JP2011200081A - High-speed rotating motor and rotor used for the same - Google Patents

High-speed rotating motor and rotor used for the same Download PDF

Info

Publication number
JP2011200081A
JP2011200081A JP2010066663A JP2010066663A JP2011200081A JP 2011200081 A JP2011200081 A JP 2011200081A JP 2010066663 A JP2010066663 A JP 2010066663A JP 2010066663 A JP2010066663 A JP 2010066663A JP 2011200081 A JP2011200081 A JP 2011200081A
Authority
JP
Japan
Prior art keywords
rotor
salient poles
core
rotor core
stress relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010066663A
Other languages
Japanese (ja)
Other versions
JP5388919B2 (en
Inventor
Hideaki Arita
秀哲 有田
Masaya Inoue
正哉 井上
Yoshitaka Ikutake
芳貴 生武
Keiichi Konishi
啓一 古西
Tomoyuki Inoue
知之 井上
Toshihiko Miyake
俊彦 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010066663A priority Critical patent/JP5388919B2/en
Publication of JP2011200081A publication Critical patent/JP2011200081A/en
Application granted granted Critical
Publication of JP5388919B2 publication Critical patent/JP5388919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-speed rotating motor and a rotor forming a stress-relaxation hole in a hole shape symmetrical to a plane passing at a central position, in the peripheral direction of salient poles, including the axial center of the rotor on the same circumference as the outer peripheral surface of the base of a rotor core, dispersing a stress concentration working to the rotor core resulting from a centrifugal force and being capable of increasing the critical number of revolution.SOLUTION: The rotor 3 is configured, by mutually displacing the first and second rotor cores 4 and 5 by half a salient pole pitches manufactured in the same shape disposing the salient poles 4b and 5b at equiangular pitches in the circumferential direction on the outer peripheral surfaces of cylindrical bases 4a and 5a in the circumferential direction and fixing the rotor cores 4 and 5 coaxially to a rotating shaft 2 inserted into the bases 4a and 5a. The stress-relaxation hole 20 is formed into a shape that is symmetric with respect to the plane containing boundaries with the bases 4a and 5a and the salient poles 4b and 5b to each of the salient poles 4b and 5b and passing the axial center of the rotating shaft 2 and centers, in the circumferential direction of the salient poles 4b and 5b so as to penetrate the first and second rotor cores 4 and 5 in the axial direction.

Description

この発明は、例えば、自動車用電動式過給器の電動機に適用されるのに好適な高速回転電動機および高速回転電動機に用いられる回転子に関するものである。   The present invention relates to a high-speed rotary electric motor suitable for being applied to, for example, an electric motor for an automobile electric supercharger and a rotor used for the high-speed rotary electric motor.

従来のスイッチドリラクタンスモータは、径方向内方に互いにそれぞれ対向するように突出し、かつ軸方向に延びる複数個の対の極部を有するステータと、該ステータ内に回転可能に配設されるとともに、径方向外方に突出して極部と所定の隙間を保ちながら対向可能で、かつ軸方向に延びる複数個の対の突極を有するロータと、ステータの各対の極部に巻回される複数個のコイルとを備え、各突極に、反回転方向側、かつ外側から回転方向側、かつ内側に延びるように穴が形成されている(例えば、特許文献1参照)。   A conventional switched reluctance motor includes a stator having a plurality of pairs of pole portions that project radially inward to face each other and extend in the axial direction, and is rotatably disposed in the stator. A rotor having a plurality of pairs of salient poles that protrudes radially outward and can be opposed to the pole portions while maintaining a predetermined gap, and is wound around each pair of pole portions of the stator A plurality of coils are provided, and a hole is formed in each salient pole so as to extend in the counter-rotation direction side and from the outside to the rotation direction side and to the inside (for example, see Patent Document 1).

特許第3633106号公報Japanese Patent No. 3633106

自動車用電動式過給器においては、排気タービンは、通常数万rpmから最高20万rpm程度の高速で回転するので、排気タービンのシャフトに固着されている電動機のロータに作用する遠心力が極めて大きくなる。従来のスイッチドリラクタンスモータは、ロータが電磁鋼板を積層して作製され、堅牢であるので、自動車用電動式過給器の電動機に適用されるのに好適であるが、危険回転数の上昇が望まれる。   In an electric supercharger for automobiles, the exhaust turbine usually rotates at a high speed of about several tens of thousands rpm to a maximum of about 200,000 rpm, so that the centrifugal force acting on the motor rotor fixed to the shaft of the exhaust turbine is extremely high. growing. A conventional switched reluctance motor is suitable for being applied to an electric motor of an electric supercharger for automobiles because the rotor is manufactured by laminating electromagnetic steel plates and is robust. desired.

ここで、危険回転数を上げるには、ロータのシャフトの直径を大きくし、ロータの剛性を高めることが有効である。しかし、ロータが鉄材で作製されているので、ロータの外径を一定としてシャフトの直径を大きくすることは、ロータの鉄部が少なくなり、応力値を上げることにつながる。一方、シャフトの直径の増大に応じてロータの外径を大きくすると、ロータの鉄部の減少を抑えることができるが、イナーシャが大きくなってしまう。さらに、ロータの外径を大きくすることは、遠心力が大きくなり、応力値の増大をもたらす。そして、ロータの突極個数が少ないほど、突極の重量が重くなり、応力の影響が大きくなる。   Here, in order to increase the critical rotational speed, it is effective to increase the rotor shaft diameter and increase the rigidity of the rotor. However, since the rotor is made of an iron material, increasing the shaft diameter while keeping the outer diameter of the rotor constant leads to a decrease in the iron portion of the rotor and an increase in the stress value. On the other hand, when the outer diameter of the rotor is increased in accordance with the increase in the diameter of the shaft, a decrease in the iron portion of the rotor can be suppressed, but the inertia is increased. Furthermore, increasing the outer diameter of the rotor increases the centrifugal force and increases the stress value. The smaller the number of salient poles of the rotor, the heavier the salient poles, and the greater the influence of stress.

従来のスイッチドリラクタンスモータでは、穴が各突極に形成されているので、突極の重量がその分軽くなり、ロータに作用する遠心力が小さくなる。しかし、穴の形成は、所望のトルクを維持しつつ、通電切り換え時の磁気吸引力を下げるためになされたものであり、遠心力に起因してロータに作用する応力の影響を緩和することについては、何ら考慮されていない。つまり、穴は、突極の反回転方向側、かつ外側に形成されているので、遠心力に起因してロータに作用する応力の影響を緩和することはできない。   In the conventional switched reluctance motor, since the hole is formed in each salient pole, the weight of the salient pole is reduced correspondingly, and the centrifugal force acting on the rotor is reduced. However, the formation of the hole was made to reduce the magnetic attractive force at the time of switching the energization while maintaining the desired torque, and to alleviate the influence of the stress acting on the rotor due to the centrifugal force Is not considered at all. That is, since the hole is formed on the anti-rotation direction side and the outside of the salient pole, the influence of the stress acting on the rotor due to the centrifugal force cannot be reduced.

この発明は、このような課題を解決するためになされたものであって、応力緩和穴を、回転子コアの基部外周面と同一の円周上に、回転子の軸心を含んで突極の周方向中央位置を通る平面に対して対称な穴形状に形成し、遠心力に起因して回転子コアに作用する応力集中を分散し、危険回転数を上昇できる高速回転電動機およびそれに用いられる回転子を得ることを目的とする。   The present invention has been made in order to solve such a problem, and includes a stress relief hole including a rotor axial center on the same circumference as a base outer peripheral surface of the rotor core. A high-speed rotary motor that is formed in a symmetric hole shape with respect to a plane passing through the center position in the circumferential direction, disperses stress concentration acting on the rotor core due to centrifugal force, and can increase the critical rotational speed, and used in the motor The purpose is to obtain a rotor.

この発明に係る高速回転電動機は、突極が円筒状の基部の外周面に周方向に等角ピッチで配設されてなる同一形状に作製された第1回転子コアおよび第2回転子コアを、それぞれ上記第1固定子コアおよび上記第2固定子コアの内周側に位置させ、かつ互いに周方向に半突極ピッチずらして配設され、該基部に挿通された回転軸に同軸に固着された回転子と、上記固定子に配設され、上記第1回転子コアの突極と上記第2回転子コアの突極とが異なる極性となるように界磁磁束を発生する界磁手段と、上記第1固定子コアのコアバック外周面と上記第2固定子コアのコアバック外周面とを連結するように軸方向に延設された軸方向磁路形成部材と、を備えている。そして、応力緩和穴が、上記突極のそれぞれに対し、上記基部と上記突極との境界を含み、かつ上記回転軸の軸心と上記突極の周方向中央とを通る平面に対して対称な形状に、上記第1回転子コアおよび上記第2回転子コアを軸方向に貫通するように形成されている。   The high-speed rotary electric motor according to the present invention includes a first rotor core and a second rotor core that are manufactured in the same shape in which salient poles are arranged on the outer peripheral surface of a cylindrical base portion at an equiangular pitch in the circumferential direction. Are arranged on the inner peripheral side of the first stator core and the second stator core, respectively, and are arranged with a half salient pole pitch shifted in the circumferential direction, and are coaxially fixed to the rotating shaft inserted through the base portion. And a field means that is disposed on the stator and generates a field magnetic flux so that the salient poles of the first rotor core and the salient poles of the second rotor core have different polarities. And an axial magnetic path forming member extending in the axial direction so as to connect the core back outer peripheral surface of the first stator core and the core back outer peripheral surface of the second stator core. . The stress relaxation hole is symmetric with respect to a plane that includes the boundary between the base and the salient pole and passes through the axis of the rotation shaft and the circumferential center of the salient pole with respect to each of the salient poles. In such a shape, the first rotor core and the second rotor core are penetrated in the axial direction.

この発明によれば、応力緩和穴が、基部と突極との境界を含み、かつ回転軸の軸心と突極の周方向中央とを通る平面に対して対称な形状に形成されている。
そこで、突極の重量が軽くなり、高速回転時に回転子に作用する遠心力が小さくなる。また、突極の応力緩和穴の周方向両側の鉄重量部分が応力緩和穴を挟んで周方向に離間しており、高速回転時、遠心力が回転軸の軸心から当該鉄重量部分の重心を通る方向に作用する。これにより、回転軸の軸心と突極の周方向中央とを結ぶ線分に対して直交する遠心力成分が増大し、基部の内周円を円に近い楕円形に変形させるような応力が第1および第2回転子コアに作用する。そして、遠心力に起因して第1および第2回転子コアに作用する応力集中が緩和される。その結果、回転子の外径を大きくすることなく、回転軸の直径を大きくして回転子の剛性を高めることができ、危険回転数を高めることができるとともに、イナーシャの増大を抑えることができる。
According to the present invention, the stress relaxation hole is formed in a symmetrical shape with respect to a plane including the boundary between the base and the salient pole and passing through the axis of the rotating shaft and the circumferential center of the salient pole.
Therefore, the weight of the salient pole is reduced, and the centrifugal force acting on the rotor during high speed rotation is reduced. In addition, the iron weight parts on both sides in the circumferential direction of the stress relief hole of the salient pole are separated in the circumferential direction across the stress relief hole, and at high speed rotation, the centrifugal force is centered on the iron weight part from the axis of the rotating shaft. Acts in the direction passing through. As a result, the centrifugal force component perpendicular to the line segment connecting the axis of the rotating shaft and the center of the salient pole in the circumferential direction increases, and stress that deforms the inner circumference of the base into an ellipse close to a circle is generated. Acts on the first and second rotor cores. Then, stress concentration acting on the first and second rotor cores due to the centrifugal force is alleviated. As a result, without increasing the outer diameter of the rotor, the diameter of the rotating shaft can be increased to increase the rigidity of the rotor, the number of dangerous rotations can be increased, and the increase in inertia can be suppressed. .

この発明の実施の形態1に係る高速回転電動機の主要構成を示す一部破断斜視図である。1 is a partially broken perspective view showing a main configuration of a high-speed rotary electric motor according to Embodiment 1 of the present invention. この発明の実施の形態1に係る高速回転電動機の回転子における回転子コアを示す正面図である。It is a front view which shows the rotor core in the rotor of the high speed rotary electric motor which concerns on Embodiment 1 of this invention. 応力緩和穴が省略された比較例の回転子を高速回転させた際に回転子コアに発生する変位ベクトルを示す図である。It is a figure which shows the displacement vector which generate | occur | produces in a rotor core when rotating the rotor of the comparative example in which the stress relaxation hole was abbreviated at high speed. 図3の要部拡大図である。It is a principal part enlarged view of FIG. この発明の回転子を高速回転させた際に第1回転子コアに発生する変位ベクトルを示す図である。It is a figure which shows the displacement vector which generate | occur | produces in a 1st rotor core when rotating the rotor of this invention at high speed. 図5の要部拡大図である。It is a principal part enlarged view of FIG. 比較例の回転子を高速回転させた際に回転子コアに発生する直交変位成分のコンター図である。It is a contour figure of the orthogonal displacement component which occurs in a rotor core when rotating the rotor of a comparative example at high speed. この発明の回転子を高速回転させた際に第1回転子コアに発生する直交変位成分のコンター図である。It is a contour figure of the orthogonal displacement component which occurs in the 1st rotor core when rotating the rotor of this invention at high speed. この発明の回転子を高速回転させた際に第1回転子コアに発生する直交変位成分のコンター図である。It is a contour figure of the orthogonal displacement component which occurs in the 1st rotor core when rotating the rotor of this invention at high speed. 高速回転時に第1回転子コアに発生する最大応力値と応力緩和穴の径方向位置との関係を示す図である。It is a figure which shows the relationship between the maximum stress value which generate | occur | produces in a 1st rotor core at the time of high speed rotation, and the radial direction position of a stress relaxation hole. この発明の実施の形態2に係る高速回転電動機の回転子における回転子コアを示す正面図である。It is a front view which shows the rotor core in the rotor of the high-speed rotary electric motor which concerns on Embodiment 2 of this invention.

以下、本発明の磁気誘導子型回転機の好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of a magnetic inductor type rotating machine according to the present invention will be described with reference to the drawings.

実施の形態1.
図1はこの発明の実施の形態1に係る高速回転電動機の主要構成を示す一部破断斜視図、図2はこの発明の実施の形態1に係る高速回転電動機の回転子における回転子コアを示す正面図である。
Embodiment 1 FIG.
1 is a partially broken perspective view showing a main configuration of a high-speed rotary electric motor according to Embodiment 1 of the present invention, and FIG. 2 shows a rotor core in the rotor of the high-speed rotary electric motor according to Embodiment 1 of the present invention. It is a front view.

図1において、高速回転電動機1は、磁気誘導子型同期回転機であり、鉄などの塊状磁性体で作製された回転軸2に同軸に固着された回転子3と、回転子3を囲繞するように配設された固定子コア8にトルク発生用駆動コイルとしての固定子コイル11を巻装してなる固定子7と、界磁手段としての界磁コイル12と、回転子3、固定子7および界磁コイル12を収納するハウジング13と、を備えている。   In FIG. 1, a high-speed rotating motor 1 is a magnetic inductor type synchronous rotating machine, and surrounds a rotor 3 and a rotor 3 that are coaxially fixed to a rotating shaft 2 made of a massive magnetic material such as iron. The stator 7 is formed by winding a stator coil 11 as a torque generating drive coil around the stator core 8 arranged in this manner, a field coil 12 as field means, the rotor 3, and the stator. 7 and a housing 13 that houses the field coil 12.

回転子3は、例えば所定形状に成形された多数枚の磁性鋼板を積層一体化して作製された第1および第2回転子コア4,5と、所定枚の磁性鋼板を積層一体化して作製され、軸心位置に回転軸挿入孔(図示せず)が穿設された円盤状の隔壁6と、を備える。第1および第2回転子コア4,5は、同一形状に作製され、軸心位置に回転軸挿入孔19が穿設された円筒状の基部4a,5aと、基部4a,5aの外周面から径方向外方に突設され、かつ軸方向に延設されて、周方向に等角ピッチで2つ設けられた突極4b,5bと、から構成されている。さらに、応力緩和穴20が、基部4a,5aと突極4b,5bとの境界部に軸方向に貫通するように形成されている。第1および第2回転子コア4,5は、周方向に半突極ピッチずらして、隔壁6を介して相対して互いに密接して配置され、それらの回転軸挿入孔19に挿通された回転軸2に固着されて構成されている。そして、回転子3は、回転軸2の両端を軸受(図示せず)に支持されてハウジング13内に回転自在に配設されている。   The rotor 3 is produced by laminating and integrating a predetermined number of magnetic steel plates and the first and second rotor cores 4 and 5 produced by laminating and integrating a large number of magnetic steel plates formed in a predetermined shape, for example. And a disk-shaped partition wall 6 having a rotation shaft insertion hole (not shown) drilled at the axial center position. The first and second rotor cores 4 and 5 are formed in the same shape, and cylindrical base portions 4a and 5a each having a rotation shaft insertion hole 19 formed at an axial center position, and outer peripheral surfaces of the base portions 4a and 5a. It is composed of salient poles 4b and 5b that are provided so as to project radially outward and extend in the axial direction, and are provided at two equiangular pitches in the circumferential direction. Furthermore, the stress relaxation hole 20 is formed so as to penetrate in the axial direction at the boundary between the base portions 4a and 5a and the salient poles 4b and 5b. The first and second rotor cores 4, 5 are arranged with a semi-saliency pitch shift in the circumferential direction, are arranged in close contact with each other via the partition wall 6, and are inserted through the rotation shaft insertion holes 19. It is configured to be fixed to the shaft 2. The rotor 3 is rotatably disposed in the housing 13 with both ends of the rotating shaft 2 supported by bearings (not shown).

固定子コア8は、所定形状に成形された多数枚の磁性鋼板を積層一体化して作製された第1および第2固定子コア9,10を備える。第1固定子コア9は、円筒状のコアバック9aと、コアバック9aの内周面から径方向内方に突設されて周方向に等角ピッチで6つ設けられたティース9bと、を備える。内周側に開口するスロット9cが、コアバック9aと隣り合うティース9bとにより画成されている。第2固定子コア10は、第1固定子コア9と同一形状に作製され、円筒状のコアバック10aと、コアバック10aの内周面から径方向内方に突設されて周方向に等角ピッチで6つ設けられたティース10bと、を備える。内周側に開口するスロット10cが、コアバック10aと隣り合うティース10bとにより画成されている。第1および第2固定子コア9,10は、ティース9b,10bの周方向位置を一致させて、かつ隔壁6の軸方向厚み分離間して、それぞれ第1および第2回転子コア4,5を囲繞するように、ハウジング13内に配設されている。   The stator core 8 includes first and second stator cores 9 and 10 that are manufactured by laminating and integrating a large number of magnetic steel plates formed in a predetermined shape. The first stator core 9 includes a cylindrical core back 9a, and teeth 9b that are provided radially inwardly from the inner peripheral surface of the core back 9a and are provided with six equiangular pitches in the circumferential direction. Prepare. A slot 9c that opens to the inner peripheral side is defined by a core back 9a and an adjacent tooth 9b. The second stator core 10 is manufactured in the same shape as the first stator core 9, and has a cylindrical core back 10 a and is projected radially inward from the inner peripheral surface of the core back 10 a, and the like in the circumferential direction. And six teeth 10b provided at an angular pitch. A slot 10c that opens to the inner peripheral side is defined by a core back 10a and an adjacent tooth 10b. The first and second stator cores 9 and 10 are arranged so that the circumferential positions of the teeth 9b and 10b coincide with each other, and the first and second rotor cores 4 and 5 are separated between the axial thickness separation of the partition walls 6, respectively. Is disposed in the housing 13 so as to surround the housing.

固定子コイル11は、導体線をスロット9c,10cを跨がないで軸方向に相対して対をなすティース9b,10bに巻回した、いわゆる集中巻き方式に巻回された3相の相コイルを有する。つまり、固定子コイル11は、軸方向に相対する6対のティース9b、10bに対して順次U,V,Wの3相を2回繰り返して集中巻きに巻回して構成されている。そして、各相の相コイルのコイルエンドは、互いに、周方向に関して交差した重なりを持っていない。   The stator coil 11 is a three-phase coil wound in a so-called concentrated winding method in which conductor wires are wound around teeth 9b and 10b that are paired in the axial direction without straddling the slots 9c and 10c. Have That is, the stator coil 11 is configured by sequentially winding three phases of U, V, and W twice in a concentrated manner on six pairs of teeth 9b and 10b facing in the axial direction. And the coil end of the phase coil of each phase does not have the mutually cross | intersecting overlap regarding the circumferential direction.

界磁コイル12は、導体線を円筒状に巻回した円筒状コイルであり、第1および第2固定子コア9,10のコアバック9a,10a間に介装されている。
ハウジング13は、鉄などの塊状磁性体で作製され、第1固定子コア9のコアバック9aの外周面と第2固定子コア10のコアバック外周面とに密接するように配設され、軸方向磁路形成部材を構成している。なお、ハウジング13が非磁性材料で作製される場合には、鉄などの磁性材料で作製された部材を第1固定子コア9のコアバック9aの外周面と第2固定子コア10のコアバック外周面とに接するように配設すればよい。
The field coil 12 is a cylindrical coil in which a conductor wire is wound in a cylindrical shape, and is interposed between the core backs 9 a and 10 a of the first and second stator cores 9 and 10.
The housing 13 is made of a massive magnetic material such as iron and is disposed so as to be in close contact with the outer peripheral surface of the core back 9a of the first stator core 9 and the outer peripheral surface of the core back of the second stator core 10. A directional magnetic path forming member is configured. When the housing 13 is made of a nonmagnetic material, members made of a magnetic material such as iron are used as the outer peripheral surface of the core back 9 a of the first stator core 9 and the core back of the second stator core 10. What is necessary is just to arrange | position so that an outer peripheral surface may be contact | connected.

つぎに、第1および第2回転子コア4,5における応力緩和穴20の形状および形成位置について図2を参照しつつ説明する。   Next, the shapes and positions of the stress relaxation holes 20 in the first and second rotor cores 4 and 5 will be described with reference to FIG.

第1および第2回転子コア4,5は、2つの突極4b,5bが基部4a,5aの外周面から径方向外方に突設され、軸心Oに対して対称な形状となっている。そして、突極4b,5bの外周面の周方向幅θ1は70°、突極4b,5bの基部4a,5aからの立ち上がり部間の周方向幅θ2は90°である。
応力緩和穴20は、外周側が長軸を周方向とする楕円曲線の一部で構成された径方向外方に凸状の断面形状に形成されている。そして、応力緩和穴20は、第1および第2回転子コア4,5の軸心Oを含み、かつ突極4b,5bの周方向中央を通る平面に対して対称に形成されている。また、応力緩和穴20は、基部4a,5aと突極4b,5bとの境界を含む領域に形成されており、その周方向幅θ3は40°である。これにより、突極4b、5bはアーチ形状に構成される。
The first and second rotor cores 4, 5 have two salient poles 4 b, 5 b projecting radially outward from the outer peripheral surfaces of the base portions 4 a, 5 a, and are symmetrical with respect to the axis O. Yes. The circumferential width θ1 of the outer peripheral surfaces of the salient poles 4b and 5b is 70 °, and the circumferential width θ2 between the rising portions of the salient poles 4b and 5b from the base portions 4a and 5a is 90 °.
The stress relaxation hole 20 is formed in a radially outwardly convex cross-sectional shape formed of a part of an elliptic curve whose outer peripheral side has a long axis as a circumferential direction. The stress relaxation hole 20 is formed symmetrically with respect to a plane including the axis O of the first and second rotor cores 4 and 5 and passing through the center in the circumferential direction of the salient poles 4b and 5b. The stress relaxation hole 20 is formed in a region including the boundary between the base portions 4a and 5a and the salient poles 4b and 5b, and its circumferential width θ3 is 40 °. Thereby, the salient poles 4b and 5b are formed in an arch shape.

ここで、第1および第2回転子コア4,5における突極4b、5bの周方向幅θ1,θ2をそれぞれ70°、90°としているが、周方向幅θ1,θ2はこれに限定されるものではない。周方向幅θ1,θ2は、例えば、第1および第2固定子コア9,10のスロット開口幅との関係で適宜設定される。また、応力緩和穴20の周方向幅θ3を40°としているが、周方向幅θ3はこれに限定されるものではない。周方向幅θ3は、突極4b、5bの応力緩和穴20の周方向両側、即ちアーチ形状の両端側における磁気飽和の回避、および後述する遠心力F1,F2を発生させるための重量成分の確保の観点から適宜設定され、突極4b、5bの周方向幅θ2が90°の場合、応力緩和穴20の周方向幅θ3は45°を超えないようにすることが好ましい。   Here, the circumferential widths θ1 and θ2 of the salient poles 4b and 5b in the first and second rotor cores 4 and 5 are 70 ° and 90 °, respectively, but the circumferential widths θ1 and θ2 are limited to this. It is not a thing. The circumferential widths θ1 and θ2 are appropriately set in relation to the slot opening widths of the first and second stator cores 9 and 10, for example. Further, although the circumferential width θ3 of the stress relaxation hole 20 is 40 °, the circumferential width θ3 is not limited to this. The circumferential width θ3 avoids magnetic saturation on both sides in the circumferential direction of the stress relaxation holes 20 of the salient poles 4b and 5b, that is, both ends of the arch shape, and secures a weight component for generating centrifugal forces F1 and F2 described later. From this point of view, when the circumferential width θ2 of the salient poles 4b and 5b is 90 °, it is preferable that the circumferential width θ3 of the stress relaxation hole 20 does not exceed 45 °.

つぎに、このように構成された高速回転電動機1の動作について説明する。
界磁コイル12に通電されると、図1に矢印で示されるように、磁束が、第1固定子コア9のティース9bから第1回転子コア4の突極4bに入り、突極4bの応力緩和穴20の周方向両側を通って基部4aに入る。基部4a内に入った磁束の一部が、基部4a及び隔壁6内を軸方向に流れ、磁束の残部が基部4a内を径方向内方に流れて回転軸2に至り、回転軸2内を軸方向に流れ、第2回転子コア5に入る。そして、第2回転子コア5に入った磁束は、基部5a内を径方向外方に流れ、突極5bの応力緩和穴20の周方向両側を通って突極5bの外周面側に流れ、第2固定子コア10のティース10bに入る。第2固定子コア10のティース10bに入った磁束は、ティース10bおよびコアバック10a内を径方向外方に流れ、ハウジング13内に入る。ハウジング13内に入った磁束は、ハウジング13内を軸方向に流れ、第1固定子コア9のコアバック9aに戻る。
Next, the operation of the high-speed rotating electric motor 1 configured as described above will be described.
When the field coil 12 is energized, the magnetic flux enters the salient poles 4b of the first rotor core 4 from the teeth 9b of the first stator core 9 as indicated by arrows in FIG. The base 4a is entered through both sides of the stress relaxation hole 20 in the circumferential direction. Part of the magnetic flux that has entered the base portion 4a flows in the axial direction in the base portion 4a and the partition wall 6, and the remaining portion of the magnetic flux flows inward in the radial direction in the base portion 4a to reach the rotary shaft 2, and in the rotary shaft 2 It flows in the axial direction and enters the second rotor core 5. Then, the magnetic flux that has entered the second rotor core 5 flows radially outward in the base portion 5a, passes through both sides of the stress relaxation hole 20 of the salient pole 5b in the circumferential direction, and flows to the outer peripheral surface side of the salient pole 5b. The teeth 10b of the second stator core 10 are entered. The magnetic flux that has entered the teeth 10 b of the second stator core 10 flows radially outward in the teeth 10 b and the core back 10 a and enters the housing 13. The magnetic flux that has entered the housing 13 flows in the housing 13 in the axial direction and returns to the core back 9 a of the first stator core 9.

この時、第1および第2回転子コア4,5の突極4b,5bが周方向に半突極ピッチずれているので、磁束は、軸方向から見ると、N極とS極とが周方向に交互に配置されたように作用する。これにより、高速回転電動機1は、軸方向に連設した2極のN極と2極のS極とからなる4極の回転子3に対して6スロットの集中巻き方式の固定子コイル11を有する磁気誘導子型同期回転機として動作する。   At this time, since the salient poles 4b and 5b of the first and second rotor cores 4 and 5 are shifted by a half salient pole pitch in the circumferential direction, when viewed from the axial direction, the magnetic flux is generated between the N pole and the S pole. It acts as if it were arranged alternately in the direction. As a result, the high-speed rotary electric motor 1 is provided with a 6-slot concentrated winding type stator coil 11 for a 4-pole rotor 3 consisting of 2 poles of N poles and 2 poles of S poles connected in the axial direction. It operates as a magnetic inductor type synchronous rotating machine.

つぎに、応力緩和穴20による応力緩和効果について図3乃至図6を参照しつつ説明する。回転子を高速回転させた条件で応力解析した結果を図3乃至図6に示す。図3は応力緩和穴が省略された比較例の回転子を高速回転させた際に回転子コアに発生する変位ベクトルを示す図、図4は図3の要部拡大図である。図5は本発明の回転子を高速回転させた際に第1回転子コアに発生する変位ベクトルを示す図、図6は図5の要部拡大図である。なお、図3乃至図6において、実線は高速回転前の回転子コア形状を示し、点線は高速回転時の回転子コア形状を示し、矢印は変位ベクトルを示す。   Next, the stress relaxation effect by the stress relaxation hole 20 will be described with reference to FIGS. The results of stress analysis under the condition where the rotor is rotated at high speed are shown in FIGS. FIG. 3 is a view showing a displacement vector generated in the rotor core when the rotor of the comparative example in which the stress relaxation hole is omitted is rotated at a high speed, and FIG. 4 is an enlarged view of a main part of FIG. FIG. 5 is a diagram showing a displacement vector generated in the first rotor core when the rotor of the present invention is rotated at high speed, and FIG. 6 is an enlarged view of a main part of FIG. 3 to 6, the solid line indicates the rotor core shape before high speed rotation, the dotted line indicates the rotor core shape at high speed rotation, and the arrow indicates the displacement vector.

比較例の回転子コア30では、高速回転することによる遠心力Fが、図3および図4に示されるように、突極32の周方向中央を通って径方向外方に向うように回転子コア30に作用する。そして、図3に示されるように、突極32での変位ベクトルは、左右方向にほぼ揃っている。回転子コア30のA部における変位ベクトルも、図4中左右方向に向いている。これにより、回転子コア30は図3中左右方向に伸び、基部31の円形の回転軸挿入孔33が楕円形に変形される。そして、応力が突極32の周方向中央部から概略90°ずれた基部31の内周側に集中する。   In the rotor core 30 of the comparative example, as shown in FIGS. 3 and 4, the centrifugal force F caused by high-speed rotation passes through the center in the circumferential direction of the salient pole 32 and faces the rotor radially outward. Acts on the core 30. As shown in FIG. 3, the displacement vectors at the salient poles 32 are substantially aligned in the left-right direction. The displacement vector at portion A of the rotor core 30 is also directed in the left-right direction in FIG. Thereby, the rotor core 30 extends in the left-right direction in FIG. 3, and the circular rotation shaft insertion hole 33 of the base 31 is deformed into an elliptical shape. Then, the stress is concentrated on the inner peripheral side of the base 31 that is shifted by approximately 90 ° from the circumferential central portion of the salient pole 32.

第1回転子コア4では、応力緩和穴20が基部4aと突極4bとの境界を含むように形成されているので、突極4bの応力緩和穴20の周方向一側領域の鉄重量部分と、突極4bの応力緩和穴20の周方向他側領域の鉄重量部分とが、見かけ上、応力緩和穴20を挟んで周方向に離間して存在していることになる。そこで、第1回転子コア4が高速回転すると、図5に示されるように、突極4bの応力緩和穴20の周方向一側領域の鉄重量部分による遠心力F1と、突極4bの応力緩和穴20の周方向他側領域の鉄重量部分による遠心力F2とが第1回転子コア4に作用する。遠心力F1は、第1回転子コア4の軸心から突極4bの応力緩和穴20の周方向一側領域の鉄重量部分の重心を通って径方向外方に作用し、遠心力F2は、第1回転子コア4の軸心から突極4bの応力緩和穴20の周方向他側領域の鉄重量部分の重心を通って径方向外方に作用する。   In the first rotor core 4, since the stress relaxation hole 20 is formed so as to include the boundary between the base portion 4 a and the salient pole 4 b, the iron weight portion of the circumferential one side region of the stress relaxation hole 20 of the salient pole 4 b And the iron weight part of the other area | region of the circumferential direction of the stress relaxation hole 20 of the salient pole 4b apparently exists apart in the circumferential direction across the stress relaxation hole 20. Therefore, when the first rotor core 4 rotates at a high speed, as shown in FIG. 5, the centrifugal force F1 due to the iron weight portion in the circumferential one side region of the stress relaxation hole 20 of the salient pole 4b and the stress of the salient pole 4b. Centrifugal force F <b> 2 due to the iron weight portion in the other side region of the relaxation hole 20 acts on the first rotor core 4. Centrifugal force F1 acts radially outward from the axial center of the first rotor core 4 through the center of gravity of the iron weight portion in the circumferential one side region of the stress relaxation hole 20 of the salient pole 4b. Then, it acts radially outwardly from the axial center of the first rotor core 4 through the center of gravity of the iron weight portion in the other region in the circumferential direction of the stress relaxation hole 20 of the salient pole 4b.

このとき、応力緩和穴20は、第1回転子コア4の軸心を含み、かつ突極4bの周方向中央を通る平面に対して対称な穴形状に形成されているので、遠心力F1,F2の大きさは同じである。そして、第1回転子コア4の軸心と突極4bの周方向中央とを結ぶ線分と平行な遠心力成分が小さくなり、該線分と直交する遠心力成分が大きくなる。   At this time, since the stress relaxation hole 20 is formed in a hole shape that includes the axis of the first rotor core 4 and is symmetric with respect to a plane that passes through the circumferential center of the salient pole 4b, the centrifugal force F1, The size of F2 is the same. And the centrifugal force component parallel to the line segment which connects the axial center of the 1st rotor core 4 and the circumferential direction center of the salient pole 4b becomes small, and the centrifugal force component orthogonal to this line segment becomes large.

これにより、図5中、突極4bの上部領域での変位ベクトルは、斜め上方に向いており、突極4bの下部領域での変位ベクトルは、斜め下方に向いている。そして、第1回転子コア4のA部における変位ベクトルも、図6中斜め上方に向いている。そこで、第1回転子コア4は図5中左右方向および上下方向に伸び、基部4aの円形の回転軸挿入孔19が、比較例の回転子コア30の回転軸挿入孔33における楕円形に比べ2つの焦点の距離の短い楕円形に変形される。そして、応力が基部4aの内周側の突極4b間の領域にほぼ均一に分散され、第1回転子コア4に作用する応力が緩和される。   Thereby, in FIG. 5, the displacement vector in the upper region of the salient pole 4b is directed obliquely upward, and the displacement vector in the lower region of the salient pole 4b is oriented obliquely downward. And the displacement vector in the A portion of the first rotor core 4 is also directed obliquely upward in FIG. Therefore, the first rotor core 4 extends in the left-right direction and the up-down direction in FIG. 5, and the circular rotation shaft insertion hole 19 of the base portion 4 a is compared with the elliptical shape in the rotation shaft insertion hole 33 of the rotor core 30 of the comparative example. It is transformed into an ellipse with a short distance between the two focal points. The stress is distributed almost uniformly in the region between the salient poles 4b on the inner peripheral side of the base portion 4a, and the stress acting on the first rotor core 4 is relaxed.

ここで、回転子を高速回転させた条件で応力解析した結果を図7および図8に示す。図7は比較例の回転子を高速回転させた際に回転子コアに発生する直交変位成分のコンター図、図8は本発明の回転子を高速回転させた際に第1回転子コアに発生する直交変位成分のコンター図である。なお、直交変位成分とは、回転子コアの軸心と突極の周方向中央とを結ぶ線分と直交する変位成分である。また、図7および図8のコンター図において、濃度が濃くなるほど、直交変位成分が大きい。   Here, FIG. 7 and FIG. 8 show the results of the stress analysis under the condition where the rotor is rotated at a high speed. FIG. 7 is a contour diagram of orthogonal displacement components generated in the rotor core when the rotor of the comparative example is rotated at high speed, and FIG. 8 is generated in the first rotor core when the rotor of the present invention is rotated at high speed. It is a contour figure of the orthogonal displacement component to do. The orthogonal displacement component is a displacement component orthogonal to a line segment connecting the axis of the rotor core and the center of the salient pole in the circumferential direction. In the contour diagrams of FIG. 7 and FIG. 8, the orthogonal displacement component increases as the density increases.

図7から、回転子コア30のA部における直交変位成分が小さいことが分かる。言い換えれば、遠心力により回転子コア30に発生する変位は、回転子コア30の軸心と突極32の周方向中央とを結ぶ線分と平行な成分が支配的となる。そこで、回転軸挿入孔33は2つの焦点間が長い楕円形に変形し、応力が基部31の内周側の突極32間の中央部に集中する。   From FIG. 7, it can be seen that the orthogonal displacement component in the portion A of the rotor core 30 is small. In other words, the displacement generated in the rotor core 30 due to the centrifugal force is dominated by a component parallel to the line segment connecting the axis of the rotor core 30 and the center in the circumferential direction of the salient pole 32. Therefore, the rotation shaft insertion hole 33 is deformed into an elliptical shape between the two focal points, and the stress is concentrated in the central portion between the salient poles 32 on the inner peripheral side of the base portion 31.

図8から、第1回転子コア4のA部における直交変位成分が、比較例の回転子コア30に比べ、著しく大きいことが分かる。言い換えれば、遠心力により第1回転子コア4に発生する変位は、第1回転子コア4の軸心と突極4bの周方向中央とを結ぶ線分が減り、該線分と直交する成分が著しく大きくなる。そこで、回転軸挿入孔19は、比較例の回転軸挿入孔33に比べ、2つの焦点間が短い楕円形となり、より円形に近づく。これにより、応力は、基部4aの内周側の突極4b間の部位にほぼ均一に分散され、応力集中が緩和される。   From FIG. 8, it can be seen that the orthogonal displacement component in part A of the first rotor core 4 is significantly larger than that of the rotor core 30 of the comparative example. In other words, the displacement generated in the first rotor core 4 due to the centrifugal force is a component perpendicular to the line segment that reduces the line segment connecting the axis of the first rotor core 4 and the circumferential center of the salient pole 4b. Becomes significantly larger. Therefore, the rotation shaft insertion hole 19 has a shorter oval shape between the two focal points than the rotation shaft insertion hole 33 of the comparative example, and is closer to a circle. As a result, the stress is distributed almost uniformly in the region between the salient poles 4b on the inner peripheral side of the base portion 4a, and the stress concentration is relaxed.

つぎに、応力緩和穴20の径方向位置と最大応力値との関係を示す。図9は本発明の回転子を高速回転させた際に第1回転子コアに発生する直交変位成分のコンター図であり、図9の(a)は応力緩和穴が基部領域内に形成されている場合を示し、図9の(b)は応力緩和穴の穴中心が突極と基部との境界に位置している場合を示し、図9の(c)は応力緩和穴が突極領域内に形成されている場合を示している。なお、図9において、細線は第1回転子コアの変形前の状態を示す。図10は高速回転時に第1回転子コアに発生する最大応力値と応力緩和穴の径方向位置との関係を示す図である。なお、図10において、縦軸は第1回転子コアに発生する最大応力値を示し、横軸は応力緩和穴の穴中心の径方向位置を示す。   Next, the relationship between the radial position of the stress relaxation hole 20 and the maximum stress value is shown. FIG. 9 is a contour diagram of orthogonal displacement components generated in the first rotor core when the rotor of the present invention is rotated at a high speed. FIG. 9A shows a stress relaxation hole formed in the base region. FIG. 9B shows the case where the center of the stress relaxation hole is located at the boundary between the salient pole and the base, and FIG. 9C shows the stress relaxation hole within the salient pole region. The case where it is formed is shown. In FIG. 9, the thin line shows the state before the deformation of the first rotor core. FIG. 10 is a diagram showing the relationship between the maximum stress value generated in the first rotor core during high-speed rotation and the radial position of the stress relaxation hole. In FIG. 10, the vertical axis represents the maximum stress value generated in the first rotor core, and the horizontal axis represents the radial position of the center of the stress relaxation hole.

図9の(a)〜(c)から、応力緩和穴20の穴中心が径方向内方に移動するにつれ、直交変位成分が大きくなることが分かる。特に、応力緩和穴20の穴中心が径方向内方に移動するにつれ、基部4aの突極4b間の領域における直交変位成分が大きくなることが分かる。これにより、応力緩和穴20の穴中心が径方向内方に移動するにつれ、第1回転子コア4の回転軸挿入孔19の変形後の楕円形状が、円形に近づく。これは、応力緩和穴20の径方向内方に移動するにつれ、応力緩和穴20の周方向両側の領域の鉄重量が多くなり、第1回転子コア4の軸心と突極4bの周方向中央とを結ぶ線分と直交する遠心力成分が大きくなったことに起因すると推考される。   From (a) to (c) of FIG. 9, it can be seen that the orthogonal displacement component increases as the center of the stress relaxation hole 20 moves radially inward. In particular, it can be seen that the orthogonal displacement component in the region between the salient poles 4b of the base portion 4a increases as the hole center of the stress relaxation hole 20 moves radially inward. Thereby, as the hole center of the stress relaxation hole 20 moves inward in the radial direction, the elliptical shape after the deformation of the rotation shaft insertion hole 19 of the first rotor core 4 approaches a circle. This is because the iron weight of the regions on both sides in the circumferential direction of the stress relaxation hole 20 increases as the stress relaxation hole 20 moves inward in the radial direction, and the axial center of the first rotor core 4 and the circumferential direction of the salient pole 4b. It is assumed that the centrifugal force component perpendicular to the line connecting the center is increased.

図10から、応力緩和穴20の穴中心が基部4aと突極4bとの境界から径方向外方に移動すると、第1回転子コア4に発生する最大応力値が徐々に大きくなり、応力緩和穴20が突極4b内に位置すると急激に上昇することが分かる。また、応力緩和穴20の穴中心が基部4aと突極4bとの境界から径方向内方に移動すると、第1回転子コア4に発生する最大応力値が徐々に小さくなり、応力緩和穴20が基部4a内に位置すると急激に上昇することが分かる。このことから、応力緩和穴20は、その穴中心が基部4a内に位置し、基部4aと突極4bとの境界を含むように形成することが好ましい。   From FIG. 10, when the hole center of the stress relaxation hole 20 moves radially outward from the boundary between the base portion 4a and the salient pole 4b, the maximum stress value generated in the first rotor core 4 gradually increases, and the stress relaxation It can be seen that when the hole 20 is positioned within the salient pole 4b, it rapidly rises. Further, when the hole center of the stress relaxation hole 20 moves radially inward from the boundary between the base 4a and the salient pole 4b, the maximum stress value generated in the first rotor core 4 gradually decreases, and the stress relaxation hole 20 As can be seen from FIG. Therefore, the stress relaxation hole 20 is preferably formed so that the hole center is located in the base portion 4a and includes the boundary between the base portion 4a and the salient pole 4b.

ここで、応力緩和穴20が突極4b内に位置すると、応力緩和穴20の径方向外方領域における突極4bの径方向幅が狭くなり、応力が突極4bの当該領域に集中し、最大応力値が急激に上昇したものと推考される。また、応力緩和穴20が基部4a内に位置すると、応力緩和穴20の径方向内方領域における基部4aの径方向幅が狭くなり、応力が基部4aの当該領域に集中し、最大応力値が急激に上昇したものと推考される。   Here, when the stress relaxation hole 20 is located in the salient pole 4b, the radial width of the salient pole 4b in the radially outer region of the stress relaxation hole 20 is narrowed, and the stress is concentrated in the region of the salient pole 4b. It is assumed that the maximum stress value increased rapidly. Further, when the stress relaxation hole 20 is located in the base portion 4a, the radial width of the base portion 4a in the radially inner region of the stress relaxation hole 20 is narrowed, stress is concentrated in the region of the base portion 4a, and the maximum stress value is increased. It is thought that it rose sharply.

この実施の形態1によれば、応力緩和穴20が、突極4b、5bのそれぞれに対し、基部4a,5aと突極4b、4bとの境界を含むように形成されているので、突極4b、5bの鉄重量部分が減り、高速回転時に第1および第2回転子コア4,5に作用する遠心力が小さくなる。   According to the first embodiment, the stress relaxation hole 20 is formed so as to include the boundary between the base portions 4a, 5a and the salient poles 4b, 4b with respect to the salient poles 4b, 5b. The iron weight portions of 4b and 5b are reduced, and the centrifugal force acting on the first and second rotor cores 4 and 5 during high-speed rotation is reduced.

また、応力緩和穴20が、基部4a,5aと突極4b、4bとの境界を含み、かつ回転軸2の軸心と突極4b,5bの周方向中央とを通る平面に対して対称に形成されているので、突極4b、5bの応力緩和穴20の周方向両側の鉄重量部分が応力緩和穴20を挟んで周方向に離間している。そこで、高速回転時、遠心力が回転軸2の軸心から当該鉄重量部分の重心を通る方向に作用する。これにより、回転軸2の軸心と突極4b、5bの周方向中央とを結ぶ線分に対して直交する遠心力成分が増大し、基部4a,5aの内周円を円に近い楕円形に変形させるような応力が第1および第2回転子コア4,5に作用する。そこで、応力は基部4a,5aの突極4b、5b間の部位に均一に分散し、応力集中が緩和される。   Further, the stress relaxation hole 20 includes a boundary between the base portions 4a and 5a and the salient poles 4b and 4b, and is symmetrical with respect to a plane passing through the axis of the rotary shaft 2 and the circumferential center of the salient poles 4b and 5b. Since it is formed, the iron weight portions on both sides in the circumferential direction of the stress relaxation holes 20 of the salient poles 4 b and 5 b are separated in the circumferential direction with the stress relaxation holes 20 interposed therebetween. Thus, during high-speed rotation, centrifugal force acts in a direction passing from the axis of the rotating shaft 2 through the center of gravity of the iron weight portion. As a result, the centrifugal force component perpendicular to the line segment connecting the axis of the rotating shaft 2 and the center in the circumferential direction of the salient poles 4b and 5b increases, and the inner circumference of the base portions 4a and 5a is an elliptical shape close to a circle. Stress acting on the first and second rotor cores 4 and 5 acts on the first and second rotor cores 4 and 5. Therefore, the stress is uniformly distributed in the portion between the salient poles 4b and 5b of the base portions 4a and 5a, and the stress concentration is relaxed.

これらにより、第1および第2回転子コア4,5の外径を大きくすることなく、回転軸2の直径を大きくして回転子3の剛性を高めることができるので、危険回転数を高めることができる。さらに、第1および第2回転子コア4,5の外径を大きくしないので、イナーシャを小さくできる。
したがって、高速回転電動機1は小型、かつ耐遠心力性に優れ、20万rpm程度の高速回転が要求される自動車用電動式過給器の電動機に適用できる。
Thus, the rigidity of the rotor 3 can be increased by increasing the diameter of the rotating shaft 2 without increasing the outer diameter of the first and second rotor cores 4, 5, thereby increasing the dangerous rotational speed. Can do. Furthermore, since the outer diameters of the first and second rotor cores 4 and 5 are not increased, the inertia can be reduced.
Therefore, the high-speed rotating motor 1 is small and excellent in centrifugal force resistance, and can be applied to an electric supercharger motor for automobiles that requires high-speed rotation of about 200,000 rpm.

なお、上記実施の形態1では、応力緩和穴20は、外周側が長軸を周方向とする楕円曲線の一部で構成された径方向外方に凸状の断面形状に形成されているものとしているが、応力緩和穴20の断面形状は、これに限定されない。つまり、応力緩和穴20は、径方向外方に凸状の非円形の断面形状で、第1および第2回転子コア4,5の軸心Oを含み、かつ突極4b,5bの周方向中央を通る平面に対して対称な穴形状に形成されていればよく、例えば角部が丸められた略三角形でもよい。   In the first embodiment, it is assumed that the stress relaxation hole 20 is formed in a radially outwardly convex cross-sectional shape that is configured by a part of an elliptic curve whose outer peripheral side has a long axis as a circumferential direction. However, the cross-sectional shape of the stress relaxation hole 20 is not limited to this. In other words, the stress relaxation hole 20 has a non-circular cross-sectional shape that protrudes radially outward, includes the axis O of the first and second rotor cores 4 and 5, and the circumferential direction of the salient poles 4b and 5b. What is necessary is just to be formed in the hole shape symmetrical with respect to the plane which passes through the center, for example, the substantially triangular shape with which the corner | angular part was rounded may be sufficient.

実施の形態2.
図11はこの発明の実施の形態2に係る高速回転電動機の回転子における回転子コアを示す正面図である。
Embodiment 2. FIG.
FIG. 11 is a front view showing a rotor core in a rotor of a high-speed rotary electric motor according to Embodiment 2 of the present invention.

図11において、第1および第2回転子コア4A,5Aは、2つの円形の応力緩和穴21が、周方向に離間して、基部4a,5aと突極4b,5bとの境界を含む領域に形成されており、その周方向幅θ3は45°である。さらに、2つの応力緩和穴20は、軸心Oを含み、かつ突極4b,5bの周方向中央を通る平面に対して対称に形成されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
In FIG. 11, the first and second rotor cores 4 </ b> A and 5 </ b> A are regions in which two circular stress relaxation holes 21 are separated from each other in the circumferential direction and include boundaries between the base portions 4 a and 5 a and the salient poles 4 b and 5 b. The circumferential width θ3 is 45 °. Further, the two stress relaxation holes 20 are formed symmetrically with respect to a plane including the axis O and passing through the circumferential center of the salient poles 4b and 5b.
Other configurations are the same as those in the first embodiment.

したがって、この実施の形態2においても、上記実施の形態1と同様の効果を奏する。
実施の形態2によれば、2つの応力緩和穴21が周方向に離間して基部4a,5aと突極4b,5bとの境界を含む領域に形成されているので、磁路が応力緩和穴20間に確保され、高速回転電動機の出力を高めることができる。
また、応力緩和穴21の穴形状が円形であるので、穴加工が容易となる。
Therefore, the second embodiment also has the same effect as the first embodiment.
According to the second embodiment, since the two stress relaxation holes 21 are formed in a region including the boundary between the base portions 4a and 5a and the salient poles 4b and 5b separated in the circumferential direction, the magnetic path is a stress relaxation hole. It is ensured between 20 and the output of the high-speed rotating motor can be increased.
Moreover, since the hole shape of the stress relaxation hole 21 is circular, drilling is facilitated.

ここで、上記実施の形態2では、応力緩和穴21の断面形状が円形であるが、応力緩和穴の断面形状は円形に限定されるものではなく、例えば突極の周方向外側に向って凸状の半円形や角部が丸められた略三角形でもよい。
また、上記実施の形態2では、応力緩和穴21が突極4b、5bのそれぞれに対し、2つ形成されているが、応力緩和穴21の個数は2つに限定されるものではなく、3個以上でもよい。この場合、応力緩和穴21は、周方向に互いに離間して、基部4a,5aと突極4b,5bとの境界を含み、軸心Oと突極4b,5bの周方向中央とを通る平面に対して対称に形成されていればよい。
Here, in the second embodiment, the cross-sectional shape of the stress relaxation hole 21 is circular. However, the cross-sectional shape of the stress relaxation hole is not limited to a circular shape. For example, the stress relaxation hole 21 protrudes outward in the circumferential direction of the salient pole. A semicircular shape or a substantially triangular shape with rounded corners may be used.
In the second embodiment, two stress relaxation holes 21 are formed for each of the salient poles 4b and 5b. However, the number of the stress relaxation holes 21 is not limited to two. It may be more than one. In this case, the stress relaxation holes 21 are spaced apart from each other in the circumferential direction, include the boundary between the base portions 4a and 5a and the salient poles 4b and 5b, and pass through the axis O and the circumferential center of the salient poles 4b and 5b. Need only be formed symmetrically.

なお、上記各実施の形態では、界磁極数とスロット数との比が4:6、すなわち極スロット比が2:3であるが、極スロット比は2:3に限定されるものではなく、例えば4:3でもよい。
また、上記各実施の形態では、1つ又は2つの応力緩和穴が各突極に形成されているものとしているが、3個以上の応力緩和穴を各突極に形成してもよい。この場合、応力緩和穴は、それぞれ、基部と突極との境界を含み、軸心と突極の周方向中央とを通る平面に対して対称となるように各突極に形成すればよい。
In each of the above embodiments, the ratio between the number of field poles and the number of slots is 4: 6, that is, the pole slot ratio is 2: 3. However, the pole slot ratio is not limited to 2: 3. For example, 4: 3 may be used.
In each of the above embodiments, one or two stress relaxation holes are formed in each salient pole. However, three or more stress relaxation holes may be formed in each salient pole. In this case, each stress relaxation hole may be formed in each salient pole so as to be symmetrical with respect to a plane including the boundary between the base and the salient pole and passing through the axial center and the circumferential center of the salient pole.

また、上記各実施の形態では、固定子コイルが集中巻き方式で第1および第2固定子コアに巻回されているものとしているが、固定子コイルは分布巻き方式で第1および第2固定子コアに巻回されていてもよい。
また、上記各実施の形態では、隔壁の外径が第1および第2回転子コアの外径に一致しているものとしているが、隔壁の外径は必ずしも第1および第2回転子コアの外径に一致する必要はない。さらに、第1および第2回転子コアが回転軸に十分に固定されていれば、隔壁を省略してもよい。
In each of the above embodiments, the stator coil is wound around the first and second stator cores by the concentrated winding method, but the stator coil is distributed by the first and second fixed winding methods. It may be wound around the child core.
In each of the above embodiments, the outer diameter of the partition is the same as the outer diameter of the first and second rotor cores. However, the outer diameter of the partition is not necessarily the same as that of the first and second rotor cores. It is not necessary to match the outer diameter. Furthermore, the partition may be omitted if the first and second rotor cores are sufficiently fixed to the rotation shaft.

また、上記各実施の形態では、第1および第2固定子コア、および第1および第2回転子コアが磁性薄板として磁性鋼板を積層して作製されているものとしているが、磁性薄板は磁性鋼板に限定されるものではなく、例えば電磁鋼板を用いてもよい。また、第1および第2固定子コア、および第1および第2回転子コアは塊状の磁性体で作製されてもよく、例えばパーマロイ粉末を絶縁した後、加圧成形し、熱処理して作製された圧粉鉄心を用いることができる。   In each of the above embodiments, the first and second stator cores and the first and second rotor cores are made by laminating magnetic steel plates as magnetic thin plates, but the magnetic thin plates are magnetic. For example, an electromagnetic steel plate may be used. In addition, the first and second stator cores and the first and second rotor cores may be made of a bulk magnetic material, for example, made by insulating permalloy powder, pressing and heat-treating it. A compacted iron core can be used.

また、上記各実施の形態では、回転子が、同一形状に形成された2つの回転子コアを、周方向に半突極ピッチずらして回転軸に同軸に固着して構成されているものとしているが、本発明は、1つの回転子コアを回転軸に同軸に固着して構成された回転子に適用しても、同様の効果を奏する。1つの回転子コアを回転軸に同軸に固着して構成された回転子は、例えばスイッチドリラクタンスモータの回転子に適用することができる。   In each of the above-described embodiments, the rotor is configured by fixing two rotor cores formed in the same shape to the rotating shaft coaxially with a half salient pole pitch shifted in the circumferential direction. However, even if the present invention is applied to a rotor configured by fixing one rotor core coaxially to the rotation shaft, the same effect can be obtained. A rotor formed by coaxially fixing one rotor core to a rotation shaft can be applied to a rotor of a switched reluctance motor, for example.

1 回転電動機、2 回転軸、3 回転子、4,4A 第1回転子コア、4a 基部、4b 突極、5,5A 第2回転子コア、5a 基部、5b 突極、7 固定子、8 固定子コア、9 第1固定子コア、9a コアバック、9b ティース、9c スロット、10 第2固定子コア、10a コアバック、10b ティース、10c スロット、11 固定子コイル、12 界磁コイル(界磁手段)、13 ハウジング(磁路形成部材)、20,21 応力緩和穴。   DESCRIPTION OF SYMBOLS 1 Rotating motor, 2 Rotating shaft, 3 Rotor, 4, 4A 1st rotor core, 4a base, 4b Salient pole, 5, 5A 2nd rotor core, 5a Base, 5b Salient pole, 7 Stator, 8 Fixed Child core, 9 first stator core, 9a core back, 9b teeth, 9c slot, 10 second stator core, 10a core back, 10b teeth, 10c slot, 11 stator coil, 12 field coil (field means) ), 13 Housing (magnetic path forming member), 20, 21 Stress relaxation holes.

Claims (6)

回転軸と、
回転軸に同軸に固定された円筒状の基部、および該基部の外周面に周方向に等角ピッチで配設されて軸方向に延在する複数の突極を有する回転子コアと、を備え、
応力緩和穴が、上記突極のそれぞれに対応し、上記基部と上記突極との境界を含み、かつ上記回転軸の軸心と該突極の周方向中央とを通る平面に対して対称な形状に、上記回転子コアを軸方向に貫通するように形成されていることを特徴とする高速回転電動機用回転子。
A rotation axis;
A cylindrical base fixed coaxially to the rotation shaft, and a rotor core having a plurality of salient poles disposed in the circumferential direction at an equiangular pitch and extending in the axial direction on the outer peripheral surface of the base. ,
A stress relaxation hole corresponds to each of the salient poles, includes a boundary between the base and the salient poles, and is symmetric with respect to a plane passing through the axis of the rotating shaft and the circumferential center of the salient poles. A rotor for a high-speed rotary electric motor, wherein the rotor core is formed so as to penetrate the rotor core in the axial direction.
上記回転子コアは、2つの上記突極を有し、
上記応力緩和穴は、上記突極のそれぞれに対し、1つずつ形成されていることを特徴とする請求項1記載の高速回転電動機用回転子。
The rotor core has two salient poles,
2. The rotor for a high-speed rotary electric motor according to claim 1, wherein one stress relaxation hole is formed for each of the salient poles.
上記回転子コアは、2つの上記突極を有し、
上記応力緩和穴は、上記突極のそれぞれに対応し、周方向に離間して、2つずつ形成されていることを特徴とする請求項1記載の高速回転電動機用回転子。
The rotor core has two salient poles,
The rotor for a high-speed rotary motor according to claim 1, wherein the stress relaxation holes correspond to each of the salient poles and are formed two by two apart from each other in the circumferential direction.
内周側に開口するスロットを画成するティースが円筒状のコアバックの内周面から径方向内方に突設されて周方向に並べて複数配設されてなる同一形状に作製された第1固定子コアおよび第2固定子コアを、軸方向に所定距離離反して、かつ上記ティースの周方向位置を一致させて同軸に配置して構成された固定子コア、および上記固定子コアに巻装された固定子コイルを有する固定子と、
突極が円筒状の基部の外周面に周方向に等角ピッチで配設されてなる同一形状に作製された第1回転子コアおよび第2回転子コアを、それぞれ上記第1固定子コアおよび上記第2固定子コアの内周側に位置させ、かつ互いに周方向に半突極ピッチずらして配設され、該基部に挿通された回転軸に同軸に固着された回転子と、
上記固定子に配設され、上記第1回転子コアの突極と上記第2回転子コアの突極とが異なる極性となるように界磁磁束を発生する界磁手段と、
上記第1固定子コアのコアバック外周面と上記第2固定子コアのコアバック外周面とを連結するように軸方向に延設された軸方向磁路形成部材と、を備え、
応力緩和穴が、上記突極のそれぞれに対し、上記基部と上記突極との境界を含み、かつ上記回転軸の軸心と上記突極の周方向中央とを通る平面に対して対称な形状に、上記第1回転子コアおよび上記第2回転子コアを軸方向に貫通するように形成されていることを特徴とする高速回転電動機。
The teeth that define the slots that open to the inner peripheral side project radially inward from the inner peripheral surface of the cylindrical core back, and are formed in the same shape in which a plurality of teeth are arranged in the circumferential direction. The stator core and the second stator core are wound around the stator core and the stator core, which are configured to be separated from each other by a predetermined distance in the axial direction and coaxially arranged so that the circumferential positions of the teeth coincide with each other. A stator having a stator coil mounted thereon;
The first rotor core and the second rotor core manufactured in the same shape in which the salient poles are arranged on the outer peripheral surface of the cylindrical base portion at an equiangular pitch in the circumferential direction are respectively referred to as the first stator core and A rotor positioned on the inner peripheral side of the second stator core and arranged with a half salient pole pitch in the circumferential direction, and coaxially fixed to a rotation shaft inserted through the base;
Field means disposed on the stator and generating field magnetic flux so that the salient poles of the first rotor core and the salient poles of the second rotor core have different polarities;
An axial magnetic path forming member extending in the axial direction so as to connect the core back outer peripheral surface of the first stator core and the core back outer peripheral surface of the second stator core;
The stress relaxation hole has a symmetrical shape with respect to each of the salient poles, including a boundary between the base and the salient poles, and passing through the axis of the rotating shaft and the circumferential center of the salient poles. And a high-speed rotary electric motor formed so as to penetrate the first rotor core and the second rotor core in the axial direction.
上記第1回転子コアおよび上記第2回転子コアは、それぞれ2つの上記突極を有し、
上記応力緩和穴は、上記突極のそれぞれに対し、1つずつ形成されていることを特徴とする請求項4記載の高速回転電動機。
The first rotor core and the second rotor core each have two salient poles,
The high-speed rotary electric motor according to claim 4, wherein one stress relaxation hole is formed for each of the salient poles.
上記第1回転子コアおよび上記第2回転子コアは、それぞれ2つの上記突極を有し、
上記応力緩和穴は、上記突極のそれぞれに対応し、周方向に離間して、2つずつ形成されていることを特徴とする請求項4記載の高速回転電動機。
The first rotor core and the second rotor core each have two salient poles,
5. The high-speed rotary electric motor according to claim 4, wherein the stress relaxation holes correspond to each of the salient poles and are formed two by two apart in the circumferential direction.
JP2010066663A 2010-03-23 2010-03-23 High speed rotary motor and rotor used therefor Active JP5388919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066663A JP5388919B2 (en) 2010-03-23 2010-03-23 High speed rotary motor and rotor used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066663A JP5388919B2 (en) 2010-03-23 2010-03-23 High speed rotary motor and rotor used therefor

Publications (2)

Publication Number Publication Date
JP2011200081A true JP2011200081A (en) 2011-10-06
JP5388919B2 JP5388919B2 (en) 2014-01-15

Family

ID=44877580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066663A Active JP5388919B2 (en) 2010-03-23 2010-03-23 High speed rotary motor and rotor used therefor

Country Status (1)

Country Link
JP (1) JP5388919B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557971B2 (en) * 2012-04-10 2014-07-23 三菱電機株式会社 Electric motor
WO2015098267A1 (en) * 2013-12-26 2015-07-02 本田技研工業株式会社 Brushless dc motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187867A (en) * 2007-01-31 2008-08-14 Toyota Motor Corp Rotor and rotary electric machine same rotor
WO2009139278A1 (en) * 2008-05-14 2009-11-19 三菱電機株式会社 Magnetic inductor type rotary machine, and fluid transfer device using the rotary machine
JP2009296685A (en) * 2008-06-02 2009-12-17 Denso Corp Rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187867A (en) * 2007-01-31 2008-08-14 Toyota Motor Corp Rotor and rotary electric machine same rotor
WO2009139278A1 (en) * 2008-05-14 2009-11-19 三菱電機株式会社 Magnetic inductor type rotary machine, and fluid transfer device using the rotary machine
JP2009296685A (en) * 2008-06-02 2009-12-17 Denso Corp Rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557971B2 (en) * 2012-04-10 2014-07-23 三菱電機株式会社 Electric motor
WO2015098267A1 (en) * 2013-12-26 2015-07-02 本田技研工業株式会社 Brushless dc motor
JPWO2015098267A1 (en) * 2013-12-26 2017-03-23 本田技研工業株式会社 Brushless DC motor

Also Published As

Publication number Publication date
JP5388919B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6783800B2 (en) Rotating electromachines with stators with closed notches, especially variable reluctance synchronous electromachines assisted by permanent magnets
JP6592234B2 (en) Single phase brushless motor
JP5774081B2 (en) Rotating electric machine
JP5610989B2 (en) Rotating motor
KR101998508B1 (en) Rotary electric machine
US9979267B2 (en) Double-stator rotating electric machine
JP2021531723A (en) Rotor for electrical machinery with asymmetric poles
JP6048191B2 (en) Multi-gap rotating electric machine
JP2014045630A (en) Rotary electric machine
US20220255386A1 (en) Coil, stator, and motor
TW201406009A (en) Rotor for modulated pole machine
JP6025998B2 (en) Magnetic inductor type electric motor
EP3208918A1 (en) Double stator-type rotary machine
CN212462910U (en) Rotor for an electric machine with asymmetrical poles and transverse magnets
CN112425036A (en) Rotating electrical machine
JP2003134788A (en) Permanent magnet rotary electric machine
JP7461967B2 (en) Rotating electric machines, rotors and electromagnetic steel sheets
WO2021039581A1 (en) Motor
JP5388919B2 (en) High speed rotary motor and rotor used therefor
JPWO2020194390A1 (en) Rotating machine
US10483813B2 (en) Rotor having flux filtering function and synchronous motor comprising same
CN109997290B (en) Synchronous reluctance type rotating electric machine
JPH08256461A (en) Permanent magnet motor
JP2017063594A (en) Brushless motor
JP2021058018A (en) motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250