropwise and stirred thoroughly. Then, about 100 mL of 0.1N ammonia is added to this solution, a hydroxide is formed with a solution pH of about 10, and precipitated on the carbon surface. Further, using ethanol, platinum is removed from hexahydroxoplatinum nitrate at 90 ° C. The dispersion was filtered after reduction, and the obtained powder was vacuum-dried at 100 ° C. for 10 hours. Then, the dried powder was heat treated at 300 ° C. for 1 hour in a nitrogen atmosphere to obtain a catalyst-supporting carrier. The platinum carrying density of the catalyst carrying carrier powder obtained by this method was 50% by mass of platinum as a result of the waste liquid analysis as in the examples.

(比較例2の触媒担持担体の製造方法)
一方、比較例2の触媒担持担体の製造に関し、ケッチェンEC5.0gを純粋1.2L(リットル)に加えて分散させ、この分散液に、白金5.0gを含むテトラアンミン白金水酸化物の溶液を滴下し、十分に攪拌した。これにギ酸を加えて100℃で還元をおこない、還元後の分散液を濾過し、得られた粉末を100℃で10時間真空乾燥させた。そして、乾燥後の粉末を窒素雰囲気下、300℃で1時間熱処理をおこなった。この方法で得られた触媒担持担体粉末の白金担持密度は、廃液分析の結果、白金50質量%であった。
そして、上記溶液を十分に攪拌し、超音波照射やビーズミルなどによる分散処理をおこない、実施例、比較例1,2の触媒溶液(触媒インク)を生成した。
(Method for producing catalyst-supporting carrier of Comparative Example 2)
On the other hand, regarding the production of the catalyst-supporting carrier of Comparative Example 2, Ketjen EC 5.0 g was added to 1.2 L (liter) of pure and dispersed, and a solution of tetraammine platinum hydroxide containing 5.0 g of platinum was added to this dispersion. The solution was added dropwise and stirred thoroughly. Formic acid was added thereto, reduction was performed at 100 ° C., the dispersion after reduction was filtered, and the obtained powder was vacuum-dried at 100 ° C. for 10 hours. And the powder after drying was heat-processed at 300 degreeC by nitrogen atmosphere for 1 hour. The platinum carrying density of the catalyst carrying carrier powder obtained by this method was 50% by mass of platinum as a result of waste liquid analysis.
Then, the above solution was sufficiently stirred and subjected to dispersion treatment by ultrasonic irradiation, bead mill, etc., and catalyst solutions (catalyst inks) of Examples and Comparative Examples 1 and 2 were generated.

生成されたそれぞれの触媒インクをマイクロシリンジで定量採取し、グラッシーカーボン電極に塗布し、塗布後の電極を乾燥させて触媒修飾電極を得た。   Each produced catalyst ink was quantitatively collected with a microsyringe, applied to a glassy carbon electrode, and the electrode after application was dried to obtain a catalyst-modified electrode.

燃料電池触媒の耐久性を評価するべく、電解液に過塩素酸0.1Mを用い、対極には白金メッシュ電極を、参照極には可逆水素電極を用いた。そして、白金の水素吸着量の維持率で耐久評価をおこなったが、この際の耐久条件は、窒素雰囲気飽和下、0.5〜1.1Vのサイクルを掃引速度0.3V/sで30000回おこなった。実験の結果を図3に示しており、平均粒径およびばらつきの測定結果を表1に示している。   In order to evaluate the durability of the fuel cell catalyst, 0.1 M perchloric acid was used as the electrolyte, a platinum mesh electrode was used as the counter electrode, and a reversible hydrogen electrode was used as the reference electrode. Durability evaluation was performed based on the maintenance rate of the amount of hydrogen adsorbed on platinum, and the durability condition at this time was 30000 cycles at a sweep rate of 0.3 V / s with a cycle of 0.5 to 1.1 V under nitrogen atmosphere saturation. I did it. The result of the experiment is shown in FIG. 3, and the measurement results of the average particle diameter and the variation are shown in Table 1.

実験の結果、30000回サイクル時の白金表面積維持率は、比較例1が58.66%、比較例2が54.68%であるのに対して、実施例は75.11%であり、比較例に対して30〜40%程度も白金表面積維持率が向上することが実証されている。

Figure 2011240245
As a result of the experiment, the platinum surface area retention rate at the time of 30000 cycles is 58.66% in Comparative Example 1 and 54.68% in Comparative Example 2, whereas it is 75.11% in Example. It has been demonstrated that the platinum surface area maintenance ratio is improved by about 30 to 40% as compared to the example.
Figure 2011240245

また表1より、比較例1,2に対して、実施例の触媒白金の平均粒径は相対的に大きくなっており、所望する3.3nmに制御されている。さらに、そのばらつきも少なくなっており、たとえば比較例1の2.4〜3.8nmに対して3.1〜3.5nmの範囲であって、特に小さな粒径でも所望径に近い3.1nmに制御されている。このように、触媒白金の平均粒径が相対的に大きく、しかも所望する径に制御されていること、および最小径のものであってもその粒径が小さ過ぎないことから、すべての触媒白金の耐久性が高く、このことが上記する耐久試験の結果に繋がっている。   Also, from Table 1, the average particle diameter of the catalyst platinum of the example is relatively larger than that of Comparative Examples 1 and 2, and is controlled to the desired 3.3 nm. Further, the variation is reduced, for example, in the range of 3.1 to 3.5 nm with respect to 2.4 to 3.8 nm of Comparative Example 1, and 3.1 nm which is close to the desired diameter even with a particularly small particle size. Is controlled. As described above, since the average particle diameter of the catalyst platinum is relatively large and is controlled to a desired diameter, and even if it is the minimum diameter, the particle diameter is not too small. This leads to the result of the durability test described above.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…導電性担体、2,3,4…触媒金属、2’…触媒金属の酸性塩、3’…触媒金属の塩基性塩、10…触媒担持担体、10’…触媒担持担体の中間体 DESCRIPTION OF SYMBOLS 1 ... Electroconductive support | carrier, 2, 3, 4 ... Catalytic metal, 2 '... Acidic salt of catalytic metal, 3' ... Basic salt of catalytic metal, 10 ... Catalyst supporting carrier, 10 '... Intermediate of catalyst supporting carrier

Claims (4)

分散溶媒内に導電性担体を投入し、触媒金属の酸性塩と塩基性塩を投入して、酸性塩および塩基性塩のそれぞれから触媒金属を導電性担体に還元担持させる触媒担持担体の製造方法。   A method for producing a catalyst-carrying carrier in which a conductive carrier is introduced into a dispersion solvent, an acidic salt and a basic salt of the catalytic metal are introduced, and the catalytic metal is reduced and supported on the conductive carrier from each of the acidic salt and the basic salt . 触媒金属の酸性塩と塩基性塩が分散溶媒内に別々に投入される請求項1に記載の触媒担持担体の製造方法。   The method for producing a catalyst-supporting carrier according to claim 1, wherein the acidic salt and the basic salt of the catalyst metal are separately charged into the dispersion solvent. 触媒金属の酸性塩と塩基性塩が分散溶媒内に同時に投入される請求項1に記載の触媒担持担体の製造方法。   The method for producing a catalyst-supporting carrier according to claim 1, wherein the catalyst metal acidic salt and the basic salt are simultaneously charged into the dispersion solvent. 請求項1〜3のいずれかに記載の製造方法で製造された触媒担持担体と高分子電解質を分散溶媒に投入し、攪拌して触媒溶液を生成する、電極触媒の製造方法。   A method for producing an electrode catalyst, wherein the catalyst-supported carrier and the polymer electrolyte produced by the production method according to any one of claims 1 to 3 are charged into a dispersion solvent and stirred to produce a catalyst solution.
JP2010114275A 2010-05-18 2010-05-18 Method for manufacturing of catalyst carrying carrier, and method for manufacturing of electrode catalyst Withdrawn JP2011240245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114275A JP2011240245A (en) 2010-05-18 2010-05-18 Method for manufacturing of catalyst carrying carrier, and method for manufacturing of electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114275A JP2011240245A (en) 2010-05-18 2010-05-18 Method for manufacturing of catalyst carrying carrier, and method for manufacturing of electrode catalyst

Publications (1)

Publication Number Publication Date
JP2011240245A true JP2011240245A (en) 2011-12-01

Family

ID=45407470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114275A Withdrawn JP2011240245A (en) 2010-05-18 2010-05-18 Method for manufacturing of catalyst carrying carrier, and method for manufacturing of electrode catalyst

Country Status (1)

Country Link
JP (1) JP2011240245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217796B2 (en) 2017-04-28 2022-01-04 Cataler Corporation Electrode catalyst for fuel cell and method of production of same
CN115275235A (en) * 2022-09-30 2022-11-01 国家电投集团氢能科技发展有限公司 Slurry of cathode catalyst layer of proton exchange membrane fuel cell, preparation method and membrane electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217796B2 (en) 2017-04-28 2022-01-04 Cataler Corporation Electrode catalyst for fuel cell and method of production of same
CN115275235A (en) * 2022-09-30 2022-11-01 国家电投集团氢能科技发展有限公司 Slurry of cathode catalyst layer of proton exchange membrane fuel cell, preparation method and membrane electrode

Similar Documents

Publication Publication Date Title
Choi et al. Bi-modified Pt supported on carbon black as electro-oxidation catalyst for 300 W formic acid fuel cell stack
EP2990104B1 (en) Catalyst, method for producing same, and electrode catalyst layer using said catalyst
JP6172281B2 (en) Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using the same
TWI728612B (en) Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
US9343750B2 (en) Supporter for fuel cell, and electrode for fuel cell, membrane-electrode assembly for a fuel cell, and fuel cell system including same
US11837735B2 (en) Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
US20150111124A1 (en) Catalyst slurry for fuel cell, and electrode, membrane electrode assembly and fuel cell using the same
Beydaghi et al. Preparation and characterization of electrocatalyst nanoparticles for direct methanol fuel cell applications using β-D-glucose as a protection agent
CN108878904B (en) Catalyst layer for fuel cell electrode and fuel cell
KR20200036794A (en) A metal oxide-carbon composite, a method for preparing the metal oxide-carbon composite, a catalyst, a method for preparing the catalyst, an electrode comprising the catalyst, a membrane-electrode assembly comprising the electrode, and a fuel cell comprising the membrane-electrode assembly
JP6478677B2 (en) Fuel cell electrode
Hasché et al. Activity and structure of dealloyed PtNi3 nanoparticle electrocatalyst for oxygen reduction reaction in PEMFC
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
JP2011240245A (en) Method for manufacturing of catalyst carrying carrier, and method for manufacturing of electrode catalyst
JP5565135B2 (en) Method for producing catalyst-supported carrier and method for producing electrode catalyst
JP5417288B2 (en) Electrode catalyst on anode side and cathode side, membrane electrode assembly and fuel cell
JP2019204700A (en) Fuel cell manufacturing method
JP2011255336A (en) Method for manufacturing catalyst support carrier, and method for manufacturing electrode catalyst
JP2013059741A (en) Catalyst-supporting carrier and method for manufacturing the same
JP6191326B2 (en) ELECTRODE CATALYST PARTICLE FOR FUEL CELL, ELECTRODE CATALYST FOR FUEL CELL USING THE SAME, ELECTROLYTE-ELECTRODE ASSEMBLY, FUEL CELL, AND METHOD FOR PRODUCING CATALYTIC PARTICLE AND CATALYST
JP7139567B2 (en) Oxidation catalyst for fuel cell, method for producing the same, and fuel cell
CN114342129A (en) Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly comprising the same
JP6862792B2 (en) Method of manufacturing electrode catalyst
KR102187990B1 (en) Manufacturing method of catalyst ink for forming fuel cell electrode catalyst layer
JP2012054140A (en) Method of producing catalyst supporting carrier and method of producing electrode catalyst

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806