JP2011195844A - Method for manufacturing shaft for turbine rotor - Google Patents

Method for manufacturing shaft for turbine rotor Download PDF

Info

Publication number
JP2011195844A
JP2011195844A JP2008299191A JP2008299191A JP2011195844A JP 2011195844 A JP2011195844 A JP 2011195844A JP 2008299191 A JP2008299191 A JP 2008299191A JP 2008299191 A JP2008299191 A JP 2008299191A JP 2011195844 A JP2011195844 A JP 2011195844A
Authority
JP
Japan
Prior art keywords
shaft
flange
product
tolerance
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008299191A
Other languages
Japanese (ja)
Other versions
JP4269091B1 (en
Inventor
Yoshimitsu Sagawa
喜光 寒川
Katsunori Nakagawa
勝則 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNES CO Ltd
Original Assignee
TECHNES CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNES CO Ltd filed Critical TECHNES CO Ltd
Priority to JP2008299191A priority Critical patent/JP4269091B1/en
Application granted granted Critical
Publication of JP4269091B1 publication Critical patent/JP4269091B1/en
Priority to PCT/JP2009/069788 priority patent/WO2010061812A1/en
Publication of JP2011195844A publication Critical patent/JP2011195844A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • B22F2003/033Press-moulding apparatus therefor with multiple punches working in the same direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Supercharger (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a shaft for a turbine rotor, which makes it possible to ensure that the dimensions of a flange, the dimensions of a shaft part, the squareness of the flange with respect to the shaft part, circular runout, and circularity are within a desired accuracy, without the need for a cutting operation.SOLUTION: With respect to target values of a final product, flanges (3a, 3b) have an outer diameter tolerance ranging from +0.0% to +0.6%, and a thickness tolerance ranging from -8% to -0.0%, a shaft part (2) has a diameter tolerance ranging from +0.0% to +0.6%, the circular runout tolerance is 0.5 mm or less, and the squareness tolerance of the flanges with respect to the shaft part is 0.5 mm or less. The method includes a step of pressing a sintered compact having sintered density that is equal to or greater than a relative density of 95%. In the pressing step, the sintered compact is pressed using an upper mold and lower mold having the shape of the shaft for the turbine rotor which has been split into two equal parts along the surface including the axis of rotation. In this case, after a first pressing operation is performed, the phase is shifted through no more than 120° to perform a second pressing operation, after which subsequent pressing operations are performed with the phases being sequentially shifted through no more than 120° till it is rotated by ≥360°.

Description

本発明は、自動車エンジン等に用いられるターボチャージャに組み込まれるタービンローター用シャフトを製造する方法に関する。より詳しくは、金属粉末射出成形(MIM法)により得られた焼結品を、シャフトの直径、フランジの厚みと外径を修正する金型によりプレスし、切削加工無しでシャフトの直径、フランジの厚みと外径、真円度、円周振れ公差等を所定の範囲内に納めることができるタービンローター用シャフトの製造方法に関する。   The present invention relates to a method for manufacturing a shaft for a turbine rotor incorporated in a turbocharger used in an automobile engine or the like. More specifically, a sintered product obtained by metal powder injection molding (MIM method) is pressed with a mold that corrects the shaft diameter and flange thickness and outer diameter, and the shaft diameter and flange diameter are reduced without cutting. The present invention relates to a method for manufacturing a turbine rotor shaft capable of keeping thickness, outer diameter, roundness, circumferential runout tolerance, and the like within a predetermined range.

自動車エンジン等に用いられるターボチャージャは、低速回転時においてもエンジンが効率よく出力を得ることが出来るように排気ガスの流速を増幅させ、この排気エネルギーを利用して排気側のタービンが回転することで、排気側タービンに直結された吸気側のタービンを回転させ、強制的に空気をエンジン内に取り込むように設計されている。   Turbochargers used in automobile engines, etc., amplify the exhaust gas flow rate so that the engine can efficiently obtain output even at low speed rotation, and the exhaust side turbine rotates using this exhaust energy. Therefore, the intake side turbine directly connected to the exhaust side turbine is rotated to forcibly take air into the engine.

従来からこのタービンローター用シャフトに関しては切削加工から製造される方法が採られてきたが、加工時間が非常にかかり、加工機1台あたり日産100〜500個程度と非常に効率の悪いものであり、切削工によって多くの材料をロスするため、製品にかかる材料費の割合が多くなっている。   Conventionally, the turbine rotor shaft has been manufactured by cutting. However, the processing time is very long, and it is very inefficient with about 100 to 500 units per day. Since a lot of material is lost by the cutting work, the ratio of the material cost for the product is increased.

タービンローター用シャフトの材質としてはニッケル・クロム・モリブデン鋼(SNCM)や耐熱鋼(SUH)が用いられる.
いずれの材料も熱処理を行うことで、硬度、靱性をあげる。特に耐熱鋼は700℃以上での耐酸化性に優れている。
The material of the turbine rotor shaft is nickel, chromium, molybdenum steel (SNCM) or heat resistant steel (SUH).
Any material can be heat-treated to increase its hardness and toughness. In particular, heat-resistant steel is excellent in oxidation resistance at 700 ° C. or higher.

鋳造法で製造されたタービンホイールはタービンローター用シャフトを取り付けた後に回転バランスを維持する必要があり、シャフトを取り付けたタービンホイールを高速で回転させて、シャフトの軸のふれを計測し、切削することで回転時のふれを抑える必要があり、特許文献1では軸芯の振れ計測を測定する方法が記載されている。また、タービンホイールにシャフトを精度良くロウ付けする方法が特許文献2,3,4に記載されている。
上記の通りタービンローターの芯ぶれを抑えるために切削を行ってバランスを取っているが、全数このバランスの確認と切削が必要であり、自動化が困難であるため生産数量を拡大することが困難であることと、タービンホイールとシャフトの取り付けの際の軸芯のふれをいかに抑えるかが歩留まり向上のために大きな課題となっている。
Turbine wheels manufactured by casting must maintain a rotational balance after the turbine rotor shaft is attached. The turbine wheel attached with the shaft is rotated at high speed to measure the shaft runout and cut. Therefore, it is necessary to suppress the shake at the time of rotation, and Patent Document 1 describes a method for measuring the shake measurement of the shaft core. Further, Patent Documents 2, 3, and 4 describe methods for brazing a shaft to a turbine wheel with high accuracy.
As described above, cutting is performed to balance the turbine rotor and balance is achieved. However, it is difficult to expand the production quantity because all of these balances need to be checked and cut, and automation is difficult. In order to improve the yield, there is a problem of how to suppress the shake of the shaft core when attaching the turbine wheel and the shaft.

現在のターボチャージャの多くは、高速回転するシャフトを支えるために、オイルを介した軸受け構造となっており、シャフト部には軸受け構造を設けるためのフランジが必要である。軸受けを設けることにより、シャフトの軸受け部分の摩耗を防いでいる。そのため、軸部の寸法精度は±数ミクロンと非常に精度が高く、機械加工による製造が必須である。   Many of the current turbochargers have a bearing structure through oil in order to support a shaft that rotates at high speed, and a flange for providing the bearing structure is required on the shaft portion. By providing the bearing, wear of the bearing portion of the shaft is prevented. Therefore, the dimensional accuracy of the shaft is as high as ± several microns, and manufacturing by machining is essential.

タービンホイールとシャフトとの接合にはレーザーによる溶接か、ロウ付けにより行われているが、接合後のタービンローターの円周振れの精度を上げるためには接合面の形状、面粗度、ホイール並びにシャフトの円周振れが重要な要素となる。特にタービンローター用シャフトにおいては接合の際の円周振れを小さくするための工夫を行う必要がある。
特開2003−302304号公報 特開2005−60829号公報 特開平10−118764号公報 特開2002−235547号公報
The turbine wheel and shaft are joined by laser welding or brazing. To improve the accuracy of the turbine rotor's circumferential runout after joining, the shape of the joint surface, surface roughness, wheel, The shaft runout is an important factor. In particular, in a turbine rotor shaft, it is necessary to devise to reduce the circumferential runout during joining.
JP 2003-302304 A JP 2005-60829 A JP-A-10-118764 JP 2002-235547 A

したがって本発明は、前記問題を解決するため、切削加工を行わず、プレス加工法のみによって、寸法精度の高いタービンローター用シャフトを製造することができる方法を提供することを課題とする。   Therefore, in order to solve the above problem, an object of the present invention is to provide a method capable of manufacturing a turbine rotor shaft with high dimensional accuracy only by a pressing method without performing a cutting process.

本発明者は、上記課題を解決するために鋭意検討した結果、最終製品と近似した形状を有する焼結品であって、所望する最終製品と一定の関係を有する焼結品を準備し、回転軸を含む面にて最終製品を二等分した形状を有する上型と下型により、焼結品を回転させて複数回プレスする事により、切削加工なしで所望の寸法精度のタービンローター用シャフトを製造することに成功し、前記課題を解決した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor prepared a sintered product having a shape approximate to that of the final product, having a certain relationship with the desired final product, and rotated. Turbine rotor shaft with desired dimensional accuracy without cutting by rotating the sintered product multiple times with the upper die and lower die that have the shape that bisects the final product on the surface including the shaft Succeeded in manufacturing the above-mentioned problems.

すなわち本発明は、
円柱状の軸部とフランジを有するタービンローター用シャフトを製造する方法であって、
所望する最終製品と近似した形状を有する焼結品を同一の金型で複数回プレスする工程を含むこと、
前記焼結品はフランジと軸部の一体形成品であって、最終製品の目標値に対して、フランジの外径が+0.0%〜+0.6%、フランジの厚みが−0.8%〜−0.0%、軸部の直径が+0.0%〜+0.6%、円周振れ公差が0.5mm以内、軸部に対するフランジの直角度公差が0.5mm以内にあり、且つ焼結密度が相対密度95%以上であること、
前記金型は、最終製品を軸方向に平行に2等分した形状の型を有する上型と下型からなること、
前記プレス工程は、前記焼結品を前記金型でプレスした後、当該焼結体を120°以内の角度で回転させて次のプレスを行うことを繰り返すことにより、当該焼結体が360°以上回転するまでプレスを行うものであることを特徴とする。
That is, the present invention
A method of manufacturing a shaft for a turbine rotor having a cylindrical shaft portion and a flange,
Including a step of pressing a sintered product having a shape close to a desired final product with the same mold a plurality of times,
The sintered product is an integrally formed product of a flange and a shaft. The outer diameter of the flange is + 0.0% to + 0.6% and the thickness of the flange is -0.8% with respect to the target value of the final product. ~ -0.0%, shaft diameter is + 0.0% to + 0.6%, circumferential runout tolerance is within 0.5mm, squareness tolerance of flange to shaft is within 0.5mm, and firing The consolidation density is 95% or higher relative density,
The mold is composed of an upper mold and a lower mold having a mold having a shape obtained by dividing the final product into two equal parts in parallel to the axial direction;
In the pressing step, after the sintered product is pressed by the mold, the sintered body is rotated 360 ° by repeating the next press by rotating the sintered body at an angle of 120 ° or less. The press is performed until it rotates as described above.

プレス加工を行うに際し、プレスされる焼結品として、所望する最終製品の寸法に対してフランジの外径、フランジの厚さ、軸部の直径、円周振れ公差、軸部に対するフランジの直角度公差が上記範囲内にある焼結品を用いて、最終製品を軸方向に平行に2等分した形状の型を有する上型と下型によってプレスすることにより、フランジの外径が圧縮されるため、フランジの厚さが金型形状に倣い、所望するフランジの外径、フランジの厚み、フランジ間隔が達成できる。また、同時に、軸部全体の外径をプレスすることで、円周振れ、直角度、真円度が調整される。
さらに焼結品をプレスした後、120°以内で位相を変えて次のプレスを行い、以後、120°以内で位相を変えて合計360度以上回転させてプレスを行うことにより、シャフト全体の真円度、円周振れを所望する寸法精度に納めることができる。
また、相対密度95%以上の焼結品を用いることにより、プレス後の寸法精度を所望する寸法精度に納めることができ、且つ、高温使用に耐える機械的強度を有するタービンローター用シャフトを製造することができる。
When performing the pressing process, the sintered product to be pressed is the flange outer diameter, flange thickness, shaft diameter, circumferential runout tolerance, and perpendicularity of the flange with respect to the shaft portion, with respect to the desired final product dimensions. The outer diameter of the flange is compressed by pressing the final product with a die having a shape that is divided into two equal parts in parallel to the axial direction using a sintered product having a tolerance within the above range. Therefore, the flange thickness follows the mold shape, and the desired flange outer diameter, flange thickness, and flange spacing can be achieved. At the same time, the circumferential runout, squareness, and roundness are adjusted by pressing the outer diameter of the entire shaft portion.
Further, after pressing the sintered product, the phase is changed within 120 ° and the next press is performed. Thereafter, the phase is changed within 120 ° and the total rotation is rotated 360 degrees or more to perform the press. Circularity and circumferential runout can be set to desired dimensional accuracy.
In addition, by using a sintered product having a relative density of 95% or more, a shaft for turbine rotor that can fit the dimensional accuracy after pressing into the desired dimensional accuracy and has mechanical strength that can withstand high-temperature use is manufactured. be able to.

前記プレスは、回転角度120°で3回、あるいは回転角度90°で4回行うことが好ましい。   The pressing is preferably performed three times at a rotation angle of 120 ° or four times at a rotation angle of 90 °.

前記焼結品は、相対密度98%以上の焼結品であることがより好ましい。   The sintered product is more preferably a sintered product having a relative density of 98% or more.

さらに、前記焼結品の製造工程において、相対密度94%以上の第一次焼結品を作製した後、熱間等方圧加圧法により相対密度を98%以上とすることが好ましい。   Furthermore, in the manufacturing process of the sintered product, after producing a primary sintered product having a relative density of 94% or more, the relative density is preferably made 98% or more by a hot isostatic pressing method.

本発明によれば、機械加工を行なわず、焼結品をプレス加工することのみにより、寸法精度の高いタービンローター用シャフトを製造することが出来る。   According to the present invention, a turbine rotor shaft with high dimensional accuracy can be manufactured by only pressing a sintered product without performing machining.

ターボチャージャに使用されるタービンローター用シャフト1は図1に示すとおり、タービンホイール5と接合させるための接合部4を有し、軸受け部を設けるためのフランジ部を有する。また、高温タービンホイールの反対部に低温タービンホイールを接合するための形状を有する。フランジ部、軸部2を含めたシャフトの断面(回転軸方向と直交する面)は円形である。図1に示すように、シャフトの頂部に、高温タービンホイールと接合するための接合部4が設けられ、フランジ(3a,3b)は通常、接合部4のすぐ下方に複数個(通常2〜3個)設けられる。   As shown in FIG. 1, a turbine rotor shaft 1 used in a turbocharger has a joint 4 for joining with a turbine wheel 5 and a flange for providing a bearing. Moreover, it has a shape for joining a low temperature turbine wheel to the opposite part of a high temperature turbine wheel. The cross section of the shaft including the flange portion and the shaft portion 2 (surface orthogonal to the rotation axis direction) is circular. As shown in FIG. 1, a joint 4 for joining to a high-temperature turbine wheel is provided at the top of the shaft, and a plurality of flanges (3a, 3b) are usually located just below the joint 4 (usually 2-3). Provided).

タービンローター用シャフトの製造においては、所望の最終製品と近似した形状を有する焼結品をまず製造する必要があり、これは、原料となる金属を粉体としたものを使用し、これに必要量の有機バインダを添加して得られる成形材料を用いて、あらかじめ製品の焼結後の収縮率を考慮した金型で成型し成形体を作成する。   In the manufacture of a shaft for a turbine rotor, it is necessary to first manufacture a sintered product having a shape close to that of a desired final product. This is necessary for the use of powdered metal as a raw material. Using a molding material obtained by adding an amount of an organic binder, a molded body is prepared by molding in advance with a mold in consideration of the shrinkage rate after sintering of the product.

前記プレス工程に使用する焼結品を製造するためには、
金属粉末に有機バインダを添加し加熱混合した後、粉砕若しくはペレット化して射出成形材料を得、当該成形材料を射出成形して成形体を作製し、得られた成形体を加熱脱脂する方法において、
金属材料として、耐熱性に優れるSUH、SNCMからなる金属材料を用いることが望ましく、平均粒径1〜20μm、タップ密度が3.5g/m以上の金属粉末を用いることが望ましい。
前記有機バインダとして熱可塑性樹脂、パラフィンワックス、脂肪酸系滑剤、フタル酸径可塑剤を製品となる形状にあわせて適宜添加割合を変更し、上記金属粉末と加熱混合することにより、成形材料をえて、これを射出成形、脱脂、焼結することにより、上記タービンローター用シャフトの製造に適した焼結品を得ることができる。
In order to produce a sintered product used in the pressing process,
In the method of adding an organic binder to the metal powder and heating and mixing, then pulverizing or pelletizing to obtain an injection molding material, producing a molded body by injection molding the molding material, and heating and degreasing the obtained molded body,
As the metal material, it is desirable to use a metal material composed of SUH and SNCM having excellent heat resistance, and it is desirable to use a metal powder having an average particle diameter of 1 to 20 μm and a tap density of 3.5 g / m 3 or more.
As the organic binder, thermoplastic resin, paraffin wax, fatty acid-based lubricant, phthalic acid diameter plasticizer is appropriately added according to the shape of the product, the addition ratio is changed, and by heating and mixing with the metal powder, a molding material is obtained, By subjecting this to injection molding, degreasing, and sintering, a sintered product suitable for manufacturing the turbine rotor shaft can be obtained.

タービンローター用シャフトで用いられる金属は耐食性があり耐熱鋼の金属材料からなる。焼結品を製造するための好ましい金属材料としてSNCM,SUHがあげられる。特にSNCMではCr:0.6〜1.0,Ni:1.6〜2.0,Mo:0.15〜0.3,Mn:0.6〜0.9,C:0.36〜0.43、SUHではCr:7.50〜9.50,Si:1.0〜2.0,C:0.45〜0.55からなるSNCM439,SUH11が主に用いられる。
このような金属材料からなる金属粉末として、通常水アトマイズ若しくはガスアトマイズ法より製造された合金粉末を用いるが、これらアトマイズ法により作られた粉末の合金粉末以外に、焼結時に合金成分となるように調整し元素粉末を組成にあわせて添加して用いても良い。一般的には水アトマイズ粉末の方がガスアトマイズ粉末よりも大量に生産できるため、製造コストも安価になるが、粉末形状が異形状になりやすいために、タップ密度が低くなりやすく、また粉末中の酸素量も高くなる。これに対してガスアトマイズ粉末の製造コストは高くなるものの、球形の粉末を得ることが容易でタップ密度が高くなる特徴がある。このため、コストとタップ密度を勘案して、水アトマイズ粉末とガスアトマイズ粉末を混合して用いても良い。
The metal used in the turbine rotor shaft has corrosion resistance and is made of a heat-resistant steel metal material. SNCM and SUH are preferable metal materials for producing a sintered product. Especially in SNCM, Cr: 0.6-1.0, Ni: 1.6-2.0, Mo: 0.15-0.3, Mn: 0.6-0.9, C: 0.36-0.43, SUH: Cr: 7.50-9.50, Si: 1.0-2.0, C: 0.45 SNCM439 and SUH11 consisting of ~ 0.55 are mainly used.
As a metal powder made of such a metal material, an alloy powder manufactured by a water atomizing method or a gas atomizing method is usually used. In addition to a powder alloy powder produced by the atomizing method, an alloy component is used during sintering. The element powder may be adjusted and added according to the composition. In general, water atomized powder can be produced in a larger amount than gas atomized powder, so the manufacturing cost is also low, but because the powder shape tends to be irregular, the tap density tends to be low, and The amount of oxygen also increases. On the other hand, although the manufacturing cost of the gas atomized powder is increased, it is easy to obtain a spherical powder and the tap density is increased. For this reason, the water atomized powder and the gas atomized powder may be mixed and used in consideration of the cost and the tap density.

金属粉末の平均粒径は1〜20μmが好ましい。平均粒径が1μmを下回る場合には、粉末の表面積が増えることでバインダ添加量が増加し、脱脂時の変形が大きくなる。また、バインダ量が多くなると、焼結時の収縮率も大きくなり、焼結後の寸法ばらつきも大きくなり、後工程のプレス工程で寸法精度の高い焼結品を得ることは困難である。粉末粒径が20μmを越える場合には、焼結密度(相対密度)95%以上を安定して得ることが困難になり、強度が著しく低下し、製品として使用することができない。より好ましい平均粒径は、5〜12μmであり、さらに望ましくは8〜10μmである。本発明において、平均粒径とは、レーザー回折・散乱法を使用した粒度分布測定装置を用いて、測定した重量累積50%の平均径を意味する。粒度分布測定装置としては、島津製作所製 SALD−2000型を用いることができる。   The average particle size of the metal powder is preferably 1 to 20 μm. When the average particle size is less than 1 μm, the amount of binder added increases as the surface area of the powder increases, and deformation during degreasing increases. In addition, when the amount of the binder is increased, the shrinkage rate at the time of sintering is increased, the dimensional variation after sintering is increased, and it is difficult to obtain a sintered product with high dimensional accuracy in a subsequent pressing step. When the powder particle diameter exceeds 20 μm, it becomes difficult to stably obtain a sintered density (relative density) of 95% or more, the strength is remarkably lowered, and it cannot be used as a product. A more preferable average particle diameter is 5 to 12 μm, and more desirably 8 to 10 μm. In the present invention, the average particle diameter means an average diameter of 50% cumulative weight measured using a particle size distribution measuring apparatus using a laser diffraction / scattering method. As a particle size distribution measuring apparatus, SALD-2000 type manufactured by Shimadzu Corporation can be used.

また、有機バインダとして、熱可塑性樹脂であるポリエチレン、ポリプロピレン、ポリアセタール、ポリスチレン、アモルファスポリオレフィン、エチレン酢酸ビニル共重合体、アクリル樹脂、ポリビニルブチラール樹脂、グリシジルメタクリレート樹脂等が用いられる。流動性を付与し、脱脂性を向上するために脂肪酸エステル、脂肪酸アミド、フタル酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックス及びポリグリコール系化合物等が用いられる。特に好ましい材料としてパラフィンワックス、脂肪酸エステル、ポリプロピレンワックスが挙げられる。
上記割合とした有機バインダと金属粉末を160〜180℃程度で2時間程度加熱混練し、金属粉末を有機バインダと完全に分散混合させる。この後、取り出して押し出し機若しくは粉砕機で直径5mm程度のペレット状にしてこれを用いて成形材料にする。
Further, as the organic binder, thermoplastic resins such as polyethylene, polypropylene, polyacetal, polystyrene, amorphous polyolefin, ethylene vinyl acetate copolymer, acrylic resin, polyvinyl butyral resin, glycidyl methacrylate resin, and the like are used. Fatty acid ester, fatty acid amide, phthalic acid ester, paraffin wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride to provide fluidity and improve degreasing Modified waxes and polyglycol compounds are used. Particularly preferred materials include paraffin wax, fatty acid ester, and polypropylene wax.
The organic binder and metal powder having the above ratio are heated and kneaded at about 160 to 180 ° C. for about 2 hours to completely disperse and mix the metal powder with the organic binder. Then, it is taken out and formed into a pellet having a diameter of about 5 mm by an extruder or a pulverizer, and used as a molding material.

焼結品は、プレスによる寸法変化を考慮して、フランジの外径が+0.0%〜+0.6%、フランジの厚みが−0.8%〜−0.0%、軸部の直径が+0.0%〜+0.6%、円周振れ公差(シャフト全体の円周振れ公差):0.5mm以内、軸部に対するフランジの直角度公差:0.5mm以内となるように作成される必要がある。フランジが複数ある場合、各フランジの外径・直径が上記範囲にある必要がある。
そして、成形においては、焼結後の寸法を考慮して金型形状を決定する必要がある。これらの寸法は焼結後若しくは熱間等方圧加圧法に得られる寸法であって、焼結密度により寸法が異なるため、金型設計は以後の寸法変化を十分に考慮する必要がある。このため金型の寸法は上記寸法精度を考慮して設計する必要があり、さらに、成形から焼結への収縮率をあらかじめ計算しておく必要がある。
In the sintered product, the outer diameter of the flange is + 0.0% to + 0.6%, the flange thickness is -0.8% to -0.0%, and the shaft diameter is + 0.0% to + 0.6%, circumferential runout tolerance (circular runout tolerance of the whole shaft): within 0.5mm, perpendicularity tolerance of flange to shaft part: within 0.5mm There is. When there are a plurality of flanges, the outer diameter and diameter of each flange must be in the above range.
And in shaping | molding, it is necessary to determine a metal mold | die shape in consideration of the dimension after sintering. These dimensions are dimensions obtained after sintering or by the hot isostatic pressing method, and the dimensions differ depending on the sintering density. Therefore, it is necessary to sufficiently consider the subsequent dimensional changes in the mold design. For this reason, it is necessary to design the dimensions of the mold in consideration of the above dimensional accuracy, and it is necessary to calculate the shrinkage ratio from molding to sintering in advance.

本発明において、最終製品の目標値に対してフランジ部のフランジの外径が+0.0%〜+0.6%、フランジの厚みが−0.8%〜−0.0%、軸部の直径が+0.0%〜+0.6%の範囲にあるとは、最終製品と焼結品(最終製品と近似した形状を有する)とを対応する箇所で測定した場合に、その差が上記範囲にあることを意味する。フランジの外径、厚み、軸部の直径は、三次元測定装置及び投影機により測定することができる。
円周振れ、軸部に対するフランジの直角度についても、それらが測定箇所によって変化する場合は、上記同様、最終製品と焼結品とをそれぞれ対応する箇所で測定した場合に、その差が上記範囲内にあることを意味する。通常円周振れは、軸の両端を基準として測定する。なお、本発明において、円周振れとは、焼結品あるいは最終製品における、シャフト全体の円周振れを意味する。
円周振れは、真円度・円筒形状測定機により、軸部に対するフランジの直角度は測定顕微鏡により測定することができる。
In the present invention, the flange outer diameter is + 0.0% to + 0.6% relative to the target value of the final product, the flange thickness is -0.8% to -0.0%, and the shaft diameter is Is in the range of + 0.0% to + 0.6% when the final product and the sintered product (having a shape similar to the final product) are measured at corresponding locations, the difference is within the above range. It means that there is. The outer diameter, thickness, and shaft diameter of the flange can be measured by a three-dimensional measuring device and a projector.
Regarding the circumferential runout and the perpendicularity of the flange with respect to the shaft part, if they vary depending on the measurement location, the difference between the final product and the sintered product when measured at the corresponding locations is the same as above. Means that it is within. Usually, the circumferential runout is measured with reference to both ends of the shaft. In the present invention, the circumferential runout means the runout of the entire shaft in the sintered product or the final product.
Circumferential run-out can be measured with a roundness / cylindrical measuring machine, and the perpendicularity of the flange with respect to the shaft can be measured with a measuring microscope.

金型は、射出成形機に取り付けて成形を行うが、得られる成形体の取り数は製品の大きさ、量産数量を勘案して、一つの金型で1個取りから8個取りまで行うことができる。金型の取り数、製品の大きさに合わせて、射出成形機の容量を適宜調節する。一般的には型締め力50トン〜100トン程度の成形機を用いて成形を行う。成形体に気泡、クラック等の不良が発生しないように射出速度、圧力を調整するとともに、金型には金型内の空気並びに成形材料から発生するガスを効果的に逃がすためのガス逃げを設ける必要がある。これら有効なガス逃げが無い場合には、成形体中に空気若しくは成形材料から発生するガスが取り込まれて、成形体に気泡が生じる。   Molds are mounted on an injection molding machine and molded, but the number of molded products obtained should be from 1 to 8 with a single mold, taking into account the size and mass production quantity of the product. Can do. The capacity of the injection molding machine is appropriately adjusted according to the number of molds to be taken and the size of the product. In general, molding is performed using a molding machine having a clamping force of about 50 to 100 tons. The injection speed and pressure are adjusted so that defects such as bubbles and cracks do not occur in the molded body, and the mold is provided with a gas escape to effectively release the air in the mold and the gas generated from the molding material. There is a need. If there is no effective gas escape, air or gas generated from the molding material is taken into the molded body, and bubbles are generated in the molded body.

得られた成形体を脱脂炉に入れ、添加した有機バインダを除去する。有機バインダを除去する脱脂炉は減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素ガス雰囲気のいずれかを用いて行うが、脱脂機能を具備した焼結装置の場合には脱脂焼結を一貫して行うことができる。また、脱脂炉にはバッチ式の脱脂炉若しくは連続式(ベルト式、プッシャー式、ウォーキングビーム式)脱脂炉を用いることができる。特に脱脂の際には変形量が大きくなることを勘案して、変形を最小限に食い止めるように成形体の形状に沿った形状の治具を用いて脱脂を行うことが効果的である。   The obtained molded body is put into a degreasing furnace, and the added organic binder is removed. The degreasing furnace for removing the organic binder is performed using any one of a reduced pressure inert gas atmosphere, an atmospheric pressure inert gas atmosphere, and an atmospheric pressure hydrogen gas atmosphere. In the case of a sintering apparatus having a degreasing function, the degreasing sintering is performed. Can be done consistently. As the degreasing furnace, a batch type degreasing furnace or a continuous (belt type, pusher type, walking beam type) degreasing furnace can be used. In particular, it is effective to perform degreasing using a jig having a shape along the shape of the molded body so as to prevent deformation to a minimum in view of the fact that the amount of deformation increases during degreasing.

脱脂雰囲気は減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素雰囲気のいずれかで最高温度800℃以下で行われる。
脱脂雰囲気が空気中の場合には300℃以上で粉末が酸化し、焼結後の酸素量が高くなることで、焼結品強度に大きな影響を及ぼす。このことから、脱脂雰囲気は減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素雰囲気が用いられる。不活性ガスには窒素若しくはアルゴンが使用されるが、コストを考慮して窒素ガスの使用が望ましい。また、脱脂時の昇温速度は脱脂時の変形を考慮して室温から400℃以下においては50℃/hrが望ましい。また、脱脂時には成形体の変形を考慮した治具を用いることで、成形体の脱脂時の変形を抑える事ができる。
脱脂の温度は800℃以下であるが、300℃程度では有機バインダが30%程度残留しやすく、600℃以上では有機バインダが完全に除去されやすいため、焼結工程に移動させる際に成形体が崩れる恐れがあり、より好ましい脱脂温度は最高400℃〜500℃である。また、これらの成形体の崩れを防止する方法として、脱脂機能を具備した焼結炉を用いると効果的であり、脱脂終了後も温度を下げることなく焼結に移行することができる。また、連続式(ベルト式、プッシャー式、ウォーキングビーム式)脱脂炉と同じく連続式(ベルト式、プッシャー式、ウォーキングビーム式)焼結炉を連結させることで、脱脂から焼結を中断させることなく連続で処理を行うことができる。
The degreasing atmosphere is performed at any one of a reduced pressure inert gas atmosphere, an atmospheric pressure inert gas atmosphere, and an atmospheric pressure hydrogen atmosphere at a maximum temperature of 800 ° C. or less.
When the degreasing atmosphere is in the air, the powder is oxidized at 300 ° C. or higher, and the amount of oxygen after sintering increases, which greatly affects the strength of the sintered product. Therefore, a depressurized inert gas atmosphere, an atmospheric pressure inert gas atmosphere, and an atmospheric pressure hydrogen atmosphere are used as the degreasing atmosphere. Nitrogen or argon is used as the inert gas, but it is desirable to use nitrogen gas in consideration of cost. In addition, the temperature rising rate during degreasing is preferably 50 ° C./hr from room temperature to 400 ° C. in consideration of deformation during degreasing. Moreover, the deformation | transformation at the time of degreasing of a molded object can be suppressed by using the jig | tool which considered the deformation | transformation of a molded object at the time of degreasing.
The degreasing temperature is 800 ° C. or lower. However, when the temperature is about 300 ° C., the organic binder tends to remain about 30%, and when the temperature is 600 ° C. or higher, the organic binder is easily removed completely. There exists a possibility that it may collapse | crumble, and a more preferable degreasing temperature is 400 to 500 degreeC at maximum. Moreover, it is effective to use a sintering furnace having a degreasing function as a method for preventing the collapse of these molded products, and it is possible to shift to sintering without lowering the temperature even after the degreasing. In addition, by connecting a continuous (belt, pusher, walking beam) sintering furnace as well as a continuous (belt, pusher, walking beam) degreasing furnace, sintering is not interrupted by degreasing. Processing can be performed continuously.

焼結工程では焼結雰囲気に減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び加圧不活性ガス雰囲気のいずれかが用いられる。不活性ガスには焼結時の材料にステンレス材料が多く用いられることから、材料の窒化を考慮してアルゴンガスを用いることが好ましい。
また焼結温度は1000℃以上1500℃以下で行われるが1000℃未満では焼結が不十分であり、1500℃を超えると焼結時に溶融する。焼結密度が95%以上になるためには1200〜1400℃が望ましく、さらには1250℃〜1380℃が望ましい。
また、焼結時の焼結密度の向上と焼結時の寸法ばらつきを考慮して最高温度で2〜4時間程度保持する事が望ましい。脱脂工程と同じく、焼結工程においても高温時に変形を生じるため、焼結品の変形を防止するための治具を用いると効果的である。
In the sintering process, any one of a reduced pressure inert gas atmosphere, an atmospheric pressure inert gas atmosphere, and a pressurized inert gas atmosphere is used as the sintering atmosphere. As the inert gas, a stainless material is often used as a material during sintering. Therefore, it is preferable to use argon gas in consideration of nitriding of the material.
The sintering temperature is 1000 ° C. or higher and 1500 ° C. or lower. However, if the sintering temperature is lower than 1000 ° C., the sintering is insufficient. In order for the sintered density to be 95% or more, 1200 to 1400 ° C is desirable, and further 1250 to 1380 ° C is desirable.
In addition, it is desirable to maintain the maximum temperature for about 2 to 4 hours in consideration of improvement of the sintering density during sintering and dimensional variation during sintering. As in the degreasing process, deformation occurs at high temperatures in the sintering process, so it is effective to use a jig for preventing deformation of the sintered product.

脱脂、焼結においては生産量を考慮して、多品種少量の場合にはバッチ式の脱脂炉、焼結炉を用い、数量が増加した場合には脱脂、焼結をプッシャー式連続炉、ウォーキングビーム式連続炉、ベルト式連続炉を用いて連続で処理する工程を用いる事で生産量を飛躍的に向上することができる。
また、適宜V字型のセッターを用いたり、製品をつるしたり、立てたりして脱脂、焼結を行うことで、脱脂時、焼結後の製品の変形を防ぐことができる。
In degreasing and sintering, considering the production volume, batch type degreasing furnaces and sintering furnaces are used for small quantities of various products, and degreasing and sintering are performed by pusher type continuous furnaces and walking when the number increases. By using a continuous process using a beam-type continuous furnace and a belt-type continuous furnace, production can be dramatically improved.
Further, by performing degreasing and sintering by using a V-shaped setter as appropriate, hanging or standing the product, deformation of the product after sintering can be prevented during degreasing.

焼結品の密度を相対密度で95%以上にすることで、高温時での機械的強度、並びに硬度を保持することができる。相対密度が95%に満たない場合には高温時での機械的強度特に伸び及び硬度が低下し、高温時の連続使用が困難である。
焼結品の相対密度は、アルキメデス法によって測定することができる。
By setting the density of the sintered product to 95% or more in terms of relative density, the mechanical strength and hardness at high temperatures can be maintained. If the relative density is less than 95%, the mechanical strength at high temperatures, particularly the elongation and hardness, are lowered, and continuous use at high temperatures is difficult.
The relative density of the sintered product can be measured by the Archimedes method.

得られた焼結品は、さらに焼結密度を高めて機械的強度を向上させ、高温域での機械的強度の信頼性を向上させるために、さらに熱間等方圧加圧法(HIP法)で処理されることが効果的であり、焼結温度よりも10℃〜100℃程度低温で10MPa〜180MPa程度の高圧で処理を行うことで、内部にピンホールの無い、相対密度98%以上の焼結品を安定して得ることができる。また、焼結工程時に最高6MPa程度の加圧処理を行える焼結HIP装置を用いることで、後工程にHIP法を用いずに相対密度98%以上の焼結品を得ることが可能である。   The obtained sintered product is further subjected to a hot isostatic pressing method (HIP method) in order to further increase the sintered density to improve the mechanical strength and to improve the reliability of the mechanical strength in a high temperature range. It is effective to be treated at a low temperature of about 10 ° C. to 100 ° C. lower than the sintering temperature and at a high pressure of about 10 MPa to 180 MPa, so that there is no pinhole inside and a relative density of 98% or more. A sintered product can be obtained stably. In addition, by using a sintered HIP apparatus that can perform a pressure treatment of up to about 6 MPa during the sintering process, a sintered product having a relative density of 98% or more can be obtained without using the HIP method in the subsequent process.

焼結後若しくはHIP工程後の焼結品の硬度が高い場合には適宜焼鈍を行う。その後、図2に示すように、プレス工程毎にシャフトを120度以下(好ましくは90度または120度)回転してプレスする事により、所望する形状に加工することができる。
プレス後の製品は材質にあわせて適宜熱処理を行い、必要とする硬さ、強度を得る。
以下、プレス工程をより詳細に説明する。
When the hardness of the sintered product after sintering or after the HIP process is high, annealing is appropriately performed. Then, as shown in FIG. 2, the shaft can be processed into a desired shape by rotating and pressing the shaft by 120 degrees or less (preferably 90 degrees or 120 degrees) for each pressing step.
The pressed product is appropriately heat-treated according to the material to obtain the required hardness and strength.
Hereinafter, the pressing process will be described in more detail.

プレス工程では、金型は、フランジの外径とフランジの肉厚並びに軸部の真円度、円周振れ、軸部に対するフランジの直角度を同時に規定するために、シャフトの回転軸を含む面にて最終製品を2等分した形状の型を有する上型及び下型からなり、上型を下型に向けてプレスすることにより、フランジ部は下側に圧縮されながら、フランジ外径が圧縮されてフランジの厚みが膨らんで変形するとともに、側面部が金型形状に倣い、併せて、軸部の外径が圧縮されて、直角度、円周振れ、真円度、及び軸部全体が金型形状に倣って修正される。
上下からのプレス一回のみでは所望する直角度、円周振れ、真円度を満たすことができないため、図2(B)または(C)に示すように次工程で第一回目のプレスから1/3以内(120°以内)で位相を変えて回転させたところをプレスする。この工程をたとえば120°であれば3回、90°であれば4回繰り返す事で、タービンローター用シャフト全体の寸法(フランジ外径、フランジ肉厚、フランジの軸部に対する直角度、円周振れ、真円度等)を所望する寸法精度とすることができる。コスト面等からは、120°×3回、90°×4回、72°×5回等、360度を3以上の整数で割った角度で回転させればよいが、100°×4回等、360度を超えて回転させてもよい。また、回転角度は各プレス間で同一である必要はなく、120度以内の角度で、回転角度の合計が360度以上となるようプレスを繰り返せばよい。各プレスにおけるプレス圧力・プレス時間は、製品の形状(軸部の外径、フランジ形状)によって適宜調整すればよいが、通常は、プレス圧力25トン〜100トンの範囲、プレス時間は1回のプレスにつき0.3秒〜3秒が適切である。
In the pressing process, the mold includes a surface that includes the shaft rotation axis in order to simultaneously define the outer diameter of the flange, the thickness of the flange, the roundness of the shaft, the circumferential runout, and the perpendicularity of the flange with respect to the shaft. It consists of an upper mold and a lower mold that have a shape that divides the final product into two equal parts. By pressing the upper mold toward the lower mold, the flange outer diameter is compressed while the flange portion is compressed downward. As the thickness of the flange swells and deforms, the side part follows the mold shape, and the outer diameter of the shaft part is compressed, and the squareness, circumferential runout, roundness, and the whole shaft part are It is corrected following the mold shape.
Since the desired squareness, circumferential runout, and roundness cannot be satisfied with only one press from above and below, as shown in FIG. Press the part rotated by changing the phase within / 3 (within 120 °). This process is repeated 3 times for 120 ° and 4 times for 90 °, for example, so that the overall dimensions of the turbine rotor shaft (flange outer diameter, flange thickness, perpendicularity to the flange shaft, circumferential runout) , Roundness, etc.) can be set to a desired dimensional accuracy. In terms of cost, 120 ° × 3 times, 90 ° × 4 times, 72 ° × 5 times, etc. 360 ° may be rotated by an angle divided by an integer of 3 or more, but 100 ° × 4 times, etc. You may rotate beyond 360 degree | times. Further, the rotation angle does not need to be the same between the presses, and the press may be repeated so that the rotation angle is within 360 degrees and the total rotation angle is 360 degrees or more. The press pressure and press time in each press may be appropriately adjusted according to the shape of the product (shaft outer diameter, flange shape). Usually, the press pressure ranges from 25 to 100 tons, and the press time is one time. 0.3 to 3 seconds per press is appropriate.

上述のように、120°以内で位相を変えて回転させてプレス加工することにより、切削加工を行わずに所望するタービンローター用シャフトを得ることができる。プレスに用いる金型材質は寿命を考慮してダイス鋼、ハイス鋼、超硬を用いる。プレス工程は省力化を図るためにパーツフィーダーと順送り装置を用いることで、時間当たりの処理能力を従来の機械加工と比較して大幅に向上させることができ、時間当たりの処理能力を500〜1000個程度まで高めることができる。   As described above, a desired turbine rotor shaft can be obtained without performing cutting by rotating and rotating the phase within 120 °. Die steel, high-speed steel, and cemented carbide are used as the die material used for the press in consideration of the life. The press process uses a parts feeder and a progressive feed device to save labor, so that the processing capacity per hour can be greatly improved compared to conventional machining, and the processing capacity per hour is 500-1000. It can be increased to about one.

プレス工程をさらに省力化させるために、プレス工程に360度方向からプレス曲げ加工ができるマルチフォーミング機を用いることにより、前記プレス工程を連続して行うことができ、工程の省力化が可能となり、切削加工では一台で時間当たり10〜50個程度の処理能力が、時間当たり1500〜3000個程度まで飛躍的に向上させることができる。   In order to further save labor in the pressing process, by using a multi-forming machine capable of press bending from the 360-degree direction in the pressing process, the pressing process can be continuously performed, and the labor saving of the process becomes possible. In the cutting process, the processing capacity of about 10 to 50 per hour can be dramatically improved to about 1500 to 3000 per hour.

さらに、必要に応じてプレス後の製品をバレル研磨、電解研磨により表面粗度を向上させるとともに、バリ除去を行うことができる。   Furthermore, the surface roughness of the product after pressing can be improved by barrel polishing and electrolytic polishing as needed, and burrs can be removed.

本発明によれば、寸法精度をあらかじめ制御した焼結品を素材に用いることにより、後加工では機械加工による切削工程、研磨工程を行わず、寸法精度に優れた所望する形状のタービンローター用シャフトを製造することが出来る。特に焼結品の製造にMIM法を採用することより、従来の切削加工と比較して、材料の製造ロスを5%以下に抑えることができるため、コストの削減効果が高く、プレスによる自動化処理により、製造効率は従来の機械加工による製法と比較して5〜10倍以上になる。また、MIM法を採用することにより、複雑形状のタービンローター用シャフトの量産が可能になる。   According to the present invention, by using a sintered product whose dimensional accuracy is controlled in advance as a raw material, the machining and cutting steps by machining are not performed in post-processing, and the shaft for a turbine rotor having a desired shape with excellent dimensional accuracy is obtained. Can be manufactured. In particular, by adopting the MIM method for the production of sintered products, the production loss of materials can be suppressed to 5% or less compared to conventional cutting, so the cost reduction effect is high and automation processing by press Therefore, the manufacturing efficiency is 5 to 10 times or more compared with the conventional machining method. Further, by adopting the MIM method, it becomes possible to mass-produce a turbine rotor shaft having a complicated shape.

本発明にかかる焼結品を製造した。成型材料および加熱混練条件、射出成形条件、脱脂条件、焼結条件等は下記の通りとした。成形体は100個成形し、脱脂、焼結を行い寸法ばらつきの測定を行った。
・金属粉末:SUH11 平均粒径9.2μm タップ密度4.2g/m3
・有機バインダ組成:ポリアセタール15Vol%、ポリプロピレン25Vol%、アモルファスポリオレフィン10Vol%、パラフィンワックス35Vol%、アクリル樹脂10Vol%、脂肪酸エステル5Vol%
・金属粉末:60Vol% 有機バインダ40Vol%
・加熱混練:180℃ 2時間
・射出成形条件:180℃ 金型温度40℃
・脱脂条件:最高温度500℃(窒素)2時間保持 合計時間24時間
・焼結条件:最高温度1350℃(アルゴン、減圧雰囲気)2時間保持
A sintered product according to the present invention was produced. The molding material, heat-kneading conditions, injection molding conditions, degreasing conditions, sintering conditions, etc. were as follows. 100 compacts were molded, degreased and sintered, and dimensional variations were measured.
・ Metal powder: SUH11 Average particle size 9.2μm Tap density 4.2g / m 3
・ Organic binder composition: Polyacetal 15Vol%, Polypropylene 25Vol%, Amorphous polyolefin 10Vol%, Paraffin wax 35Vol%, Acrylic resin 10Vol%, Fatty acid ester 5Vol%
・ Metal powder: 60Vol% Organic binder 40Vol%
・ Heat kneading: 180 ℃ for 2 hours ・ Injection molding conditions: 180 ℃ Mold temperature: 40 ℃
Degreasing conditions: Maximum temperature 500 ° C (nitrogen) held for 2 hours Total time 24 hours Sintering conditions: Maximum temperature 1350 ° C (argon, reduced pressure atmosphere) held for 2 hours

射出成形用の金型は1個取りとし、図3に示すタービンローター用シャフトの形状(全長92mm)とした。所望する最終製品の寸法は下記のとおりである。測定箇所を図3(B)に示した。Aは第一フランジ3aの外径、Bは第一フランジ3aの厚み、Cは第二フランジ3bの外径、Dは第二フランジ3bの厚み、Eは軸部の直径を示す。
所望する最終製品の寸法
A:14.50mm(目標値)±0.05mm(14.45mm〜14.55mm)
B:0.9mm(目標値)±0.05mm(0.85mm〜0.95mm)
C:14.50mm(目標値)±0.05mm(14.45mm〜14.55mm)
D:0.9mm(目標値)±0.05mm(0.85mm〜0.95mm)
E:7.5mm(目標値)±0.002mm(7.498mm〜7.502mm)
円周振れ公差:0.005mm以内,軸部に対するフランジの直角度公差:0.005mm以内 真円度公差:0.005mm以内
One mold for injection molding was taken, and the shape of the turbine rotor shaft (total length 92 mm) shown in FIG. 3 was used. The desired final product dimensions are as follows: The measurement location is shown in FIG. A is the outer diameter of the first flange 3a, B is the thickness of the first flange 3a, C is the outer diameter of the second flange 3b, D is the thickness of the second flange 3b, and E is the diameter of the shaft portion.
Desired final product dimension A: 14.50mm (target value) ± 0.05mm (14.45mm to 14.55mm)
B: 0.9mm (target value) ± 0.05mm (0.85mm to 0.95mm)
C: 14.50mm (target value) ± 0.05mm (14.45mm-14.55mm)
D: 0.9mm (target value) ± 0.05mm (0.85mm to 0.95mm)
E: 7.5mm (target value) ± 0.002mm (7.498mm-7.502mm)
Tolerance of circumferential runout: Within 0.005mm, Squareness tolerance of flange to shaft: Within 0.005mm Roundness tolerance: Within 0.005mm

成形機は50トンの型締め圧の成形機を用いた。製造された焼結品の寸法は下記の通りとなった。寸法測定は工具顕微鏡を用いて行った。円周振れ公差測定と真円度公差の測定は、真円度・円筒形状測定機 (テーラホブソン株式会社製 型式 :タリロンド300)を用いて行った(円周振れは、シャフトの両端を基準として測定した)。 軸部に対するフランジの直角度公差の測定は、高精度測定顕微鏡(ミツトヨ株式会社製 型式:MF)を用いて行った。
製造された焼結品の寸法
A:14.535mm〜14.572mm(目標値+0.24%〜+0.50%)
B:0.895mm〜0.898mm(目標値−0.56%〜−0.22%)
C:14.539mm〜14.577mm(目標値+0.27%〜+0.53%)
D:0.894mm〜0.897mm(目標値−0.67%〜−0.33%)
E:7.525mm〜7.539mm (目標値+0.33%〜+0.52%)
円周振れ公差:0.37mm、軸部に対するフランジの直角度公差:0.32mm、真円度公差:0.29mm
焼結品密度:96.0%
なお、図3に示すように、本実施例にかかるタービンローター用シャフトにおいて、軸部の直径は3段階に変化する。上記軸部の直径Eは、最も直径が太い箇所(フランジに近いほう)で測定した際の値を代表して示すものであるが、軸部の直径を他の箇所で測定した際も、焼結品の直径は最終製品の目標値に対し、上記と近似した範囲内(+0.21%〜+0.57%)となっていた。
As the molding machine, a molding machine having a clamping pressure of 50 tons was used. The dimensions of the manufactured sintered product were as follows. The dimension measurement was performed using a tool microscope. Circumferential run-out tolerance measurement and roundness tolerance measurement were performed using a roundness / cylindrical shape measuring machine (Taylor Hobson Co., Ltd. Model: Talirond 300). It was measured). The perpendicularity tolerance of the flange with respect to the shaft portion was measured using a high-precision measuring microscope (Mitutoyo Corporation model: MF).
Dimension A of the manufactured sintered product : 14.535mm to 14.572mm (target value + 0.24% to + 0.50%)
B: 0.895mm to 0.898mm (Target value -0.56% to -0.22%)
C: 14.539mm ~ 14.577mm (target value + 0.27% ~ + 0.53%)
D: 0.894mm to 0.897mm (Target value -0.67% to -0.33%)
E: 7.525mm to 7.539mm (Target value + 0.33% to + 0.52%)
Circumferential runout tolerance: 0.37 mm, Flange squareness tolerance to the shaft: 0.32 mm, Roundness tolerance: 0.29 mm
Sintered product density: 96.0%
As shown in FIG. 3, in the turbine rotor shaft according to the present embodiment, the diameter of the shaft portion changes in three stages. The shaft diameter E is representative of the value measured at the thickest part (closer to the flange), but the diameter of the shaft is also measured when measured at other points. The diameter of the product was within the range approximated to the above (+ 0.21% to + 0.57%) with respect to the target value of the final product.

図2(A)に示すように、最終製品を軸方向に平行に二等分した形状の型を有する上型と下型により焼結品をプレスした。焼結品をシャフトの回転方向に90度ずつ回転させて4回プレスを行った。各プレス圧力は50ton、プレス時間は1ストロークに付き1.5秒とした。プレス工程後の寸法は下記の通りとなった。
製造された最終製品の寸法
A:14.48mm〜14.51mm
B:0.89mm〜0.91mmm
C:14.47mm〜14.50mm
D:0.89mm〜0.91mm
E:7.499mm〜7.501mm
円周振れ公差:0.004mm,軸部に対するフランジの垂直度公差:0.003mm、真円度公差:0.003mm
As shown in FIG. 2 (A), the sintered product was pressed with an upper die and a lower die having a shape obtained by bisecting the final product in parallel with the axial direction. The sintered product was pressed four times by rotating 90 degrees in the rotation direction of the shaft. Each press pressure was 50 tons, and the press time was 1.5 seconds per stroke. The dimensions after the pressing process were as follows.
Dimension A of the final product manufactured : 14.48mm to 14.51mm
B: 0.89mm ~ 0.91mmm
C: 14.47mm-14.50mm
D: 0.89mm ~ 0.91mm
E: 7.499mm-7.501mm
Tolerance of circumferential runout: 0.004mm, Tolerance of flange perpendicular to shaft: 0.003mm, Tolerance of roundness: 0.003mm

焼結後においては最終製品寸法を得ることは出来ないが、プレス工程で最終製品寸法公差内の製品を得ることが出来た。   Although the final product size could not be obtained after sintering, the product within the final product size tolerance could be obtained in the pressing process.

本発明にかかる焼結品を製造した。成型材料および加熱混練条件、射出成形条件、脱脂条件、焼結条件等は下記の通りとした。成形体は100個成形し、脱脂、焼結を行い寸法ばらつきの測定を行った。
・金属粉末:SNCM439 平均粒径8.7μm タップ密度4.3g/m3
・有機バインダ組成:ポリアセタール20Vol%、ポリプロピレン20Vol%、アモルファスポリオレフィン10Vol%、パラフィンワックス35Vol%、アクリル樹脂10Vol%、脂肪酸エステル5Vol%
・金属粉末:60Vol% 有機バインダ40Vol%
・加熱混練:180℃ 2時間
・射出成形条件:180℃ 金型温度40℃
・脱脂条件:最高温度500℃(窒素)2時間保持 合計時間24時間
・焼結条件:最高温度1350℃(アルゴン、減圧雰囲気)2時間保持
・HIP処理:処理温度1200℃(アルゴン、100MPa)2時間保持
A sintered product according to the present invention was produced. The molding material, heat-kneading conditions, injection molding conditions, degreasing conditions, sintering conditions, etc. were as follows. 100 compacts were molded, degreased and sintered, and dimensional variations were measured.
・ Metal powder: SNCM439 Average particle size 8.7μm Tap density 4.3g / m 3
・ Organic binder composition: Polyacetal 20Vol%, Polypropylene 20Vol%, Amorphous polyolefin 10Vol%, Paraffin wax 35Vol%, Acrylic resin 10Vol%, Fatty acid ester 5Vol%
・ Metal powder: 60Vol% Organic binder 40Vol%
・ Heat kneading: 180 ℃ for 2 hours ・ Injection molding conditions: 180 ℃ Mold temperature: 40 ℃
・ Degreasing conditions: Maximum temperature 500 ° C (nitrogen) held for 2 hours Total time 24 hours ・ Sintering conditions: Maximum temperature 1350 ° C (argon, reduced pressure atmosphere) held for 2 hours ・ HIP treatment: Processing temperature 1200 ° C (argon, 100 MPa) 2 Time hold

実施例1と同形状の製品を作成した。最終製品の目標値も実施例1と同じである。   A product having the same shape as in Example 1 was prepared. The target value of the final product is the same as that in the first embodiment.

製造された焼結品の寸法
A:14.530mm〜14.584mm(目標値+0.21%〜+0.58%)
B:0.894mm〜0.899mm(目標値−0.67%〜−0.11%)
C:14.532mm〜14.584mm(目標値+0.22%〜+0.58%)
D:0.893mm〜0.898mm(目標値−0.78%〜−0.22%)
E:7.521mm〜7.540mm (目標値+0.28%〜+0.53%)
円周振れ公差:0.42mm、軸部に対するフランジの直角度公差:0.41mm、真円度公差:0.37mm
焼結品密度:99.2%
Dimension A of the manufactured sintered product : 14.530mm to 14.4584mm (target value + 0.21% to + 0.58%)
B: 0.894mm to 0.899mm (Target value -0.67% to -0.11%)
C: 14.532mm ~ 14.584mm (target value + 0.22% ~ + 0.58%)
D: 0.893mm to 0.898mm (Target value -0.78% to -0.22%)
E: 7.521mm-7.540mm (Target value + 0.28%-+ 0.53%)
Circumferential runout tolerance: 0.42 mm, Flange squareness tolerance to the shaft: 0.41 mm, Roundness tolerance: 0.37 mm
Sintered product density: 99.2%

図2(A)に示すように、最終製品を軸方向に平行に二等分した形状の型を有する上型と下型により焼結品をプレスした。焼結品をシャフトの回転方向に120度ずつ回転させて3回プレスを行った。各プレス圧力は50ton、プレス時間は1ストロークに付き1.5秒とした。プレス工程後の寸法は下記の通りとなった。
製造された最終製品の寸法
A:14.49mm〜14.50mm
B:0.89mm〜0.91mmm
C:14.48mm〜14.51mm
D:0.90mm〜0.91mm
E:7.499mm〜7.501mm
円周振れ公差:0.003mm,軸部に対するフランジの直角度公差:0.004mm、真円度公差:0.003mm
As shown in FIG. 2 (A), the sintered product was pressed with an upper die and a lower die having a shape obtained by bisecting the final product in parallel with the axial direction. The sintered product was pressed three times by rotating 120 degrees in the rotation direction of the shaft. Each press pressure was 50 tons, and the press time was 1.5 seconds per stroke. The dimensions after the pressing process were as follows.
Dimension A of the final product manufactured : 14.49mm to 14.50mm
B: 0.89mm ~ 0.91mmm
C: 14.48mm-14.51mm
D: 0.90mm ~ 0.91mm
E: 7.499mm-7.501mm
Circumferential runout tolerance: 0.003 mm, Flange squareness tolerance to the shaft: 0.004 mm, Roundness tolerance: 0.003 mm

焼結後においては最終製品寸法を得ることは出来ないが、プレス工程で最終製品寸法公差内の製品を得ることが出来た。   Although the final product size could not be obtained after sintering, the product within the final product size tolerance could be obtained in the pressing process.

[比較例1]
実施例1と同様の条件にて、以下の焼結体を作製した。
製造された焼結品の寸法
A:14.510mm〜14.535mm(目標値+0.07%〜+0.24%)
B:0.892mm〜0.895mm(目標値−0.89%〜−0.56%)
C:14.508mm〜14.532mm(目標値+0.06%〜+0.22%)
D:0.892mm〜0.895mm(目標値−0.89%〜−0.56%)
E:7.499mm〜7.515mm (目標値−0.01%〜+0.20%)
円周振れ公差:0.52mm、軸部に対するフランジの直角度公差:0.71mm、真円度公差:0.59mm
[Comparative Example 1]
The following sintered bodies were produced under the same conditions as in Example 1.
Dimension A of the manufactured sintered product : 14.510mm to 14.535mm (target value + 0.07% to + 0.24%)
B: 0.892mm to 0.895mm (Target value -0.89% to -0.56%)
C: 14.508mm to 14.532mm (Target value + 0.06% to + 0.22%)
D: 0.892mm to 0.895mm (Target value -0.89% to -0.56%)
E: 7.499mm to 7.515mm (Target value -0.01% to + 0.20%)
Circumferential runout tolerance: 0.52mm, Flange squareness tolerance to shaft: 0.71mm, Roundness tolerance: 0.59mm

当該焼結体を用いて、実施例1と同じ条件にて焼結品をシャフトの回転方向に90度ずつ回転させて4回プレスを行った。プレス工程後の寸法は下記の通りとなった。
製造された最終製品の寸法
A:14.49mm〜14.52mm
B:0.89mm〜0.91mmm
C:14.48mm〜14.51mm
D:0.89mm〜0.90mm
E:7.499mm〜7.501mm
円周振れ公差:0.011mm、軸部に対するフランジの直角度公差:0.013mm、真円度公差:0.018mm
Using the sintered body, the sintered product was rotated 90 degrees in the rotation direction of the shaft under the same conditions as in Example 1 and pressed four times. The dimensions after the pressing process were as follows.
Dimension A of the final product manufactured : 14.49mm to 14.52mm
B: 0.89mm ~ 0.91mmm
C: 14.48mm-14.51mm
D: 0.89mm ~ 0.90mm
E: 7.499mm-7.501mm
Circumferential runout tolerance: 0.011 mm, Flange squareness tolerance to the shaft: 0.013 mm, Roundness tolerance: 0.018 mm

焼結品寸法で最終製品寸法に近づけた製品を作成したが、A〜Eについては寸法公差内の製品が得られたものの、円周振れ、直角度及び真円度を公差内にすることは出来なかった。   A product that was close to the final product size in the sintered product size was created, but for A to E, products within the dimensional tolerance were obtained, but the circumferential runout, squareness, and roundness should be within the tolerance. I could not do it.

焼結品のA〜Eの値と最終製品の目標値との差、焼結品の円周振れ公差、軸部に対するフランジの直角度公差が最終製品の公差に与える影響を調べるため、実施例1と同様の条件において、様々な焼結品を作成し、120°×3回プレス後の最終製品とプレス前の焼結品の関係を調べた。結果を表1にまとめる。   In order to investigate the effect of the difference between the values of A to E of the sintered product and the target value of the final product, the circumferential runout tolerance of the sintered product, and the squareness tolerance of the flange with respect to the shaft on the tolerance of the final product. Various sintered products were prepared under the same conditions as in No. 1, and the relationship between the final product after pressing 120 ° × 3 times and the sintered product before pressing was examined. The results are summarized in Table 1.

Figure 2011195844
Figure 2011195844

実施例3の結果から、最終製品の目標値に対して、フランジの外径が+0.0%〜+0.6%、フランジの厚みが−0.8%〜−0.0%、軸部の直径が+0.0%〜+0.6%、円周振れ公差が0.5mm以内、軸部に対するフランジの直角度公差が0.5mm以内にあり、且つ焼結密度が相対密度95%以上の焼結品を用いた場合に、最終製品が所望の寸法精度で得られることが分かった。   From the results of Example 3, the flange outer diameter was + 0.0% to + 0.6%, the flange thickness was -0.8% to -0.0%, and the shaft portion The diameter is + 0.0% to + 0.6%, the circumferential runout tolerance is within 0.5 mm, the squareness tolerance of the flange with respect to the shaft is within 0.5 mm, and the sintered density is 95% or more relative density. It was found that the final product can be obtained with the desired dimensional accuracy when using the knot.

[比較例2]
実施例1で得られた焼結品を用いて、実施例1と同じ条件でプレスを一回のみ行った場合の寸法精度を測定した。
製造された最終製品の寸法
A:14.50mm〜14.52mm
B:0.89mm〜0.90mmm
C:14.51mm〜14.53mm
D:0.89mm〜0.91mm
E:7.503mm〜7.506mm
円周振れ公差:0.009mm,軸部に対するフランジの直角度公差:0.008mm、真円度公差:0.010mm
[Comparative Example 2]
Using the sintered product obtained in Example 1, the dimensional accuracy was measured when pressing was performed only once under the same conditions as in Example 1.
Dimension A of the final product manufactured : 14.50mm to 14.52mm
B: 0.89mm ~ 0.90mmm
C: 14.51mm-14.53mm
D: 0.89mm ~ 0.91mm
E: 7.503mm-7.506mm
Tolerance of circumferential runout: 0.009mm, Squareness tolerance of flange to shaft part: 0.008mm, Roundness tolerance: 0.010mm

1回のプレスのみの場合、A〜Dの寸法は所望する寸法精度となったが、軸部の直径Eおよび、円周振れ公差、直角度公差及び真円度公差において、最終製品の目標値を満たす製品を得ることができなかった。   In the case of only one press, the dimensions A to D have the desired dimensional accuracy. However, the target value of the final product in the shaft diameter E and the runout tolerance, squareness tolerance, and roundness tolerance. Could not get a product that meets the requirements.

[比較例3]
実施例1で得られた焼結品を用いて、実施例1と同じ条件にて焼結品をシャフトの回転方向に180度回転させて2回プレスを行った。
製造された最終製品の寸法
A:14.52mm〜14.56mm
B:0.89mm〜0.91mmm
C:14.53mm〜14.56mm
D:0.89mm〜0.91mm
E:7.509mm〜7.519mm
円周振れ公差:0.014mm,軸部に対するフランジの直角度公差:0.018mm、真円度公差:0.012mm
[Comparative Example 3]
Using the sintered product obtained in Example 1, the sintered product was rotated 180 degrees in the rotational direction of the shaft under the same conditions as in Example 1 and pressed twice.
Dimension A of the final product manufactured : 14.52mm to 14.56mm
B: 0.89mm ~ 0.91mmm
C: 14.53mm-14.56mm
D: 0.89mm ~ 0.91mm
E: 7.509mm-7.519mm
Circumferential runout tolerance: 0.014 mm, Flange squareness tolerance to the shaft: 0.018 mm, Roundness tolerance: 0.012 mm

180度回転させて2回プレスを行った製品(すなわち上下を変えただけで同じ方向からプレスを行った製品)は、B,Dは公差内に入るものの、フランジの外径A,C、軸部の直径E、円周振れ公差、直角度公差及び真円度公差において、最終製品の目標値を満たす製品を得ることができなかった。   For products that are rotated 180 degrees and pressed twice (ie, products that are pressed from the same direction by changing the top and bottom), B and D fall within tolerances, but the flange outer diameters A and C, shaft A product satisfying the target value of the final product could not be obtained in the diameter E, the circumferential runout tolerance, the squareness tolerance, and the roundness tolerance.

各プレス間の回転角度・プレス数について検討した結果、各プレス間の回転角度を120度以内とし、焼結品が360度以上回転する回数のプレスを行うことにより、所望する製品が得られることが分かった。   As a result of examining the rotation angle and the number of presses between the presses, the desired product can be obtained by pressing the rotation angle between the presses within 120 degrees and rotating the sintered product for 360 degrees or more. I understood.

(A)はタービンホイールを接合した状態のタービンローター用シャフトを示す正面図、(B)はその接合状態を模式的に示す図である。(A) is a front view which shows the shaft for turbine rotors of the state which joined the turbine wheel, (B) is a figure which shows the joining state typically. (A)はタービンローター用シャフトの焼結品を金型(上型・下型)でプレスする状態を模式的に示す図であり、(B)は90°の回転角度、(C)は120°の回転角度を説明する図である。(A) is a figure which shows typically the state which presses the sintered product of the shaft for turbine rotors with a metal mold | die (upper mold | type and lower mold | type), (B) is a 90 degree rotation angle, (C) is 120. It is a figure explaining the rotation angle of °. (A)はタービンローター用シャフトの正面図、(B)はその一部拡大図であって、測定箇所を示す図である。(A) is a front view of the shaft for turbine rotors, (B) is the partially expanded view, and is a figure which shows a measurement location. 本発明にかかるタービンローター用シャフトの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the shaft for turbine rotors concerning this invention.

符号の説明Explanation of symbols

1 タービンローター用シャフト
2 軸部
3a 第一フランジ
3b 第二フランジ
4 接合部
5 タービンホイール
A 第一フランジの外径
B 第一フランジの厚み
C 第二フランジの外径
D 第二フランジの厚み
E 軸部の直径
DESCRIPTION OF SYMBOLS 1 Turbine rotor shaft 2 Shaft part 3a First flange 3b Second flange 4 Joint part 5 Turbine wheel A Outer diameter B of the first flange B Thickness of the first flange C Outer diameter of the second flange D Thickness E of the second flange Part diameter

Claims (4)

円柱状の軸部とフランジを有するタービンローター用シャフトを製造する方法であって、
所望する最終製品と近似した形状を有する焼結品を同一の金型で複数回プレスする工程を含むこと、
前記焼結品はフランジと軸部の一体形成品であって、最終製品の目標値に対して、フランジの外径が+0.0%〜+0.6%、フランジの厚みが−0.8%〜−0.0%、軸部の直径が+0.0%〜+0.6%、円周振れ公差が0.5mm以内、軸部に対するフランジの直角度公差が0.5mm以内にあり、且つ焼結密度が相対密度95%以上であること、
前記金型は、最終製品を軸方向に平行に2等分した形状の型を有する上型と下型からなること、
前記プレス工程は、前記焼結品を前記金型でプレスした後、当該焼結体を120°以内の角度で回転させて次のプレスを行うことを繰り返すことにより、当該焼結体が360°以上回転するまでプレスを行うものであること
を特徴とする、タービンローター用シャフトの製造方法。
A method of manufacturing a shaft for a turbine rotor having a cylindrical shaft portion and a flange,
Including a step of pressing a sintered product having a shape close to a desired final product with the same mold a plurality of times,
The sintered product is an integrally formed product of a flange and a shaft. The outer diameter of the flange is + 0.0% to + 0.6% and the thickness of the flange is -0.8% with respect to the target value of the final product. ~ -0.0%, shaft diameter is + 0.0% to + 0.6%, circumferential runout tolerance is within 0.5mm, squareness tolerance of flange to shaft is within 0.5mm, and firing The consolidation density is 95% or higher relative density,
The mold is composed of an upper mold and a lower mold having a mold having a shape obtained by dividing the final product into two equal parts in parallel to the axial direction;
In the pressing step, after the sintered product is pressed by the mold, the sintered body is rotated 360 ° by repeating the next press by rotating the sintered body at an angle of 120 ° or less. A method for manufacturing a shaft for a turbine rotor, wherein pressing is performed until the above rotation.
前記角度が120°または90°であることを特徴とする、請求項1に記載のタービンローター用シャフトの製造方法。 The method for manufacturing a shaft for a turbine rotor according to claim 1, wherein the angle is 120 ° or 90 °. 前記焼結品が、相対密度98%以上の焼結品であることを特徴とする、請求項1または2に記載のタービンローター用シャフトの製造方法。 The method for manufacturing a turbine rotor shaft according to claim 1, wherein the sintered product is a sintered product having a relative density of 98% or more. 前記焼結品の製造工程において、相対密度94%以上の第一次焼結品を作製した後、熱間等方圧加圧法により相対密度98%以上の焼結品とすることを特徴とする、請求項1〜3のいずれか1項に記載のタービンローター用シャフトの製造方法。 In the manufacturing process of the sintered product, after producing a primary sintered product having a relative density of 94% or more, a sintered product having a relative density of 98% or more is obtained by a hot isostatic pressing method. The manufacturing method of the shaft for turbine rotors of any one of Claims 1-3.
JP2008299191A 2008-11-25 2008-11-25 Manufacturing method of shaft for turbine rotor Expired - Fee Related JP4269091B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008299191A JP4269091B1 (en) 2008-11-25 2008-11-25 Manufacturing method of shaft for turbine rotor
PCT/JP2009/069788 WO2010061812A1 (en) 2008-11-25 2009-11-24 Method for manufacturing shaft for turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299191A JP4269091B1 (en) 2008-11-25 2008-11-25 Manufacturing method of shaft for turbine rotor

Publications (2)

Publication Number Publication Date
JP4269091B1 JP4269091B1 (en) 2009-05-27
JP2011195844A true JP2011195844A (en) 2011-10-06

Family

ID=40785264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299191A Expired - Fee Related JP4269091B1 (en) 2008-11-25 2008-11-25 Manufacturing method of shaft for turbine rotor

Country Status (2)

Country Link
JP (1) JP4269091B1 (en)
WO (1) WO2010061812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012124A (en) * 2016-07-21 2018-01-25 日鍛バルブ株式会社 Manufacturing method of shaft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107282A (en) * 2011-01-11 2011-06-29 山东金聚粉末冶金有限公司 Automobile oil way joint and manufacturing method thereof
KR101405845B1 (en) * 2012-08-10 2014-06-11 기아자동차주식회사 Method for manufacturing of valve train parts using with metal powder injection molding
JP7049149B2 (en) * 2018-03-28 2022-04-06 三菱重工航空エンジン株式会社 How to make wings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052241B2 (en) * 2003-08-12 2006-05-30 Borgwarner Inc. Metal injection molded turbine rotor and metal shaft connection attachment thereto

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012124A (en) * 2016-07-21 2018-01-25 日鍛バルブ株式会社 Manufacturing method of shaft

Also Published As

Publication number Publication date
WO2010061812A1 (en) 2010-06-03
JP4269091B1 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4317906B1 (en) Method for manufacturing variable vanes
JP4240512B1 (en) Turbine wheel manufacturing method
JP6342844B2 (en) Turbine wheel manufacturing method
JP4269091B1 (en) Manufacturing method of shaft for turbine rotor
WO2014148463A1 (en) Method of producing ring-rolling blank
JP2011256050A (en) Method for producing non-oxide ceramic product
JP6445858B2 (en) Sintered part manufacturing method and drill
CN109277574B (en) Preparation method of air-conditioning compressor rocker
CN107206497B (en) Sintered body surface densification finishing mold, densifying method and obtained product
JP6555679B2 (en) Manufacturing method of iron-based sintered parts and iron-based sintered parts
JP4952912B2 (en) Method for manufacturing sintered body
US9631635B2 (en) Blades for axial flow compressor and method for manufacturing same
CN114453580B (en) Manufacturing method of universal ball cage retainer
Levy et al. On the use of SLS tools in sheet metal stamping
CN104551571A (en) Method for producing members through near-isothermal stamping by aid of TiAl pre-alloy powder
JP6619957B2 (en) Iron-based sintered alloy and method for producing the same
JP2006265590A (en) Method for producing injection-molded sintered compact and movable part supporting component for supercharger
JP3720106B2 (en) Manufacturing method of ceramic products
Mondal et al. Effect of cold flow forming deformation on the tensile properties of 15CrMoV6 steel
JP2009101409A (en) Method of manufacturing cylindrical extruded material
CN1829814A (en) Titanium or titanium alloy contacting surface

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees