JP2011197432A - Wavelength conversion laser device - Google Patents

Wavelength conversion laser device Download PDF

Info

Publication number
JP2011197432A
JP2011197432A JP2010064454A JP2010064454A JP2011197432A JP 2011197432 A JP2011197432 A JP 2011197432A JP 2010064454 A JP2010064454 A JP 2010064454A JP 2010064454 A JP2010064454 A JP 2010064454A JP 2011197432 A JP2011197432 A JP 2011197432A
Authority
JP
Japan
Prior art keywords
crystal
harmonic
fundamental wave
wavelength conversion
thg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010064454A
Other languages
Japanese (ja)
Other versions
JP5159815B2 (en
Inventor
Tatsuhide Takayama
龍英 高山
Kuniaki Iwaki
邦明 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010064454A priority Critical patent/JP5159815B2/en
Publication of JP2011197432A publication Critical patent/JP2011197432A/en
Application granted granted Critical
Publication of JP5159815B2 publication Critical patent/JP5159815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion laser device of a simple configuration, emitting the laser beam of high roundness with little loss and keeping a long device service life.SOLUTION: The wavelength conversion laser device is equipped with: a resonator for emitting the fundamental wave of the laser beam by oscillating the laser beam; and a wavelength conversion element 10 arranged on the outer side of the resonator, for converting the fundamental wave to the 1/3 wavelength using the fundamental wave. The wavelength conversion element 10 has: an SHG crystal 2 for converting the fundamental wave to the 1/2 wavelength, generating a second harmonic and emitting the fundamental wave and the second harmonic; and a THG crystal 3 for generating a third harmonic which is the 1/3 wavelength of the fundamental wave using the fundamental wave and the second harmonic and emitting it. In the SHG crystal 2, the incidence plane of the fundamental wave is roughly a Brewster angle to the fundamental wave. In the THG crystal 3, the emission plane of the third harmonic is roughly the Brewster angle to the third harmonic.

Description

本発明は、レーザ光の波長を変換して出射する波長変換レーザ装置に関する。   The present invention relates to a wavelength conversion laser device that converts a wavelength of laser light and emits it.

紫外や可視のレーザ光を発生させる方法の1つに波長変換技術を利用した方法がある。この方法は、波長変換素子の非線形性を利用して赤外波長等のレーザ光を短波長に変換する方法であり、短波長レーザ光源に広く用いられている。   One of the methods for generating ultraviolet or visible laser light is a method using wavelength conversion technology. This method is a method of converting a laser beam such as an infrared wavelength into a short wavelength by utilizing the nonlinearity of the wavelength conversion element, and is widely used for a short wavelength laser light source.

波長変換技術を利用したレーザ光発生方法では、短波長レーザを効率良く発生させるために、波長変換素子の入射面と出射面のそれぞれに、入射するレーザ光および波長変換された短波長レーザ光に対する反射防止コートを形成している。ところが、反射防止コートの品質によっては、短波長レーザ光に対する反射防止コートの寿命が短い場合がある。このため、特許文献1の第3高調波発生器では、短波長レーザの取り出し面をブリュースタカットにすることで、取り出し面の反射防止コートをなくしている。   In the laser light generation method using the wavelength conversion technology, in order to efficiently generate a short wavelength laser, the incident light and the wavelength converted short wavelength laser light are respectively incident on the incident surface and the output surface of the wavelength conversion element. An anti-reflection coating is formed. However, depending on the quality of the antireflection coating, the life of the antireflection coating for short wavelength laser light may be short. For this reason, in the 3rd harmonic generator of patent document 1, the antireflection coating of the extraction surface is eliminated by making the extraction surface of a short wavelength laser into a Brewster cut.

米国特許第5850407号明細書US Pat. No. 5,850,407

しかしながら、上記従来の技術では、短波長レーザの取り出し面をブリュースタカットにしているので、入射するレーザ光が真円に近い場合、波長変換されて出射される短波長レーザは楕円になってしまう。このため、波長変換される短波長レーザを真円に補正するための光学系が必要になるという問題があった。そして、これらの光学系にも短波長レーザに対する反射防止コートが必要であるので、レーザ装置全体としての寿命が短くなる場合があるという問題があった。   However, in the above conventional technique, since the extraction surface of the short wavelength laser is Brewster cut, if the incident laser light is close to a perfect circle, the short wavelength laser emitted after wavelength conversion becomes an ellipse. For this reason, there has been a problem that an optical system for correcting the short wavelength laser to be converted into a perfect circle is required. Further, since these optical systems also require an antireflection coating for a short wavelength laser, there is a problem that the life of the entire laser device may be shortened.

本発明は、上記に鑑みてなされたものであって、真円度の高い短波長レーザ光を少ないロスで出射するとともに、装置寿命を長く保つことができる簡易な構成の波長変換レーザ装置を得ることを目的とする。   The present invention has been made in view of the above, and obtains a wavelength conversion laser device having a simple configuration capable of emitting short-wavelength laser light having high roundness with a small loss and maintaining a long device life. For the purpose.

上述した課題を解決し、目的を達成するために、本発明は、レーザ光を発振させることによって前記レーザ光の基本波を出射する共振器と、前記共振器の外側に配置されるとともに前記基本波を用いて前記基本波を3分の1の波長に変換する波長変換素子と、を備え、前記波長変換素子は、前記基本波を2分の1の波長に変換して第2高調波を生成するとともに前記基本波および前記第2高調波を出射するSHG結晶と、前記基本波および前記第2高調波を用いて前記基本波の3分の1の波長である第3高調波を生成して出射するTHG結晶と、を有し、前記SHG結晶は、前記基本波の入射面が前記基本波に対する略ブリュースタ角であり、且つ前記THG結晶は、前記第3高調波の出射面が前記第3高調波に対する略ブリュースタ角であることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a resonator that emits a fundamental wave of the laser beam by oscillating the laser beam, and is disposed outside the resonator and the basic unit. A wavelength conversion element that converts the fundamental wave to a third wavelength using a wave, and the wavelength conversion element converts the fundamental wave to a half wavelength to convert a second harmonic wave. And generating a third harmonic that is one third of the wavelength of the fundamental using the SHG crystal that emits the fundamental and the second harmonic and the fundamental and the second harmonic. And the THG crystal has an incident surface of the fundamental wave having a substantially Brewster angle with respect to the fundamental wave, and the THG crystal has an exit surface of the third harmonic wave The Brewster angle for the third harmonic It is characterized in.

本発明によれば、SHG結晶は、基本波の入射面が基本波に対する略ブリュースタ角であり、且つTHG結晶は、第3高調波の出射面が第3高調波に対する略ブリュースタ角であるので、簡易な構成で真円度の高いレーザ光を少ないロスで出射するとともに、装置寿命を長く保つことが可能になるという効果を奏する。   According to the present invention, the SHG crystal has an incident surface of the fundamental wave that has a substantially Brewster angle with respect to the fundamental wave, and the THG crystal has an exit surface of the third harmonic that has a substantially Brewster angle with respect to the third harmonic. Therefore, it is possible to emit a laser beam having a high roundness with a simple configuration with a small loss and to have a long lifetime of the apparatus.

図1は、実施の形態に係る波長変換素子を備えた波長変換レーザ装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a wavelength conversion laser device including a wavelength conversion element according to an embodiment. 図2は、波長変換素子の構成を示す図である。FIG. 2 is a diagram illustrating the configuration of the wavelength conversion element. 図3は、偏光方向のビーム寸法算出方法を説明するための図である。FIG. 3 is a diagram for explaining a method of calculating the beam size in the polarization direction. 図4は、THG結晶からの出射角が小さくなる方向にTHG結晶を傾けた場合の波長変換素子の構成を示す図である。FIG. 4 is a diagram illustrating the configuration of the wavelength conversion element when the THG crystal is tilted in a direction in which the emission angle from the THG crystal is reduced. 図5は、THG結晶からの出射角が大きくなる方向にTHG結晶を傾けた場合の波長変換素子の構成を示す図である。FIG. 5 is a diagram showing the configuration of the wavelength conversion element when the THG crystal is tilted in the direction in which the emission angle from the THG crystal increases. 図6は、3倍波に対するTHG結晶の出射角と反射率の関係を示す図である。FIG. 6 is a diagram showing the relationship between the emission angle of the THG crystal and the reflectance with respect to the third harmonic wave. 図7は、図6に示した関係の一部拡大図である。FIG. 7 is a partially enlarged view of the relationship shown in FIG. 図8は、THG結晶の傾斜角と3倍波出射角の関係を示す図である。FIG. 8 is a diagram showing the relationship between the inclination angle of the THG crystal and the third harmonic wave emission angle. 図9は、THG結晶の傾斜角とTHG結晶から出射される3倍波の縦横比の関係を示す図である。FIG. 9 is a diagram showing the relationship between the inclination angle of the THG crystal and the aspect ratio of the third harmonic wave emitted from the THG crystal. 図10は、従来用いられていた波長変換素子の構成を示す図である。FIG. 10 is a diagram showing a configuration of a wavelength conversion element that has been conventionally used. 図11は、共振器の内部に波長変換素子を配置した場合の波長変換レーザ装置の構成を示す図である。FIG. 11 is a diagram illustrating a configuration of a wavelength conversion laser device when a wavelength conversion element is disposed inside the resonator.

以下に、本発明の実施の形態に係る波長変換レーザ装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a wavelength conversion laser device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態
図1は、本発明の実施の形態に係る波長変換素子を備えた波長変換レーザ装置の構成を示す図である。図1では、波長変換レーザ装置100の断面構成を示している。波長変換レーザ装置100は、励起光源30と、共振器(レーザ発振器)20と、波長変換素子10と、を含んで構成されている。
Embodiment FIG. 1 is a diagram showing a configuration of a wavelength conversion laser device including a wavelength conversion element according to an embodiment of the present invention. FIG. 1 shows a cross-sectional configuration of the wavelength conversion laser device 100. The wavelength conversion laser device 100 includes an excitation light source 30, a resonator (laser oscillator) 20, and a wavelength conversion element 10.

共振器20は、全反射ミラー21と、部分反射ミラー23と、YAGなどのレーザ媒質22と、偏光素子24と、を有している。励起光源30は、励起光を出射してレーザ媒質22を励起する。全反射ミラー21は、レーザ媒質22で励起された発振光に対し高反射率でレーザ媒質22側に反射する。また、偏光素子24は、発振光の偏光方向を規定し、出射される基本波の偏光方向を決める。また、部分反射ミラー23は、発振光の一部をレーザ媒質22側に反射するとともに、残りの発振光を透過させて基本波として波長変換素子10に出射する。   The resonator 20 includes a total reflection mirror 21, a partial reflection mirror 23, a laser medium 22 such as YAG, and a polarizing element 24. The excitation light source 30 emits excitation light and excites the laser medium 22. The total reflection mirror 21 reflects the oscillation light excited by the laser medium 22 toward the laser medium 22 with a high reflectivity. The polarizing element 24 defines the polarization direction of the oscillation light and determines the polarization direction of the fundamental wave to be emitted. The partial reflection mirror 23 reflects a part of the oscillation light to the laser medium 22 side and transmits the remaining oscillation light to be emitted to the wavelength conversion element 10 as a fundamental wave.

波長変換素子10は、共振器20から出射されてきた基本波(レーザ光L)の波長を変換する素子であり、波長変換結晶としてSHG(Second Harmonic Generation)結晶2とTHG(Third Harmonic Generation)結晶3とを備えている。第2高調波発生結晶であるSHG結晶2や第3高調波発生結晶であるTHG結晶3は、例えば非線形光学結晶のLBO(LiB35)結晶を用いて形成されている。 The wavelength conversion element 10 is an element that converts the wavelength of the fundamental wave (laser light L) emitted from the resonator 20, and SHG (Second Harmonic Generation) crystal 2 and THG (Third Harmonic Generation) crystal as wavelength conversion crystals. 3 is provided. The SHG crystal 2 that is the second harmonic generation crystal and the THG crystal 3 that is the third harmonic generation crystal are formed using, for example, a non-linear optical crystal LBO (LiB 3 O 5 ) crystal.

SHG結晶2は、共振器20から出射されてきた基本波を、基本波の1/2倍の波長である2倍波(第2高調波である2倍波レーザ)に変換する。SHG結晶2は、共振器20からの基本波と波長変換した2倍波とをTHG結晶3に出射する。   The SHG crystal 2 converts the fundamental wave emitted from the resonator 20 into a second harmonic (a second harmonic laser that is a second harmonic) having a wavelength that is ½ the fundamental wave. The SHG crystal 2 emits the fundamental wave from the resonator 20 and the wavelength-converted double wave to the THG crystal 3.

THG結晶3は、SHG結晶2から出射されてくる基本波と2倍波を、基本波の1/3倍の波長である3倍波(第3高調波である3倍波レーザ)に変換する。THG結晶3は、波長変換した3倍波を、所定の方向(共振器20から出射されてきた光の光軸と略平行な方向)に出射する。本実施の形態では、SHG結晶2の入射面を基本波に対する略ブリュースタ角とし、かつTHG結晶3の出射面を3倍波に対する略ブリュースタ角としておく。   The THG crystal 3 converts the fundamental wave and the second harmonic wave emitted from the SHG crystal 2 into a third harmonic wave (third harmonic wave which is a third harmonic wave) having a wavelength that is 1/3 times the fundamental wave. . The THG crystal 3 emits the wavelength-converted third harmonic wave in a predetermined direction (a direction substantially parallel to the optical axis of the light emitted from the resonator 20). In the present embodiment, the incident surface of the SHG crystal 2 has a substantially Brewster angle with respect to the fundamental wave, and the exit surface of the THG crystal 3 has a substantially Brewster angle with respect to the third harmonic wave.

つぎに、波長変換素子10の構成と光波(基本波、2倍波、3倍波)の真円度について説明する。図2は、波長変換素子の構成を示す図である。ここでは、SHG結晶2とTHG結晶3の形状が、柱状部材を柱軸に非垂直かつ非平行な面で切断した形状である場合について説明する。   Next, the configuration of the wavelength conversion element 10 and the roundness of the light wave (fundamental wave, second harmonic wave, third harmonic wave) will be described. FIG. 2 is a diagram illustrating the configuration of the wavelength conversion element. Here, a case will be described in which the shapes of the SHG crystal 2 and the THG crystal 3 are shapes obtained by cutting the columnar member along a plane that is non-perpendicular and non-parallel to the column axis.

SHG結晶2は、基本波に対するブリュースタ角θ1で基本波を入射させた場合に、SHG結晶2の長手方向(柱軸方向)に基本波が伝播するよう、入射面(柱状の上面側)が所定の角度で削ぎ落とされて形成(入射する基本波に対するブリュースタカット)されている。また、SHG結晶2の出射面は、SHG結晶2から出射される基本波および2倍波の光軸方向と垂直となるよう柱軸と垂直な底面を有している。   The SHG crystal 2 has an incident surface (columnar upper surface side) so that the fundamental wave propagates in the longitudinal direction (column axis direction) of the SHG crystal 2 when the fundamental wave is incident at the Brewster angle θ1 with respect to the fundamental wave. It is formed by cutting off at a predetermined angle (Brewster cut for the incident fundamental wave). The exit surface of the SHG crystal 2 has a bottom surface perpendicular to the column axis so as to be perpendicular to the optical axis direction of the fundamental wave and the second harmonic wave emitted from the SHG crystal 2.

また、THG結晶3は、3倍波に対するブリュースタ角θ4で3倍波を出射させる場合に、THG結晶3内の柱軸方向に3倍波が伝播し且つ出射した3倍波が、共振器20から出射されてきた光の光軸と平行な方向となるよう、出射面(柱状の上面側)が所定の角度で削ぎ落とされて形成(入射する3倍波に対するブリュースタカット)されている。また、THG結晶3の入射面は、THG結晶3に入射する基本波および2倍波の光軸方向と垂直となるよう柱軸と垂直な底面を有している。   Further, when the THG crystal 3 emits the third harmonic wave at the Brewster angle θ4 with respect to the third harmonic wave, the third harmonic wave propagates in the direction of the column axis in the THG crystal 3 and the emitted third harmonic wave becomes a resonator. The emission surface (columnar upper surface side) is cut off at a predetermined angle so as to be parallel to the optical axis of the light emitted from 20 (Brewster cut with respect to the incident third harmonic wave). The incident surface of the THG crystal 3 has a bottom surface perpendicular to the column axis so as to be perpendicular to the optical axis direction of the fundamental wave and the second harmonic wave incident on the THG crystal 3.

そして、SHG結晶2の出射面(底面)とTHG結晶3の入射面(底面)とが略平行になり、且つSHG結晶2内での光軸とTHG結晶3内での光軸が同軸となるようSHG結晶2とTHG結晶3とが近接配置されている。   The exit surface (bottom surface) of the SHG crystal 2 and the incident surface (bottom surface) of the THG crystal 3 are substantially parallel, and the optical axis in the SHG crystal 2 and the optical axis in the THG crystal 3 are coaxial. Thus, the SHG crystal 2 and the THG crystal 3 are arranged close to each other.

図2では、基本波の偏光方向(入射面に垂直な偏光方向)を方向D1で示し、3倍波の偏光方向(出射面に垂直な偏光方向)をD3で示している。共振器20から出射される基本波の波長は、1064nmであり、SHG結晶2およびTHG結晶3で波長変換されてTHG結晶3から出射される3倍波の波長は355nmである。   In FIG. 2, the polarization direction of the fundamental wave (polarization direction perpendicular to the incident surface) is indicated by direction D1, and the polarization direction of the third harmonic (polarization direction perpendicular to the emission surface) is indicated by D3. The wavelength of the fundamental wave emitted from the resonator 20 is 1064 nm, and the wavelength of the third harmonic wave converted from the wavelength by the SHG crystal 2 and the THG crystal 3 and emitted from the THG crystal 3 is 355 nm.

また、SHG結晶2は、基本波の波長および偏光方向に対する屈折率が例えばn=1.6055である。また、THG結晶3は、基本波の波長および偏光方向に対する屈折率が例えばn=1.5656であり、3倍波の波長および偏光方向に対する屈折率が例えばnT3ω=1.5973である。 Further, the SHG crystal 2 has a refractive index of, for example, n = 1.6055 with respect to the wavelength of the fundamental wave and the polarization direction. The THG crystal 3 has a refractive index with respect to the fundamental wavelength and polarization direction, for example, n = 1.5656, and a refractive index with respect to the third harmonic wavelength and polarization direction, for example, n T3ω = 1.5973.

ブリュースタ角θ1は、SHG結晶2の基本波の波長および偏光方向に対する屈折率によって決まるものである。したがって、SHG結晶2の屈折率に基づいて、ブリュースタ角θ1を設定しておく。   The Brewster angle θ1 is determined by the wavelength of the fundamental wave of the SHG crystal 2 and the refractive index with respect to the polarization direction. Therefore, the Brewster angle θ1 is set based on the refractive index of the SHG crystal 2.

同様に、ブリュースタ角θ4は、THG結晶3の3倍波の波長および偏光方向に対する
屈折率によって決まるものである。したがって、THG結晶3の屈折率に基づいて、ブリュースタ角θ4を設定しておく。
Similarly, the Brewster angle θ4 is determined by the wavelength of the third harmonic of the THG crystal 3 and the refractive index with respect to the polarization direction. Therefore, the Brewster angle θ4 is set based on the refractive index of the THG crystal 3.

本実施の形態では、SHG結晶2の入射面に対してブリュースタ角θ1(θ1=58.083°)で基本波が入射される。このときの基本波は、S偏光の偏光方向である方向D1の寸法が寸法y1であり、偏光方向に垂直な方向の寸法が寸法x1である。基本波の寸法y1と寸法x1との寸法比(縦横比)は、1:1であり、基本波は真円である。   In the present embodiment, the fundamental wave is incident on the incident surface of the SHG crystal 2 at the Brewster angle θ1 (θ1 = 58.083 °). In this case, the fundamental wave has a dimension y1 in the direction D1, which is the polarization direction of S-polarized light, and a dimension x1 in the direction perpendicular to the polarization direction. The dimensional ratio (aspect ratio) between the fundamental wave dimension y1 and the dimension x1 is 1: 1, and the fundamental wave is a perfect circle.

SHG結晶2に入射した基本波は、ブリュースタ角θ1に対して所定の角度θ2(sinθ1=nsinθ2)の角度をなしながらSHG結晶2内を伝播する。そして、SHG結晶2内では、基本波の一部が2倍波に波長変換される。 The fundamental wave incident on the SHG crystal 2 propagates in the SHG crystal 2 while forming a predetermined angle θ2 (sin θ1 = n sin θ2) with respect to the Brewster angle θ1. In the SHG crystal 2, a part of the fundamental wave is wavelength-converted to a second harmonic wave.

SHG結晶2から出射する基本波および2倍波は、THG結晶3に入射する。THG結晶3内では、基本波および2倍波を用いて3倍波が生成される。そして、生成された3倍波は、ブリュースタ角θ4に対して所定の角度θ3(nT3ωsinθ3=sinθ4)の角度をなしながらTHG結晶3内を伝播する。 The fundamental wave and the second harmonic wave emitted from the SHG crystal 2 are incident on the THG crystal 3. In the THG crystal 3, a third harmonic wave is generated using the fundamental wave and the second harmonic wave. The generated third harmonic wave propagates in the THG crystal 3 while making a predetermined angle θ3 (n T3ω sin θ3 = sin θ4) with respect to the Brewster angle θ4.

本実施の形態では、THG結晶3の出射面に対してブリュースタ角θ4(θ4=57.951°)で3倍波が出射される。SHG結晶2内での基本波や2倍波は、基本波の偏光方向の寸法が寸法y2であり、基本波の偏光方向に垂直な方向の寸法が寸法x1である。基本波や2倍波の寸法y2と寸法x1との寸法比(縦横比)は、1.61:1であり、基本波は楕円である。そして、このビーム形状のままTHG結晶3内に基本波や2倍波が入射される。   In the present embodiment, the third harmonic wave is emitted at the Brewster angle θ4 (θ4 = 57.951 °) with respect to the emission surface of the THG crystal 3. The fundamental wave and the second harmonic wave in the SHG crystal 2 have a dimension y2 in the polarization direction of the fundamental wave and a dimension x1 in the direction perpendicular to the polarization direction of the fundamental wave. The dimension ratio (aspect ratio) between the dimension y2 and the dimension x1 of the fundamental wave or the double wave is 1.61: 1, and the fundamental wave is an ellipse. Then, the fundamental wave and the second harmonic wave are incident on the THG crystal 3 in this beam shape.

そして、THG結晶3内で発生する3倍波のビーム形状は基本波ビーム形状と相似形であるとみなしてよいので、THG結晶3内での3倍波の縦横比は1.61:1である。この3倍波がブリュースタ角θ4でTHG結晶3から出射すると、このときの3倍波は、偏光方向D3の寸法が寸法y3であり、偏光方向に垂直な方向の寸法が寸法x1である。そして、THG結晶3から出射された3倍波の寸法y3と寸法x1との寸法比(縦横比)は、1.01:1であり、3倍波は略真円である。換言すると、波長変換後の3倍波は、波長変換前の基本波と略同じ縦横比として出射されることとなる。したがって、波長変換素子10は、レーザ出力のロスを抑えつつ真円度の高い3倍波をTHG結晶3から出射することが可能となる。真円度の高い3倍波とは、所定の許容範囲内の真円度を有した3倍波であり、例えば、THG結晶3から出射された後に真円に補正するための光学系が不要な3倍波である。   The beam shape of the third harmonic wave generated in the THG crystal 3 may be regarded as similar to the fundamental wave beam shape, so the aspect ratio of the third harmonic wave in the THG crystal 3 is 1.61: 1. is there. When this third harmonic wave is emitted from the THG crystal 3 at the Brewster angle θ4, the third harmonic wave at this time has a dimension y3 in the polarization direction D3 and a dimension x1 in the direction perpendicular to the polarization direction. The dimension ratio (aspect ratio) between the dimension y3 and the dimension x1 of the third harmonic wave emitted from the THG crystal 3 is 1.01: 1, and the third harmonic wave is a substantially perfect circle. In other words, the third harmonic wave after wavelength conversion is emitted with the same aspect ratio as the fundamental wave before wavelength conversion. Therefore, the wavelength conversion element 10 can emit a third harmonic wave with high roundness from the THG crystal 3 while suppressing a loss of laser output. The third round wave having a high roundness is a third harmonic wave having a roundness within a predetermined allowable range. For example, an optical system for correcting to a perfect circle after being emitted from the THG crystal 3 is unnecessary. This is a triple wave.

ここで、偏光方向のビーム寸法と屈折率および入射角の関係について説明する。図3は、偏光方向のビーム寸法算出方法を説明するための図である。例えば、光が屈折率n1の物質から屈折率n2の物質へ、入射角θ11で入射し、屈折角θ12で伝播する場合、n1×sinθ11=n2×sinθ12の関係が成立する。また、偏光方向のビーム寸法が寸法R1であった光が、入射角θ11で入射し、屈折角θ12で伝播する場合、屈折後の偏光方向はビーム寸法を寸法R2とすると、R1/cosθ11=R2/cosθ12の関係が成立する。したがって、これらの関係を用いて、SHG結晶2内およびTHG結晶3内での基本波や2倍波の真円度を算出でき、THG結晶3から出射される3倍波の真円度を算出できる。   Here, the relationship between the beam size in the polarization direction, the refractive index, and the incident angle will be described. FIG. 3 is a diagram for explaining a method of calculating the beam size in the polarization direction. For example, when light is incident from a material with a refractive index n1 to a material with a refractive index n2 at an incident angle θ11 and propagates at a refractive angle θ12, the relationship n1 × sin θ11 = n2 × sin θ12 is established. In addition, when light having a beam dimension in the polarization direction of the dimension R1 is incident at an incident angle θ11 and propagates at a refraction angle θ12, the polarization direction after refraction is R1 / cos θ11 = R2 where the beam dimension is a dimension R2. The relationship / cos θ12 is established. Therefore, using these relationships, the roundness of the fundamental wave and the second harmonic wave in the SHG crystal 2 and the THG crystal 3 can be calculated, and the roundness of the third harmonic wave emitted from the THG crystal 3 is calculated. it can.

ところで、何らかの原因で、3倍波の縦横比が悪化していた場合、THG結晶3の柱軸方向をSHG結晶2内の基本波または2倍波の光軸から所定の角度だけ傾けることによって、レーザ出力のロスを抑えつつTHG結晶3から出射される3倍波を略真円とすることができる。   By the way, when the aspect ratio of the third harmonic wave has deteriorated for some reason, by tilting the column axis direction of the THG crystal 3 by a predetermined angle from the fundamental wave or the second harmonic optical axis in the SHG crystal 2, The third harmonic wave emitted from the THG crystal 3 can be made into a substantially perfect circle while suppressing the loss of laser output.

図4は、THG結晶からの出射角が小さくなる方向にTHG結晶を傾けた場合の波長変換素子の構成を示す図であり、図5は、THG結晶からの出射角が大きくなる方向にTHG結晶を傾けた場合の波長変換素子の構成を示す図である。   FIG. 4 is a diagram showing the configuration of the wavelength conversion element when the THG crystal is tilted in the direction in which the emission angle from the THG crystal decreases, and FIG. 5 shows the THG crystal in the direction in which the emission angle from the THG crystal increases. It is a figure which shows the structure of the wavelength conversion element at the time of tilting.

図4に示すように、THG結晶3の柱軸方向をSHG結晶2の光軸(柱軸方向)から−α°だけ傾けることによって、THG結晶3からの出射角が−α°に応じた角度だけ大きくなる。これにより、THG結晶3からは、偏光方向D3の3倍波が出射角θ21で出射される。   As shown in FIG. 4, by tilting the column axis direction of the THG crystal 3 by −α ° from the optical axis (column axis direction) of the SHG crystal 2, the emission angle from the THG crystal 3 is an angle corresponding to −α °. Only get bigger. As a result, the THG crystal 3 emits the third harmonic wave in the polarization direction D3 at the emission angle θ21.

また、図5に示すように、THG結晶3の柱軸方向をSHG結晶2の光軸(柱軸方向)から+α°だけ傾けることによって、THG結晶3からの出射角が+α°に応じた角度だけ小さくなる。これにより、THG結晶3からは、偏光方向D3の3倍波が出射角θ22で出射される。   Further, as shown in FIG. 5, by tilting the column axis direction of the THG crystal 3 by + α ° from the optical axis (column axis direction) of the SHG crystal 2, the emission angle from the THG crystal 3 is an angle corresponding to + α °. Only smaller. As a result, the THG crystal 3 emits the third harmonic wave in the polarization direction D3 at the emission angle θ22.

図6は、3倍波に対するTHG結晶の出射角と反射率の関係を示す図であり、図7は、図6に示した関係の一部拡大図である。図7では、3倍波に対するTHG結晶3の出射角51°〜63°と反射率の関係を示している。図6,7では、横軸が3倍波に対するTHG結晶3の出射角であり、縦軸が3倍波に対するTHG結晶の反射率である。   6 is a diagram showing the relationship between the emission angle of the THG crystal and the reflectance with respect to the third harmonic wave, and FIG. 7 is a partially enlarged view of the relationship shown in FIG. FIG. 7 shows the relationship between the output angle 51 ° to 63 ° of the THG crystal 3 and the reflectance with respect to the third harmonic wave. 6 and 7, the horizontal axis represents the emission angle of the THG crystal 3 with respect to the third harmonic wave, and the vertical axis represents the reflectance of the THG crystal with respect to the third harmonic wave.

図6および図7に示すように、3倍波に対するTHG結晶3の反射率は、THG結晶3からの3倍波の出射角が約51°〜63°であれば、THG結晶3での反射率が0.5%以下となり、反射率を充分小さく抑えることができる。   As shown in FIGS. 6 and 7, the reflectivity of the THG crystal 3 with respect to the third harmonic wave is reflected by the THG crystal 3 when the emission angle of the third harmonic wave from the THG crystal 3 is about 51 ° to 63 °. The reflectance becomes 0.5% or less, and the reflectance can be kept sufficiently small.

図8は、THG結晶の傾斜角と3倍波出射角の関係を示す図である。図8では、横軸がSHG結晶2の柱軸に対するTHG結晶3の柱軸の傾斜角であり、縦軸が3倍波に対するTHG結晶の出射角である。   FIG. 8 is a diagram showing the relationship between the inclination angle of the THG crystal and the third harmonic wave emission angle. In FIG. 8, the horizontal axis represents the tilt angle of the column axis of the THG crystal 3 with respect to the column axis of the SHG crystal 2, and the vertical axis represents the exit angle of the THG crystal with respect to the third harmonic wave.

図8に示すように、THG結晶3からの3倍波の出射角を約51°〜63°の範囲にするには、THG結晶3の柱軸方向を光軸方向に対して−3°〜+4°の範囲で調整すればよい。   As shown in FIG. 8, in order to set the emission angle of the third harmonic wave from the THG crystal 3 within a range of about 51 ° to 63 °, the column axis direction of the THG crystal 3 is set to −3 ° to about the optical axis direction. Adjustment may be made within the range of + 4 °.

図9は、THG結晶の傾斜角とTHG結晶から出射される3倍波の縦横比の関係を示す図である。図9では、横軸がSHG結晶2の柱軸に対するTHG結晶3の柱軸の傾斜角であり、縦軸が3倍波(出射レーザ)のビームの横幅寸法に対する縦寸法の比(3倍波の縦横比)(ビーム系横軸に対する縦軸の比)である。   FIG. 9 is a diagram showing the relationship between the inclination angle of the THG crystal and the aspect ratio of the third harmonic wave emitted from the THG crystal. In FIG. 9, the horizontal axis is the tilt angle of the column axis of the THG crystal 3 with respect to the column axis of the SHG crystal 2, and the vertical axis is the ratio of the vertical dimension to the horizontal width dimension of the third harmonic wave (emitted laser) Aspect ratio) (ratio of the vertical axis to the horizontal axis of the beam system).

図9に示すように、THG結晶3の柱軸の傾斜角が−3°〜+4°の範囲であれば、THG結晶3から出射される3倍波の縦横比は、0.85〜1.15となる。また、THG結晶3の柱軸の傾斜角が−2°〜+2°の範囲であれば、THG結晶3から出射される3倍波の縦横比は、0.9〜1.1となる。   As shown in FIG. 9, when the inclination angle of the column axis of the THG crystal 3 is in the range of −3 ° to + 4 °, the aspect ratio of the third harmonic wave emitted from the THG crystal 3 is 0.85 to 1. 15 If the tilt angle of the column axis of the THG crystal 3 is in the range of −2 ° to + 2 °, the aspect ratio of the third harmonic wave emitted from the THG crystal 3 is 0.9 to 1.1.

したがって、THG結晶3の柱軸の傾斜角を−3°〜+4°の範囲内で調整した場合には、THG結晶3から出射される3倍波の縦横比を基本波(縦横比=1:1)に対して±15%程度のずれを補正し、1:1にすることが可能となる。また、THG結晶3の柱軸の傾斜角を−2°〜+2°の範囲内で調整した場合には、THG結晶3から出射される3倍波の縦横比を基本波に対して±10%程度のずれを補正し、1:1にすることが可能となる。THG結晶3の柱軸の傾斜角は、例えば3倍波の縦横比の許容範囲や3倍波の反射率の許容範囲に基づいて決定される。   Therefore, when the inclination angle of the column axis of the THG crystal 3 is adjusted within a range of −3 ° to + 4 °, the aspect ratio of the third harmonic wave emitted from the THG crystal 3 is set to the fundamental wave (aspect ratio = 1: It is possible to correct a deviation of about ± 15% with respect to 1) and to make it 1: 1. When the inclination angle of the column axis of the THG crystal 3 is adjusted within the range of −2 ° to + 2 °, the aspect ratio of the third harmonic wave emitted from the THG crystal 3 is ± 10% with respect to the fundamental wave. It is possible to correct the degree of deviation and make it 1: 1. The inclination angle of the column axis of the THG crystal 3 is determined based on, for example, the allowable range of the aspect ratio of the third harmonic and the allowable range of the reflectivity of the third harmonic.

このように、THG結晶3の柱軸の傾斜角を適切な角度に調整することによって、3倍波の反射率を抑えつつ縦横比が1:1に近い3倍波をTHG結晶3から出射することが可能となる。換言すると、レーザ出力のロスを抑えつつ真円度の高い3倍波をTHG結晶3から出射することが可能となる。これにより、何らかの原因で3倍波の縦横比が悪化していた場合であっても、THG結晶3の柱軸の傾斜角を調整することによって、真円度の高い基本波から真円度の高い3倍波を小さなロスで得ることが可能となる。   In this way, by adjusting the tilt angle of the column axis of the THG crystal 3 to an appropriate angle, a third harmonic wave having an aspect ratio close to 1: 1 is emitted from the THG crystal 3 while suppressing the reflectivity of the third harmonic wave. It becomes possible. In other words, it is possible to emit a third round wave with high roundness from the THG crystal 3 while suppressing loss of laser output. Thereby, even if the aspect ratio of the third harmonic wave has deteriorated for some reason, by adjusting the tilt angle of the column axis of the THG crystal 3, the roundness of the fundamental wave having a high roundness can be reduced. It is possible to obtain a high third harmonic with a small loss.

なお、図4や図5では、THG結晶3の柱軸をSHG結晶2の柱軸方向から傾斜させる場合について説明したが、SHG結晶2の柱軸をTHG結晶3の柱軸方向から傾斜させてもよい。この場合も、THG結晶3を傾斜させた場合と同様の効果を得ることができる。また、3倍波の真円度や反射率が許容範囲内に入るのであれば、SHG結晶2の入射面は基本波に対するブリュースタ角からずれてもよい。   4 and FIG. 5, the case where the column axis of the THG crystal 3 is tilted from the column axis direction of the SHG crystal 2 has been described. However, the column axis of the SHG crystal 2 is tilted from the column axis direction of the THG crystal 3. Also good. In this case as well, the same effect as when the THG crystal 3 is tilted can be obtained. If the roundness and reflectivity of the third harmonic wave are within the allowable range, the incident surface of the SHG crystal 2 may be deviated from the Brewster angle with respect to the fundamental wave.

ここで、本実施の形態における波長変換素子10と従来用いられていた波長変換素子の差異を明確にするため、従来用いられていた波長変換素子の構成についての問題点を説明する。   Here, in order to clarify the difference between the wavelength conversion element 10 in the present embodiment and the wavelength conversion element conventionally used, problems in the configuration of the wavelength conversion element conventionally used will be described.

図10は、従来用いられていた波長変換素子の構成を示す図である。ここでは、従来の波長変換素子は、THG結晶43とSHG結晶42とを有している。そして、THG結晶43は、柱状部材が3倍波に対してブリュースタカットされた形状を有している。また、SHG結晶42は、柱状をなしている。   FIG. 10 is a diagram showing a configuration of a wavelength conversion element that has been conventionally used. Here, the conventional wavelength conversion element has a THG crystal 43 and an SHG crystal 42. The THG crystal 43 has a shape in which the columnar member is Brewster cut with respect to the third harmonic wave. The SHG crystal 42 has a columnar shape.

SHG結晶42は、SHG結晶2と形状が異なる結晶であり、SHG結晶2とは同様の部材を用いて形成されている。SHG結晶42は、その柱軸が基本波の光軸と同じになるよう配置されている。そして、SHG結晶42の入射面に対して励起光源からの基本波が垂直に入射され、SHG結晶42の出射面に対して基本波および2倍波が垂直に出射される。   The SHG crystal 42 is a crystal having a shape different from that of the SHG crystal 2, and the SHG crystal 2 is formed using the same member. The SHG crystal 42 is arranged such that its column axis is the same as the optical axis of the fundamental wave. Then, the fundamental wave from the excitation light source is incident on the incident surface of the SHG crystal 42 perpendicularly, and the fundamental wave and the double wave are emitted perpendicularly to the emission surface of the SHG crystal 42.

また、THG結晶43は、THG結晶3と同様の部材を用いて形成されており、THG結晶3と同様の形状を有している。そして、SHG結晶42の出射面とTHG結晶43の入射面とが略平行になり、且つSHG結晶42内での光軸とTHG結晶43内での光軸が同軸となるようSHG結晶42とTHG結晶43とが近接配置されている。   The THG crystal 43 is formed using the same member as the THG crystal 3 and has the same shape as the THG crystal 3. The SHG crystal 42 and the THG crystal 42 are aligned so that the exit surface of the SHG crystal 42 and the incident surface of the THG crystal 43 are substantially parallel, and the optical axis in the SHG crystal 42 and the optical axis in the THG crystal 43 are coaxial. The crystal 43 is arranged in close proximity.

従来の波長変換素子では、SHG結晶42の入射面に入射される基本波は、S偏光の偏光方向である方向D1の寸法が寸法y1であり、偏光方向に垂直な方向の寸法が寸法x1である。基本波の寸法y1と寸法x1との寸法比(縦横比)は、1:1であり、基本波は真円である。   In the conventional wavelength conversion element, the fundamental wave incident on the incident surface of the SHG crystal 42 has a dimension y1 in the direction D1, which is the polarization direction of S-polarized light, and a dimension x1 in the direction perpendicular to the polarization direction. is there. The dimensional ratio (aspect ratio) between the fundamental wave dimension y1 and the dimension x1 is 1: 1, and the fundamental wave is a perfect circle.

SHG結晶42に入射した基本波は、入射前の基本波と同じ光軸方向でSHG結晶42内を伝播する。SHG結晶42から出射する基本波および2倍波は、THG結晶43に入射し、入射前の基本波および2倍波と同じ光軸方向でTHG結晶43内を伝播する。THG結晶43では、基本波および2倍波を用いて3倍波が生成される。そして、生成された3倍波は、ブリュースタ角θ4でTHG結晶43から出射する。   The fundamental wave incident on the SHG crystal 42 propagates in the SHG crystal 42 in the same optical axis direction as the fundamental wave before incidence. The fundamental wave and the second harmonic wave emitted from the SHG crystal 42 enter the THG crystal 43 and propagate in the THG crystal 43 in the same optical axis direction as the fundamental wave and the second harmonic wave before incidence. In the THG crystal 43, a triple wave is generated using the fundamental wave and the double wave. Then, the generated third harmonic wave is emitted from the THG crystal 43 at the Brewster angle θ4.

THG結晶43から出射される3倍波は、偏光方向D3の寸法が寸法y10であり、偏光方向に垂直な方向の寸法が寸法x1である。具体的には、3倍波の寸法y10と寸法x1との寸法比(縦横比)は、0.63:1であり、3倍波は楕円となっている。換言すると、従来の波長変換素子では、波長変換後の3倍波が、楕円状に出射される。このため、波長変換される3倍波を真円に補正するための光学系が別途必要になる。   The third harmonic wave emitted from the THG crystal 43 has a dimension y10 in the polarization direction D3 and a dimension x1 in the direction perpendicular to the polarization direction. Specifically, the dimension ratio (aspect ratio) between the dimension y10 and the dimension x1 of the third harmonic is 0.63: 1, and the third harmonic is an ellipse. In other words, in the conventional wavelength conversion element, the third harmonic wave after wavelength conversion is emitted in an elliptical shape. For this reason, a separate optical system for correcting the wavelength-converted third harmonic wave to a perfect circle is required.

なお、本実施の形態では、レーザ光Lを発振する共振器20の外側にSHG結晶2とTHG結晶3を配置して波長変換を行う場合について説明したが、共振器20の内部にSHG結晶2とTHG結晶3を配置して波長変換を行なってもよい。   In this embodiment, the case where the SHG crystal 2 and the THG crystal 3 are disposed outside the resonator 20 that oscillates the laser light L and wavelength conversion is performed has been described. However, the SHG crystal 2 is disposed inside the resonator 20. And THG crystal 3 may be arranged to perform wavelength conversion.

図11は、共振器の内部に波長変換素子を配置した場合の波長変換レーザ装置の構成を示す図である。図11では、波長変換レーザ装置101の断面構成を示している。波長変換レーザ装置101は、励起光源30と、共振器50とを含んで構成されており、共振器50内に波長変換素子10が配置されている。   FIG. 11 is a diagram illustrating a configuration of a wavelength conversion laser device when a wavelength conversion element is disposed inside the resonator. FIG. 11 shows a cross-sectional configuration of the wavelength conversion laser device 101. The wavelength conversion laser device 101 includes an excitation light source 30 and a resonator 50, and the wavelength conversion element 10 is disposed in the resonator 50.

共振器50は、全反射ミラー51,53と、YAGなどのレーザ媒質52と、波長変換素子10と、を有している。全反射ミラー51,53は、全反射ミラー21と同様の機能を有している。また、レーザ媒質52は、レーザ媒質22と同様の機能を有している。   The resonator 50 includes total reflection mirrors 51 and 53, a laser medium 52 such as YAG, and the wavelength conversion element 10. The total reflection mirrors 51 and 53 have the same function as the total reflection mirror 21. The laser medium 52 has the same function as the laser medium 22.

共振器50内に波長変換素子10を配置しておくことにより、共振器20外に波長変換素子10を配置した場合と同様に、真円度の高い基本波から真円度の高い3倍波を小さなロスで得ることが可能となる。   By disposing the wavelength conversion element 10 in the resonator 50, as in the case where the wavelength conversion element 10 is disposed outside the resonator 20, a fundamental wave having a high roundness to a third harmonic having a high roundness is obtained. Can be obtained with a small loss.

また、本実施の形態では、波長変換素子10で3倍波を生成して出射する場合について説明したが、波長変換素子10で4倍波を生成して出射してもよい。この場合も、基本波の入射面をブリュースタ角で構成するとともに、4倍波の出射面をブリュースタ角で構成しておく。   In the present embodiment, the case where the wavelength conversion element 10 generates and emits the third harmonic wave has been described, but the wavelength conversion element 10 may generate and emit the fourth harmonic wave. Also in this case, the incident surface of the fundamental wave is configured with a Brewster angle, and the exit surface of the fourth harmonic is configured with a Brewster angle.

また、本実施の形態では、波長変換素子10に2個の波長変換素子を配置し、3倍波を生成して出射する場合について説明したが、3個の波長変換素子を配置しN倍波(Nは5以上の整数)を生成して出射してもよい。この場合も、基本波の入射面をブリュースタ角で構成するとともに、N倍波の出射面をブリュースタ角で構成しておく。   Further, in the present embodiment, the case where two wavelength conversion elements are arranged in the wavelength conversion element 10 to generate and emit a third harmonic wave has been described. However, three wavelength conversion elements are arranged and an Nth harmonic wave is output. (N is an integer of 5 or more) may be generated and emitted. Also in this case, the incident surface of the fundamental wave is configured with a Brewster angle, and the exit surface of the Nth harmonic wave is configured with a Brewster angle.

このように実施の形態によれば、SHG結晶2の入射面を基本波に対するブリュースタ角とし、且つTHG結晶3の出射面を基本波または3倍波に対するブリュースタ角としているので、簡易な構成の波長変換素子10によって真円度の高い3倍波を少ないロスで出射するとともに、波長変換素子10(波長変換レーザ装置100)の装置寿命を長く保つことが可能となる。   As described above, according to the embodiment, the incident surface of the SHG crystal 2 has a Brewster angle with respect to the fundamental wave, and the exit surface of the THG crystal 3 has a Brewster angle with respect to the fundamental wave or the third harmonic wave. With this wavelength conversion element 10, it is possible to emit a third round wave having a high roundness with a small loss and to keep the device life of the wavelength conversion element 10 (wavelength conversion laser device 100) long.

以上のように、本発明に係る波長変換レーザ装置は、レーザ光の波長変換に適している。   As described above, the wavelength conversion laser device according to the present invention is suitable for wavelength conversion of laser light.

2 SHG結晶
3 THG結晶
22 レーザ媒質
10 波長変換素子
20 共振器
30 励起光源
100 波長変換レーザ装置
L レーザ光
θ1,θ4 ブリュースタ角
2 SHG crystal 3 THG crystal 22 Laser medium 10 Wavelength conversion element 20 Resonator 30 Excitation light source 100 Wavelength conversion laser device L Laser light θ1, θ4 Brewster angle

Claims (3)

レーザ光を発振させることによって前記レーザ光の基本波を出射する共振器と、
前記共振器の外側に配置されるとともに前記基本波を用いて前記基本波を3分の1の波長に変換する波長変換素子と、
を備え、
前記波長変換素子は、
前記基本波を2分の1の波長に変換して第2高調波を生成するとともに前記基本波および前記第2高調波を出射するSHG結晶と、
前記基本波および前記第2高調波を用いて前記基本波の3分の1の波長である第3高調波を生成して出射するTHG結晶と、
を有し、
前記SHG結晶は、前記基本波の入射面が前記基本波に対する略ブリュースタ角であり、且つ前記THG結晶は、前記第3高調波の出射面が前記第3高調波に対する略ブリュースタ角であることを特徴とする波長変換レーザ装置。
A resonator that emits a fundamental wave of the laser beam by oscillating the laser beam;
A wavelength conversion element that is disposed outside the resonator and converts the fundamental wave to a third wavelength using the fundamental wave;
With
The wavelength conversion element is:
An SHG crystal that converts the fundamental wave into a half wavelength to generate a second harmonic wave and emits the fundamental wave and the second harmonic wave;
A THG crystal that generates and emits a third harmonic that is one third of the wavelength of the fundamental using the fundamental and the second harmonic; and
Have
In the SHG crystal, the incident surface of the fundamental wave has a substantially Brewster angle with respect to the fundamental wave, and in the THG crystal, the exit surface of the third harmonic has a substantially Brewster angle with respect to the third harmonic. A wavelength conversion laser device characterized by that.
前記SHG結晶および前記THG結晶は、
前記SHG結晶内の前記第2高調波の光軸と前記THG結晶内の前記第3高調波の光軸とが略同軸となるよう配置されていることを特徴とする請求項1に記載の波長変換レーザ装置。
The SHG crystal and the THG crystal are
2. The wavelength according to claim 1, wherein the second harmonic optical axis in the SHG crystal and the third harmonic optical axis in the THG crystal are arranged so as to be substantially coaxial. Conversion laser device.
前記THG結晶から出射される前記第3高調波が略真円となるよう、前記SHG結晶内の前記第2高調波の光軸と前記THG結晶内の前記第3高調波の光軸とのなす角度が、前記SHG結晶および前記THG結晶の配置方向によって調整されていることを特徴とする請求項1に記載の波長変換レーザ装置。   An optical axis of the second harmonic in the SHG crystal and an optical axis of the third harmonic in the THG crystal so that the third harmonic emitted from the THG crystal becomes a substantially circular shape. 2. The wavelength conversion laser device according to claim 1, wherein the angle is adjusted by an arrangement direction of the SHG crystal and the THG crystal.
JP2010064454A 2010-03-19 2010-03-19 Wavelength conversion laser device Active JP5159815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010064454A JP5159815B2 (en) 2010-03-19 2010-03-19 Wavelength conversion laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064454A JP5159815B2 (en) 2010-03-19 2010-03-19 Wavelength conversion laser device

Publications (2)

Publication Number Publication Date
JP2011197432A true JP2011197432A (en) 2011-10-06
JP5159815B2 JP5159815B2 (en) 2013-03-13

Family

ID=44875710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064454A Active JP5159815B2 (en) 2010-03-19 2010-03-19 Wavelength conversion laser device

Country Status (1)

Country Link
JP (1) JP5159815B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151887A1 (en) * 2013-03-14 2014-09-25 Ipg Photonics Corporation Highly efficient, single-pass, harmonic generator with round output beam
EP2973897A4 (en) * 2013-03-14 2016-11-16 Ipg Photonics Corp Highly efficient, single-pass, harmonic generator with round output beam
WO2017172868A1 (en) * 2016-03-30 2017-10-05 Ipg Photonics Corporation High efficiency laser system for third harmonic generation
CN108988107A (en) * 2018-08-15 2018-12-11 武汉安扬激光技术有限责任公司 A kind of femtosecond ultraviolet laser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315301A (en) * 2017-07-20 2017-11-03 苏州贝林激光有限公司 Ultrafast laser frequency tripling devices and methods therefor
CN110286542A (en) * 2019-07-26 2019-09-27 南京钻石激光科技有限公司 The device that three multiplying power of laser emission generates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171107A (en) * 1994-12-15 1996-07-02 Nec Corp Optical wavelength conversion device
JP2000305119A (en) * 1999-04-20 2000-11-02 Ushio Sogo Gijutsu Kenkyusho:Kk Optical device for wavelength conversion
JP2005122094A (en) * 2003-09-26 2005-05-12 Mitsubishi Electric Corp Wavelength conversion laser apparatus
JP2005521910A (en) * 2002-03-28 2005-07-21 ライトウェーブ エレクトロニクス コーポレイション Generation of fourth harmonic with enhanced intracavity resonance using uncoated Brewster surface
WO2007096965A1 (en) * 2006-02-23 2007-08-30 Mitsubishi Denki Kabushiki Kaisha Wavelength conversion laser
JP2009145791A (en) * 2007-12-18 2009-07-02 Lasertec Corp Wavelength conversion device, inspection device, and wavelength conversion method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171107A (en) * 1994-12-15 1996-07-02 Nec Corp Optical wavelength conversion device
JP2000305119A (en) * 1999-04-20 2000-11-02 Ushio Sogo Gijutsu Kenkyusho:Kk Optical device for wavelength conversion
JP2005521910A (en) * 2002-03-28 2005-07-21 ライトウェーブ エレクトロニクス コーポレイション Generation of fourth harmonic with enhanced intracavity resonance using uncoated Brewster surface
JP2005122094A (en) * 2003-09-26 2005-05-12 Mitsubishi Electric Corp Wavelength conversion laser apparatus
WO2007096965A1 (en) * 2006-02-23 2007-08-30 Mitsubishi Denki Kabushiki Kaisha Wavelength conversion laser
JP2009145791A (en) * 2007-12-18 2009-07-02 Lasertec Corp Wavelength conversion device, inspection device, and wavelength conversion method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151887A1 (en) * 2013-03-14 2014-09-25 Ipg Photonics Corporation Highly efficient, single-pass, harmonic generator with round output beam
KR20150129021A (en) * 2013-03-14 2015-11-18 아이피지 포토닉스 코포레이션 Highly Efficient, Single-Pass, Harmonic Generator with Round Output Beam
CN105210245A (en) * 2013-03-14 2015-12-30 Ipg光子公司 Highly efficient, single-pass, harmonic generator with round output beam
JP2016532882A (en) * 2013-03-14 2016-10-20 アイピージー フォトニクス コーポレーション High-efficiency single-pass harmonic generator for circular output beams
EP2973897A4 (en) * 2013-03-14 2016-11-16 Ipg Photonics Corp Highly efficient, single-pass, harmonic generator with round output beam
US9912114B2 (en) 2013-03-14 2018-03-06 Ipg Photonics Corporation Highly efficient, single-pass, harmonic generator with round output beam
US10283926B2 (en) 2013-03-14 2019-05-07 Ipg Photonics Corporation Laser system with highly efficient, single-pass, harmonic generator with round output beam
KR102100728B1 (en) * 2013-03-14 2020-04-14 아이피지 포토닉스 코포레이션 Highly Efficient, Single-Pass, Harmonic Generator with Round Output Beam
WO2017172868A1 (en) * 2016-03-30 2017-10-05 Ipg Photonics Corporation High efficiency laser system for third harmonic generation
CN108988107A (en) * 2018-08-15 2018-12-11 武汉安扬激光技术有限责任公司 A kind of femtosecond ultraviolet laser

Also Published As

Publication number Publication date
JP5159815B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5159815B2 (en) Wavelength conversion laser device
JP4489440B2 (en) Generation of fourth harmonic with enhanced intracavity resonance using uncoated Brewster surface
WO2006028078A1 (en) Passive q switch laser device
JP2010204197A (en) Laser device, laser display apparatus, laser radiating apparatus, and nonlinear optical element
CN104953461A (en) Solid laser based on twisted mode cavity and volume grating
JP4231829B2 (en) Internal cavity sum frequency mixing laser
JP2006019603A (en) Coherent light source and optical device
JP2008112846A (en) Laser light source device and image generator using the same
JP4967626B2 (en) Wavelength conversion element, laser light source apparatus and image generation apparatus using the same
JP3330487B2 (en) Laser equipment
JP2007189194A (en) Vertical external cavity surface emitting laser with second higher harmonic generating crystal having mirror surface
US20080304136A1 (en) Optical parametric oscillator
JP2009218232A (en) Laser light source equipment and image generating device using the same
JP2006310743A (en) Laser oscillation device
JP2010093211A (en) Wavelength conversion laser device
US20080020083A1 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
KR100458677B1 (en) Apparatus and method for Raman laser using simulated Brilllouin scattering and intra-cavity second harmonic generation
JP2008046246A (en) Light generating apparatus and terahertz light generating apparatus equipped with the apparatus
JP6842725B2 (en) Laser device and laser oscillation method
JP4713281B2 (en) Infrared generator for cholesterol removal
JP2015510273A (en) Laser architecture
WO2018108251A1 (en) Laser
JP5232884B2 (en) UV laser equipment
US20150236468A1 (en) Method for generating or amplifying several wavelengths of laser radiation in a single optical cavity
JP2006292942A (en) Second higher harmonic generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250