JP2011195615A - Fiber-reinforced plastic for automobile member - Google Patents

Fiber-reinforced plastic for automobile member Download PDF

Info

Publication number
JP2011195615A
JP2011195615A JP2010060747A JP2010060747A JP2011195615A JP 2011195615 A JP2011195615 A JP 2011195615A JP 2010060747 A JP2010060747 A JP 2010060747A JP 2010060747 A JP2010060747 A JP 2010060747A JP 2011195615 A JP2011195615 A JP 2011195615A
Authority
JP
Japan
Prior art keywords
fiber
fibers
natural
reinforced plastic
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010060747A
Other languages
Japanese (ja)
Other versions
JP5589465B2 (en
Inventor
Tomohiro Hasegawa
智宏 長谷川
Takuya Nishimura
拓也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2010060747A priority Critical patent/JP5589465B2/en
Publication of JP2011195615A publication Critical patent/JP2011195615A/en
Application granted granted Critical
Publication of JP5589465B2 publication Critical patent/JP5589465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic for automobile members, which is surely injection molded and has good toughness while securing rigidity required for automobile members.SOLUTION: The fiber-reinforced plastic contains a fiber and a resin, wherein as the fiber, a natural fiber and a reinforcing fiber harder than the natural fiber are included. The resin is a thermoplastic resin, and the fiber length of the natural fiber is ≤5 mm. The fiber-reinforced plastic is obtained by mixing the resin with the fiber and injection molding the resulting mixture.

Description

本発明は、繊維と樹脂とを含有する自動車部材用繊維強化プラスチックに関する。   The present invention relates to a fiber reinforced plastic for automobile members containing fibers and a resin.

これに関連し、特許文献1には、熱硬化性樹脂をベースとし繊維を含有する繊維強化プラスチックが開示されている。特許文献1の繊維強化プラスチックでは、地球環境へ与える負荷の低減を目的とし、一般的に強化繊維として用いられるガラス繊維に代えて再生セルロース繊維であるリヨセルが用いられている。この繊維強化プラスチックは、ガラス繊維に比べて強度の劣るリヨセルのみにより最大限の補強効果を得るために、基本的にはリヨセルを織物又は編物の形態で用い、ハンドレイアップ成形又は加熱圧縮成形法により成形される。この繊維強化プラスチックは、タンク・容器類や銅張り積層板などの電機・電子部品類として好適であるが、自動車部材としても使用可能とされている。しかし、ハンドレイアップ成形又は加熱圧縮成形法では生産効率が悪く、自動車部材として大量生産するには不向きである。特許文献1には、リヨセルを織物又は編物の形態でなく、短繊維として使用可能であることが記載されており、射出成形可能であることも記載されている。   In this connection, Patent Document 1 discloses a fiber reinforced plastic based on a thermosetting resin and containing fibers. In the fiber reinforced plastic of Patent Document 1, lyocell, which is a regenerated cellulose fiber, is used instead of glass fiber that is generally used as a reinforced fiber for the purpose of reducing the load on the global environment. This fiber reinforced plastic basically uses lyocell in the form of woven fabric or knitted fabric in order to obtain the maximum reinforcement effect only by lyocell, which is inferior in strength compared to glass fiber. Is formed by. This fiber-reinforced plastic is suitable for electric and electronic parts such as tanks / containers and copper-clad laminates, but can also be used as an automobile member. However, the hand lay-up molding or the heat compression molding method has poor production efficiency and is not suitable for mass production as an automobile member. Patent Document 1 describes that lyocell can be used not as a woven fabric or a knitted fabric but as a short fiber, and also describes that injection molding is possible.

繊維強化プラスチックではないが、繊維と樹脂とを含む繊維マットであって、自動車の天井芯材やドア芯材のような自動車用内装材として用いられるものが特許文献2に開示されている。この繊維マットは、ガラス繊維等の無機繊維と植物繊維とを混在状態で含み、繊維を絡ませてマット状にしたうえで、その両面に熱可塑性樹脂フィルムを積層し、加熱しながら圧縮して熱可塑性樹脂を溶融して含浸せしめ、その後、樹脂が溶融状態にあるうちに積層物を厚さ方向に引っぱって膨らませることで、空隙を形成してなる。   Although it is not a fiber reinforced plastic, Patent Document 2 discloses a fiber mat containing fibers and a resin, which is used as an automobile interior material such as an automobile ceiling core material and a door core material. This fiber mat contains inorganic fibers such as glass fibers and plant fibers in a mixed state. After the fibers are entangled into a mat shape, a thermoplastic resin film is laminated on both surfaces and compressed while heating to heat. The plastic resin is melted and impregnated, and then, while the resin is in a molten state, the laminate is pulled in the thickness direction to expand, thereby forming a void.

特開平6−257051号公報JP-A-6-257051 特開2006−316285号公報JP 2006-316285 A

ところで、繊維強化プラスチックは、一般的に剛性向上が目的とされるが、自動車部材には、単に剛性が高いだけでなく、触れたときの感触や破断しにくくして安全性を高める観点から靭性も要求される。しかも量産可能な生産性も要求される。   By the way, fiber reinforced plastics are generally aimed at improving rigidity, but automobile parts are not only high in rigidity, but also tough from the viewpoint of improving safety by making it difficult to touch and break when touched. Is also required. In addition, productivity that can be mass-produced is also required.

特許文献1のように繊維強化プラスチックを射出成形できれば生産効率の向上は期待される。しかし、特許文献1には射出成形の好適条件の具体的な記載はない。また、もともとガラス繊維よりも強度の劣るリヨセルのみを用いているうえに、相互に絡み合いのない短繊維の形態で用いれば、補強効果が犠牲となることは明らかであり、自動車部材に要求される剛性を得られるか不明である。しかも、熱硬化性樹脂の射出成形では、大型部材や複雑形状部材は成形できない。したがって、現実的に自動車部材に適用するのは困難である。   If fiber reinforced plastic can be injection-molded as in Patent Document 1, an improvement in production efficiency is expected. However, Patent Document 1 does not specifically describe preferred conditions for injection molding. In addition, it is clear that the reinforcing effect is sacrificed if it is used in the form of short fibers that are not entangled with each other in addition to using lyocell that is originally inferior in strength to glass fiber. It is unknown whether rigidity can be obtained. In addition, large-sized members and complex-shaped members cannot be molded by thermosetting resin injection molding. Therefore, it is difficult to actually apply to automobile members.

また、特許文献2の繊維マットは、空隙により軽量化されていることに加え、植物繊維が用いられることで無機繊維のみを用いる場合よりも軽量となっており、植物繊維のみでなく無機繊維と併用されることで植物繊維のみを用いる場合よりも耐燃焼性にも優れる。しかし、天井芯材やドア芯材として用いることを目的としているため、単独で自動車部材を構成するための剛性や靭性は考慮されていない。しかも、空隙を形成するために製造過程が煩雑である。   Further, the fiber mat of Patent Document 2 is lighter than the case where only inorganic fibers are used by using plant fibers in addition to being lightened by voids. By using together, it is excellent also in combustion resistance than the case where only plant fiber is used. However, since it is intended to be used as a ceiling core material or a door core material, rigidity and toughness for constituting an automobile member alone are not considered. In addition, the manufacturing process is complicated to form voids.

そこで、本発明では、確実に射出成形可能であり、自動車部材に要求される剛性を確保しながら良好な靭性も有する繊維強化プラスチックを提供することを目的とする。   Accordingly, an object of the present invention is to provide a fiber-reinforced plastic that can be reliably injection-molded and has good toughness while ensuring the rigidity required for automobile members.

本発明は、繊維と樹脂とを含有する繊維強化プラスチックであって、前記繊維として天然繊維と該天然繊維よりも硬い補強繊維とを含み、前記樹脂は熱可塑性樹脂であり、前記天然繊維は繊維長が5mm以下であり、前記繊維を混合して射出成形してなる自動車部材用繊維強化プラスチックである。本発明の繊維強化プラスチックは、該繊維強化プラスチック中の前記繊維の含有率が10重量%以上であり、前記繊維中の前記天然繊維の含有率が30〜85重量%であると望ましい。   The present invention is a fiber reinforced plastic containing a fiber and a resin, the fiber including a natural fiber and a reinforcing fiber harder than the natural fiber, the resin is a thermoplastic resin, the natural fiber is a fiber It is a fiber reinforced plastic for automobile parts, which has a length of 5 mm or less and is formed by mixing the fibers and injection molding. In the fiber reinforced plastic of the present invention, the content of the fiber in the fiber reinforced plastic is preferably 10% by weight or more, and the content of the natural fiber in the fiber is preferably 30 to 85% by weight.

本発明の自動車部材用繊維強化プラスチックによれば、繊維として天然繊維と補強繊維とを含むため、剛性を確保しながら靭性も担保される。そして、ベースとなる樹脂が熱可塑性樹脂であるため射出成形に好適である。これにより、大型部材や複雑形状部材の成形が可能である。また、射出成形時に混合されている天然繊維の繊維長が5mm以下であるから、繊維がスクリューに絡まったり、繊維がだまになってノズルに詰まったりすることなく確実に射出成形できる。これにより、連続的に効率よく生産することができ、生産性が高い。また、繊維強化プラスチック中の繊維の含有率が10重量%以上であり繊維中の天然繊維の含有率が30〜85重量%であると、剛性を高めながらも良好な靭性を確保できる。しかも、耐衝撃性向上効果をも得られる。   According to the fiber reinforced plastic for automobile parts of the present invention, since natural fibers and reinforcing fibers are included as fibers, toughness is ensured while ensuring rigidity. And since resin used as a base is a thermoplastic resin, it is suitable for injection molding. Thereby, a large-sized member or a complicated shape member can be molded. Moreover, since the fiber length of the natural fiber mixed at the time of injection molding is 5 mm or less, it can be reliably injection-molded without the fiber being entangled with the screw or the fiber becoming fooled and clogging the nozzle. Thereby, it can produce continuously and efficiently, and its productivity is high. Further, when the fiber content in the fiber reinforced plastic is 10% by weight or more and the content of the natural fiber in the fiber is 30 to 85% by weight, good toughness can be secured while increasing the rigidity. In addition, an impact resistance improving effect can be obtained.

試験例1に係るグラフであり、繊維長とシャルピー衝撃値とを示すグラフである。It is a graph which concerns on the test example 1, and is a graph which shows fiber length and a Charpy impact value. 試験例2に係る曲げ荷重曲線である。5 is a bending load curve according to Test Example 2. 試験例3に係るグラフであり、繊維中の天然繊維の含有率と曲げ剛性とを示すグラフである。It is a graph which concerns on the test example 3, and is a graph which shows the content rate and bending rigidity of the natural fiber in a fiber.

本発明の繊維強化プラスチックは、主たる構成材料として熱可塑性樹脂が含まれており、該熱可塑性樹脂が繊維で補強されている。繊維としては、天然繊維と該天然繊維よりも硬い補強繊維とが含まれている。剛性向上に特に有効に作用する補強繊維と共に柔らかい天然繊維も含むことで、本来熱可塑性樹脂が有する靭性が損なわれるのを抑制しながら剛性が高められている。   The fiber reinforced plastic of the present invention contains a thermoplastic resin as a main constituent material, and the thermoplastic resin is reinforced with fibers. The fibers include natural fibers and reinforcing fibers that are harder than the natural fibers. By including the soft natural fiber together with the reinforcing fiber that works particularly effectively for improving the rigidity, the rigidity is enhanced while suppressing the deterioration of the toughness inherent in the thermoplastic resin.

繊維強化プラスチックを構成する熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ABS樹脂、メタクリル樹脂、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール等の熱可塑性樹脂等が挙げられる。これらの熱可塑性樹脂は、1種類のみを単独で使用してもよく、2種類以上を併用してもよい。   Examples of the thermoplastic resin constituting the fiber reinforced plastic include thermoplastic resins such as polypropylene, polyethylene, polyvinyl chloride, polystyrene, ABS resin, methacrylic resin, polyamide, polyester, polycarbonate, and polyacetal. These thermoplastic resins may be used alone or in combination of two or more.

天然繊維としては、例えば、例えば、ラミー、ケナフ、リネン、ヘンプ、ジュート等の靭皮繊維、マニラ麻、サイザル麻、パイナップル等の葉脈繊維、マニラ麻、バナナ等の葉柄繊維、ココナツヤシ等の果実繊維、綿花、カポック等の種子毛繊維等の植物繊維が挙げられる。これらの植物繊維は、1種類のみを使用しても、2種類以上を併用してもよい。補強繊維としては、ガラス繊維や炭素繊維等が挙げられる。これらの補強繊維も1種類のみを使用しても、2種類以上を併用してもよい。   Examples of natural fibers include bast fibers such as ramie, kenaf, linen, hemp, and jute, leaf vein fibers such as manila hemp, sisal hemp, and pineapple, leaf fibers such as manila hemp and banana, fruit fibers such as coconut palm, and cotton And plant fibers such as seed hair fibers such as kapok. These plant fibers may be used alone or in combination of two or more. Examples of the reinforcing fiber include glass fiber and carbon fiber. These reinforcing fibers may be used alone or in combination of two or more.

熱可塑性樹脂に混合される天然繊維と補強繊維を含む全繊維の量は、繊維強化プラスチック全体の10重量%以上とするのが好ましい。10重量%以上とすることにより、効果的に熱可塑性樹脂を補強することができる。繊維強化プラスチック中の繊維含有率は、好ましくは20重量%以上とする。それにより、より剛性を高めることができる。最も好ましくは、30重量%以上とする。それにより、更に剛性を高めることができる。繊維強化プラスチック中の繊維含有率の上限は限定されないが、本発明の繊維強化プラスチックは、後述するように射出成形されるため、射出成形での成形性を確保する観点で、60重量%以下とするのが好ましい。また、繊維強化プラスチックであることを鑑みると熱可塑性樹脂が主体となるのが好ましい。具体的には、繊維強化プラスチック中の繊維の含有量は50重量%以下であるのが好ましい。繊維強化プラスチック全体に占める全繊維の割合は、好ましくは、10〜60重量%、より好ましくは、20〜60重量%、最も好ましくは、30〜50重量%である。   The amount of total fibers including natural fibers and reinforcing fibers mixed with the thermoplastic resin is preferably 10% by weight or more of the entire fiber reinforced plastic. By setting it as 10 weight% or more, a thermoplastic resin can be reinforced effectively. The fiber content in the fiber reinforced plastic is preferably 20% by weight or more. Thereby, rigidity can be improved more. Most preferably, it is 30% by weight or more. Thereby, the rigidity can be further increased. Although the upper limit of the fiber content in the fiber reinforced plastic is not limited, since the fiber reinforced plastic of the present invention is injection molded as described later, it is 60% by weight or less from the viewpoint of securing moldability in injection molding. It is preferable to do this. In view of the fact that it is a fiber reinforced plastic, it is preferable that a thermoplastic resin is mainly used. Specifically, the fiber content in the fiber reinforced plastic is preferably 50% by weight or less. The proportion of all fibers in the entire fiber reinforced plastic is preferably 10 to 60% by weight, more preferably 20 to 60% by weight, and most preferably 30 to 50% by weight.

天然繊維と補強繊維とを含む繊維全体における補強繊維と天然繊維の割合は、目的とする自動車部材に要求される剛性と靭性とを考慮して調整される。天然繊維の割合を高めるほど靭性が高められ、補強繊維の割合を高めるほど剛性が高められる。靭性向上と剛性向上の両立を図るには、繊維全体における天然繊維の含有率は30〜85重量%以上であるのが好ましい。逆に言えば、補強繊維の含有率は15〜70重量%であるのが好ましい。天然繊維の含有率が30重量%以上であり補強繊維の含有率が70重量%以下であると、剛性を高めながら靭性を確保することできる。天然繊維の含有率が85重量%を超えても剛性を高めながら靭性を確保する効果は得られるが、85重量%以下であると耐衝撃性をも向上させることができる点で好ましい。天然繊維の含有率が30重量%未満で補強繊維の含有率が70重量%を超えると、剛性は一層高められるが、靭性、つまり、しなやかさが著しく損なわれるおそれがあり、好ましくない。天然繊維の含有率を高めるほど靭性が高められるが、天然繊維の含有率が70重量%に達するまでには自動車部材に要求される靭性を十分に確保することができる。そのため、天然繊維の含有率を高めるにつれて剛性向上の度合いが小さくなること考慮し、良好な靭性を確保しつつも剛性をより高める観点で、天然繊維の含有率は上限を70重量%に抑えるのがより好ましく、天然繊維の含有率は、30〜70重量%とするのがより好ましい。最も好ましくは、より高い靭性を確保しながら、できるだけ高い剛性を確保する観点から、繊維中の天然繊維の含有率は50〜70重量%とする。   The ratio of the reinforcing fiber and the natural fiber in the whole fiber including the natural fiber and the reinforcing fiber is adjusted in consideration of rigidity and toughness required for the target automobile member. Increasing the proportion of natural fibers increases toughness, and increasing the proportion of reinforcing fibers increases rigidity. In order to achieve both improved toughness and improved rigidity, the content of natural fibers in the entire fiber is preferably 30 to 85% by weight or more. Conversely, the reinforcing fiber content is preferably 15 to 70% by weight. When the content of natural fibers is 30% by weight or more and the content of reinforcing fibers is 70% by weight or less, toughness can be ensured while increasing rigidity. Even if the content of the natural fiber exceeds 85% by weight, the effect of securing toughness can be obtained while increasing the rigidity, but it is preferably 85% by weight or less because the impact resistance can be improved. If the content of natural fibers is less than 30% by weight and the content of reinforcing fibers exceeds 70% by weight, the rigidity is further enhanced, but the toughness, that is, the flexibility, may be significantly impaired, which is not preferable. The toughness is increased as the content of the natural fiber is increased, but the toughness required for the automobile member can be sufficiently ensured until the content of the natural fiber reaches 70% by weight. Therefore, considering that the degree of improvement in rigidity decreases as the content of natural fibers is increased, the content of natural fibers is limited to 70% by weight in terms of increasing rigidity while ensuring good toughness. Is more preferable, and the content of natural fibers is more preferably 30 to 70% by weight. Most preferably, from the viewpoint of securing as high rigidity as possible while ensuring higher toughness, the content of natural fibers in the fibers is 50 to 70% by weight.

本発明の繊維強化プラスチックは、熱可塑性樹脂に繊維を混合して射出成形にて成形される。熱可塑性樹脂に混合される天然繊維は、長いほど補強効果を発揮しやすいものと推察されるが、繊維長は5mm以下とされる。繊維長が5mmを越えると、柔らかい天然繊維は成形機のスクリューに絡まったり、だまになってノズルに詰まったりするなどの成形時のトラブルを引き起こしやすくなる。繊維長が5mm以下であれば、円滑に射出成形することができる。一方、繊維が短くなるほど補強効果が小さくなるため、補強効果を確実に得る観点で、繊維長は1mm以上とするのが好ましい。より好ましくは、繊維長は3〜5mmとする。その場合、補強効果をより高めることができる。   The fiber reinforced plastic of the present invention is molded by injection molding by mixing fibers with a thermoplastic resin. The longer the natural fiber mixed with the thermoplastic resin is, the more likely it is to exert a reinforcing effect, but the fiber length is 5 mm or less. When the fiber length exceeds 5 mm, soft natural fibers tend to cause troubles during molding, such as entanglement with the screw of the molding machine and clogging of the nozzles. If the fiber length is 5 mm or less, injection molding can be performed smoothly. On the other hand, since the reinforcing effect becomes smaller as the fiber becomes shorter, the fiber length is preferably 1 mm or more from the viewpoint of reliably obtaining the reinforcing effect. More preferably, the fiber length is 3 to 5 mm. In that case, the reinforcing effect can be further enhanced.

本発明の繊維強化プラスチックに含有される補強繊維の繊維長は特に限定されないが、剛直な補強繊維は、熱可塑性樹脂との混合時に割れて短くなりやすいため、繊維長の長いものを熱可塑性樹脂に混合するのが好ましい。熱可塑性樹脂に混合する補強繊維の繊維長は好ましくは5〜10mm以上である。5mm以上であれば、混練時に短くなっても概ね3mm程度の繊維長は確保することができ、有効に補強効果を発揮することができる。繊維長が10mmを超える補強繊維も使用できないわけではないが、10mmを超えていても、混合に際して割れることで、その長さが10mm以下の補強繊維を使用した場合と大差なくなるため、混練しやすさ等を考慮すると10mm以下とするのが好ましい。   The fiber length of the reinforcing fiber contained in the fiber reinforced plastic of the present invention is not particularly limited, but a rigid reinforcing fiber is easily broken and shortened when mixed with a thermoplastic resin. It is preferable to mix them. The fiber length of the reinforcing fiber mixed with the thermoplastic resin is preferably 5 to 10 mm or more. If it is 5 mm or more, a fiber length of about 3 mm can be ensured even if it is shortened during kneading, and a reinforcing effect can be effectively exhibited. Reinforcing fibers with a fiber length exceeding 10 mm cannot be used. However, even if the reinforcing fiber exceeds 10 mm, it is easy to knead because it is not greatly different from the case of using a reinforcing fiber with a length of 10 mm or less by cracking during mixing. Considering the thickness and the like, it is preferably 10 mm or less.

本発明の繊維強化プラスチックは、天然繊維と補強繊維の双方を含むことにより、高い剛性を有するとともに良好な靭性も有する。しかも、射出成形されるため生産性が高く、熱可塑性樹脂をベースとするため、大型部材や複雑形状部材の成形が可能であり、所望の形状に成形して種々の自動車部材に展開することができる。例えば、インパネ、トリム、ドアモジュールやフロントエンドモジュールの基材等の内装部材や、外装部材であるバックドア、インナーパネル等に適用することができる。   The fiber-reinforced plastic of the present invention includes both natural fibers and reinforcing fibers, and thus has high rigidity and good toughness. Moreover, because it is injection-molded, it is highly productive, and because it is based on thermoplastic resin, it can be molded into large-sized and complex-shaped members, and can be molded into a desired shape and deployed to various automobile members. it can. For example, it can be applied to interior members such as instrument panels, trims, door modules and base materials for front end modules, back doors and inner panels as exterior members.

[試験例1]
試験例1では、熱可塑性樹脂としてポリプロピレンを使用した。繊維長を検討するために、繊維としては天然繊維であるサイザル繊維のみを使用し、繊維含有率を10重量%で一定としながら、加える繊維の長さを変え、射出成形して試験片を得た。射出成形には三菱重工株式会社製ガラス・カーボン用長繊維専用射出成形機を用いた。
[Test Example 1]
In Test Example 1, polypropylene was used as the thermoplastic resin. In order to examine the fiber length, only sisal fiber, which is a natural fiber, is used as the fiber, while changing the length of the added fiber while keeping the fiber content constant at 10% by weight, injection molding is performed to obtain a test piece. It was. For injection molding, an injection molding machine exclusively for long fibers for glass and carbon manufactured by Mitsubishi Heavy Industries, Ltd. was used.

その結果、繊維長が5mmを超えると繊維がスクリューに絡み、結果的に繊維が短くなったり、ノズル詰りが起こり、著しく成形性が悪化することが明らかとなり、繊維長が5mm以下の場合は、スムーズに成形可能であることが明らかとなった。成形することのできた試験片について、シャルピー衝撃試験を行い、シャルピー衝撃試験値を算出した。シャルピー衝撃試験は、シャルピー衝撃試験機(株式会社上島製作所IM−1310)を用いてISO179−1に準じて行い、試験片の寸法は80mm×10mm×4mm、ノッチの大きさ2mmとし、ハンマーの仕事量は2Jとした。その結果を図1に示す。   As a result, when the fiber length exceeds 5 mm, the fiber is entangled with the screw, resulting in shortening of the fiber, nozzle clogging, and remarkably deteriorated moldability. When the fiber length is 5 mm or less, It became clear that molding was possible smoothly. The test piece that could be molded was subjected to a Charpy impact test, and a Charpy impact test value was calculated. The Charpy impact test is performed in accordance with ISO179-1 using a Charpy impact tester (Ueshima Seisakusho IM-1310 Co., Ltd.). The test piece dimensions are 80 mm × 10 mm × 4 mm, the notch size is 2 mm, and the work of the hammer The amount was 2J. The result is shown in FIG.

図1に示されるように、繊維が長いほどシャルピー衝撃値が高くなり、逆に繊維が短いほどシャルピー衝撃値が低くなることが明らかとなった。この結果から、自動車部材として用いるには、繊維長を1mm以上とするのが好ましいことが明らかとなった。より補強効果を高めるためには、繊維長を3〜5mmとするのがより好ましいことが明らかとなった。   As shown in FIG. 1, it was found that the longer the fiber, the higher the Charpy impact value, and conversely, the shorter the fiber, the lower the Charpy impact value. From this result, it became clear that the fiber length is preferably 1 mm or more for use as an automobile member. In order to further enhance the reinforcing effect, it has become clear that the fiber length is preferably 3 to 5 mm.

[試験例2]
<試験片の作成>
熱可塑性樹脂としてポリプロピレンを使用した。天然繊維として繊維長3mmのサイザル繊維を、補強繊維として繊維長6mmのガラス繊維(太さ22μm)を使用した。繊維含有率を20重量%で一定としながら、天然繊維と補強繊維のバランスを、No.1〜6のようにして一般射出成形機(住友重機械工業株式会社製SE−185)を用いて射出成形し、板状の試験片(80mm×10mm×4mm)を作成した。また、対照として、繊維を含有しないポリプロピレン(No.8)と、ポリプロピレンにゴム成分を配合して耐衝撃性を向上させた、インパネ等に用いられている従来の自動車部材用材料(No.9)を射出成形し、試験片を作成した。なお、No.9は繊維を含まないが、試験片中に20重量%のフィラー(タルク)を含有する。
[Test Example 2]
<Creation of specimen>
Polypropylene was used as the thermoplastic resin. A sisal fiber having a fiber length of 3 mm was used as a natural fiber, and a glass fiber having a fiber length of 6 mm (thickness: 22 μm) was used as a reinforcing fiber. While keeping the fiber content constant at 20% by weight, the balance of natural fiber and reinforcing fiber is No. 1-6, it injection-molded using the general injection molding machine (Sumitomo Heavy Industries, Ltd. SE-185), and produced the plate-shaped test piece (80 mm x 10 mm x 4 mm). Further, as a control, polypropylene (No. 8) containing no fiber, and a conventional material for automobile members (No. 9) used for instrument panels and the like in which a rubber component is blended with polypropylene to improve impact resistance. ) Was injection molded to prepare a test piece. In addition, No. 9 contains no fiber, but contains 20% by weight filler (talc) in the test piece.

<曲げ試験>
No.1〜9について、ISO178に準拠して曲げ試験を行った。板状の試験片(80mm×10mm×4mm)の両端を支持し、中央部に試験力(荷重)を付与する曲げ試験を行い、曲げ強度と曲げ剛性とを測定した。その結果を表1に示す。また、曲げ試験における荷重と、それに対応する荷重方向の変位とを示す曲げ荷重曲線を図2に示す。
<Bending test>
No. About 1-9, the bending test was done based on ISO178. A bending test in which both ends of a plate-shaped test piece (80 mm × 10 mm × 4 mm) were supported and a test force (load) was applied to the center portion was performed, and bending strength and bending rigidity were measured. The results are shown in Table 1. Moreover, the bending load curve which shows the load in a bending test and the displacement of the load direction corresponding to it is shown in FIG.

<シャルピー衝撃試験>
No.1〜9の各試験片について、上記試験例1と同様にISO179−1に準拠してシャルピー衝撃試験を行い、シャルピー衝撃試験値を算出した。その結果を表1に示す。
<Charpy impact test>
No. About each test piece of 1-9, the Charpy impact test was done similarly to the said Test Example 1 based on ISO1799-1, and the Charpy impact test value was computed. The results are shown in Table 1.

Figure 2011195615
Figure 2011195615

繊維を含むNo.1〜7と繊維を含まないNo.8を比較すると、繊維を含むNo.1〜7は、繊維を含まないNo.8よりも曲げ強度及び曲げ剛性が高いことが確認された。繊維を含むNo.1〜7で比較すると、ガラス繊維と天然繊維との合計である全繊維中のガラス繊維の含有率が高いほど曲げ強度及び曲げ剛性が高く、ガラス繊維のみを含むNo.1が最も高いことが明らかとなった。そこで、図2の曲げ荷重曲線を参照すると、ガラス繊維のみを含むNo.1は、天然繊維を含むNo.2〜7に比べて最大荷重が大きいが、最大荷重に至ると荷重が急激に落ち込み試験片が破断したことから、ねばり強さ(靭性)が欠如していることが明らかとなった。これに対し、ガラス繊維に加えて天然繊維も含むNo.2〜6では、No.1よりも最大荷重に達した後の変位が大きかった。これにより、ガラス繊維に加え天然繊維を含むことで、ガラス繊維のみを含む場合に比べて靭性を高めることができることが明らかとなった。   No. containing fiber No. 1-7 and no fiber. 8 and No. 8 containing fibers. 1-7 are No. which does not contain a fiber. It was confirmed that the bending strength and bending rigidity were higher than 8. No. containing fiber In comparison with Nos. 1 to 7, the higher the glass fiber content in the total fiber, which is the total of the glass fiber and natural fiber, the higher the bending strength and the bending rigidity. 1 was the highest. Therefore, referring to the bending load curve of FIG. No. 1 contains natural fiber. Although the maximum load is larger than 2 to 7, when the maximum load is reached, the load suddenly falls and the test piece is broken, so that it is clear that the stickiness (toughness) is lacking. On the other hand, No. including natural fibers in addition to glass fibers. 2-6, no. The displacement after reaching the maximum load was greater than 1. Thereby, it became clear that toughness can be improved by including a natural fiber in addition to a glass fiber compared with the case where only a glass fiber is included.

また、図2から明らかなように、繊維中の天然繊維の含有率が15重量%のNo.2は、最大荷重に達した後の変位量はガラス繊維のみのNo.1に比べると大きいものの、その曲げ荷重曲線の線形(挙動)は、No.1と似ており比較的シャープな線形となっていた。それに対し、繊維中の天然繊維の含有率が30重量%のNo.3の曲げ荷重曲線の線形は、ガラス繊維のみのNo.1とは異なり、最大荷重に達した後の荷重の低下が緩やかで、変位がより大きかった。これにより、ガラス繊維と天然繊維とを含む繊維中の天然繊維の含有率が30重量%以上であると、より効果的に靭性を高めることできることが明らかとなった。   Further, as is apparent from FIG. 2, the content of natural fiber in the fiber is 15% by weight. No. 2 shows that the displacement after reaching the maximum load is No. of glass fiber only. Although it is larger than that of No. 1, the linearity (behavior) of the bending load curve is No. 1. It was similar to 1 and was relatively sharp linear. On the other hand, the content of natural fiber in the fiber is 30% by weight. The bending load curve of No. 3 has a no. Unlike 1, the decrease in load after reaching the maximum load was gradual and the displacement was greater. Thereby, it became clear that toughness can be more effectively improved when the content rate of the natural fiber in the fiber containing a glass fiber and a natural fiber is 30 weight% or more.

また、繊維中の天然繊維の含有率が高いほど靭性を高めることができ、繊維中の天然繊維の含有率が85重量%のNo.6の曲げ荷重曲線の線形は、最大荷重に達した後の荷重低下が極めて緩やかなNo.9の従来の自動車部品用材料の線形と極めて似ており、繊維中の天然繊維の含有率が85重量%に至るまでには十分に靭性が確保されることが明らかとなった。併せて剛性向上効果は繊維中の天然繊維の含有率が高くなるほど小さくなることを考慮すると、繊維中の天然繊維の含有率が85重量%以下であるのが好ましいことが明らかとなった。また、表1から明らかなように、シャルピー衝撃値を比較すると、繊維中の天然繊維の含有率が85重量%のNo.6では繊維を含まないNo.8と同等であり、繊維中の天然繊維の含有率が低くなりガラス繊維の含有率が高くなるほどシャルピー衝撃値が高くなることが明らかとなった。このことから、繊維中の天然繊維の含有率が85重量%以下であると、シャルピー衝撃値向上効果をも奏する点で好ましいことが明らかとなった。これらのことから、繊維中の天然繊維の含有率は30〜85重量%とすることが好ましいことが明らかとなった。   Further, the higher the content of the natural fiber in the fiber, the higher the toughness, and the content of the natural fiber in the fiber is 85% by weight. The bending load curve of No. 6 shows that the load drop after reaching the maximum load is extremely slow. It was found that the toughness was sufficiently ensured until the content of natural fibers in the fibers reached 85% by weight. In addition, considering that the effect of improving the rigidity becomes smaller as the content of the natural fiber in the fiber becomes higher, it has become clear that the content of the natural fiber in the fiber is preferably 85% by weight or less. Further, as is apparent from Table 1, when the Charpy impact value is compared, the natural fiber content in the fiber is No. 85% by weight. No. 6 contains no fiber. It was clarified that the Charpy impact value increases as the content of natural fibers in the fiber decreases and the content of glass fibers increases. From this, it became clear that it is preferable that the content of natural fibers in the fibers is 85% by weight or less in that the effect of improving the Charpy impact value is also achieved. From these, it became clear that the content of natural fibers in the fibers is preferably 30 to 85% by weight.

また、図2から明らかなように、繊維中の天然繊維の含有率が50重量%のNo.4の曲げ荷重曲線の線形は、最大荷重に達する線形の頂点がはっきりしない程、最大荷重に達する前後の荷重変化が緩やかで、No.9の従来の自動車部品用材料の線形により近づいていた。そして、繊維中の天然繊維の含有率が70重量%のNo.5では最大荷重に達した後の荷重低下が一層緩やかになるとともに変位量が飛躍的に伸び、繊維中の天然繊維の含有率が70重量%に達するまでには従来の自動車部品用材料と遜色ない靭性を確保可能であることが明らかとなった。繊維中の天然繊維の含有率が高くなるほど剛性向上効果が小さくなることを考慮すると、靭性をある程度確保しながら剛性をより高める観点で、繊維中の天然繊維の含有率を30〜70重量%とするのがより好ましいことが明らかとなった。また、靭性をより従来の自動車部品用材料と略同レベルで確保しながら剛性を高める観点で、繊維中の天然繊維の含有率を50〜70重量%とするのが最も好ましいことが明らかとなった。   Further, as is apparent from FIG. 2, the content of natural fiber in the fiber is No. 50% by weight. The bending load curve of No. 4 shows that the load change before and after reaching the maximum load is so gentle that the peak of the line reaching the maximum load is not clear. It was closer to the alignment of nine conventional automotive part materials. And No. whose content rate of the natural fiber in a fiber is 70 weight%. In 5, the load drop after reaching the maximum load becomes more gradual and the amount of displacement increases dramatically. By the time natural fiber content in the fiber reaches 70% by weight, it is inferior to the conventional materials for automobile parts. It became clear that no toughness could be secured. Considering that the effect of improving the rigidity becomes smaller as the content of the natural fiber in the fiber becomes higher, the content of the natural fiber in the fiber is 30 to 70% by weight from the viewpoint of increasing the rigidity while securing toughness to some extent. It became clear that it was more preferable. In addition, it is clear that the content of natural fibers in the fiber is most preferably 50 to 70% by weight from the viewpoint of increasing rigidity while securing toughness at a level substantially the same as that of conventional automotive parts materials. It was.

[試験例3]
試験例3では、試験例2と同じ原材料を用い、繊維含有率の異なる繊維強化プラスチックを射出成形し、板状の試験片を作成した。繊維強化プラスチック中の繊維含有率は、10、15、25、30重量%とし、更に、各繊維含有率において、繊維中の天然繊維率が0、50、100重量%である試験片を作成した。ただし、繊維含有率が30重量%の場合については、繊維中の天然繊維の含有率を50、70重量%とした。作成した各試験片について曲げ剛性を測定した。その結果を、繊維中の天然繊維の含有率と、それに対応する曲げ剛性を示すグラフとして図3」に示した。図3のグラフには、上記試験例2における繊維含有率20重量%の繊維強化プラスチック(No.1〜7)と、対照の繊維を含まないポリプロピレン(No.8)及び従来の自動車部材用材料(No.9)の曲げ試験の測定結果も併せて示した。
[Test Example 3]
In Test Example 3, the same raw materials as in Test Example 2 were used, and fiber reinforced plastics having different fiber contents were injection molded to produce a plate-shaped test piece. The fiber content in the fiber reinforced plastic was set to 10, 15, 25, 30% by weight, and furthermore, for each fiber content, a test piece having a natural fiber content of 0, 50, 100% by weight was prepared. . However, when the fiber content was 30% by weight, the content of natural fibers in the fiber was 50, 70% by weight. The bending rigidity was measured for each prepared test piece. The results are shown in FIG. 3 ”as a graph showing the content of natural fibers in the fibers and the corresponding bending rigidity. The graph of FIG. 3 shows the fiber reinforced plastic (No. 1 to 7) having a fiber content of 20% by weight in Test Example 2 above, polypropylene (No. 8) containing no control fiber, and a conventional material for automobile members. The measurement results of the bending test (No. 9) are also shown.

図3から明らかなように、繊維を含む繊維強化プラスチックは、繊維を含まないNo.8に比べて曲げ剛性が高められることが改めて確認された。また、繊維中の天然繊維率が同じであれば、繊維強化プラスチック中の繊維率が高いほど曲げ剛性が高められ、逆に繊維率が低いほど繊維を含まない熱可塑性樹脂に対する剛性向上効果は小さくなることが改めて明らかとなった。ここで、上記試験例2で明らかになったように、シャルピー衝撃値向上効果をも奏することを考慮した繊維中の天然繊維率の最大値である85重量%の場合に注目すると、繊維強化プラスチック中の繊維含有率が10重量%で曲げ剛性がNo.9の従来の自動車部材用材料と同等に確保可能であることが明らかとなった。これにより、繊維強化プラスチック中の繊維含有率が10重量%以上であり、且つ繊維中の天然繊維率を85重量%以下とすることで、繊維を含まないポリプロピレンに対してシャルピー衝撃値向上効果を発揮可能とし、且つ、曲げ剛性を従来の自動車部材用材料と比較しても高いレベルまで高められることが明らかとなった。
As is apparent from FIG. 3, the fiber reinforced plastic containing fibers is No. 1 containing no fibers. It was reconfirmed that the bending rigidity was increased compared to 8. In addition, if the natural fiber ratio in the fiber is the same, the higher the fiber ratio in the fiber reinforced plastic, the higher the bending rigidity, and conversely, the lower the fiber ratio, the smaller the rigidity improvement effect for thermoplastic resins that do not contain fibers. It became clear again. Here, as clarified in Test Example 2 above, focusing on the case of 85% by weight, which is the maximum value of the natural fiber ratio in the fiber considering that the effect of improving the Charpy impact value is also obtained, the fiber reinforced plastic The fiber content is 10% by weight and the bending rigidity is No. It became clear that it can be ensured equivalent to 9 conventional automotive member materials. As a result, the fiber content in the fiber reinforced plastic is 10% by weight or more, and the natural fiber content in the fiber is 85% by weight or less. It has been clarified that the bending rigidity can be increased to a high level even when compared with a conventional material for automobile members.

Claims (2)

繊維と樹脂とを含有する自動車部材用繊維強化プラスチックであって、
前記繊維として天然繊維と該天然繊維よりも硬い補強繊維とを含み、
前記樹脂は熱可塑性樹脂であり、
前記天然繊維は繊維長が5mm以下であり、
前記繊維を混合して射出成形してなる自動車部材用繊維強化プラスチック。
A fiber reinforced plastic for automobile parts containing fiber and resin,
Including natural fibers and reinforcing fibers harder than the natural fibers as the fibers,
The resin is a thermoplastic resin;
The natural fiber has a fiber length of 5 mm or less,
A fiber reinforced plastic for automobile parts, which is formed by mixing the fibers and injection molding.
前記繊維強化プラスチック中の前記繊維の含有率が10重量%以上であり、
前記繊維中の前記天然繊維の含有率が30〜85重量%である請求項1に記載の自動車部材用繊維強化プラスチック。
The fiber content in the fiber reinforced plastic is 10% by weight or more,
The fiber reinforced plastic for automobile parts according to claim 1, wherein the content of the natural fiber in the fiber is 30 to 85% by weight.
JP2010060747A 2010-03-17 2010-03-17 Fiber reinforced plastic for automotive parts Active JP5589465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060747A JP5589465B2 (en) 2010-03-17 2010-03-17 Fiber reinforced plastic for automotive parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060747A JP5589465B2 (en) 2010-03-17 2010-03-17 Fiber reinforced plastic for automotive parts

Publications (2)

Publication Number Publication Date
JP2011195615A true JP2011195615A (en) 2011-10-06
JP5589465B2 JP5589465B2 (en) 2014-09-17

Family

ID=44874252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060747A Active JP5589465B2 (en) 2010-03-17 2010-03-17 Fiber reinforced plastic for automotive parts

Country Status (1)

Country Link
JP (1) JP5589465B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084976A1 (en) * 2011-12-07 2013-06-13 トヨタ車体株式会社 Engine cover
WO2013183440A1 (en) 2012-06-05 2013-12-12 トヨタ車体株式会社 Thermoplastic resin composition
JPWO2016063914A1 (en) * 2014-10-21 2017-08-03 古河電気工業株式会社 Polyolefin resin composition, molded product and vehicle outer plate
US10626273B2 (en) 2016-08-31 2020-04-21 Toray Industries, Inc. Resin composition and molded article thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108161A (en) * 1980-12-24 1982-07-06 Iwao Hishida Composite resin composition
JPH08151485A (en) * 1994-11-29 1996-06-11 Sekisui Chem Co Ltd Polypropylene resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108161A (en) * 1980-12-24 1982-07-06 Iwao Hishida Composite resin composition
JPH08151485A (en) * 1994-11-29 1996-06-11 Sekisui Chem Co Ltd Polypropylene resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084976A1 (en) * 2011-12-07 2013-06-13 トヨタ車体株式会社 Engine cover
US20140354014A1 (en) * 2011-12-07 2014-12-04 Toyota Shatai Kabushiki Kaisha Engine cover
WO2013183440A1 (en) 2012-06-05 2013-12-12 トヨタ車体株式会社 Thermoplastic resin composition
JPWO2016063914A1 (en) * 2014-10-21 2017-08-03 古河電気工業株式会社 Polyolefin resin composition, molded product and vehicle outer plate
US11485841B2 (en) 2014-10-21 2022-11-01 Furukawa Electric Co., Ltd. Polyolefin resin composition, molded article, and outer panel for a vehicle
US10626273B2 (en) 2016-08-31 2020-04-21 Toray Industries, Inc. Resin composition and molded article thereof

Also Published As

Publication number Publication date
JP5589465B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
Maiti et al. Sustainable fiber‐reinforced composites: a Review
Arockiam et al. A review on PLA with different fillers used as a filament in 3D printing
Faruk et al. Lightweight and sustainable materials for automotive applications
JP5194938B2 (en) Method for producing vegetable fiber composite material
JP5762674B2 (en) Composite resin composition
KR20090033440A (en) Molded article and method for producing the same
KR20180031783A (en) Polyolefin compositions comprising hollow glass microspheres
JP5589465B2 (en) Fiber reinforced plastic for automotive parts
KR101526742B1 (en) A resin composition of carbon fiber reinforced polypropylene with excellent molding property
US20190299495A1 (en) Method for manufacturing structure material
JP4354776B2 (en) Carbon long fiber reinforced resin pellet, method for producing the same, and molded product
JP7022302B2 (en) Fiber composite material and manufacturing method of fiber composite material
US10053567B2 (en) Recycled polypropylene compositions and vehicular components
WO2018101022A1 (en) Composition for fiber-reinforced resin, production method therefor, fiber-reinforced resin, and molded object
JP5255541B2 (en) Propylene resin composition
CN108495866B (en) Resin composition for FRP, FRP sheet and molded product
JP2007112041A (en) Carbon filament reinforced resin molded article and its manufacturing method
KR20180024906A (en) Fiber-reinforced composite material and manufacturing method of interior and exterior ofvehicles using the same
KR102063602B1 (en) Fiber reinforced composite material sheet and method of manufacturing the same
JP2012224762A (en) Fiber-reinforced abs-based resin molding and method for producing the same
KR101782197B1 (en) Continuous fiber reinforced composite with well-impregnated and method for manufacturing of the same
Aliyeva et al. Interfacial engineered design of upcycled graphene and hemp fiber reinforced polypropylene compounds as an injection grade for overmoulding process with bio-based prepregs
KR20190018307A (en) Air bag housing for automobile and manufacture method of thereof
Jawad et al. TENSILE STRENGTH STUDY OF UNSATURATED POLYESTER/POLYVINYL CHLORIDE COMPOSITES REINFORCED WITH GLASSFIBERS
CN105440434B (en) Impact-modified injection-molded article and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250