JP2011198659A - Led lamp and vehicular lighting fixture - Google Patents

Led lamp and vehicular lighting fixture Download PDF

Info

Publication number
JP2011198659A
JP2011198659A JP2010065295A JP2010065295A JP2011198659A JP 2011198659 A JP2011198659 A JP 2011198659A JP 2010065295 A JP2010065295 A JP 2010065295A JP 2010065295 A JP2010065295 A JP 2010065295A JP 2011198659 A JP2011198659 A JP 2011198659A
Authority
JP
Japan
Prior art keywords
light guide
light
guide lens
end point
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010065295A
Other languages
Japanese (ja)
Other versions
JP5437128B2 (en
Inventor
Shinji Koizumi
信二 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010065295A priority Critical patent/JP5437128B2/en
Publication of JP2011198659A publication Critical patent/JP2011198659A/en
Application granted granted Critical
Publication of JP5437128B2 publication Critical patent/JP5437128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED lamp capable of increasing proportion of light to proceed in a desired direction, and a vehicular lighting fixture to have it.SOLUTION: In an LED lamp 100 equipped with a light guide lens 2 to guide the light from an LED light source 1, an incident face 2a, an inside reflecting face 2b, an outside reflecting face 2c, and an emitting face 2d are installed at the light guide lens 2. The inside reflecting face 2b is formed by rotating a quarter arc 2b1 around the center axial line 2' arranged so that a tangent line to pass through the end point 2b1a becomes parallel with the center axial line 2', so that the tangent line to pass through the end point 2b1b becomes perpendicular to the center axial line 2', and so that the end point 2b1a is positioned closer to the center axial line 2' than the end point 2b1b. The outside reflecting face 2c is formed by rotating a quarter arc 2c1 around the center axial line 2' arranged so that the tangent line to pass through the end point 2c1a becomes parallel with the center axial line 2', so that the tangent line to pass through the end point 2c1b becomes perpendicular to the center axial line 2', and so that the end point 2c1a is positioned closer to the center axial line 1' than the end point 2c1b.

Description

本発明は、LED光源と、LED光源からの光を導光する導光レンズとを具備するLEDランプおよびそれを有する車両用灯具に関する。   The present invention relates to an LED lamp including an LED light source and a light guide lens that guides light from the LED light source, and a vehicular lamp having the LED lamp.

特に、本発明は、所望の向きに進む光の割合を増加させることができるLEDランプおよびそれを有する車両用灯具に関する。   In particular, the present invention relates to an LED lamp capable of increasing the proportion of light traveling in a desired direction and a vehicular lamp having the LED lamp.

従来から、LED光源と、LED光源からの光を導光する導光レンズとを具備するLEDランプが知られている。この種のLEDランプの例としては、例えば特許文献1(特開2002−100217号公報)の図1および図4に記載されたものがある。特許文献1の図1および図4に記載されたLEDランプでは、LED光源からの光が、中空の円筒状の反射面を有するリフレクタによってガイドされ、導光レンズの入射面を介して入射し、導光レンズの回転双曲反射面によって反射され、導光レンズの出射面を介して出射する。詳細には、特許文献1の図1および図4に記載されたLEDランプでは、LED光源からの光のうち、導光レンズの回転双曲反射面の焦点f1を透過せしめられた光が、導光レンズの回転双曲反射面によって反射され、導光レンズの回転双曲反射面からの反射光の光路が、導光レンズの回転双曲反射面の焦点f2からの放射光の光路と一致するように構成されている。   2. Description of the Related Art Conventionally, an LED lamp including an LED light source and a light guide lens that guides light from the LED light source is known. Examples of this type of LED lamp include those described in FIG. 1 and FIG. 4 of Patent Document 1 (Japanese Patent Laid-Open No. 2002-100217). In the LED lamp described in FIG. 1 and FIG. 4 of Patent Document 1, light from an LED light source is guided by a reflector having a hollow cylindrical reflecting surface, and is incident through an incident surface of a light guide lens. The light is reflected by the rotating hyperbolic reflecting surface of the light guide lens and emitted through the light exit surface of the light guide lens. Specifically, in the LED lamp described in FIG. 1 and FIG. 4 of Patent Document 1, the light transmitted through the focal point f1 of the rotating hyperbolic reflecting surface of the light guide lens out of the light from the LED light source is guided. The optical path of the reflected light from the rotating hyperbolic reflecting surface of the light guide lens matches the optical path of the emitted light from the focal point f2 of the rotating hyperbolic reflecting surface of the light guide lens. It is configured as follows.

特開2002−100217号公報JP 2002-100217 A

ところで、特許文献1の図1および図4に記載されたLEDランプでは、LED光源からの光の大部分が導光レンズの回転双曲反射面の焦点f1に集光せしめられるように、中空の円筒状の反射面を有するリフレクタが構成されていない。そのため、特許文献1の図1および図4に記載されたLEDランプでは、LED光源からの光のうち、一部分の光のみが、導光レンズの回転双曲反射面の焦点f1に集光せしめられ、所望の向きに進む光(詳細には、導光レンズの回転双曲反射面の焦点f2からの放射光の光路と一致する光路上を進む光)になって導光レンズの出射面を介して出射する。つまり、特許文献1の図1および図4に記載されたLEDランプでは、所望の向きに進む光の割合を十分に高くすることができない。   By the way, in the LED lamp described in FIG. 1 and FIG. 4 of patent document 1, it is hollow so that most of the light from an LED light source may be condensed on the focus f1 of the rotation hyperbolic reflection surface of a light guide lens. A reflector having a cylindrical reflecting surface is not configured. Therefore, in the LED lamp described in FIG. 1 and FIG. 4 of Patent Document 1, only a part of the light from the LED light source is condensed at the focal point f1 of the rotating hyperbolic reflecting surface of the light guide lens. The light traveling in a desired direction (specifically, the light traveling on the optical path that coincides with the optical path of the radiated light from the focal point f2 of the rotating hyperbolic reflecting surface of the light guide lens) is transmitted through the exit surface of the light guide lens. And exit. That is, in the LED lamp described in FIG. 1 and FIG. 4 of Patent Document 1, the ratio of light traveling in a desired direction cannot be sufficiently increased.

詳細には、特許文献1の図1および図4に記載されたLEDランプでは、LED光源からの光が導光レンズの回転双曲反射面によって1回のみ反射されるように構成されている。そのため、特許文献1の図1および図4に記載されたLEDランプでは、導光レンズの回転双曲反射面の焦点f1に集光せしめられなかったLED光源からの光が導光レンズの回転双曲反射面によって反射されると、導光レンズの回転双曲反射面からの反射光の光路が、所望の向きに進む光の光路から大きく外れてしまう。   Specifically, the LED lamp described in FIGS. 1 and 4 of Patent Document 1 is configured such that light from the LED light source is reflected only once by the rotating hyperbolic reflecting surface of the light guide lens. Therefore, in the LED lamp described in FIGS. 1 and 4 of Patent Document 1, light from the LED light source that has not been condensed at the focal point f1 of the rotational hyperbolic reflection surface of the light guide lens is rotated by the rotational twin of the light guide lens. When reflected by the curved reflecting surface, the optical path of the reflected light from the rotating hyperbolic reflecting surface of the light guide lens is greatly deviated from the optical path of the light traveling in a desired direction.

前記問題点に鑑み、本発明は、所望の向きに進む光の割合を増加させることができるLEDランプおよびそれを有する車両用灯具を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an LED lamp capable of increasing the proportion of light traveling in a desired direction and a vehicular lamp having the LED lamp.

請求項1に記載の発明によれば、LED光源(1;1a,1b,1c)と、LED光源(1;1a,1b,1c)からの光を導光する導光レンズ(2)とを具備し、
入射面(2a)と内側反射面(2b)と外側反射面(2c)と出射面(2d)とを導光レンズ(2)に設け、
一方の端点(2b1a)を通る接線(L2b1a)が導光レンズ(2)の中心軸線(2’)に平行になり、他方の端点(2b1b)を通る接線(L2b1b)が導光レンズ(2)の中心軸線(2’)に垂直になるように、かつ、一方の端点(2b1a)が他方の端点(2b1b)よりも導光レンズ(2)の中心軸線(2’)の近くに位置するように配置された4分の1円弧(2b1)を、導光レンズ(2)の中心軸線(2’)を中心に回転させることによって内側反射面(2b)を形成し、
一方の端点(2c1a)を通る接線(L2c1a)が導光レンズ(2)の中心軸線(2’)に平行になり、他方の端点(2c1b)を通る接線(L2c1b)が導光レンズ(2)の中心軸線(2’)に垂直になるように、かつ、一方の端点(2c1a)が他方の端点(2c1b)よりも導光レンズ(2)の中心軸線(2’)の近くに位置するように配置された4分の1円弧(2c1)を、導光レンズ(2)の中心軸線(2’)を中心に回転させることによって外側反射面(2c)を形成し、
外側反射面(2c)の4分の1円弧(2c1)の中心点(C2c1)を、内側反射面(2b)の4分の1円弧(2b1)の中心点(C2b1)よりも、入射面(2a)から離れた側であって、導光レンズ(2)の中心軸線(2’)に近い側に配置し、
導光レンズ(2)の入射面(2a)を介して入射されたLED光源(1;1a,1b,1c)からの光が、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間を透過せしめられ、導光レンズ(2)の内側反射面(2b)によって複数回反射され、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の他方の端点(2b1b)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の他方の端点(2c1b)との間を透過せしめられ、導光レンズ(2)の出射面(2d)を介して出射することを特徴とするLEDランプ(100)が提供される。
According to the invention described in claim 1, the LED light source (1; 1a, 1b, 1c) and the light guide lens (2) for guiding light from the LED light source (1; 1a, 1b, 1c) are provided. Equipped,
An incident surface (2a), an inner reflection surface (2b), an outer reflection surface (2c), and an emission surface (2d) are provided on the light guide lens (2),
A tangent line (L2b1a) passing through one end point (2b1a) is parallel to the central axis (2 ′) of the light guide lens (2), and a tangent line (L2b1b) passing through the other end point (2b1b) is the light guide lens (2). So that one end point (2b1a) is positioned closer to the central axis (2 ') of the light guide lens (2) than the other end point (2b1b). The inner arc surface (2b) is formed by rotating the quarter arc (2b1) arranged at the center of the central axis (2 ′) of the light guide lens (2),
A tangent line (L2c1a) passing through one end point (2c1a) is parallel to the central axis (2 ′) of the light guide lens (2), and a tangent line (L2c1b) passing through the other end point (2c1b) is the light guide lens (2). So that one end point (2c1a) is positioned closer to the center axis (2 ') of the light guide lens (2) than the other end point (2c1b). The outer arc surface (2c) is formed by rotating the quarter arc (2c1) arranged on the center axis (2 ′) of the light guide lens (2),
The center point (C2c1) of the quarter arc (2c1) of the outer reflective surface (2c) is made more incident than the center point (C2b1) of the quarter arc (2b1) of the inner reflective surface (2b) ( 2a) on the side away from the central axis (2 ′) of the light guide lens (2),
The light from the LED light source (1; 1a, 1b, 1c) incident through the incident surface (2a) of the light guide lens (2) is divided into four minutes on the inner reflection surface (2b) of the light guide lens (2). Is transmitted between one end point (2b1a) of one arc (2b1) and one end point (2c1a) of a quarter arc (2c1) of the outer reflective surface (2c) of the light guide lens (2). The other end point (2b1b) of the quarter arc (2b1) of the inner reflection surface (2b) of the light guide lens (2) is reflected a plurality of times by the inner reflection surface (2b) of the light guide lens (2). The light is transmitted through the quarter end (2c1b) of the quarter arc (2c1) of the outer reflective surface (2c) of the light guide lens (2), and the light exiting surface (2d) of the light guide lens (2) is transmitted. There is provided an LED lamp (100) characterized in that it emits through.

請求項2に記載の発明によれば、導光レンズ(2)の入射面(2a)を介して入射されたLED光源(1;1a,1b,1c)からの光を全反射し、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間に導光するためのガイド反射面(2e)を外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)と入射面(2a)の外縁部(2a1)との間に配置したことを特徴とする請求項1に記載のLEDランプ(100)が提供される。   According to the second aspect of the present invention, the light from the LED light source (1; 1a, 1b, 1c) incident through the incident surface (2a) of the light guide lens (2) is totally reflected to guide the light. One end point (2b1a) of a quarter arc (2b1) of the inner reflective surface (2b) of the lens (2) and a quarter arc (2c1) of the outer reflective surface (2c) of the light guide lens (2) The guide reflecting surface (2e) for guiding light between the one end point (2c1a) and the one end point (2c1a) of the quarter arc (2c1) of the outer reflecting surface (2c) and the incident surface (2a) The LED lamp (100) according to claim 1, wherein the LED lamp (100) is disposed between the outer edge (2a1) of the LED.

請求項3に記載の発明によれば、請求項1又は2に記載のLEDランプ(100)の導光レンズ(2)の出射面(2d)を介して出射する光の疑似焦点(100a)を、リフレクタ(201)の放物系反射面(201a)の焦点(200a1)上またはその近傍に配置したことを特徴とする車両用灯具(200)が提供される。   According to the invention described in claim 3, the pseudo focal point (100a) of the light emitted through the exit surface (2d) of the light guide lens (2) of the LED lamp (100) according to claim 1 or 2 is provided. A vehicular lamp (200) is provided that is disposed on or near the focal point (200a1) of a parabolic reflecting surface (201a) of a reflector (201).

請求項1に記載のLEDランプ(100)では、LED光源(1;1a,1b,1c)と、LED光源(1;1a,1b,1c)からの光を導光する導光レンズ(2)とが設けられている。また、入射面(2a)と内側反射面(2b)と外側反射面(2c)と出射面(2d)とが導光レンズ(2)に設けられている。   In the LED lamp (100) according to claim 1, an LED light source (1; 1a, 1b, 1c) and a light guide lens (2) for guiding light from the LED light source (1; 1a, 1b, 1c). And are provided. In addition, an incident surface (2a), an inner reflection surface (2b), an outer reflection surface (2c), and an emission surface (2d) are provided on the light guide lens (2).

詳細には、請求項1に記載のLEDランプ(100)では、一方の端点(2b1a)を通る接線(L2b1a)が導光レンズ(2)の中心軸線(2’)に平行になり、他方の端点(2b1b)を通る接線(L2b1b)が導光レンズ(2)の中心軸線(2’)に垂直になるように、かつ、一方の端点(2b1a)が他方の端点(2b1b)よりも導光レンズ(2)の中心軸線(2’)の近くに位置するように配置された4分の1円弧(2b1)を、導光レンズ(2)の中心軸線(2’)を中心に回転させることによって内側反射面(2b)が形成されている。   Specifically, in the LED lamp (100) according to claim 1, the tangent (L2b1a) passing through one end point (2b1a) is parallel to the central axis (2 ′) of the light guide lens (2), and the other The tangent line (L2b1b) passing through the end point (2b1b) is perpendicular to the central axis (2 ′) of the light guide lens (2), and one end point (2b1a) is more guided than the other end point (2b1b). A quarter arc (2b1) arranged so as to be located near the central axis (2 ′) of the lens (2) is rotated around the central axis (2 ′) of the light guide lens (2). Thus, the inner reflection surface (2b) is formed.

また、請求項1に記載のLEDランプ(100)では、一方の端点(2c1a)を通る接線(L2c1a)が導光レンズ(2)の中心軸線(2’)に平行になり、他方の端点(2c1b)を通る接線(L2c1b)が導光レンズ(2)の中心軸線(2’)に垂直になるように、かつ、一方の端点(2c1a)が他方の端点(2c1b)よりも導光レンズ(2)の中心軸線(2’)の近くに位置するように配置された4分の1円弧(2c1)を、導光レンズ(2)の中心軸線(2’)を中心に回転させることによって外側反射面(2c)が形成されている。   In the LED lamp (100) according to claim 1, the tangent line (L2c1a) passing through one end point (2c1a) is parallel to the central axis (2 ′) of the light guide lens (2), and the other end point ( 2c1b) so that the tangent (L2c1b) passing through the light guide lens (2) is perpendicular to the central axis (2 ′) of the light guide lens (2), and one end point (2c1a) is more than the other end point (2c1b). 2) The quarter arc (2c1) arranged so as to be located near the central axis (2 ′) of 2) is rotated outside by rotating around the central axis (2 ′) of the light guide lens (2). A reflective surface (2c) is formed.

更に、請求項1に記載のLEDランプ(100)では、外側反射面(2c)の4分の1円弧(2c1)の中心点(C2c1)が、内側反射面(2b)の4分の1円弧(2b1)の中心点(C2b1)よりも、入射面(2a)から離れた側であって、導光レンズ(2)の中心軸線(2’)に近い側に配置されている。   Furthermore, in the LED lamp (100) according to claim 1, the center point (C2c1) of the quarter arc (2c1) of the outer reflective surface (2c) is a quarter arc of the inner reflective surface (2b). It is arranged on the side farther from the incident surface (2a) than the center point (C2b1) of (2b1) and closer to the central axis (2 ′) of the light guide lens (2).

更に、請求項1に記載のLEDランプ(100)では、導光レンズ(2)の入射面(2a)を介して入射されたLED光源(1;1a,1b,1c)からの光が、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間を透過せしめられる。次いで、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間を透過せしめられた光が、導光レンズ(2)の内側反射面(2b)によって複数回反射される。つまり、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間を透過せしめられた光が、あたかも光ファイバによって導光されるかのように、導光レンズ(2)の内側反射面(2b)と外側反射面(2c)との間の湾曲した導光路内を導光される。その結果、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の他方の端点(2b1b)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の他方の端点(2c1b)との間を透過せしめられる大部分の光が所望の向きに進む光になる。次いで、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の他方の端点(2b1b)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の他方の端点(2c1b)との間を透過せしめられた光が、導光レンズ(2)の出射面(2d)を介して出射する。   Furthermore, in the LED lamp (100) according to claim 1, the light from the LED light source (1; 1a, 1b, 1c) incident through the incident surface (2a) of the light guide lens (2) is guided. One end point (2b1a) of a quarter arc (2b1) of the inner reflection surface (2b) of the optical lens (2) and a quarter arc (2c1) of the outer reflection surface (2c) of the light guide lens (2). ) To one end point (2c1a). Next, one end point (2b1a) of a quarter arc (2b1) of the inner reflective surface (2b) of the light guide lens (2) and a quarter of the outer reflective surface (2c) of the light guide lens (2). The light transmitted between one end point (2c1a) of the arc (2c1) is reflected a plurality of times by the inner reflection surface (2b) of the light guide lens (2). In other words, one end point (2b1a) of the quarter arc (2b1) of the inner reflection surface (2b) of the light guide lens (2) and a quarter of the outer reflection surface (2c) of the light guide lens (2). The light transmitted between one end point (2c1a) of the arc (2c1) is guided to the outer reflection surface (2b) and the outer side of the light guide lens (2) as if it were guided by an optical fiber. Light is guided in the curved light guide path between the reflecting surface (2c). As a result, the other end point (2b1b) of the quarter arc (2b1) of the inner reflection surface (2b) of the light guide lens (2) and the fourth of the outer reflection surface (2c) of the light guide lens (2). Most of the light transmitted between the other end point (2c1b) of one arc (2c1) becomes light traveling in a desired direction. Next, the other end point (2b1b) of the quarter arc (2b1) of the inner reflection surface (2b) of the light guide lens (2) and the quarter of the outer reflection surface (2c) of the light guide lens (2). The light transmitted between the other end point (2c1b) of the arc (2c1) is emitted through the emission surface (2d) of the light guide lens (2).

すなわち、請求項1に記載のLEDランプ(100)によれば、導光レンズ(2)の内側反射面(2b)と外側反射面(2c)との間を透過せしめられる大部分の光を、光ファイバーと同様の導光作用によって所望の向きに進む光にすることができる。   That is, according to the LED lamp (100) according to claim 1, most of the light transmitted between the inner reflection surface (2b) and the outer reflection surface (2c) of the light guide lens (2), Light that travels in a desired direction can be obtained by a light guide action similar to that of an optical fiber.

そのため、請求項1に記載のLEDランプ(100)によれば、LED光源からの光のうち、回転双曲反射面の焦点を透過せしめられる光のみを所望の向きに進む光にすることができる特許文献1の図4に記載されたLEDランプよりも、所望の向きに進む光の割合を増加させることができる。   Therefore, according to the LED lamp (100) of the first aspect, only the light that can be transmitted through the focal point of the rotating hyperbolic reflecting surface among the light from the LED light source can be made to travel in a desired direction. Compared with the LED lamp described in FIG. 4 of Patent Document 1, it is possible to increase the proportion of light traveling in a desired direction.

請求項2に記載のLEDランプ(100)では、導光レンズ(2)の入射面(2a)を介して入射されたLED光源(1;1a,1b,1c)からの光を全反射し、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間に導光するためのガイド反射面(2e)が外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)と入射面(2a)の外縁部(2a1)との間に配置されている。   In the LED lamp (100) according to claim 2, the light from the LED light source (1; 1a, 1b, 1c) incident through the incident surface (2a) of the light guide lens (2) is totally reflected. One end point (2b1a) of a quarter arc (2b1) of the inner reflection surface (2b) of the light guide lens (2) and a quarter arc of the outer reflection surface (2c) of the light guide lens (2) ( 2c1) has a guide reflecting surface (2e) for guiding light between one end point (2c1a) and one end point (2c1a) of a quarter arc (2c1) of the outer reflecting surface (2c). It arrange | positions between the outer edge parts (2a1) of (2a).

そのため、請求項2に記載のLEDランプ(100)によれば、導光レンズ(2)の入射面(2a)を介して入射され、導光レンズ(2)の表面のうち、外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)と入射面(2a)の外縁部(2a1)との間の部分に到達したLED光源(1;1a,1b,1c)からの光が、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間に導光されない場合よりも、LED光源(1;1a,1b,1c)からの光の有効利用率を向上させることができる。   Therefore, according to the LED lamp (100) of the second aspect, the light is incident through the incident surface (2a) of the light guide lens (2), and the outer reflective surface (of the surface of the light guide lens (2) ( 2c) from the LED light source (1; 1a, 1b, 1c) reaching the portion between one end point (2c1a) of the quarter arc (2c1) and the outer edge (2a1) of the incident surface (2a). Is one quarter end (2b1a) of the quarter arc (2b1) of the inner reflection surface (2b) of the light guide lens (2) and four minutes of the outer reflection surface (2c) of the light guide lens (2). The effective utilization rate of the light from the LED light source (1; 1a, 1b, 1c) can be improved as compared with the case where light is not guided between one end point (2c1a) of one arc (2c1).

請求項3に記載の車両用灯具(200)では、請求項1又は2に記載のLEDランプ(100)の導光レンズ(2)の出射面(2d)を介して出射する光の疑似焦点(100a)が、リフレクタ(201)の放物系反射面(201a)の焦点(200a1)上またはその近傍に配置されている。   In the vehicular lamp (200) according to claim 3, the pseudo focal point of the light emitted through the exit surface (2d) of the light guide lens (2) of the LED lamp (100) according to claim 1 or 2 ( 100a) is arranged on or near the focal point (200a1) of the parabolic reflecting surface (201a) of the reflector (201).

そのため、請求項3に記載の車両用灯具(200)によれば、電球型ランプのフィラメントがリフレクタ(201)の放物系反射面(201a)の焦点(200a1)上またはその近傍に配置されている場合と同様の配光特性を実現することができる。   Therefore, according to the vehicular lamp (200) according to claim 3, the filament of the light bulb type lamp is disposed on or near the focal point (200a1) of the parabolic reflection surface (201a) of the reflector (201). It is possible to realize the same light distribution characteristics as in the case of

第1の実施形態のLEDランプ100の部分断面平面図である。It is a fragmentary sectional top view of LED lamp 100 of a 1st embodiment. 第1の実施形態のLEDランプ100の一部を構成する導光レンズ2等を示した図である。It is the figure which showed the light guide lens 2 etc. which comprise some LED lamps 100 of 1st Embodiment. 第1の実施形態のLEDランプ100を車両用灯具200に適用した例を示した図である。It is the figure which showed the example which applied the LED lamp 100 of 1st Embodiment to the vehicle lamp 200. FIG. 第3の実施形態のLEDランプ100の部分断面平面図である。It is a fragmentary sectional top view of LED lamp 100 of a 3rd embodiment. 第3の実施形態のLEDランプ100の一部を構成する導光レンズ2等を示した図である。It is the figure which showed the light guide lens 2 etc. which comprise some LED lamps 100 of 3rd Embodiment. 第4の実施形態のLEDランプ100の正面図である。It is a front view of the LED lamp 100 of 4th Embodiment. 図6のA−A線に沿った部分断面図である。It is a fragmentary sectional view along the AA line of FIG. 図6のB−B線に沿った部分断面図である。It is a fragmentary sectional view along the BB line of FIG. 図7に示す断面内を進むLED光源1aからの光L20a,L21a,L22a,L23a,L24aを示した図である。It is the figure which showed the lights L20a, L21a, L22a, L23a, and L24a from the LED light source 1a which advance in the cross section shown in FIG.

図1は第1の実施形態のLEDランプ100の部分断面平面図である。詳細には、図1中の平面図の部分が、LEDランプ100の口金5を示しており、図1中の断面図の部分が、導光レンズ2の中心軸線2’を含むLEDランプ100の概略的な水平断面を示している。図2は第1の実施形態のLEDランプ100の一部を構成する導光レンズ2等を示した図である。詳細には、図2(A)は導光レンズ2の中心軸線2’を含む導光レンズ2の概略的な水平断面図である。図2(B)は図2(A)に示す水平断面内を進むLED光源1からの光L0,L1,L2,L3を示した図である。   FIG. 1 is a partial cross-sectional plan view of an LED lamp 100 according to the first embodiment. Specifically, the plan view portion in FIG. 1 shows the base 5 of the LED lamp 100, and the cross-sectional portion in FIG. 1 shows the LED lamp 100 including the central axis 2 ′ of the light guide lens 2. A schematic horizontal section is shown. FIG. 2 is a view showing the light guide lens 2 and the like constituting a part of the LED lamp 100 of the first embodiment. Specifically, FIG. 2A is a schematic horizontal sectional view of the light guide lens 2 including the central axis 2 ′ of the light guide lens 2. FIG. 2B is a diagram showing the light L0, L1, L2, and L3 from the LED light source 1 traveling in the horizontal section shown in FIG.

第1の実施形態のLEDランプ100では、図1に示すように、LED光源1と、LED光源1からの光を導光する導光レンズ2と、LED光源1が実装された基板3と、導光レンズ2および基板3を支持するハウジング4と、LED光源1に対する給電を行う口金5とが設けられている。第1の実施形態のLEDランプ100では、LED光源1に対する給電を行うために口金5が設けられているが、第2の実施形態のLEDランプ100では、代わりに、LED光源1に対する給電を行うためにウエッジベース部を設けることも可能である。   In the LED lamp 100 of the first embodiment, as shown in FIG. 1, an LED light source 1, a light guide lens 2 that guides light from the LED light source 1, a substrate 3 on which the LED light source 1 is mounted, A housing 4 that supports the light guide lens 2 and the substrate 3 and a base 5 that supplies power to the LED light source 1 are provided. In the LED lamp 100 of the first embodiment, the base 5 is provided to supply power to the LED light source 1, but in the LED lamp 100 of the second embodiment, power is supplied to the LED light source 1 instead. Therefore, it is also possible to provide a wedge base portion.

更に、第1の実施形態のLEDランプ100では、図2(A)に示すように、LED光源1からの光が入射する入射面2aと、LED光源1からの光を導光する内側反射面2bおよび外側反射面2cと、導光レンズ2によって導光された光が出射する出射面2d,2hとが、導光レンズ2に設けられている。   Further, in the LED lamp 100 of the first embodiment, as shown in FIG. 2A, an incident surface 2a on which light from the LED light source 1 is incident and an inner reflection surface that guides light from the LED light source 1 The light guide lens 2 is provided with 2b and the outer reflection surface 2c, and emission surfaces 2d and 2h from which light guided by the light guide lens 2 is emitted.

詳細には、第1の実施形態のLEDランプ100では、図2(A)に示すように、一方の端点2b1aを通る接線L2b1aが導光レンズ2の中心軸線2’に平行になり、他方の端点2b1bを通る接線L2b1bが導光レンズ2の中心軸線2’に垂直になるように、かつ、一方の端点2b1aが他方の端点2b1bよりも導光レンズ2の中心軸線2’の近くに位置するように配置された4分の1円弧2b1を、導光レンズ2の中心軸線2’を中心に回転させることによって内側反射面2bが形成されている。   Specifically, in the LED lamp 100 of the first embodiment, as shown in FIG. 2A, the tangent line L2b1a passing through one end point 2b1a is parallel to the central axis 2 ′ of the light guide lens 2, and the other The tangent line L2b1b passing through the end point 2b1b is perpendicular to the central axis 2 ′ of the light guide lens 2, and one end point 2b1a is located closer to the central axis 2 ′ of the light guide lens 2 than the other end point 2b1b. The inner reflection surface 2b is formed by rotating the quarter arc 2b1 arranged in this manner around the central axis 2 ′ of the light guide lens 2.

更に、第1の実施形態のLEDランプ100では、図2(A)に示すように、一方の端点2c1aを通る接線L2c1aが導光レンズ2の中心軸線2’に平行になり、他方の端点2c1bを通る接線L2c1bが導光レンズ2の中心軸線2’に垂直になるように、かつ、一方の端点2c1aが他方の端点2c1bよりも導光レンズ2の中心軸線2’の近くに位置するように配置された4分の1円弧2c1を、導光レンズ2の中心軸線2’を中心に回転させることによって外側反射面2cが形成されている。   Furthermore, in the LED lamp 100 of the first embodiment, as shown in FIG. 2A, the tangent line L2c1a passing through one end point 2c1a is parallel to the central axis 2 ′ of the light guide lens 2, and the other end point 2c1b. So that the tangent line L2c1b passing through is perpendicular to the central axis 2 ′ of the light guide lens 2, and one end point 2c1a is located closer to the central axis 2 ′ of the light guide lens 2 than the other end point 2c1b. The outer reflection surface 2c is formed by rotating the arranged quarter arc 2c1 around the central axis 2 ′ of the light guide lens 2.

また、第1の実施形態のLEDランプ100では、図2(A)に示すように、外側反射面2cの4分の1円弧2c1の中心点C2c1が、内側反射面2bの4分の1円弧2b1の中心点C2b1よりも、入射面2aから離れた側(図2(A)の下側)であって、導光レンズ2の中心軸線2’に近い側に配置されている。   In the LED lamp 100 of the first embodiment, as shown in FIG. 2A, the center point C2c1 of the quarter arc 2c1 of the outer reflective surface 2c is a quarter arc of the inner reflective surface 2b. It is arranged on the side farther from the incident surface 2a than the center point C2b1 of 2b1 (the lower side in FIG. 2A) and closer to the central axis 2 ′ of the light guide lens 2.

更に、第1の実施形態のLEDランプ100では、図2(A)に示すように、導光レンズ2の中心軸線2’を中心に円弧を回転させることによって、LED光源1の側(図2(A)および図2(B)の上側)に突出する凸状の入射面2aが形成されている。また、入射面2aの外縁部2a1と外側反射面2cの4分の1円弧2c1の一方の端点2c1aとを結ぶ導光レンズ2の中心軸線2’に平行な直線2e2を、導光レンズ2の中心軸線2’を中心に回転させることによってガイド反射面2eが形成されている。更に、内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の中心軸線2’とを結ぶ直線または曲線を、導光レンズ2の中心軸線2’を中心に回転させることによって、出射面2hが形成されている。   Furthermore, in the LED lamp 100 of the first embodiment, as shown in FIG. 2A, the arc light source is rotated around the central axis 2 ′ of the light guide lens 2 to thereby turn the LED light source 1 side (FIG. 2). A convex incident surface 2a is formed so as to protrude in (A) and the upper side of FIG. 2 (B). Further, a straight line 2e2 parallel to the central axis 2 'of the light guide lens 2 connecting the outer edge 2a1 of the incident surface 2a and one end point 2c1a of the quarter arc 2c1 of the outer reflective surface 2c is provided on the light guide lens 2. The guide reflecting surface 2e is formed by rotating around the central axis 2 ′. Further, a straight line or a curve connecting one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b and the central axis 2 ′ of the light guide lens 2 is rotated around the central axis 2 ′ of the light guide lens 2. Thus, an emission surface 2h is formed.

また、第1の実施形態のLEDランプ100では、図2(A)に示すように、導光レンズ2の中心軸線2’を中心とする円錐面であって、内側反射面2bおよび外側反射面2cを隔てて入射面2aの反対側(図2(A)の下側)が先細りになる円錐面の一部によって出射面2dが形成されている。更に、出射面2dと内側反射面2bの4分の1円弧2b1の他方の端点2b1bとを結ぶ導光レンズ2の中心軸線2’に垂直な直線を、導光レンズ2の中心軸線2’を中心に回転させることによってガイド反射面2fが形成されている。また、出射面2dと外側反射面2cの4分の1円弧2c1の他方の端点2c1bとを結ぶ導光レンズ2の中心軸線2’に垂直な直線を、導光レンズ2の中心軸線2’を中心に回転させることによってガイド反射面2gが形成されている。   Further, in the LED lamp 100 of the first embodiment, as shown in FIG. 2A, a conical surface having the central axis 2 ′ of the light guide lens 2 as the center, the inner reflecting surface 2b and the outer reflecting surface. An exit surface 2d is formed by a part of a conical surface that is tapered on the side opposite to the entrance surface 2a (the lower side in FIG. 2A) across 2c. Further, a straight line perpendicular to the central axis 2 ′ of the light guide lens 2 connecting the exit surface 2d and the other end 2b1b of the quarter arc 2b1 of the inner reflection surface 2b is defined as the central axis 2 ′ of the light guide lens 2. The guide reflecting surface 2f is formed by rotating it to the center. Also, a straight line perpendicular to the central axis 2 ′ of the light guide lens 2 connecting the exit surface 2d and the other end 2c1b of the quarter arc 2c1 of the outer reflective surface 2c is defined as the central axis 2 ′ of the light guide lens 2. The guide reflecting surface 2g is formed by rotating it to the center.

詳細には、第1の実施形態のLEDランプ100では、図2(B)に示すように、LED光源1から導光レンズ2の中心軸線2’上に照射された光L0が、導光レンズ2の入射面2aを透過せしめられ、導光レンズ2の中心軸線2’上を進む光L0になって導光レンズ2の入射面2aから入射する。次いで、導光レンズ2の入射面2aからの光L0が、導光レンズ2の中心軸線2’上を進み、導光レンズ2の出射面2hを透過せしめられ、導光レンズ2の中心軸線2’と小さい角度をなす光L0になって(詳細には、図2(B)に示す例では、導光レンズ2の中心軸線2’上を進む光L0になって)導光レンズ2の出射面2hから出射する。   Specifically, in the LED lamp 100 of the first embodiment, as shown in FIG. 2B, the light L0 emitted from the LED light source 1 onto the central axis 2 ′ of the light guide lens 2 is converted into the light guide lens. 2 is transmitted through the light incident surface 2 a and becomes light L 0 traveling on the central axis 2 ′ of the light guide lens 2 and enters the light incident surface 2 a of the light guide lens 2. Next, the light L 0 from the incident surface 2 a of the light guide lens 2 travels on the central axis 2 ′ of the light guide lens 2, is transmitted through the exit surface 2 h of the light guide lens 2, and the central axis 2 of the light guide lens 2. The light L0 forms a small angle with '(in the example shown in FIG. 2B, the light L0 travels on the central axis 2' of the light guide lens 2 in detail), and is emitted from the light guide lens 2. The light exits from the surface 2h.

更に、第1の実施形態のLEDランプ100では、図2(B)に示すように、導光レンズ2の中心軸線2’と光L0よりも大きい角度をなしてLED光源1から放射された光L1が、導光レンズ2の入射面2aによって屈折せしめられ、導光レンズ2の中心軸線2’に概略平行な光L1になって導光レンズ2の入射面2aから入射し、次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって4回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L1が、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L1が、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L1になる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L1が、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1の側(図2(B)の上側)に進む光L1になって導光レンズ2の出射面2dから出射する。   Furthermore, in the LED lamp 100 of the first embodiment, as shown in FIG. 2B, the light emitted from the LED light source 1 at an angle larger than the central axis 2 ′ of the light guide lens 2 and the light L0. L1 is refracted by the incident surface 2a of the light guide lens 2, becomes light L1 substantially parallel to the central axis 2 ′ of the light guide lens 2, and enters from the incident surface 2a of the light guide lens 2, and then guides the light. The light is transmitted between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The light is reflected four times by the inner reflection surface 2 b of the light guide lens 2. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L1 is guided through the curved light guide path between the inner reflection surface 2b and the outer reflection surface 2c of the light guide lens 2 as if it were guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L1 becomes light L1 that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2, for example. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The damped light L1 is refracted by the exit surface 2d of the light guide lens 2 and is away from the central axis 2 ′ of the light guide lens 2 and on the LED light source 1 side (upper side in FIG. 2B). Is emitted from the light exit surface 2 d of the light guide lens 2.

また、第1の実施形態のLEDランプ100では、図2(B)に示すように、導光レンズ2の中心軸線2’と光L1よりも大きい角度をなしてLED光源1から放射された光L2が、導光レンズ2の入射面2aによって屈折せしめられ、導光レンズ2の中心軸線2’に概略平行な光L2になって導光レンズ2の入射面2aから入射し、次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって2回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L2が、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L2が、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L2になる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L2が、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1の側(図2(B)の上側)に進む光L2になって導光レンズ2の出射面2dから出射する。   In the LED lamp 100 of the first embodiment, as shown in FIG. 2B, the light emitted from the LED light source 1 at an angle larger than the central axis 2 ′ of the light guide lens 2 and the light L1. L2 is refracted by the incident surface 2a of the light guide lens 2, becomes light L2 substantially parallel to the central axis 2 'of the light guide lens 2, and enters from the incident surface 2a of the light guide lens 2, and then guides the light. The light is transmitted between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The light is reflected twice by the inner reflection surface 2 b of the light guide lens 2. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L2 is guided through the curved light guide path between the inner reflection surface 2b and the outer reflection surface 2c of the light guide lens 2 as if it were guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L2 becomes light L2 that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2, for example. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The damped light L2 is refracted by the exit surface 2d of the light guide lens 2 and is away from the central axis 2 ′ of the light guide lens 2 and on the LED light source 1 side (upper side in FIG. 2B). The light L <b> 2 that travels to the light is emitted from the light exit surface 2 d of the light guide lens 2.

更に、第1の実施形態のLEDランプ100では、図2(B)に示すように、導光レンズ2の中心軸線2’と光L2よりも大きい角度をなしてLED光源1から放射された光L3が、導光レンズ2の入射面2aによって屈折せしめられ、導光レンズ2の中心軸線2’に概略平行な光L3になって導光レンズ2の入射面2aから入射し、次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって2回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L3が、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L3が、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L3になる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L3が、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1の側(図2(B)の上側)に進む光L3になって導光レンズ2の出射面2dから出射する。   Furthermore, in the LED lamp 100 of the first embodiment, as shown in FIG. 2B, the light emitted from the LED light source 1 at an angle larger than the central axis 2 ′ of the light guide lens 2 and the light L2. L3 is refracted by the incident surface 2a of the light guide lens 2, becomes light L3 substantially parallel to the central axis 2 ′ of the light guide lens 2, and enters from the incident surface 2a of the light guide lens 2, and then guides the light. The light is transmitted between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The light is reflected twice by the inner reflection surface 2 b of the light guide lens 2. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L3 is guided through the curved light guide path between the inner reflection surface 2b and the outer reflection surface 2c of the light guide lens 2 as if it were guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L3 becomes light L3 that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2, for example. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The damped light L3 is refracted by the exit surface 2d of the light guide lens 2 and is away from the central axis 2 ′ of the light guide lens 2 and on the LED light source 1 side (upper side in FIG. 2B). The light L <b> 3 that travels to the light is emitted from the light exit surface 2 d of the light guide lens 2.

その結果、第1の実施形態のLEDランプ100では、図2(B)に示すように、導光レンズ2の出射面2dから出射する大部分の光L1,L2,L3が、例えば導光レンズ2の中心軸線2’から離れる側であってLED光源1の側(図2(B)の上側)に進む光のような、所望の向きに進む光になる。   As a result, in the LED lamp 100 of the first embodiment, as shown in FIG. 2B, most of the light L1, L2, L3 emitted from the emission surface 2d of the light guide lens 2 is, for example, the light guide lens. The light travels in a desired direction, such as the light traveling on the side of the LED light source 1 (the upper side in FIG. 2B), which is away from the central axis 2 ′ of FIG.

すなわち、第1の実施形態のLEDランプ100によれば、図2(B)に示すように、導光レンズ2の内側反射面2bと外側反射面2cとの間を透過せしめられる大部分の光L1,L2,L3を、光ファイバーと同様の導光作用によって所望の向きに進む光L1,L2,L3にすることができる。そのため、第1の実施形態のLEDランプ100によれば、LED光源からの光のうち、回転双曲反射面の焦点を透過せしめられる光のみを所望の向きに進む光にすることができる特許文献1の図4に記載されたLEDランプよりも、所望の向きに進む光の割合を増加させることができる。   That is, according to the LED lamp 100 of the first embodiment, as shown in FIG. 2B, most of the light transmitted between the inner reflection surface 2b and the outer reflection surface 2c of the light guide lens 2 is transmitted. L1, L2, and L3 can be changed to light L1, L2, and L3 that travel in a desired direction by the same light guide action as that of the optical fiber. Therefore, according to the LED lamp 100 of the first embodiment, among the light from the LED light source, only the light that can be transmitted through the focal point of the rotating hyperbolic reflecting surface can be converted into light that travels in a desired direction. The ratio of light traveling in a desired direction can be increased as compared with the LED lamp described in FIG.

図3は第1の実施形態のLEDランプ100を車両用灯具200に適用した例を示した図である。詳細には、図3は第1の実施形態のLEDランプ100が適用された車両用灯具200の概略的な水平断面図である。図3に示す車両用灯具200では、図1に示す第1の実施形態のLEDランプ100の導光レンズ2の出射面2dを介して出射する光の疑似焦点100aが、リフレクタ201の放物系反射面201aの焦点200a1上またはその近傍に配置されている。   FIG. 3 is a view showing an example in which the LED lamp 100 according to the first embodiment is applied to a vehicular lamp 200. Specifically, FIG. 3 is a schematic horizontal sectional view of a vehicular lamp 200 to which the LED lamp 100 of the first embodiment is applied. In the vehicular lamp 200 shown in FIG. 3, the pseudo focus 100 a of the light emitted through the emission surface 2 d of the light guide lens 2 of the LED lamp 100 of the first embodiment shown in FIG. It is disposed on or near the focal point 200a1 of the reflecting surface 201a.

詳細には、本発明者は、鋭意研究において、リフレクタ201(図3参照)の放物系反射面201a(図3参照)の焦点200a1(図3参照)上またはその近傍に電球型ランプのフィラメントが配置され、ストップランプの配光規格を満足している車両用灯具200に対し、電球型ランプを第1の実施形態のLEDランプ100に置換する変更を行い、配光特性を検討した。その結果、第1の実施形態のLEDランプ100が適用された車両用灯具200によっても、ストップランプの配光規格を満足させることができた。   Specifically, the present inventor, in earnest research, has a filament of a bulb-type lamp on or near the focal point 200a1 (see FIG. 3) of the parabolic reflecting surface 201a (see FIG. 3) of the reflector 201 (see FIG. 3). Was changed, and the light-emitting characteristics were examined by replacing the vehicular lamp 200 with the LED lamp 100 of the first embodiment. As a result, the vehicle lamp 200 to which the LED lamp 100 of the first embodiment was applied could also satisfy the stop lamp light distribution standard.

更に、本発明者は、鋭意研究において、リフレクタ201(図3参照)の放物系反射面201a(図3参照)の焦点200a1(図3参照)上またはその近傍に電球型ランプのフィラメントが配置され、テールランプの配光規格を満足している車両用灯具200に対し、電球型ランプを第1の実施形態のLEDランプ100に置換する変更を行い、配光特性を検討した。その結果、第1の実施形態のLEDランプ100が適用された車両用灯具200によっても、テールランプの配光規格を満足させることができた。   Furthermore, the present inventor has arranged a bulb-type lamp filament on or near the focal point 200a1 (see FIG. 3) of the parabolic reflecting surface 201a (see FIG. 3) of the reflector 201 (see FIG. 3). Then, the vehicle lamp 200 satisfying the light distribution standard of the tail lamp was changed to replace the light bulb type lamp with the LED lamp 100 of the first embodiment, and the light distribution characteristics were examined. As a result, even the vehicular lamp 200 to which the LED lamp 100 of the first embodiment was applied was able to satisfy the light distribution standard of the tail lamp.

以下、本発明のLEDランプの第3の実施形態について説明する。第3の実施形態のLEDランプは、後述する点を除き、上述した第1の実施形態のLEDランプ100とほぼ同様に構成されている。従って、第3の実施形態のLEDランプによれば、後述する点を除き、上述した第1の実施形態のLEDランプ100とほぼ同様の効果を奏することができる。   Hereinafter, a third embodiment of the LED lamp of the present invention will be described. The LED lamp of the third embodiment is configured in substantially the same manner as the LED lamp 100 of the first embodiment described above, except for the points described below. Therefore, according to the LED lamp of the third embodiment, substantially the same effects as those of the LED lamp 100 of the first embodiment described above can be obtained except for the points described below.

図4は第3の実施形態のLEDランプ100の部分断面平面図である。詳細には、図4中の平面図の部分が、LEDランプ100の口金5を示しており、図4中の断面図の部分が、導光レンズ2の中心軸線2’を含むLEDランプ100の概略的な水平断面を示している。図5は第3の実施形態のLEDランプ100の一部を構成する導光レンズ2等を示した図である。詳細には、図5は導光レンズ2の中心軸線2’を含む導光レンズ2の概略的な水平断面内を進むLED光源1からの光L10,L11,L12,L13を示した図である。   FIG. 4 is a partial cross-sectional plan view of the LED lamp 100 of the third embodiment. Specifically, the plan view portion in FIG. 4 shows the base 5 of the LED lamp 100, and the cross-sectional portion in FIG. 4 shows the LED lamp 100 including the central axis 2 ′ of the light guide lens 2. A schematic horizontal section is shown. FIG. 5 is a view showing the light guide lens 2 and the like constituting a part of the LED lamp 100 of the third embodiment. Specifically, FIG. 5 is a diagram showing light L10, L11, L12, and L13 from the LED light source 1 traveling in a schematic horizontal section of the light guide lens 2 including the central axis 2 ′ of the light guide lens 2. .

第1の実施形態のLEDランプ100では、図2(A)に示すように、導光レンズ2の中心軸線2’を中心に円弧を回転させることによって、LED光源1の側(図2(A)の上側)に突出する凸状の入射面2aが形成されているが、第3の実施形態のLEDランプ100では、代わりに、図4に示すように、導光レンズ2の中心軸線2’に垂直な平面によって入射面2aが形成されている。   In the LED lamp 100 of the first embodiment, as shown in FIG. 2 (A), by rotating the arc around the central axis 2 ′ of the light guide lens 2, the LED light source 1 side (FIG. 2 (A) ), A convex incident surface 2a protruding to the upper side) is formed. In the LED lamp 100 of the third embodiment, instead, as shown in FIG. 4, the central axis 2 ′ of the light guide lens 2 is formed. The incident surface 2a is formed by a plane perpendicular to the surface.

更に、第1の実施形態のLEDランプ100では、図2(B)に示すように、導光レンズ2の中心軸線2’と角度をなすLED光源1からの光L1,L2,L3が導光レンズ2の中心軸線2’に概略平行な光L1,L2,L3になるように、LED光源1からの光L1,L2,L3が導光レンズ2の入射面2aによって屈折せしめられるが、第3の実施形態のLEDランプ100では、代わりに、図5に示すように、導光レンズ2の中心軸線2’と角度をなすLED光源1からの光L11,L12,L13を導光レンズ2の中心軸線2’に概略平行な光L11,L12,L13にするための導光レンズ6が設けられている。   Further, in the LED lamp 100 of the first embodiment, as shown in FIG. 2B, the light L1, L2, L3 from the LED light source 1 that forms an angle with the central axis 2 ′ of the light guide lens 2 is guided. The light L1, L2, L3 from the LED light source 1 is refracted by the incident surface 2a of the light guide lens 2 so as to be light L1, L2, L3 substantially parallel to the central axis 2 ′ of the lens 2. In the LED lamp 100 of the embodiment, instead, as shown in FIG. 5, the light L11, L12, L13 from the LED light source 1 that forms an angle with the central axis 2 ′ of the light guide lens 2 is centered on the light guide lens 2. A light guide lens 6 is provided for making light L11, L12, L13 substantially parallel to the axis 2 ′.

また、第1の実施形態のLEDランプ100では、図2(A)に示すように、入射面2aの外縁部2a1と外側反射面2cの4分の1円弧2c1の一方の端点2c1aとを結ぶ導光レンズ2の中心軸線2’に平行な直線2e2を、導光レンズ2の中心軸線2’を中心に回転させることによってガイド反射面2eが形成されているが、第3の実施形態のLEDランプ100では、代わりに、図4に示すように、入射面2aの外縁部2a1と外側反射面2cの4分の1円弧2c1の一方の端点2c1aとを結ぶ曲線2e1を、導光レンズ2の中心軸線2’を中心に回転させることによってガイド反射面2eが形成されている   Further, in the LED lamp 100 of the first embodiment, as shown in FIG. 2A, the outer edge 2a1 of the incident surface 2a and one end point 2c1a of the quarter arc 2c1 of the outer reflecting surface 2c are connected. The guide reflecting surface 2e is formed by rotating a straight line 2e2 parallel to the central axis 2 'of the light guide lens 2 around the central axis 2' of the light guide lens 2, but the LED of the third embodiment In the lamp 100, instead, as shown in FIG. 4, a curved line 2e1 connecting the outer edge 2a1 of the incident surface 2a and one end point 2c1a of the quarter arc 2c1 of the outer reflecting surface 2c is provided on the light guide lens 2. The guide reflecting surface 2e is formed by rotating around the central axis 2 ′.

詳細には、第3の実施形態のLEDランプ100では、図5に示すように、LED光源1から導光レンズ2の中心軸線2’上に照射された光L10が、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’上を進む光L10になって、導光レンズ2の入射面2aから入射する。次いで、導光レンズ2の入射面2aからの光L10が、導光レンズ2の中心軸線2’上を進み、導光レンズ2の出射面2hを透過せしめられ、導光レンズ2の中心軸線2’と小さい角度をなす光L10になって(詳細には、図5に示す例では、導光レンズ2の中心軸線2’上を進む光L10になって)導光レンズ2の出射面2hから出射する。   Specifically, in the LED lamp 100 of the third embodiment, as shown in FIG. 5, the light L <b> 10 irradiated from the LED light source 1 onto the central axis 2 ′ of the light guide lens 2 passes through the light guide lens 6. The light L10 is transmitted and travels on the central axis 2 ′ of the light guide lens 2, and enters the light incident surface 2a of the light guide lens 2. Next, the light L10 from the incident surface 2a of the light guide lens 2 travels on the central axis 2 ′ of the light guide lens 2 and is transmitted through the exit surface 2h of the light guide lens 2, so that the central axis 2 of the light guide lens 2 is transmitted. From the exit surface 2h of the light guide lens 2 (in the example shown in FIG. 5, it is the light L10 traveling on the central axis 2 ′ of the light guide lens 2). Exit.

更に、第3の実施形態のLEDランプ100では、図5に示すように、導光レンズ2の中心軸線2’と光L10よりも大きい角度をなしてLED光源1から放射された光L11が、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’に平行な光L11になって導光レンズ2の入射面2aから入射し、次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって4回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L11が、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L11が、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L11になる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L11が、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1の側(図5の上側)に進む光L11になって導光レンズ2の出射面2dから出射する。   Furthermore, in the LED lamp 100 of the third embodiment, as shown in FIG. 5, the light L11 emitted from the LED light source 1 at an angle larger than the central axis 2 ′ of the light guide lens 2 and the light L10, The light L1 is transmitted through the light guide lens 6 and becomes parallel to the central axis 2 ′ of the light guide lens 2 and enters the light incident surface 2a of the light guide lens 2. Next, the light is reflected on the inner reflection surface 2b of the light guide lens 2. The light is transmitted between one end point 2b1a of the quarter arc 2b1 and one end point 2c1a of the quarter arc 2c1 of the outer reflective surface 2c of the light guide lens 2, and then the inner reflection of the light guide lens 2 Reflected four times by the surface 2b. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L11 is guided through the curved light guide path between the inner reflective surface 2b and the outer reflective surface 2c of the light guide lens 2 as if it were guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L11 becomes light L11 that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2, for example. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The light L11 thus damped is refracted by the light exit surface 2d of the light guide lens 2 and travels away from the central axis 2 ′ of the light guide lens 2 toward the LED light source 1 (upper side in FIG. 5). L11 is emitted from the exit surface 2d of the light guide lens 2.

また、第3の実施形態のLEDランプ100では、図5に示すように、導光レンズ2の中心軸線2’と光L11よりも大きい角度をなしてLED光源1から放射された光L12が、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’に平行な光L12になって導光レンズ2の入射面2aから入射し、次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって2回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L12が、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L12が、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L12になる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L12が、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1の側(図5の上側)に進む光L12になって導光レンズ2の出射面2dから出射する。   Further, in the LED lamp 100 of the third embodiment, as shown in FIG. 5, the light L12 emitted from the LED light source 1 at an angle larger than the central axis 2 ′ of the light guide lens 2 and the light L11, The light L is transmitted through the light guide lens 6 and becomes parallel to the central axis 2 ′ of the light guide lens 2 and enters the light incident surface 2 a of the light guide lens 2. The light is transmitted between one end point 2b1a of the quarter arc 2b1 and one end point 2c1a of the quarter arc 2c1 of the outer reflective surface 2c of the light guide lens 2, and then the inner reflection of the light guide lens 2 Reflected twice by the surface 2b. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L12 is guided through the curved light guide path between the inner reflection surface 2b and the outer reflection surface 2c of the light guide lens 2 as if it were guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L12 becomes light L12 that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2, for example. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The light L12 thus refracted is refracted by the light exit surface 2d of the light guide lens 2 and travels to the LED light source 1 side (upper side in FIG. 5) on the side away from the central axis 2 ′ of the light guide lens 2. It becomes L12 and is emitted from the exit surface 2d of the light guide lens 2.

更に、第3の実施形態のLEDランプ100では、図5に示すように、導光レンズ2の中心軸線2’と光L12よりも大きい角度をなしてLED光源1から放射された光L13が、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’に平行な光L12になって導光レンズ2の入射面2aから入射し、次いで、導光レンズ2のガイド反射面2eによって反射され、次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって2回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L13が、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L13が、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L13になる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L13が、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1の側(図5の上側)に進む光L13になって導光レンズ2の出射面2dから出射する。   Furthermore, in the LED lamp 100 of the third embodiment, as shown in FIG. 5, the light L13 emitted from the LED light source 1 at an angle larger than the central axis 2 ′ of the light guide lens 2 and the light L12, The light is transmitted through the light guide lens 6 and becomes light L12 parallel to the central axis 2 ′ of the light guide lens 2 and enters from the incident surface 2a of the light guide lens 2. Then, the light is reflected by the guide reflection surface 2e of the light guide lens 2. Reflected and then one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2 The light is allowed to pass through, and then reflected twice by the inner reflection surface 2 b of the light guide lens 2. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L13 is guided through the curved light guide path between the inner reflection surface 2b and the outer reflection surface 2c of the light guide lens 2 as if it were guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L13 becomes light L13 that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The light L13 thus refracted is refracted by the light exit surface 2d of the light guide lens 2 and travels away from the central axis 2 ′ of the light guide lens 2 toward the LED light source 1 (upper side in FIG. 5). L13 is emitted from the exit surface 2d of the light guide lens 2.

その結果、第3の実施形態のLEDランプ100では、図5に示すように、導光レンズ2の出射面2dから出射する大部分の光L11,L12,L13が、例えば導光レンズ2の中心軸線2’から離れる側であってLED光源1の側(図5の上側)に進む光のような、所望の向きに進む光になる。   As a result, in the LED lamp 100 of the third embodiment, most of the light L11, L12, L13 emitted from the emission surface 2d of the light guide lens 2 is, for example, the center of the light guide lens 2 as shown in FIG. The light travels in a desired direction, such as light traveling away from the axis 2 ′ and traveling toward the LED light source 1 (upper side in FIG. 5).

すなわち、第3の実施形態のLEDランプ100によれば、図5に示すように、導光レンズ2の内側反射面2bと外側反射面2cとの間を透過せしめられる大部分の光L11,L12,L13を、光ファイバーと同様の導光作用によって所望の向きに進む光L11,L12,L13にすることができる。そのため、第3の実施形態のLEDランプ100によれば、LED光源からの光のうち、回転双曲反射面の焦点を透過せしめられる光のみを所望の向きに進む光にすることができる特許文献1の図4に記載されたLEDランプよりも、所望の向きに進む光の割合を増加させることができる。   That is, according to the LED lamp 100 of the third embodiment, as shown in FIG. 5, most of the light L11 and L12 that can be transmitted between the inner reflecting surface 2b and the outer reflecting surface 2c of the light guide lens 2. , L13 can be changed to light L11, L12, L13 traveling in a desired direction by the same light guide action as that of the optical fiber. Therefore, according to the LED lamp 100 of the third embodiment, among the light from the LED light source, only the light that can be transmitted through the focal point of the rotating hyperbolic reflecting surface can be converted into light that travels in a desired direction. The ratio of light traveling in a desired direction can be increased as compared with the LED lamp described in FIG.

更に、第3の実施形態のLEDランプ100では、図5に示すように、導光レンズ2の入射面2aを介して入射されたLED光源1からの光L13を全反射し、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間に導光するためのガイド反射面2eが外側反射面2cの4分の1円弧2c1の一方の端点2c1aと入射面2aの外縁部2a1との間に配置されている。そのため、第3の実施形態のLEDランプ100によれば、導光レンズ2の入射面2aを介して入射され、導光レンズ2の表面のうち、外側反射面2cの4分の1円弧2c1の一方の端点2c1aと入射面2aの外縁部2a1との間の部分に到達したLED光源1からの光L13が、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間に導光されない場合よりも、LED光源1からの光の有効利用率を向上させることができる。   Further, in the LED lamp 100 of the third embodiment, as shown in FIG. 5, the light L13 from the LED light source 1 incident through the incident surface 2a of the light guide lens 2 is totally reflected, and the light guide lens 2 is reflected. Guide reflection for guiding light between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the lens and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2 The surface 2e is disposed between one end point 2c1a of the quarter arc 2c1 of the outer reflecting surface 2c and the outer edge 2a1 of the incident surface 2a. Therefore, according to the LED lamp 100 of the third embodiment, the incident light is incident through the incident surface 2a of the light guide lens 2, and of the surface of the light guide lens 2, the quarter arc 2c1 of the outer reflective surface 2c. The light L13 from the LED light source 1 that has reached the portion between the one end point 2c1a and the outer edge 2a1 of the incident surface 2a is one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2. And the effective utilization rate of the light from the LED light source 1 can be improved as compared with the case where the light is not guided between the one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2.

以下、本発明のLEDランプの第4の実施形態について説明する。第4の実施形態のLEDランプは、後述する点を除き、上述した第1の実施形態のLEDランプ100とほぼ同様に構成されている。従って、第4の実施形態のLEDランプによれば、後述する点を除き、上述した第1の実施形態のLEDランプ100とほぼ同様の効果を奏することができる。   Hereinafter, a fourth embodiment of the LED lamp of the present invention will be described. The LED lamp of the fourth embodiment is configured in substantially the same manner as the LED lamp 100 of the first embodiment described above, except for the points described below. Therefore, according to the LED lamp of the fourth embodiment, substantially the same effects as those of the LED lamp 100 of the first embodiment described above can be obtained except for the points described below.

図6は第4の実施形態のLEDランプ100の正面図である。図7は図6のA−A線に沿った部分断面図、図8は図6のB−B線に沿った部分断面図である。図9は図7に示す断面内を進むLED光源1aからの光L20a,L21a,L22a,L23a,L24aを示した図である。   FIG. 6 is a front view of the LED lamp 100 of the fourth embodiment. 7 is a partial cross-sectional view taken along line AA in FIG. 6, and FIG. 8 is a partial cross-sectional view taken along line BB in FIG. FIG. 9 is a diagram showing light L20a, L21a, L22a, L23a, and L24a from the LED light source 1a traveling in the cross section shown in FIG.

第1の実施形態のLEDランプ100では、図1に示すように、1個のLED光源1が設けられているが、第4の実施形態のLEDランプ100では、代わりに、図7および図8に示すように、3個のLED光源1a,1b,1cが設けられている。詳細には、第4の実施形態のLEDランプ100では、導光レンズ2の中心軸線2’を中心とする同一円上に3個のLED光源1a,1b,1cが120°間隔で配列されている。   In the LED lamp 100 of the first embodiment, as shown in FIG. 1, one LED light source 1 is provided, but in the LED lamp 100 of the fourth embodiment, instead, FIGS. 7 and 8. As shown, three LED light sources 1a, 1b, and 1c are provided. Specifically, in the LED lamp 100 of the fourth embodiment, three LED light sources 1a, 1b, and 1c are arranged at 120 ° intervals on the same circle with the central axis 2 ′ of the light guide lens 2 as the center. Yes.

また、第1の実施形態のLEDランプ100では、図2(A)に示すように、導光レンズ2の中心軸線2’を中心に円弧を回転させることによって、LED光源1の側(図2(A)の上側)に突出する凸状の入射面2aが形成されているが、第4の実施形態のLEDランプ100では、代わりに、図7および図8に示すように、導光レンズ2の中心軸線2’を中心に直線を回転させることにより得られるLED光源1a,1b,1cの側(図7および図8の上側)に頂点を有する円錐面によって入射面2aが形成されている。   Further, in the LED lamp 100 of the first embodiment, as shown in FIG. 2A, by rotating the arc around the central axis 2 ′ of the light guide lens 2, the LED light source 1 side (FIG. 2). Although the convex incident surface 2a which protrudes (upper side of (A)) is formed, in the LED lamp 100 of 4th Embodiment, as shown to FIG. 7 and FIG. The incident surface 2a is formed by a conical surface having a vertex on the LED light source 1a, 1b, 1c side (upper side in FIGS. 7 and 8) obtained by rotating a straight line around the central axis 2 ′.

更に、第1の実施形態のLEDランプ100では、図2(B)に示すように、導光レンズ2の中心軸線2’と角度をなすLED光源1からの光L1,L2,L3が導光レンズ2の中心軸線2’に概略平行な光L1,L2,L3になるように、LED光源1からの光L1,L2,L3が導光レンズ2の入射面2aによって屈折せしめられるが、第4の実施形態のLEDランプ100では、代わりに、図9に示すように、LED光源1aからの光L20a,L21a,L22a,L23a,L24aを導光レンズ2の中心軸線2’に概略平行な光L20a,L21a,L22a,L23a,L24aにするための導光部6aを有する導光レンズ6が設けられている。更に、LED光源1b(図7参照)からの光(図示せず)を導光レンズ2の中心軸線2’に概略平行な光(図示せず)にするための導光部6b(図7参照)が導光レンズ6(図7参照)に設けられている。また、LED光源1c(図8参照)からの光(図示せず)を導光レンズ2の中心軸線2’に概略平行な光(図示せず)にするための導光部6c(図8参照)が導光レンズ6(図8参照)に設けられている。つまり、第4の実施形態のLEDランプ100では、導光レンズ6の導光部6aと導光部6bと導光部6cとが、導光レンズ2の中心軸線2’を中心に120°回転対称に形成されている。   Further, in the LED lamp 100 of the first embodiment, as shown in FIG. 2B, the light L1, L2, L3 from the LED light source 1 that forms an angle with the central axis 2 ′ of the light guide lens 2 is guided. The light L1, L2, L3 from the LED light source 1 is refracted by the incident surface 2a of the light guide lens 2 so that the light L1, L2, L3 is substantially parallel to the central axis 2 ′ of the lens 2; In the LED lamp 100 of the embodiment, instead, as shown in FIG. 9, the light L20a, L21a, L22a, L23a, L24a from the LED light source 1a is light L20a substantially parallel to the central axis 2 ′ of the light guide lens 2. , L21a, L22a, L23a, and L24a are provided with a light guide lens 6 having a light guide portion 6a. Furthermore, the light guide 6b (see FIG. 7) for turning light (not shown) from the LED light source 1b (see FIG. 7) into light (not shown) substantially parallel to the central axis 2 ′ of the light guide lens 2 ) Is provided on the light guide lens 6 (see FIG. 7). Further, a light guide 6c (see FIG. 8) for converting light (not shown) from the LED light source 1c (see FIG. 8) into light (not shown) substantially parallel to the central axis 2 ′ of the light guide lens 2. ) Is provided on the light guide lens 6 (see FIG. 8). That is, in the LED lamp 100 of the fourth embodiment, the light guide 6a, the light guide 6b, and the light guide 6c of the light guide lens 6 are rotated by 120 ° about the central axis 2 ′ of the light guide lens 2. It is formed symmetrically.

また、第1の実施形態のLEDランプ100では、図2(A)に示すように、入射面2aの外縁部2a1と外側反射面2cの4分の1円弧2c1の一方の端点2c1aとを結ぶ導光レンズ2の中心軸線2’に平行な直線2e2を、導光レンズ2の中心軸線2’を中心に回転させることによってガイド反射面2eが形成されているが、第4の実施形態のLEDランプ100では、代わりに、図7および図8に示すように、入射面2aの外縁部2a1と外側反射面2cの4分の1円弧2c1の一方の端点2c1aとを結ぶ直線および曲線2e1を、導光レンズ2の中心軸線2’を中心に回転させることによってガイド反射面2eが形成されている   Further, in the LED lamp 100 of the first embodiment, as shown in FIG. 2A, the outer edge 2a1 of the incident surface 2a and one end point 2c1a of the quarter arc 2c1 of the outer reflecting surface 2c are connected. The guide reflecting surface 2e is formed by rotating a straight line 2e2 parallel to the central axis 2 'of the light guide lens 2 around the central axis 2' of the light guide lens 2, but the LED of the fourth embodiment In the lamp 100, instead, as shown in FIGS. 7 and 8, a straight line and a curve 2e1 connecting the outer edge portion 2a1 of the incident surface 2a and one end point 2c1a of the quarter arc 2c1 of the outer reflecting surface 2c, A guide reflection surface 2e is formed by rotating the light guide lens 2 around the central axis 2 ′.

詳細には、第4の実施形態のLEDランプ100では、図9に示すように、LED光源1aから照射された光L20aが、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’に平行な光L20aになって、導光レンズ2の入射面2aに入射する。次いで、導光レンズ2の入射面2aによって屈折せしめられた光L20aが、導光レンズ2の出射面2hを透過せしめられ、導光レンズ2の中心軸線2’と小さい角度をなす光L20aになって(詳細には、図9に示す例では、導光レンズ2の中心軸線2’に平行な光L20aになって)導光レンズ2の出射面2hから出射する。   Specifically, in the LED lamp 100 of the fourth embodiment, as shown in FIG. 9, the light L20a emitted from the LED light source 1a is transmitted through the light guide lens 6, and the central axis 2 of the light guide lens 2 is obtained. It becomes the light L20a parallel to 'and enters the incident surface 2a of the light guide lens 2. Next, the light L20a refracted by the incident surface 2a of the light guide lens 2 is transmitted through the exit surface 2h of the light guide lens 2, and becomes light L20a having a small angle with the central axis 2 ′ of the light guide lens 2. In detail, in the example shown in FIG. 9, the light is emitted from the emission surface 2 h of the light guide lens 2 as light L20 a parallel to the central axis 2 ′ of the light guide lens 2.

更に、第4の実施形態のLEDランプ100では、図9に示すように、LED光源1aから照射された光L21aが、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’に平行な光L21aになって導光レンズ2の入射面2aに入射し、次いで、導光レンズ2の入射面2aによって屈折せしめられ、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって6回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L21aが、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L21aが、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L21aになる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L21aが、導光レンズ2のガイド反射面2fによって反射され、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1aの側(図9の上側)に進む光L21aになって導光レンズ2の出射面2dから出射する。   Furthermore, in the LED lamp 100 of the fourth embodiment, as shown in FIG. 9, the light L <b> 21 a emitted from the LED light source 1 a is transmitted through the light guide lens 6 and is centered on the central axis 2 ′ of the light guide lens 2. The parallel light L21a is incident on the incident surface 2a of the light guide lens 2, and then refracted by the incident surface 2a of the light guide lens 2, and a quarter arc 2b1 of the inner reflective surface 2b of the light guide lens 2 is obtained. Is transmitted between the one end point 2b1a of the light guide lens 2 and the one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2, and then reflected six times by the inner reflection surface 2b of the light guide lens 2. Is done. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L21a is guided through the curved light guide path between the inner reflective surface 2b and the outer reflective surface 2c of the light guide lens 2 as if guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L21a becomes light L21a that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The damped light L21a is reflected by the guide reflecting surface 2f of the light guide lens 2, is refracted by the exit surface 2d of the light guide lens 2, and is away from the central axis 2 ′ of the light guide lens 2, The light L21a traveling toward the light source 1a (upper side in FIG. 9) exits from the exit surface 2d of the light guide lens 2.

また、第4の実施形態のLEDランプ100では、図9に示すように、LED光源1aから照射された光L22aが、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’に平行な光L22aになって導光レンズ2の入射面2aに入射し、次いで、導光レンズ2の入射面2aによって屈折せしめられ、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって2回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L22aが、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L22aが、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L22aになる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L22aが、導光レンズ2のガイド反射面2fによって反射され、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1aの側(図9の上側)に進む光L22aになって導光レンズ2の出射面2dから出射する。   Further, in the LED lamp 100 of the fourth embodiment, as shown in FIG. 9, the light L22a emitted from the LED light source 1a is transmitted through the light guide lens 6 and is centered on the central axis 2 ′ of the light guide lens 2. It becomes parallel light L22a and enters the incident surface 2a of the light guide lens 2, and is then refracted by the incident surface 2a of the light guide lens 2, and a quarter arc 2b1 of the inner reflective surface 2b of the light guide lens 2 Between the one end point 2b1a of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflective surface 2c of the light guide lens 2, and then reflected twice by the inner reflective surface 2b of the light guide lens 2 Is done. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L22a is guided through the curved light guide path between the inner reflective surface 2b and the outer reflective surface 2c of the light guide lens 2 as if guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L22a becomes light L22a that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The damped light L22a is reflected by the guide reflecting surface 2f of the light guide lens 2, is refracted by the exit surface 2d of the light guide lens 2, and is on the side away from the central axis 2 ′ of the light guide lens 2. The light L22a traveling toward the light source 1a (upper side in FIG. 9) is emitted from the exit surface 2d of the light guide lens 2.

更に、第4の実施形態のLEDランプ100では、図9に示すように、LED光源1aから照射された光L23aが、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’に平行な光L23aになって導光レンズ2の入射面2aに入射し、次いで、導光レンズ2の入射面2aによって屈折せしめられ、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bによって2回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L23aが、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L23aが、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L23aになる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L23aが、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1aの側(図9の上側)に進む光L23aになって導光レンズ2の出射面2dから出射する。   Furthermore, in the LED lamp 100 of the fourth embodiment, as shown in FIG. 9, the light L23a emitted from the LED light source 1a is transmitted through the light guide lens 6, and is centered on the central axis 2 ′ of the light guide lens 2. It becomes parallel light L23a, enters the incident surface 2a of the light guide lens 2, and is then refracted by the incident surface 2a of the light guide lens 2, and a quarter arc 2b1 of the inner reflective surface 2b of the light guide lens 2 Between the one end point 2b1a of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflective surface 2c of the light guide lens 2, and then reflected twice by the inner reflective surface 2b of the light guide lens 2 Is done. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The squeezed light L23a is guided through the curved light guide path between the inner reflective surface 2b and the outer reflective surface 2c of the light guide lens 2 as if guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L23a becomes light L23a that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The light L23a thus refracted is refracted by the exit surface 2d of the light guide lens 2 and travels to the LED light source 1a side (upper side in FIG. 9) on the side away from the central axis 2 ′ of the light guide lens 2. L23a is emitted from the light exit surface 2d of the light guide lens 2.

また、第4の実施形態のLEDランプ100では、図9に示すように、LED光源1aから照射された光L24aが、導光レンズ6を透過せしめられ、導光レンズ2の中心軸線2’に平行な光L24aになって導光レンズ2の入射面2aに入射し、次いで、導光レンズ2の入射面2aによって屈折せしめられ、次いで、導光レンズ2のガイド反射面2eによって反射され、次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられ、次いで、導光レンズ2の内側反射面2bおよび外側反射面2cによって7回反射される。つまり、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間を透過せしめられた光L24aが、あたかも光ファイバによって導光されるかのように、導光レンズ2の内側反射面2bと外側反射面2cとの間の湾曲した導光路内を導光される。その結果、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられる光L24aが、例えば導光レンズ2の中心軸線2’から離れる側に進む光のような、所望の向きに進む光L24aになる。次いで、導光レンズ2の内側反射面2bの4分の1円弧2b1の他方の端点2b1bと導光レンズ2の外側反射面2cの4分の1円弧2c1の他方の端点2c1bとの間を透過せしめられた光L24aが、導光レンズ2の出射面2dによって屈折せしめられ、導光レンズ2の中心軸線2’から離れる側であって、LED光源1aの反対側(図9の下側)に進む光L24aになって導光レンズ2の出射面2dから出射する。   Further, in the LED lamp 100 of the fourth embodiment, as shown in FIG. 9, the light L24a emitted from the LED light source 1a is transmitted through the light guide lens 6 and is centered on the central axis 2 ′ of the light guide lens 2. It becomes parallel light L24a and enters the incident surface 2a of the light guide lens 2, and then is refracted by the incident surface 2a of the light guide lens 2, and then reflected by the guide reflecting surface 2e of the light guide lens 2, and then The light is transmitted between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. Then, the light is reflected seven times by the inner reflection surface 2b and the outer reflection surface 2c of the light guide lens 2. That is, the light passes through between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The caulked light L24a is guided through the curved light guide path between the inner reflecting surface 2b and the outer reflecting surface 2c of the light guide lens 2 as if it were guided by an optical fiber. As a result, between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The transmitted light L24a becomes light L24a that travels in a desired direction, such as light that travels away from the central axis 2 ′ of the light guide lens 2, for example. Next, the light passes through between the other end point 2b1b of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2 and the other end point 2c1b of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2. The damped light L24a is refracted by the exit surface 2d of the light guide lens 2 and is away from the central axis 2 ′ of the light guide lens 2 and on the opposite side of the LED light source 1a (lower side in FIG. 9). The light L24a travels and exits from the exit surface 2d of the light guide lens 2.

その結果、第4の実施形態のLEDランプ100では、図9に示すように、導光レンズ2の出射面2dから出射する大部分の光L21a,L22a,L23aが、例えば導光レンズ2の中心軸線2’から離れる側であってLED光源1aの側(図9の上側)に進む光のような、所望の向きに進む光になる。   As a result, in the LED lamp 100 of the fourth embodiment, as shown in FIG. 9, most of the light L21a, L22a, L23a emitted from the emission surface 2d of the light guide lens 2 is, for example, the center of the light guide lens 2. The light travels in a desired direction, such as light traveling away from the axis 2 ′ and traveling toward the LED light source 1a (upper side in FIG. 9).

すなわち、第4の実施形態のLEDランプ100によれば、図9に示すように、導光レンズ2の内側反射面2bと外側反射面2cとの間を透過せしめられる大部分の光L21a,L22a,L23aを、光ファイバーと同様の導光作用によって所望の向きに進む光L21a,L22a,L23aにすることができる。そのため、第4の実施形態のLEDランプ100によれば、LED光源からの光のうち、回転双曲反射面の焦点を透過せしめられる光のみを所望の向きに進む光にすることができる特許文献1の図4に記載されたLEDランプよりも、所望の向きに進む光の割合を増加させることができる。   That is, according to the LED lamp 100 of the fourth embodiment, as shown in FIG. 9, most of the light L21a and L22a that are transmitted between the inner reflecting surface 2b and the outer reflecting surface 2c of the light guide lens 2 are used. , L23a can be changed to light L21a, L22a, L23a traveling in a desired direction by the same light guide action as that of the optical fiber. Therefore, according to the LED lamp 100 of the fourth embodiment, among the light from the LED light source, only the light that can be transmitted through the focal point of the rotating hyperbolic reflecting surface can be converted into light that travels in a desired direction. The ratio of light traveling in a desired direction can be increased as compared with the LED lamp described in FIG.

更に、第4の実施形態のLEDランプ100では、図9に示すように、導光レンズ2の入射面2aを介して入射されたLED光源1aからの光L24aを全反射し、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間に導光するためのガイド反射面2eが外側反射面2cの4分の1円弧2c1の一方の端点2c1aと入射面2aの外縁部2a1との間に配置されている。そのため、第4の実施形態のLEDランプ100によれば、導光レンズ2の入射面2aを介して入射され、導光レンズ2の表面のうち、外側反射面2cの4分の1円弧2c1の一方の端点2c1aと入射面2aの外縁部2a1との間の部分に到達したLED光源1aからの光L24aが、導光レンズ2の内側反射面2bの4分の1円弧2b1の一方の端点2b1aと導光レンズ2の外側反射面2cの4分の1円弧2c1の一方の端点2c1aとの間に導光されない場合よりも、LED光源1aからの光の有効利用率を向上させることができる。   Furthermore, in the LED lamp 100 of the fourth embodiment, as shown in FIG. 9, the light L24a from the LED light source 1a incident through the incident surface 2a of the light guide lens 2 is totally reflected, and the light guide lens 2 is reflected. Guide reflection for guiding light between one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the lens and one end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2 The surface 2e is disposed between one end point 2c1a of the quarter arc 2c1 of the outer reflecting surface 2c and the outer edge 2a1 of the incident surface 2a. Therefore, according to the LED lamp 100 of the fourth embodiment, the incident light is incident through the incident surface 2a of the light guide lens 2, and of the surface of the light guide lens 2, the quarter arc 2c1 of the outer reflective surface 2c. The light L24a from the LED light source 1a that has reached the portion between the one end point 2c1a and the outer edge 2a1 of the incident surface 2a is one end point 2b1a of the quarter arc 2b1 of the inner reflection surface 2b of the light guide lens 2. The effective utilization rate of the light from the LED light source 1a can be improved as compared with the case where the light is not guided between the end point 2c1a of the quarter arc 2c1 of the outer reflection surface 2c of the light guide lens 2.

第5の実施形態では、上述した第1から第4の実施形態を適宜組み合わせることも可能である。   In the fifth embodiment, the above-described first to fourth embodiments can be appropriately combined.

本発明のLEDランプは、例えばストップランプ、テールランプなどのような任意の車両用灯具、一般照明装置、街路灯などに適用可能である。   The LED lamp of the present invention can be applied to any vehicle lamp such as a stop lamp and a tail lamp, a general lighting device, and a street lamp.

1,1a,1b,1c LED光源
2 導光レンズ
2’ 中心軸線
2a 入射面
2b 内側反射面
2b1 4分の1円弧
2b1a,2b1b 端点
2c 外側反射面
2c1 4分の1円弧
2c1a,2c1b 端点
2d 出射面
100 LEDランプ
L2b1a,L2b1b 接線
L2c1a,L2c1b 接線
C2b1,C2c1 中心点
1, 1a, 1b, 1c LED light source 2 Light guide lens 2 ′ Center axis 2a Incident surface 2b Inner reflecting surface 2b1 Quarter arc 2b1a, 2b1b End point 2c Outer reflecting surface 2c1 Quarter arc 2c1a, 2c1b End point 2d Outgoing Surface 100 LED lamp L2b1a, L2b1b Tangent line L2c1a, L2c1b Tangent line C2b1, C2c1 Center point

Claims (3)

LED光源(1;1a,1b,1c)と、LED光源(1;1a,1b,1c)からの光を導光する導光レンズ(2)とを具備し、
入射面(2a)と内側反射面(2b)と外側反射面(2c)と出射面(2d)とを導光レンズ(2)に設け、
一方の端点(2b1a)を通る接線(L2b1a)が導光レンズ(2)の中心軸線(2’)に平行になり、他方の端点(2b1b)を通る接線(L2b1b)が導光レンズ(2)の中心軸線(2’)に垂直になるように、かつ、一方の端点(2b1a)が他方の端点(2b1b)よりも導光レンズ(2)の中心軸線(2’)の近くに位置するように配置された4分の1円弧(2b1)を、導光レンズ(2)の中心軸線(2’)を中心に回転させることによって内側反射面(2b)を形成し、
一方の端点(2c1a)を通る接線(L2c1a)が導光レンズ(2)の中心軸線(2’)に平行になり、他方の端点(2c1b)を通る接線(L2c1b)が導光レンズ(2)の中心軸線(2’)に垂直になるように、かつ、一方の端点(2c1a)が他方の端点(2c1b)よりも導光レンズ(2)の中心軸線(2’)の近くに位置するように配置された4分の1円弧(2c1)を、導光レンズ(2)の中心軸線(2’)を中心に回転させることによって外側反射面(2c)を形成し、
外側反射面(2c)の4分の1円弧(2c1)の中心点(C2c1)を、内側反射面(2b)の4分の1円弧(2b1)の中心点(C2b1)よりも、入射面(2a)から離れた側であって、導光レンズ(2)の中心軸線(2’)に近い側に配置し、
導光レンズ(2)の入射面(2a)を介して入射されたLED光源(1;1a,1b,1c)からの光が、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間を透過せしめられ、導光レンズ(2)の内側反射面(2b)によって複数回反射され、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の他方の端点(2b1b)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の他方の端点(2c1b)との間を透過せしめられ、導光レンズ(2)の出射面(2d)を介して出射することを特徴とするLEDランプ(100)。
An LED light source (1; 1a, 1b, 1c) and a light guide lens (2) for guiding light from the LED light source (1; 1a, 1b, 1c);
An incident surface (2a), an inner reflection surface (2b), an outer reflection surface (2c), and an emission surface (2d) are provided on the light guide lens (2),
A tangent line (L2b1a) passing through one end point (2b1a) is parallel to the central axis (2 ′) of the light guide lens (2), and a tangent line (L2b1b) passing through the other end point (2b1b) is the light guide lens (2). So that one end point (2b1a) is positioned closer to the central axis (2 ') of the light guide lens (2) than the other end point (2b1b). The inner arc surface (2b) is formed by rotating the quarter arc (2b1) arranged at the center of the central axis (2 ′) of the light guide lens (2),
A tangent line (L2c1a) passing through one end point (2c1a) is parallel to the central axis (2 ′) of the light guide lens (2), and a tangent line (L2c1b) passing through the other end point (2c1b) is the light guide lens (2). So that one end point (2c1a) is positioned closer to the center axis (2 ') of the light guide lens (2) than the other end point (2c1b). The outer arc surface (2c) is formed by rotating the quarter arc (2c1) arranged on the center axis (2 ′) of the light guide lens (2),
The center point (C2c1) of the quarter arc (2c1) of the outer reflective surface (2c) is made more incident than the center point (C2b1) of the quarter arc (2b1) of the inner reflective surface (2b) ( 2a) on the side away from the central axis (2 ′) of the light guide lens (2),
The light from the LED light source (1; 1a, 1b, 1c) incident through the incident surface (2a) of the light guide lens (2) is divided into four minutes on the inner reflection surface (2b) of the light guide lens (2). Is transmitted between one end point (2b1a) of one arc (2b1) and one end point (2c1a) of a quarter arc (2c1) of the outer reflective surface (2c) of the light guide lens (2). The other end point (2b1b) of the quarter arc (2b1) of the inner reflection surface (2b) of the light guide lens (2) is reflected a plurality of times by the inner reflection surface (2b) of the light guide lens (2). The light is transmitted through the quarter end (2c1b) of the quarter arc (2c1) of the outer reflective surface (2c) of the light guide lens (2), and the light exiting surface (2d) of the light guide lens (2) is transmitted. LED lamp (100) characterized by emitting through the LED.
導光レンズ(2)の入射面(2a)を介して入射されたLED光源(1;1a,1b,1c)からの光を全反射し、導光レンズ(2)の内側反射面(2b)の4分の1円弧(2b1)の一方の端点(2b1a)と導光レンズ(2)の外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)との間に導光するためのガイド反射面(2e)を外側反射面(2c)の4分の1円弧(2c1)の一方の端点(2c1a)と入射面(2a)の外縁部(2a1)との間に配置したことを特徴とする請求項1に記載のLEDランプ(100)。   The light from the LED light source (1; 1a, 1b, 1c) incident through the incident surface (2a) of the light guide lens (2) is totally reflected, and the inner reflective surface (2b) of the light guide lens (2). Between one end point (2b1a) of the ¼ arc (2b1) and one end point (2c1a) of the ¼ arc (2c1) of the outer reflective surface (2c) of the light guide lens (2). A guide reflecting surface (2e) for guiding light is placed between one end point (2c1a) of a quarter arc (2c1) of the outer reflecting surface (2c) and the outer edge (2a1) of the incident surface (2a). LED lamp (100) according to claim 1, characterized in that it is arranged. 請求項1又は2に記載のLEDランプ(100)の導光レンズ(2)の出射面(2d)を介して出射する光の疑似焦点(100a)を、リフレクタ(201)の放物系反射面(201a)の焦点(200a1)上またはその近傍に配置したことを特徴とする車両用灯具(200)。   The parabolic reflection surface of the reflector (201) is used as a pseudo focal point (100a) of light emitted through the emission surface (2d) of the light guide lens (2) of the LED lamp (100) according to claim 1 or 2. A vehicular lamp (200), which is disposed on or near the focal point (200a1) of (201a).
JP2010065295A 2010-03-19 2010-03-19 LED lamp and vehicle lamp Expired - Fee Related JP5437128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065295A JP5437128B2 (en) 2010-03-19 2010-03-19 LED lamp and vehicle lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065295A JP5437128B2 (en) 2010-03-19 2010-03-19 LED lamp and vehicle lamp

Publications (2)

Publication Number Publication Date
JP2011198659A true JP2011198659A (en) 2011-10-06
JP5437128B2 JP5437128B2 (en) 2014-03-12

Family

ID=44876592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065295A Expired - Fee Related JP5437128B2 (en) 2010-03-19 2010-03-19 LED lamp and vehicle lamp

Country Status (1)

Country Link
JP (1) JP5437128B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095959A1 (en) * 2011-12-20 2013-06-27 3M Innovative Properties Company Lightguide as luminaire
JP2013182882A (en) * 2012-03-02 2013-09-12 Asahi Raizu Kk Led bulb for replacing halogen lamp for automobile
JP2014011121A (en) * 2012-07-02 2014-01-20 Shonan Kosakusho:Kk Portable daytime signal light for ship
WO2014080771A1 (en) * 2012-11-22 2014-05-30 興和株式会社 Illumination device
CN104110653A (en) * 2014-05-23 2014-10-22 上海小糸车灯有限公司 Light conducting device for vehicle lamp and vehicle lamp
KR20170007912A (en) * 2015-07-13 2017-01-23 현대모비스 주식회사 Light guide system for vehicle
KR101731779B1 (en) * 2014-11-19 2017-05-04 에스엘 주식회사 Lamp for vehicle and assembling method for the same
AT15785U1 (en) * 2014-04-30 2018-06-15 Zumtobel Lighting Gmbh Optical element for a light source of a lamp, as well as light
WO2018127457A1 (en) 2017-01-09 2018-07-12 Philips Lighting Holding B.V. A solid state light emitter lighting assembly and a luminaire
US10036517B2 (en) 2013-05-16 2018-07-31 3M Innovative Properties Company Lightguide as luminaire
CN110701567A (en) * 2018-07-10 2020-01-17 株式会社小糸制作所 Vehicle lamp
JP7482687B2 (en) 2020-05-29 2024-05-14 市光工業株式会社 Vehicle lighting fixtures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067610A (en) * 1998-08-27 2000-03-03 Stanley Electric Co Ltd Vehicle lighting fixture
JP2005158362A (en) * 2003-11-21 2005-06-16 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2009176933A (en) * 2008-01-24 2009-08-06 Toshiba Corp Light emitting device and illuminating device
JP2010182554A (en) * 2009-02-06 2010-08-19 Stanley Electric Co Ltd Led light source, and lighting fixture for vehicle using the same
JP2011198536A (en) * 2010-03-18 2011-10-06 Koito Mfg Co Ltd Lamp tool for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067610A (en) * 1998-08-27 2000-03-03 Stanley Electric Co Ltd Vehicle lighting fixture
JP2005158362A (en) * 2003-11-21 2005-06-16 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2009176933A (en) * 2008-01-24 2009-08-06 Toshiba Corp Light emitting device and illuminating device
JP2010182554A (en) * 2009-02-06 2010-08-19 Stanley Electric Co Ltd Led light source, and lighting fixture for vehicle using the same
JP2011198536A (en) * 2010-03-18 2011-10-06 Koito Mfg Co Ltd Lamp tool for vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095959A1 (en) * 2011-12-20 2013-06-27 3M Innovative Properties Company Lightguide as luminaire
JP2013182882A (en) * 2012-03-02 2013-09-12 Asahi Raizu Kk Led bulb for replacing halogen lamp for automobile
JP2014011121A (en) * 2012-07-02 2014-01-20 Shonan Kosakusho:Kk Portable daytime signal light for ship
WO2014080771A1 (en) * 2012-11-22 2014-05-30 興和株式会社 Illumination device
JPWO2014080771A1 (en) * 2012-11-22 2017-01-05 興和株式会社 Lighting device
US10036517B2 (en) 2013-05-16 2018-07-31 3M Innovative Properties Company Lightguide as luminaire
AT15785U1 (en) * 2014-04-30 2018-06-15 Zumtobel Lighting Gmbh Optical element for a light source of a lamp, as well as light
CN104110653A (en) * 2014-05-23 2014-10-22 上海小糸车灯有限公司 Light conducting device for vehicle lamp and vehicle lamp
KR101731779B1 (en) * 2014-11-19 2017-05-04 에스엘 주식회사 Lamp for vehicle and assembling method for the same
KR20170007912A (en) * 2015-07-13 2017-01-23 현대모비스 주식회사 Light guide system for vehicle
KR102396898B1 (en) 2015-07-13 2022-05-12 현대모비스 주식회사 Light guide system for vehicle
WO2018127457A1 (en) 2017-01-09 2018-07-12 Philips Lighting Holding B.V. A solid state light emitter lighting assembly and a luminaire
CN110177973A (en) * 2017-01-09 2019-08-27 昕诺飞控股有限公司 Solid state illuminator light fixture and lamps and lanterns
JP2020504426A (en) * 2017-01-09 2020-02-06 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Solid state light emitter lighting assembly and luminaire
US10677398B2 (en) 2017-01-09 2020-06-09 Signify Holding B.V. Solid state light emitter lighting assembly and a luminaire
CN110701567A (en) * 2018-07-10 2020-01-17 株式会社小糸制作所 Vehicle lamp
JP7482687B2 (en) 2020-05-29 2024-05-14 市光工業株式会社 Vehicle lighting fixtures

Also Published As

Publication number Publication date
JP5437128B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5437128B2 (en) LED lamp and vehicle lamp
US8702281B2 (en) Lighting fixture unit
JP5716990B2 (en) Vehicle lighting
US9243767B2 (en) LED light module
JP2018538656A (en) Illumination device for automatic vehicle floodlight
US8562191B2 (en) Vehicle light
CN101592303A (en) The back loading LED module that is used for motor vehicle rear assembled lamp
US9618683B2 (en) Luminaire having a light guide
US20170241616A1 (en) Vehicle lighting fixture
CN107859968B (en) Car light lighting system, car light assembly and car
WO2017054568A1 (en) Led spotlight
JP4651105B2 (en) Lighting equipment
CN108375043B (en) Light beam adjusting device, optical assembly and lighting and/or signal indicating device
JP6407407B2 (en) Light source device and illumination device
US20200256537A1 (en) Vehicular lighting fixture
JP2018081806A (en) Optical lens, light source device and luminaire
JP2014123479A (en) Lighting device, and light condensation unit used for the same
JP2007507066A (en) Headlight
JP2007123028A (en) Lighting fixture for vehicle
JP2009152057A (en) Lighting fixture for vehicle
KR101021929B1 (en) Lamp assembly for vehicle
TWI507640B (en) Light guide element for controling light beam angle and lamp
KR20170010537A (en) Head Lamp For Vehicle
CN209839953U (en) Lighting device with multiple operating condition
JP2009245601A (en) Lighting fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130329

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees