JP2011195436A - Basic ceramic-containing slurry composition - Google Patents

Basic ceramic-containing slurry composition Download PDF

Info

Publication number
JP2011195436A
JP2011195436A JP2011037410A JP2011037410A JP2011195436A JP 2011195436 A JP2011195436 A JP 2011195436A JP 2011037410 A JP2011037410 A JP 2011037410A JP 2011037410 A JP2011037410 A JP 2011037410A JP 2011195436 A JP2011195436 A JP 2011195436A
Authority
JP
Japan
Prior art keywords
slurry composition
alkyl group
group
carbon atoms
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011037410A
Other languages
Japanese (ja)
Other versions
JP5666941B2 (en
Inventor
Shuichi Inaya
修一 稲家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44874104&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2011195436(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2011037410A priority Critical patent/JP5666941B2/en
Publication of JP2011195436A publication Critical patent/JP2011195436A/en
Application granted granted Critical
Publication of JP5666941B2 publication Critical patent/JP5666941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a basic ceramic-containing slurry composition enabling to improve both dispersibility and an antistatic property simultaneously.SOLUTION: The slurry composition includes (A) an anionic polymer dispersant comprising (a) a constitutional unit expressed by formula (1), (b) a constitutional unit expressed by formula (2) and (c) a constitutional unit expressed by formula (3); (B) an antistatic agent comprising at least one cation; a non-aqueous solvent; basic ceramic materials; and a binder resin.

Description

本発明は、塩基性セラミックス含有スラリー組成物に関する。   The present invention relates to a basic ceramic-containing slurry composition.

セラミックス成形品は、エレクトロセラミックス部品として高度な電子機器分野にも使用される。このようなセラミックス製電子部品の製造には、セラミックス原料微粉末及び分散剤を含有するスラリー組成物が使用される。とりわけ、電気機器分野で利用されるシート成形法によるセラミックス成形品(電子部品)の製造では、セラミックス原料の微粉化、スラリー組成物中のセラミックス原料微粉末の分散性の向上(すなわち粘度の低下)、及び焼成前のセラミックスシート(グリーンシート)の帯電防止性が要求される。スラリー組成物の粘度が高いとセラミックス成形品の平滑性低下やボイド、クラックなどの欠陥が生じやすくなる。また、セラミックスシートが帯電すると静電気によりくずが付着しやすくなり不良品率が増加し製品精度が低下する。   Ceramic molded products are also used in the field of advanced electronic equipment as electroceramic parts. In the manufacture of such ceramic electronic parts, a slurry composition containing a ceramic raw material fine powder and a dispersant is used. In particular, in the manufacture of ceramic molded products (electronic parts) by the sheet molding method used in the field of electrical equipment, the ceramic raw material is pulverized and the dispersibility of the ceramic raw material fine powder in the slurry composition is improved (ie, the viscosity is reduced). And antistatic property of the ceramic sheet (green sheet) before firing is required. When the viscosity of the slurry composition is high, defects such as a decrease in smoothness and voids and cracks of the ceramic molded product are likely to occur. In addition, when the ceramic sheet is charged, debris is likely to adhere due to static electricity, increasing the defective product rate and reducing the product accuracy.

特許文献1は、ポリオキシアルキレン誘導体及びマレイン酸を含むポリカルボン酸系共重合体分散剤と、セラミックス原料粉末とを含むセラミックス製造用スラリー組成物を開示する。また、特許文献2は、アミジニウムカチオンを構成成分とする有機塩酸を含む分散剤を利用したセラミックス製造用スラリー組成物を開示する。   Patent Document 1 discloses a slurry composition for producing ceramics, which includes a polycarboxylic acid copolymer dispersant containing a polyoxyalkylene derivative and maleic acid, and a ceramic raw material powder. Patent Document 2 discloses a slurry composition for producing ceramics using a dispersant containing organic hydrochloric acid containing an amidinium cation as a constituent component.

特開2007−261911号公報JP 2007-261911 A 特開2002−321981号公報JP 2002-321981 A

従来から塩基性セラミックス原料の微粉化にともない、アニオン性高分子分散剤によるセラミックス原料微粉末の分散性の向上は試みられているが、分散性の向上とセラミックスシートの帯電防止性の向上とは両立が困難である。一般に帯電防止効果が優れているアニオン性帯電防止剤は、それ自身が塩基性セラミックス原料に吸着し、ブリードアウトしにくくなるために十分な帯電防止効果が得られない。また、カチオン性帯電防止剤は、セラミックス原料の分散剤として用いられるアニオン性高分子分散剤との相互作用により、同様に、ブリードアウトしにくくなるために十分な帯電防止効果が得られない。また、近年、セラミックスの小型化、高速化、高容量化等のためセラミックスシートの薄膜化が進められているため、分散性及び帯電防止性に優れたセラミックス製造用スラリー組成物が求められている。   Conventionally, with the fine powdering of basic ceramic raw materials, attempts have been made to improve the dispersibility of ceramic raw material powders with anionic polymer dispersants. What are the improvements in dispersibility and the antistatic properties of ceramic sheets? It is difficult to achieve both. In general, an anionic antistatic agent having an excellent antistatic effect is adsorbed on a basic ceramic raw material and is difficult to bleed out, so that a sufficient antistatic effect cannot be obtained. In addition, the cationic antistatic agent is not likely to bleed out due to the interaction with the anionic polymer dispersant used as a dispersant for the ceramic raw material, so that a sufficient antistatic effect cannot be obtained. In recent years, ceramic sheets have been made thinner to reduce the size, speed, capacity, etc. of ceramics, and therefore there is a need for a slurry composition for producing ceramics that has excellent dispersibility and antistatic properties. .

本発明は、塩基性セラミックス材料の分散性の向上とセラミックシートの帯電防止性の向上の両立が可能な、塩基性セラミックスを含有するスラリー組成物を提供する。   The present invention provides a slurry composition containing basic ceramics capable of improving both dispersibility of a basic ceramic material and antistatic properties of a ceramic sheet.

本発明におけるスラリー組成物は、下記一般式(1)で表される構成単位(a)と下記一般式(2)で表される構成単位(b)と下記一般式(3)で表される構成単位(c)とを含有するアニオン性高分子分散剤(A)、イミダゾリニウム、イミダゾリウム、ピリジニウム、及びピロリジニウムからなる群から選ばれる少なくとも1種のカチオンを有する帯電防止剤(B)、非水系溶媒、塩基性セラミックス材料、並びにバインダー樹脂を含有するスラリー組成物に関する。   The slurry composition in the present invention is represented by the structural unit (a) represented by the following general formula (1), the structural unit (b) represented by the following general formula (2), and the following general formula (3). An anionic polymer dispersant (A) containing a structural unit (c), an antistatic agent (B) having at least one cation selected from the group consisting of imidazolinium, imidazolium, pyridinium, and pyrrolidinium; The present invention relates to a slurry composition containing a non-aqueous solvent, a basic ceramic material, and a binder resin.

Figure 2011195436
[前記式(1)及び(2)中、R1、R2、R3、R4、R5及びR6は同一又は異なり水素原子又は炭素数1〜2のアルキル基を示し、R7は炭素数1〜4の直鎖又は分岐鎖のアルキレン基を示し、R8は水素原子又は炭素数1〜2のアルキル基を示し、X1は酸素原子又はNHを示し、Mは水素原子又は陽イオンを示し、nは1〜50の数を示す。
前記式(3)中、R9、R10及びR11は同一又は異なり水素原子又は炭素数1〜2のアルキル基を示し、X2は酸素原子又はNHを示し、R12及びR13は炭素数1〜30の直鎖、分岐鎖若しくは環状のアルキル基若しくはアルケニル基又はアリール基を示す。]
Figure 2011195436
[In the formula (1) and (2), R 1, R 2, R 3, R 4, R 5 and R 6 are the same or different hydrogen atom or an alkyl group having a carbon number of 1 to 2, R 7 is A linear or branched alkylene group having 1 to 4 carbon atoms, R 8 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X 1 represents an oxygen atom or NH, and M represents a hydrogen atom or a positive chain. Represents an ion, and n represents a number of 1 to 50.
In the formula (3), R 9 , R 10 and R 11 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X 2 represents an oxygen atom or NH, and R 12 and R 13 represent carbon. A linear, branched or cyclic alkyl group, alkenyl group or aryl group having a number of 1 to 30 is shown. ]

本発明によれば、塩基性セラミックス材料の分散性の向上とセラミックシートの帯電防止性の向上の両立が可能な、塩基性セラミックスを含有するスラリー組成物の提供が可能となる。   According to the present invention, it is possible to provide a slurry composition containing basic ceramics that can achieve both improvement of dispersibility of the basic ceramic material and improvement of antistatic property of the ceramic sheet.

本発明は、一般式(1)で表される構成単位(a)と一般式(2)で表される構成単位(b)と一般式(3)で表される構成単位(c)を含有する共重合体(アニオン性高分子分散剤A)と、所定のカチオン(帯電防止剤B)とを組み合わせれば、塩基性セラミックス含有スラリー組成物の分散性とセラミックシートの帯電防止性の両物性を向上できるという知見に基づく。両物性の向上の両立が可能となるメカニズムの詳細は不明であるが、以下のことが推定される。まず、高分子分散剤(A)の構成単位(a)が主として塩基性セラミックス材料表面へ強く吸着することで、該高分子分散剤が塩基性セラミックス材料表面から脱離することが抑制される。そして、該高分子分散剤の構成単位(c)が主として非水系溶媒中への再溶出を抑制するために、該高分子分散剤が塩基性セラミックス材料表面を被覆することができる。この被覆層(吸着層)における高分子分散剤の構成単位(b)が、主として塩基性セラミックス材料粒子間に強い立体的斥力をもたらすため、塩基性セラミックス材料粒子同士の凝集を抑制するために微分散性が向上する。さらに、帯電防止剤(B)は、分子内π電子の共役によるカチオンの非局在化、及び、環状構造による立体的な相互作用の阻害により、塩基性セラミックス原料に吸着しない。また、帯電防止剤(B)は、アニオン性高分子分散剤との相互作用も小さい。それゆえ、ブリードアウトが容易に起こり、帯電防止性が向上する。但し、これらは推定であって、本発明は、これらメカニズムに限定されない。   This invention contains the structural unit (a) represented by the structural unit (a) represented by General formula (1), the structural unit (b) represented by General formula (2), and General formula (3). Combination of the copolymer (anionic polymer dispersant A) and a predetermined cation (antistatic agent B), both the dispersibility of the basic ceramic-containing slurry composition and the antistatic property of the ceramic sheet Based on the knowledge that can be improved. The details of the mechanism that enables both physical properties to be improved are unknown, but the following is presumed. First, the structural unit (a) of the polymer dispersant (A) is mainly strongly adsorbed on the surface of the basic ceramic material, so that the polymer dispersant is prevented from being detached from the surface of the basic ceramic material. And since the structural unit (c) of the polymer dispersant mainly suppresses re-elution into the non-aqueous solvent, the polymer dispersant can coat the surface of the basic ceramic material. Since the structural unit (b) of the polymer dispersant in this coating layer (adsorption layer) mainly brings about a strong steric repulsion between the basic ceramic material particles, it is fine to suppress the aggregation of the basic ceramic material particles. Dispersibility is improved. Furthermore, the antistatic agent (B) does not adsorb to the basic ceramic material due to delocalization of the cation due to intramolecular π-electron conjugation and inhibition of steric interaction due to the cyclic structure. Further, the antistatic agent (B) has a small interaction with the anionic polymer dispersant. Therefore, bleed out occurs easily and antistatic properties are improved. However, these are estimations, and the present invention is not limited to these mechanisms.

すなわち、本発明は、一つの態様において塩基性セラミックス材料を含有するスラリー組成物(以下「本発明におけるスラリー組成物」ともいう。)であって、一般式(1)で表される構成単位(a)と一般式(2)で表される構成単位(b)と一般式(3)で表される構成単位(c)とを含有するアニオン性高分子分散剤(A)、イミダゾリニウム、イミダゾリウム、ピリジニウム、及びピロリジニウムからなる群から選ばれる少なくとも1種のカチオンを有する帯電防止剤(B)、非水系溶媒、塩基性セラミックス材料、並びにバインダー樹脂を含有するスラリー組成物に関する。本発明におけるスラリー組成物によれば、塩基性セラミックス材料の分散性と本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性の両物性を向上できるという効果が奏され得る。つまり、本発明におけるスラリー組成物は、第一に、非水系溶媒中において塩基性セラミックス材料(粉末)の良好な微分散性を実現できる。すなわち、塩基性セラミックス粒子を一次粒子径の状態又はそれに近い状態に分散できる。また、本発明におけるスラリー組成物は、第二に、セラミックス含有スラリー組成物から得られる焼成前のセラミックス成形品(セラミックスシート)の帯電を良好に防止できる。   That is, the present invention is a slurry composition containing a basic ceramic material in one embodiment (hereinafter also referred to as “slurry composition in the present invention”), which is a structural unit represented by the general formula (1) ( an anionic polymer dispersant (A) containing the structural unit (b) represented by a) and the general formula (2) and the structural unit (c) represented by the general formula (3), imidazolinium, The present invention relates to a slurry composition containing an antistatic agent (B) having at least one cation selected from the group consisting of imidazolium, pyridinium, and pyrrolidinium, a non-aqueous solvent, a basic ceramic material, and a binder resin. According to the slurry composition of the present invention, the effect of improving both the dispersibility of the basic ceramic material and the antistatic properties of the ceramic sheet before firing obtained using the slurry composition of the present invention can be achieved. . That is, first, the slurry composition in the present invention can realize good fine dispersibility of the basic ceramic material (powder) in a non-aqueous solvent. That is, the basic ceramic particles can be dispersed in a primary particle size state or a state close thereto. Secondly, the slurry composition in the present invention can satisfactorily prevent charging of a ceramic molded product (ceramic sheet) before firing obtained from the ceramic-containing slurry composition.

本明細書においてセラミックス材料の「微分散性」とは、セラミックス材料(粒子)が、一次粒子径の状態又はそれに近い状態で分散することをいう。微分散性が向上することにより、スラリー組成物の粘度が低減し、平滑性が高く、ボイド、クラックなどの欠陥が少ない良好なセラミックス成形品を得ることが可能となる。すなわち、スラリー組成物の粘度が低いほどセラミックス材料の「微分散性」に優れることになる。また、本明細書において「帯電防止性」とは、スラリー組成物を用いてセラミックス材料をシート状に成形して得られる焼成前のセラミックスシート(グリーンシート)の剥離帯電量の程度が低いことをいい、セラミックスシートの剥離帯電量が低いほどセラミックス材料の「帯電防止性」に優れることになる。   In the present specification, “fine dispersibility” of a ceramic material means that the ceramic material (particles) is dispersed in a state of a primary particle diameter or a state close thereto. By improving the fine dispersibility, it becomes possible to obtain a good ceramic molded article having a reduced viscosity of the slurry composition, high smoothness and few defects such as voids and cracks. That is, the lower the viscosity of the slurry composition, the better the “fine dispersibility” of the ceramic material. Further, in this specification, “antistatic property” means that the degree of peeling charge of a ceramic sheet (green sheet) before firing obtained by forming a ceramic material into a sheet shape using a slurry composition is low. The lower the amount of electrostatic charge on the ceramic sheet, the better the antistatic property of the ceramic material.

[構成単位(a)]
高分子分散剤(A)である共重合体における構成単位(a)は、下記一般式(1)で表される構成単位である。構成単位(a)はカルボキシル基又はそれが中和された基を有するものであり、塩基性セラミックス材料表面へ強く吸着することで、該高分子分散剤(共重合体)が塩基性セラミックス材料表面から脱離することを抑制する働きを有すると考えられる。
[Structural unit (a)]
The structural unit (a) in the copolymer which is the polymer dispersant (A) is a structural unit represented by the following general formula (1). The structural unit (a) has a carboxyl group or a neutralized group, and the polymer dispersant (copolymer) is strongly adsorbed to the surface of the basic ceramic material so that the polymer dispersant (copolymer) is on the surface of the basic ceramic material. It is considered that it has a function of suppressing the detachment from the surface.

Figure 2011195436
[前記一般式(1)において、R1、R2、及びR3は同一又は異なり、水素原子又は炭素数1〜2のアルキル基を示し、Mは水素原子又は陽イオンを示す。]
Figure 2011195436
[In the said General formula (1), R < 1 >, R < 2 > and R < 3 > are the same or different, and show a hydrogen atom or a C1-C2 alkyl group, M shows a hydrogen atom or a cation. ]

構成単位(a)としては、カルボキシル基を有する酸性モノマー(以下、酸性モノマー(a)という)由来の構成単位や、重合後に中和可能な酸性基を付加できるモノマー由来の構成単位などが挙げられる。また、構成単位(a)は、構成単位(b)を形成する非イオン性モノマーと共重合可能なエチレン性不飽和二重結合を有するモノマーに由来する構成単位であることが好ましい。構成単位(a)は、重合後にカルボキシル基を付加して得られるものであってもよい。   Examples of the structural unit (a) include a structural unit derived from an acidic monomer having a carboxyl group (hereinafter referred to as acidic monomer (a)), a structural unit derived from a monomer capable of adding an acidic group that can be neutralized after polymerization, and the like. . The structural unit (a) is preferably a structural unit derived from a monomer having an ethylenically unsaturated double bond copolymerizable with the nonionic monomer forming the structural unit (b). The structural unit (a) may be obtained by adding a carboxyl group after polymerization.

前記酸性モノマー(a)としては、下記一般式(8)で表されるモノマーが挙げられ、具体的には、(メタ)アクリル酸(塩)、クロトン酸(塩)などが挙げられるが、塩基性セラミックス材料の微分散性向上、及び高分子分散剤への構成単位(a)の導入の容易性の観点からから、(メタ)アクリル酸(塩)が好ましい。   Examples of the acidic monomer (a) include monomers represented by the following general formula (8), and specific examples include (meth) acrylic acid (salt) and crotonic acid (salt). (Meth) acrylic acid (salt) is preferable from the viewpoint of improving the fine dispersibility of the porous ceramic material and facilitating the introduction of the structural unit (a) into the polymer dispersant.

Figure 2011195436
[前記一般式(8)において、R1、R2、及びR3は同一又は異なり、水素原子又は炭素数1〜2のアルキル基が好ましく、Mは水素原子又は陽イオンが好ましい。]
Figure 2011195436
[In the said General formula (8), R < 1 >, R < 2 > and R < 3 > are the same or different, A hydrogen atom or a C1-C2 alkyl group is preferable, and M is a hydrogen atom or a cation. ]

前記一般式(1)及び(8)において、Mが陽イオンである場合、陽イオンとしては、特に制限されないが、一価の陽イオンが挙げられ、具体的には、Li+、Na+、K+など一価の金属イオン、及び、アンモニウムイオン、有機アンモニウムイオンなどが挙げられる。電子材料用途では、金属イオンの残存による電気特性への影響からアンモニウムイオン、有機アンモニウムイオンが好ましい。 In the general formulas (1) and (8), when M is a cation, the cation is not particularly limited, and examples thereof include monovalent cations. Specifically, Li + , Na + , Examples thereof include monovalent metal ions such as K + , ammonium ions, and organic ammonium ions. In electronic material applications, ammonium ions and organic ammonium ions are preferred because of the influence of residual metal ions on electrical characteristics.

前記一般式(1)及び(8)において、塩基性セラミックス材料の微分散性向上、及び高分子分散剤への構成単位(a)の導入の容易性の観点から、R1及びR2は水素原子であることが好ましく、R3は水素原子又はメチル基であることが好ましく、Mは水素原子であることが好ましい。 In the general formulas (1) and (8), R 1 and R 2 are hydrogen from the viewpoint of improving the fine dispersibility of the basic ceramic material and facilitating the introduction of the structural unit (a) into the polymer dispersant. Preferably, it is an atom, R 3 is preferably a hydrogen atom or a methyl group, and M is preferably a hydrogen atom.

また、重合後にカルボキシル基を付加させる方法としては、例えば高分子化合物中に存在する中和可能でない酸性基を中和可能な官能基に変換する方法が挙げられる。この場合、中和可能でない酸性基とは、例えばエステル基やアミド基が挙げられる。これらの中和可能でない酸性基を、例えば、加水分解してカルボキシル基とすることができる。   Moreover, as a method of adding a carboxyl group after polymerization, for example, a method of converting a non-neutralizable acidic group present in a polymer compound into a neutralizable functional group can be mentioned. In this case, examples of the acidic group that cannot be neutralized include an ester group and an amide group. These non-neutralizable acidic groups can be hydrolyzed to carboxyl groups, for example.

高分子分散剤(A)である共重合体を構成する全構成単位中の構成単位(a)の割合は、塩基性セラミックス材料への吸着率を高くし塩基性セラミックス材料の微分散性を向上する点から、5〜45重量%が好ましく、10〜40重量%がより好ましく、10〜35重量%がさらに好ましい。   The proportion of the structural unit (a) in all the structural units constituting the copolymer which is the polymer dispersant (A) increases the adsorption rate to the basic ceramic material and improves the fine dispersibility of the basic ceramic material. From the point which does, 5 to 45 weight% is preferable, 10 to 40 weight% is more preferable, and 10 to 35 weight% is further more preferable.

[構成単位(b)]
高分子分散剤(A)である共重合体における構成単位(b)は、下記一般式(2)で表される構成単位である。構成単位(b)は非イオン性であり、塩基性セラミックス材料粒子間に強い立体的斥力をもたらし、無機顔料粒子同士の凝集を抑制すると考えられる。
[Structural unit (b)]
The structural unit (b) in the copolymer which is the polymer dispersant (A) is a structural unit represented by the following general formula (2). The structural unit (b) is nonionic, and is considered to bring about a strong steric repulsion between the basic ceramic material particles and suppress aggregation of the inorganic pigment particles.

Figure 2011195436
[前記一般式(2)において、R4、R5及びR6は同一又は異なり、水素原子又は炭素数1〜2のアルキル基を示し、R7は炭素数1〜4の直鎖又は分岐鎖のアルキレン基を示し、R8は水素原子又は炭素数1〜2のアルキル基を示し、X1は酸素原子又はNHを示し、Mは水素原子又は陽イオンを示し、nは1〜50の数を示す。]
Figure 2011195436
[In the said General formula (2), R < 4 >, R < 5 > and R < 6 > are the same or different and show a hydrogen atom or a C1-C2 alkyl group, R < 7 > is a C1-C4 linear or branched chain R 8 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X 1 represents an oxygen atom or NH, M represents a hydrogen atom or a cation, and n represents a number from 1 to 50. Indicates. ]

構成単位(b)としては、非イオン性モノマー(以下、非イオン性モノマー(b)ともいう)由来の構成単位や、重合後に非イオン性基を導入できるモノマー由来の構成単位等が挙げられる。非イオン性基としては、ポリオキシエチレン基、ポリオキシプロピレン基等のポリオキシアルキレン基等が挙げられる。   Examples of the structural unit (b) include a structural unit derived from a nonionic monomer (hereinafter also referred to as a nonionic monomer (b)), a structural unit derived from a monomer capable of introducing a nonionic group after polymerization, and the like. Examples of nonionic groups include polyoxyalkylene groups such as polyoxyethylene groups and polyoxypropylene groups.

非イオン性モノマー(b)としては、例えばメトキシポリエチレングリコール(メタ)アクリレート、メトキシポリ(エチレングリコール/プロピレングリコール)モノ(メタ)アクリレート、エトキシポリ(エチレングリコール/プロピレングリコール)モノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2−メトキシエチル(メタ)アクリルアミド、2−エトキシエチル(メタ)アクリルアミド、3−メトキシプロピル(メタ)アクリルアミド等が挙げられる。   Examples of the nonionic monomer (b) include methoxypolyethylene glycol (meth) acrylate, methoxypoly (ethylene glycol / propylene glycol) mono (meth) acrylate, ethoxypoly (ethylene glycol / propylene glycol) mono (meth) acrylate, polyethylene glycol mono (Meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-methoxyethyl (meth) acrylamide, 2-ethoxyethyl (meth) acrylamide, 3-methoxypropyl (meth) acrylamide and the like.

これらの中では、非イオン性モノマー(b)としては、塩基性セラミックス材料の微分散性向上及び分散安定性の観点から、下記一般式(9)で表される非イオン性モノマーが好ましく、ポリエチレンオキシド鎖の重合度が1〜50であるメトキシポリエチレングリコール(メタ)アクリレートがより好ましい。   Among these, the nonionic monomer (b) is preferably a nonionic monomer represented by the following general formula (9) from the viewpoint of improving the fine dispersion of the basic ceramic material and the dispersion stability. Methoxypolyethylene glycol (meth) acrylate having an ethylene oxide chain polymerization degree of 1 to 50 is more preferred.

Figure 2011195436
[前記式(9)において、R4、R5及びR6は同一又は異なり、水素原子又は炭素数1〜2のアルキル基が好ましく、R7は炭素数1〜4の直鎖又は分岐鎖のアルキレン基が好ましく、R8は水素原子又は炭素数1〜2のアルキル基が好ましく、X1は酸素原子又はNHが好ましく、nは1〜50の数が好ましい。]
Figure 2011195436
[In the formula (9), R 4 , R 5 and R 6 are the same or different and are preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and R 7 is a linear or branched chain having 1 to 4 carbon atoms. An alkylene group is preferred, R 8 is preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X 1 is preferably an oxygen atom or NH, and n is preferably a number from 1 to 50. ]

前記一般式(2)及び(9)において、塩基性セラミックス材料の微分散性向上、及び高分子分散剤への構成単位(b)の導入の容易性の観点から、R4及びR5は水素原子が好ましく、R7はエチレン基又はプロピレン基が好ましく、より好ましくはエチレン基であり、X1は酸素原子が好ましい。また、前記一般式(2)及び(9)において、塩基性セラミックス材料の微分散性向上、及び無機顔料用高分子分散剤への構成単位(b)の導入の容易性の観点から、nは1〜50の数が好ましく、1〜40がより好ましく、1〜30がさらに好ましく、3〜30がさらにより好ましく、5〜30がさらにより好ましい。n個のR7は、同一でも異なっていても良い。 In the general formulas (2) and (9), R 4 and R 5 are hydrogen from the viewpoint of improving the fine dispersibility of the basic ceramic material and facilitating the introduction of the structural unit (b) into the polymer dispersant. An atom is preferable, R 7 is preferably an ethylene group or a propylene group, more preferably an ethylene group, and X 1 is preferably an oxygen atom. In the general formulas (2) and (9), from the viewpoint of improving the fine dispersibility of the basic ceramic material and ease of introduction of the structural unit (b) into the polymer dispersant for inorganic pigment, n is The number of 1-50 is preferable, 1-40 are more preferable, 1-30 are more preferable, 3-30 are still more preferable, 5-30 are still more preferable. The n R 7 s may be the same or different.

高分子分散剤(A)である共重合体を構成する全構成単位中の構成単位(b)の割合は、塩基性セラミックス材料の微分散性を高くする点から、50〜90重量%が好ましく、55〜85重量%がより好ましく、55〜80重量%がさらに好ましい。   The proportion of the structural unit (b) in all the structural units constituting the copolymer which is the polymer dispersant (A) is preferably 50 to 90% by weight from the viewpoint of increasing the fine dispersibility of the basic ceramic material. 55 to 85% by weight is more preferable, and 55 to 80% by weight is further preferable.

[構成単位(c)]
高分子分散剤(A)である共重合体における構成単位(c)は、下記一般式(3)で表される構成単位である。構成単位(c)は疎水性であり、塩基性セラミックス材料が非水系溶媒中へ再溶出することを抑制していると考えられる。
[Structural unit (c)]
The structural unit (c) in the copolymer which is the polymer dispersant (A) is a structural unit represented by the following general formula (3). The structural unit (c) is hydrophobic, and is considered to suppress re-elution of the basic ceramic material into the non-aqueous solvent.

Figure 2011195436
[前記一般式(3)において、R9、R10、及びR11は同一又は異なり、水素原子又は炭素数1〜2のアルキル基を示し、X2は酸素原子又はNHを示し、R12及びR13は炭素数1〜30のアルキル基若しくはアルケニル基又はアリール基を示す。]
Figure 2011195436
[In the general formula (3), R 9 , R 10 , and R 11 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X 2 represents an oxygen atom or NH, and R 12 and R 13 represents an alkyl group, alkenyl group or aryl group having 1 to 30 carbon atoms. ]

構成単位(c)としては、下記一般式(10)で表される疎水性モノマー(c)に由来する構成単位が挙げられる。   Examples of the structural unit (c) include structural units derived from the hydrophobic monomer (c) represented by the following general formula (10).

Figure 2011195436
[前記式(10)式中、R9、R10、及びR11は同一又は異なり、水素原子又は炭素数1〜2のアルキル基が好ましく、X2は酸素原子又はNHが好ましく、R12及びR13は炭素数1〜30の直鎖、分岐鎖若しくは環状のアルキル基若しくはアルケニル基又はアリール基が好ましい。]
Figure 2011195436
[In the formula (10), R 9 , R 10 , and R 11 are the same or different, preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X 2 is preferably an oxygen atom or NH, and R 12 and R 13 is preferably a linear, branched or cyclic alkyl group, alkenyl group or aryl group having 1 to 30 carbon atoms. ]

前記一般式(3)及び(10)の疎水性モノマー(c)において、塩基性セラミックス材料の微分散性向上、及び高分子分散剤への構成単位(c)の導入の容易性の観点から、R9及びR10は水素原子が好ましく、R11は水素原子又はメチル基が好ましく、R12は炭素数1〜22のアルキル基又はアルケニル基が好ましい。R12は、具体的にはメチル基、エチル基、(ノルマル又はイソ)プロピル基、ブチル基、オクチル基、2−エチルヘキシル基、デシル基、ラウリル基、ミリスチル基、セチル基、ステアリル基、オレイル基、ベヘニル基等が挙げられ、塩基性セラミックス材料の微分散性向上の観点から、メチル基、エチル基、(ノルマル又はイソ)プロピル基が好ましく、メチル基がより好ましい。同様の点から、X2は酸素原子が好ましく、R13は炭素数1〜22のアルキル基又はフェニル基が好ましく、塩基性セラミックス材料の微分散性向上の観点から、フェニル基がより好ましい。 In the hydrophobic monomers (c) of the general formulas (3) and (10), from the viewpoint of improving the fine dispersibility of the basic ceramic material and ease of introducing the structural unit (c) into the polymer dispersant, R 9 and R 10 are preferably hydrogen atoms, R 11 is preferably a hydrogen atom or a methyl group, and R 12 is preferably an alkyl group or alkenyl group having 1 to 22 carbon atoms. R 12 is specifically a methyl group, an ethyl group, a (normal or iso) propyl group, a butyl group, an octyl group, a 2-ethylhexyl group, a decyl group, a lauryl group, a myristyl group, a cetyl group, a stearyl group, an oleyl group. From the viewpoint of improving the fine dispersibility of the basic ceramic material, a methyl group, an ethyl group, and a (normal or iso) propyl group are preferable, and a methyl group is more preferable. From the same point, X 2 is preferably an oxygen atom, R 13 is preferably an alkyl group having 1 to 22 carbon atoms or a phenyl group, and a phenyl group is more preferable from the viewpoint of improving the fine dispersibility of the basic ceramic material.

前記一般式(10)の疎水性モノマー(c)の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどのエステル化合物、ブチル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミドなどのアミド化合物、1−デセン、1−オクタデセンなどのα―オレフィン及びスチレンが挙げられる。中でも、塩基性セラミックス材料の分散性及び分散安定性の観点から、メチル(メタ)アクリレート、ステアリル(メタ)アクリレート、スチレンが好ましく、メチル(メタ)アクリレート、スチレンがより好ましい。   Specific examples of the hydrophobic monomer (c) of the general formula (10) include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl. Ester compounds such as (meth) acrylate and behenyl (meth) acrylate, amide compounds such as butyl (meth) acrylamide, octyl (meth) acrylamide, lauryl (meth) acrylamide, stearyl (meth) acrylamide, and behenyl (meth) acrylamide, 1 -Α-olefins such as decene, 1-octadecene and styrene. Among these, from the viewpoint of dispersibility and dispersion stability of the basic ceramic material, methyl (meth) acrylate, stearyl (meth) acrylate, and styrene are preferable, and methyl (meth) acrylate and styrene are more preferable.

また、塩基性セラミックス材料の微分散性向上の観点から、全構成単位中の構成単位(c)の含有量は、非イオン性構成単位(b)に対する重量比(構成単位(c)/構成単位(b))で0.05〜0.7が好ましく、0.1〜0.6がより好ましく、0.1〜0.5がさらに好ましく、0.15〜0.4がさらにより好ましい。   Further, from the viewpoint of improving the fine dispersibility of the basic ceramic material, the content of the structural unit (c) in all the structural units is the weight ratio (structural unit (c) / structural unit to the nonionic structural unit (b). (B)) is preferably 0.05 to 0.7, more preferably 0.1 to 0.6, still more preferably 0.1 to 0.5, and even more preferably 0.15 to 0.4.

[アニオン性高分子分散剤(A)の調製]
高分子分散剤(A)は、構成単位(a)と構成単位(b)と構成単位(c)とを含有するアニオン性共重合体である。高分子分散剤(A)は、例えば、酸性モノマー(a)、非イオン性モノマー(b)、及び疎水性モノマー(c)を含むモノマー成分を溶液重合法で重合させるなど、公知の方法で得ることができる。本発明の一実施形態において、構成単位(a)の全構成単位中の割合(重量%)は、好ましくは、重合に用いる全モノマー成分における酸性モノマー(a)及び/又は重合後にカルボキシル基を付加できるモノマーの割合(重量%)とみなすことができる。また、構成単位(b)の全構成単位中の割合は、好ましくは、重合に用いる全モノマー成分における非イオン性モノマー(b)及び/又は重合後に非イオン性基を導入できるモノマーの割合(重量%)とみなすことができる。また、構成単位(c)の構成単位(b)に対する重量比(構成単位(c)/構成単位(b))は、好ましくは、重合に用いる全モノマー成分における疎水性モノマー(c)の、非イオン性モノマー(b)及び/又は重合後に非イオン性基を導入できるモノマーに対する重量比とみなすことができる。したがって、本発明は、その他の態様において、本発明の高分子分散剤の製造方法であって、酸性モノマー(a)及び/又は重合後にカルボキシル基を付加できるモノマー、非イオン性モノマー(b)及び/又は重合後に非イオン性基を導入できるモノマー、並びに、疎水性モノマー(c)を、それぞれ、前述した構成単位(a)、(b)及び(c)の含有量で含むモノマー成分を重合させることを含むことを含む製造方法である。
[Preparation of Anionic Polymer Dispersant (A)]
The polymer dispersant (A) is an anionic copolymer containing the structural unit (a), the structural unit (b), and the structural unit (c). The polymer dispersant (A) is obtained by a known method such as polymerizing a monomer component containing an acidic monomer (a), a nonionic monomer (b), and a hydrophobic monomer (c) by a solution polymerization method. be able to. In one embodiment of the present invention, the proportion (% by weight) of the structural unit (a) in the total structural units is preferably an acidic monomer (a) in all monomer components used for polymerization and / or a carboxyl group added after polymerization. It can be regarded as a proportion (% by weight) of monomer that can be produced. The proportion of the structural unit (b) in all the structural units is preferably the proportion (weight) of the nonionic monomer (b) and / or the monomer capable of introducing a nonionic group after the polymerization in all monomer components used in the polymerization. %). In addition, the weight ratio of the structural unit (c) to the structural unit (b) (structural unit (c) / structural unit (b)) is preferably set to the non-hydrophobic monomer (c) in all monomer components used in the polymerization. It can be regarded as the weight ratio to the ionic monomer (b) and / or the monomer capable of introducing a nonionic group after polymerization. Therefore, in another aspect, the present invention provides a method for producing the polymer dispersant of the present invention, which is an acidic monomer (a) and / or a monomer capable of adding a carboxyl group after polymerization, a nonionic monomer (b) and And / or a monomer component containing a monomer capable of introducing a nonionic group after polymerization and a hydrophobic monomer (c) with the contents of the structural units (a), (b) and (c) described above, respectively. It is a manufacturing method including including this.

溶液重合に用いられる溶媒としては、例えば芳香族系炭化水素(トルエン、キシレン等)、低級アルコール(エタノール、イソプロパノール等)、ケトン(アセトン、メチルエチルケトン)、テトラヒドロフラン、ジエチレングリコールジメチルエーテル等の有機溶媒を使用することができる。溶媒量(重量基準)は、モノマー全量に対し0.5〜10倍量が好ましい。   As a solvent used for solution polymerization, for example, an organic solvent such as aromatic hydrocarbon (toluene, xylene, etc.), lower alcohol (ethanol, isopropanol, etc.), ketone (acetone, methyl ethyl ketone), tetrahydrofuran, diethylene glycol dimethyl ether, etc. should be used. Can do. The amount of solvent (weight basis) is preferably 0.5 to 10 times the total amount of monomers.

重合開始剤としては、公知のラジカル重合開始剤を用いることができ、例えばアゾ系重合開始剤、ヒドロ過酸化物類、過酸化ジアルキル類、過酸化ジアシル類、ケトンぺルオキシド類等が挙げられる。重合開始剤量は、モノマー成分全量に対し0.01〜5モル%が好ましく、0.01〜3モル%がより好ましく、0.01〜1モル%がさらに好ましい。重合反応は、窒素気流下、60〜180℃の温度範囲で行うのが好ましく、反応時間は0.5〜20時間が好ましい。   As the polymerization initiator, known radical polymerization initiators can be used, and examples thereof include azo polymerization initiators, hydroperoxides, dialkyl peroxides, diacyl peroxides, and ketone peroxides. The amount of the polymerization initiator is preferably from 0.01 to 5 mol%, more preferably from 0.01 to 3 mol%, still more preferably from 0.01 to 1 mol%, based on the total amount of the monomer components. The polymerization reaction is preferably performed in a temperature range of 60 to 180 ° C. under a nitrogen stream, and the reaction time is preferably 0.5 to 20 hours.

重合の際には、さらに重合連鎖移動剤を添加してもよい。重合連鎖移動剤の具体例としては、オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−テトラデシルメルカプタン、メルカプトエタノール、3−メルカプト−1,2−プロパンジオール、メルカプトコハク酸等のメルカプタン類;チウラムジスルフィド類;炭化水素類;不飽和環状炭化水素化合物;不飽和ヘテロ環状化合物等が挙げられ、これらは、それぞれ単独で又は2種以上を混合して用いることができる。   In the polymerization, a polymerization chain transfer agent may be further added. Specific examples of the polymerization chain transfer agent include mercaptans such as octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-tetradecyl mercaptan, mercaptoethanol, 3-mercapto-1,2-propanediol and mercaptosuccinic acid. Thiuram disulfides; hydrocarbons; unsaturated cyclic hydrocarbon compounds; unsaturated heterocyclic compounds, and the like. These may be used alone or in admixture of two or more.

高分子分散剤(A)において、構成単位(a)、構成単位(b)、構成単位(c)の配列は、ランダム、ブロック、又はグラフトのいずれでも良い。また、前述の含有量の範囲をすべて満たす範囲で、これら構成単位以外の構成単位を含んでいてもよい。   In the polymer dispersant (A), the arrangement of the structural unit (a), the structural unit (b), and the structural unit (c) may be random, block, or graft. In addition, structural units other than these structural units may be included as long as the above-described content range is satisfied.

高分子分散剤(A)の重量平均分子量は、塩基性セラミックス材料の微分散性向上の観点から、1000〜20万が好ましく、2000〜20万がより好ましく、1.5万〜20万がさらに好ましく、1.5万〜10万がさらにより好ましく、2万〜10万がさらにより好ましい。また、塩基性セラミックス材料の平均粒径(後述するBET比表面積に基づく平均粒径)が100nm未満の小粒径(例えば、20〜80nm、好ましくは30〜70nm)の場合は、高分子分散剤(A)の重量平均分子量は、高分子分散剤(A)とバインダー樹脂(特にブチラール樹脂)との相互作用によるセラミックス粒子の凝集を抑制し、塩基性セラミックス材料の微分散性を向上する観点から1000〜17000が好ましく、1000以上15000未満がより好ましく、2000以上15000未満がさらに好ましく、2000〜10000がさらにより好ましく、4000〜10000がさらにより好ましく、6000〜8000がさらにより好ましい。なお、重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)により測定した値であり、測定条件の詳細は実施例に示す通りである。   The weight average molecular weight of the polymer dispersant (A) is preferably 1000 to 200,000, more preferably 2000 to 200,000, and more preferably 15,000 to 200,000 from the viewpoint of improving the fine dispersibility of the basic ceramic material. Preferably, 15,000 to 100,000 are even more preferable, and 20,000 to 100,000 are even more preferable. When the basic ceramic material has an average particle size (average particle size based on a BET specific surface area described later) of a small particle size of less than 100 nm (for example, 20 to 80 nm, preferably 30 to 70 nm), a polymer dispersant The weight average molecular weight of (A) is from the viewpoint of suppressing the aggregation of ceramic particles due to the interaction between the polymer dispersant (A) and the binder resin (particularly the butyral resin) and improving the fine dispersibility of the basic ceramic material. 1000 to 17000 is preferable, 1000 or more and less than 15000 is more preferable, 2000 or more and less than 15000 is more preferable, 2000 to 10000 is still more preferable, 4000 to 10000 is still more preferable, and 6000 to 8000 is even more preferable. The weight average molecular weight is a value measured by GPC (gel permeation chromatography), and details of the measurement conditions are as shown in the examples.

以上のようにして製造される高分子分散剤(A)は、非水系溶媒における塩基性セラミックス材料の微分散性に優れる。   The polymer dispersant (A) produced as described above is excellent in the fine dispersibility of the basic ceramic material in the non-aqueous solvent.

[帯電防止剤(B)]
本発明におけるスラリー組成物は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、イミダゾリニウム、イミダゾリウム、ピリジニウム、及びピロリジニウムからなる群から選ばれる少なくとも1種のカチオンを有する帯電防止剤(B)を含有する。
[Antistatic agent (B)]
The slurry composition according to the present invention includes imidazolinium and imidazolium from the viewpoint of improving the antistatic property of the ceramic sheet before firing and the dispersibility of the basic ceramic material obtained using the slurry composition according to the present invention. An antistatic agent (B) having at least one cation selected from the group consisting of pyridine, pyridinium, and pyrrolidinium.

イミダゾリニウムカチオンとしては、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、下記一般式(4)で表される化合物が好ましい。   The imidazolinium cation is represented by the following general formula (4) from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. The compounds represented are preferred.

Figure 2011195436
[前記式(4)中、R14は水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示し、R15は炭素数1〜21のアルキル基を示し、R16、R17は同一又は異なり水素原子又は炭素数1〜4のアルキル基を示す。]
Figure 2011195436
[The formula (4), R 14 represents a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms which may have a hydroxyl group, R 15 represents an alkyl group having 1 to 21 carbon atoms, R 16 , R 17 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. ]

前記一般式(4)で表される化合物は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、R14は水酸基を有していてもよい炭素数1〜2のアルキル基が好ましく、R15は炭素数7〜17のアルキル基が好ましく、R16及びR17は水素原子又は炭素数1〜2のアルキル基が好ましい。 The compound represented by the general formula (4) is selected from the viewpoints of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. 14 is preferably an alkyl group having 1 to 2 carbon atoms which may have a hydroxyl group, R 15 is preferably an alkyl group having 7 to 17 carbon atoms, and R 16 and R 17 are each a hydrogen atom or 1 to 2 carbon atoms. Alkyl groups are preferred.

前記一般式(4)で表される化合物は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、1,3−ジメチルイミダゾリニウム、1,3−ジメチル−2,4−ジエチルイミダゾリニウム、1,2−ジメチル−3,4−ジエチルイミダゾリニウム、1−メチル−2,3,4−トリエチルイミダゾリニウム、1,2,3−トリメチルイミダゾリニウム、1,3−ジメチル−2−エチルイミダゾリニウム、1−エチル−2,3−ジメチルイミダゾリニウム、1,2,3−トリエチルイミダゾリニウム、1−エチル−1−ヒドロキシエチル−2−プロピルイミダゾリニウム、1−エチル−1−ヒドロキシエチル−2−ヘプチルイミダゾリニウム、1−エチル−1−ヒドロキシエチル−2−ノニルイミダゾリニウム、1−エチル−1−ヒドロキシエチル−2−ウンデシルイミダゾリニウム、1−エチル−1−ヒドロキシエチル−2−ヘプタデセニルイミダゾリニウムが好ましい。これらのなかでも、同様の観点から、1−エチル−1−ヒドロキシエチル−2−ウンデシルイミダゾリニウム、及び−エチル−1−ヒドロキシエチル−2−ヘプタデセニルイミダゾリニウムがより好ましい。   The compound represented by the general formula (4) is 1 from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. , 3-dimethylimidazolinium, 1,3-dimethyl-2,4-diethylimidazolinium, 1,2-dimethyl-3,4-diethylimidazolinium, 1-methyl-2,3,4-triethylimidazole Linium, 1,2,3-trimethylimidazolinium, 1,3-dimethyl-2-ethylimidazolinium, 1-ethyl-2,3-dimethylimidazolinium, 1,2,3-triethylimidazolinium 1-ethyl-1-hydroxyethyl-2-propylimidazolinium, 1-ethyl-1-hydroxyethyl-2-heptylimidazolinium, -Ethyl-1-hydroxyethyl-2-nonylimidazolinium, 1-ethyl-1-hydroxyethyl-2-undecylimidazolinium, 1-ethyl-1-hydroxyethyl-2-heptadecenylimidazolinium Is preferred. Among these, 1-ethyl-1-hydroxyethyl-2-undecylimidazolinium and -ethyl-1-hydroxyethyl-2-heptadecenylimidazolinium are more preferable from the same viewpoint.

イミダゾリウムカチオンとしては、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、下記一般式(5)で表される化合物が好ましい。   The imidazolium cation is represented by the following general formula (5) from the viewpoint of improving the antistatic property of the ceramic sheet before firing and the dispersibility of the basic ceramic material obtained using the slurry composition of the present invention. Are preferred.

Figure 2011195436
[前記式(5)中、R19は水素原子又は水酸基を有していてもよい炭素数1〜4のアルキル基を示し、R18及びR20は同一又は異なり炭素数1〜4のアルキル基を示す。]
Figure 2011195436
[In the formula (5), R 19 represents an alkyl group having 1 to 4 carbon atoms which may have a hydrogen atom or a hydroxyl group, R 18 and R 20 are identical or different alkyl group of 1 to 4 carbon atoms Indicates. ]

前記一般式(5)で表される化合物は本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、R19は水素原子が好ましく、R18及びR19は炭素数1〜4のアルキル基が好ましい。 The compound represented by the general formula (5) is R 19 from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. Is preferably a hydrogen atom, and R 18 and R 19 are preferably an alkyl group having 1 to 4 carbon atoms.

前記一般式(5)で表される化合物は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、1−エチル−3−メチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウム、1,2,3−トリメチルイミダゾリウム、1,2,3−トリエチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム、2−ヒドロキシエチル−1,3−ジメチルイミダゾリウムが好ましい。これらのなかでも、同様の観点から、1−エチル−3−メチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウムがより好ましい。   The compound represented by the general formula (5) is 1 from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. -Ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,2,3-trimethylimidazolium, 1,2,3-triethylimidazolium, 1-ethyl-2,3-dimethylimidazolium 2-hydroxyethyl-1,3-dimethylimidazolium is preferred. Among these, 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium are more preferable from the same viewpoint.

ピリジニウムカチオンとしては、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、下記一般式(6)で表される化合物が好ましい。   The pyridinium cation is represented by the following general formula (6) from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. Are preferred.

Figure 2011195436
[前記式(6)中、R21は炭素数1〜4のアルキル基を示し、R22、R23、及びR24は同一又は異なり水素原子又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。]
Figure 2011195436
[In the formula (6), R 21 represents an alkyl group having 1 to 4 carbon atoms, and R 22 , R 23 , and R 24 may be the same or different and each may have a hydrogen atom or a hydroxyl group. 4 represents an alkyl group. ]

前記一般式(6)で表される化合物は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、R21は炭素数1〜2のアルキル基が好ましく、R22、R23、及びR24は水素原子又は水酸基を有していてもよい炭素数1〜2のアルキル基が好ましい。 The compound represented by the general formula (6) is R from the viewpoint of improving the antistatic property of the ceramic sheet before firing and the dispersibility of the basic ceramic material obtained using the slurry composition of the present invention. 21 is preferably an alkyl group having 1 to 2 carbon atoms, and R 22 , R 23 , and R 24 are preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms which may have a hydroxyl group.

前記一般式(6)で表される化合物は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、1−メチルピリジニウム、1−エチルピリジニウム、1−プロピルピリジニウム、1−ブチルピリジニウム、1−ブチル−3−メチルピリジニウム、1−エチル−3−メチルピリジニウム、1−エチル−3−ヒドロキシメチルピリジニウムが好ましい。これらのなかでも、同様の観点から、1−エチル−3−メチルピリジニウム、1−エチル−3−ヒドロキシメチルピリジニウムがより好ましい。   The compound represented by the general formula (6) is 1 from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. -Methylpyridinium, 1-ethylpyridinium, 1-propylpyridinium, 1-butylpyridinium, 1-butyl-3-methylpyridinium, 1-ethyl-3-methylpyridinium, 1-ethyl-3-hydroxymethylpyridinium are preferred. Among these, 1-ethyl-3-methylpyridinium and 1-ethyl-3-hydroxymethylpyridinium are more preferable from the same viewpoint.

ピロリジニウムカチオンとしては、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、下記一般式(7)で表される化合物が好ましい。   The pyrrolidinium cation is represented by the following general formula (7) from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. The compounds represented are preferred.

Figure 2011195436
[前記式(7)中、R25及びR26は同一又は異なり炭素数1〜4のアルキル基を示す。]
Figure 2011195436
[In the formula (7), R 25 and R 26 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms. ]

前記一般式(7)で表される化合物は本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、R25及びR26は炭素数1〜2のアルキル基が好ましい。 The compound represented by the general formula (7) is R 25 from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. And R 26 is preferably an alkyl group having 1 to 2 carbon atoms.

前記一般式(7)で表される化合物は本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、1,1−ジメチルピロリジニウム、1,1−ジエチルピロリジニウム、1−エチル−1−メチルピロリジニウム、1−ブチル−1−メチルピロリジニウム、1−メチル−1−プロピルピロリジニウムが好ましい。   The compound represented by the general formula (7) is obtained from the viewpoints of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. 1-dimethylpyrrolidinium, 1,1-diethylpyrrolidinium, 1-ethyl-1-methylpyrrolidinium, 1-butyl-1-methylpyrrolidinium, 1-methyl-1-propylpyrrolidinium are preferred. .

帯電防止剤(B)のカチオンとしては、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、前記一般式(5)で表される化合物(イミダゾリウムカチオン)又は前記一般式(6)で表される化合物(ピリジニウムカチオン)が好ましく、前記一般式(5)で表される化合物(イミダゾリウムカチオン)であることがより好ましい。   As the cation of the antistatic agent (B), the above general formula is used from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. The compound represented by (5) (imidazolium cation) or the compound represented by general formula (6) (pyridinium cation) is preferable, and is the compound represented by general formula (5) (imidazolium cation). It is more preferable.

帯電防止剤(B)は、一態様において、前述のカチオンそのものであってもよく、その他の態様において、アニオンとの塩であっても良い。塩としては、発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性の向上並びに微分散性と帯電防止性の両立の観点、並びに、電気特性の低下やさびの発生原因となりうるハロゲン化合物を含まないことから、有機アニオンとの塩が好ましい。   In one embodiment, the antistatic agent (B) may be the aforementioned cation itself, or in another embodiment, a salt with an anion. As the salt, the antistatic property of the ceramic sheet before firing obtained using the slurry composition in the invention is improved, the viewpoint of achieving both fine dispersion and antistatic properties, and the cause of the deterioration of electrical characteristics and the occurrence of rust. And a salt with an organic anion is preferable.

有機アニオンとしては、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、以下の有機酸化合物のアニオンが好ましい; ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ウンデカン酸、トリデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、ヘプタデカン酸、イソ酪酸、イソ吉草酸、イソカプロン酸、エチル酪酸、メチル吉草酸、イソカプリル酸、プロピル吉草酸、エチルカプロン酸、アクリル酸、クロトン酸、メタクリル酸、イソクロトン酸、3−ブテン酸、ペンテン酸、ヘキセン酸、ヘプチン酸、オクテン酸、ノネン酸、デセン酸、ウンデセン酸、ドデセン酸、オレイン酸、3−メチルクロトン酸などの飽和又は不飽和の脂肪族カルボン酸; トルイル酸、エチル安息香酸、プロピル安息香酸、イソプロピル安息香酸、ブチル安息香酸、イソブチル安息香酸、sec−ブチル安息香酸、tert−ブチル安息香酸、レゾルシン安息香酸、ヒドロキシ安息香酸、フェニル酢酸などの芳香族カルボン酸; メチルスルホン酸、エチルスルホン酸、メタンスルホン酸、エタンスルホン酸、1,2−エタンジスルホン酸、ビニルスルホン酸、(メタ)アリルスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、アルキル(炭素数8〜24)ベンゼンスルホン酸、アントラキノンスルホン酸、ナフタレンスルホン酸、ナフトールスルホン酸、スチレンスルホン酸などのスルホン酸化合物。これらの中でも、帯電防止剤(B)は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、メチルスルホン酸、エチルスルホン酸、メタンスルホン酸、及びエタンスルホン酸の塩であることが好ましい。   As the organic anion, anions of the following organic acid compounds are preferable from the viewpoint of improving the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and improving the dispersibility of the basic ceramic material. Formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, undecanoic acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, isobutyric acid, isovaleric acid, isocaproic acid, Ethyl butyric acid, methyl valeric acid, isocaprilic acid, propyl valeric acid, ethyl caproic acid, acrylic acid, crotonic acid, methacrylic acid, isocrotonic acid, 3-butenoic acid, pentenoic acid, hexenoic acid, heptonic acid, octenoic acid, nonenic acid, Decenoic acid, undecenoic acid, dodecenoic acid, oleic acid, 3-methyl Saturated or unsaturated aliphatic carboxylic acids such as rotonic acid; toluic acid, ethylbenzoic acid, propylbenzoic acid, isopropylbenzoic acid, butylbenzoic acid, isobutylbenzoic acid, sec-butylbenzoic acid, tert-butylbenzoic acid, resorcinol Aromatic carboxylic acids such as benzoic acid, hydroxybenzoic acid and phenylacetic acid; methylsulfonic acid, ethylsulfonic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, vinylsulfonic acid, (meth) allylsulfonic acid Sulfonic acid compounds such as p-toluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, alkyl (8 to 24 carbon atoms) benzenesulfonic acid, anthraquinonesulfonic acid, naphthalenesulfonic acid, naphtholsulfonic acid, and styrenesulfonic acid. Among these, the antistatic agent (B) is methylsulfone from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. Acid, ethylsulfonic acid, methanesulfonic acid, and ethanesulfonic acid salts are preferred.

帯電防止剤(B)の分子量は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、510以下が好ましく、400以下がより好ましく、300以下がさらに好ましく、100以上が好ましい。   The molecular weight of the antistatic agent (B) is preferably 510 or less from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. 400 or less is more preferable, 300 or less is more preferable, and 100 or more is preferable.

スラリー組成物における帯電防止剤(B)の含有量は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性の向上の観点から塩基性セラミックス材料に対して0.05重量%以上が好ましく、0.1重量%以上がより好ましい。また、バインダー樹脂の可塑性の増加を抑制してセラミックス成形品の強度を維持する観点から塩基性セラミックス材料に対して2重量%以下が好ましく、1.5重量%以下がより好ましい。スラリー組成物における帯電防止剤(B)の含有量は、塩基性セラミックス材料の微分散性と焼成前のスラリー組成物のセラミックスシートの強度維持の観点から塩基性セラミックス材料に対して0.05〜2重量%が好ましく、0.1〜1.5重量%がより好ましく、0.15〜1重量%がさらに好ましい。   The content of the antistatic agent (B) in the slurry composition is 0.05 with respect to the basic ceramic material from the viewpoint of improving the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention. % By weight or more is preferable, and 0.1% by weight or more is more preferable. Moreover, 2 weight% or less is preferable with respect to a basic ceramic material from a viewpoint of suppressing the increase in plasticity of binder resin and maintaining the intensity | strength of a ceramic molded article, and 1.5 weight% or less is more preferable. The content of the antistatic agent (B) in the slurry composition is 0.05 to from the basic ceramic material from the viewpoint of fine dispersion of the basic ceramic material and maintaining the strength of the ceramic sheet of the slurry composition before firing. 2 wt% is preferable, 0.1 to 1.5 wt% is more preferable, and 0.15 to 1 wt% is more preferable.

さらに、スラリー組成物における帯電防止剤(B)は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性の向上の観点から高分子分散剤(A)に対する含有量の比(B/A)(重量比)が0.05以上であることが好ましく、0.1以上であることが好ましく、0.2以上がより好ましく、0.3以上がさらに好ましい。また、スラリー組成物における帯電防止剤(B)の高分子分散剤(A)に対する含有量比(B/A)は、塩基性セラミックス材料の分散性の維持の観点から2.0以下が好ましく、1.5以下がより好ましく、1.0以下がさらに好ましい。スラリー組成物における帯電防止剤(B)の高分子分散剤(A)に対する含有量比(B/A)は本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の向上の両立の観点から、0.05〜2.0が好ましく、0.1〜2.0がより好ましく、0.2〜1.5がさらに好ましく、0.3〜1.0がよりさらに好ましい。   Furthermore, the antistatic agent (B) in the slurry composition has a content with respect to the polymer dispersant (A) from the viewpoint of improving the antistatic property of the ceramic sheet before firing obtained using the slurry composition in the present invention. The ratio (B / A) (weight ratio) is preferably 0.05 or more, preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.3 or more. The content ratio (B / A) of the antistatic agent (B) to the polymer dispersant (A) in the slurry composition is preferably 2.0 or less from the viewpoint of maintaining the dispersibility of the basic ceramic material, 1.5 or less is more preferable, and 1.0 or less is more preferable. The content ratio (B / A) of the antistatic agent (B) to the polymer dispersant (A) in the slurry composition is the antistatic property and base of the ceramic sheet before firing obtained using the slurry composition of the present invention. 0.05-2.0 is preferable, 0.1-2.0 is more preferable, 0.2-1.5 is further more preferable, and 0.3-1.0 is preferable from a viewpoint of coexistence of the improvement of the ceramic material. Is even more preferable.

[非水系溶媒]
本発明におけるスラリー組成物中の非水系溶媒は非水系(有機溶剤)であれば特に限定されないが、塩基性セラミックス材料の微分散性向上、及び前記高分子分散剤との相溶性の観点から、溶解度パラメータが20〜30(MPa)1/2であるものが好ましく、21〜26(MPa)1/2であるものがさらに好ましい。具体的には、キシレン(18.2)、酢酸エチル(18.2)、トルエン(18.3)、テトラハイドロフラン(18.5)、メチルエチルケトン(19.3)、アセトン(19.7)、ブチルセロソルブ(20.2)、ジメチルホルムアミド(24.7)、n−プロパノール(24.9)、エタノール(26.2)、ジメチルスルホキシド(26.4)、n−ブタノール(28.7)、メタノール(29.7)などの有機溶剤が挙げられる。( )内の数値は、溶解度パラメータである。なお、本明細書において、非水系溶媒の溶解度パラメータとは、Hildebrand Solubility Parametersのことをいう。
[Non-aqueous solvent]
The non-aqueous solvent in the slurry composition in the present invention is not particularly limited as long as it is a non-aqueous (organic solvent), but from the viewpoint of improving the fine dispersion of the basic ceramic material and compatibility with the polymer dispersant, The solubility parameter is preferably 20 to 30 (MPa) 1/2 , and more preferably 21 to 26 (MPa) 1/2 . Specifically, xylene (18.2), ethyl acetate (18.2), toluene (18.3), tetrahydrofuran (18.5), methyl ethyl ketone (19.3), acetone (19.7), Butyl cellosolve (20.2), dimethylformamide (24.7), n-propanol (24.9), ethanol (26.2), dimethyl sulfoxide (26.4), n-butanol (28.7), methanol ( Organic solvents such as 29.7). Numbers in parentheses are solubility parameters. In the present specification, the solubility parameter of the non-aqueous solvent refers to Hildebrand Solubility Parameters.

また、2種以上の有機溶剤を組み合わせて、適当な溶解度パラメータを調整することができる。このような混合溶剤の溶解度パラメータは、実験的に求めることもできるが、簡便な方法として、混合溶剤の各成分の溶解度パラメータと体積分率から計算して求めることもできる。例えば、トルエンとエタノールを体積分率50:50で混合した場合、その溶解度パラメータは、(18.3)×0.5+(26.2)×0.5=22.3となる。   In addition, an appropriate solubility parameter can be adjusted by combining two or more organic solvents. Although the solubility parameter of such a mixed solvent can be obtained experimentally, as a simple method, it can also be obtained by calculating from the solubility parameter and volume fraction of each component of the mixed solvent. For example, when toluene and ethanol are mixed at a volume fraction of 50:50, the solubility parameter is (18.3) × 0.5 + (26.2) × 0.5 = 22.3.

本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシート(グリーンシート)の帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、非水系溶媒は、高分子分散剤(A)の構成単位(c)が由来するモノマー(疎水性モノマー(c))との溶解度パラメータ差(Δsp)が2.0(MPa)1/2以上であることが好ましく、3.0(MPa)1/2以上がより好ましい。なお、本明細書において、モノマーの溶解度パラメータとはFedorsの方法[R.F.Fedors. Polym. Eng. Sci.,14,147(1974)]により計算された値をいう。 From the viewpoint of improving the antistatic property of the ceramic sheet before firing (green sheet) obtained using the slurry composition of the present invention and the dispersibility of the basic ceramic material, the non-aqueous solvent is a polymer dispersant ( The solubility parameter difference (Δsp) with respect to the monomer (hydrophobic monomer (c)) from which the structural unit (c) of A) is derived is preferably 2.0 (MPa) 1/2 or more, and 3.0 (MPa ) 1/2 or more is more preferable. In the present specification, the monomer solubility parameter means a value calculated by the Fedors method [RFFedors. Polym. Eng. Sci., 14, 147 (1974)].

[塩基性セラミックス材料]
一般に、セラミックス材料の表面は酸点、塩基点の両方をもっている。非水系溶媒中における酸及び塩基の強度は逆滴定法で求めることが可能であり、分散させたいセラミックス材料が酸性であるか塩基性であるか同定することができる。逆滴定法とは、あらかじめ濃度が既知である塩基性試薬(又は酸性試薬)を一定の割合で無機顔料と混合し、十分に中和させた後、遠心分離機などで、固液分離させ、その上澄み液を滴定し、減少した塩基性試薬の量(又は酸性試薬の量)から酸量(又は塩基量)を求める方法である。本発明において塩基量及び酸量は下記により求められる。
[Basic ceramic materials]
In general, the surface of a ceramic material has both an acid point and a base point. The strength of the acid and base in the non-aqueous solvent can be determined by a back titration method, and it can be identified whether the ceramic material to be dispersed is acidic or basic. The back titration method is a method in which a basic reagent (or acidic reagent) whose concentration is known in advance is mixed with an inorganic pigment at a certain ratio, sufficiently neutralized, and then solid-liquid separated with a centrifuge, The supernatant is titrated, and the acid amount (or base amount) is determined from the reduced amount of basic reagent (or acid reagent). In the present invention, the amount of base and the amount of acid are determined as follows.

1)塩基量の求め方
セラミックス材料2gを精秤(サンプル量)し、1/100N酢酸−トルエン/エタノール(容量比48:52)溶液30mLに入れ、超音波洗浄器(Branson社製、型式1510J−MT)で1時間分散処理する。24時間静置後、無機顔料分散液溶液の一部を遠心分離機(日立社製型式CP−56G)を用いて、25,000rpm、60分の条件で固液分離する。分離した液体部10mLをフェノールフタレイン指示薬が添加されているトルエン/エタノール溶剤(容量比2:1)20mLに加えた後、1/100N水酸化カリウム−エタノール溶液にて中和滴定する。この時の滴定量をXmL、1/100N酢酸−トルエン/エタノール(容量比48:52)10mLを中和するのに必要な滴定量をBmL、サンプル量をSgとすると、以下の式で、塩基量が求められる。
塩基量(μmol/g)=30×(B−X)/S
1) Determination of base amount 2 g of ceramic material is precisely weighed (sample amount) and placed in 30 mL of a 1 / 100N acetic acid-toluene / ethanol (volume ratio 48:52) solution, and an ultrasonic cleaner (Branson, model 1510J). -MT) for 1 hour. After standing for 24 hours, a part of the inorganic pigment dispersion solution is subjected to solid-liquid separation using a centrifuge (model CP-56G manufactured by Hitachi, Ltd.) at 25,000 rpm for 60 minutes. 10 mL of the separated liquid part is added to 20 mL of a toluene / ethanol solvent (volume ratio 2: 1) to which a phenolphthalein indicator is added, and then neutralized with a 1 / 100N potassium hydroxide-ethanol solution. Assuming that the titer at this time is XmL, the titer required to neutralize 10 mL of 1 / 100N acetic acid-toluene / ethanol (volume ratio 48:52) is BmL, and the sample amount is Sg, A quantity is required.
Base amount (μmol / g) = 30 × (BX) / S

2)酸量の求め方
セラミックス材料2gを精秤(サンプル量)し、1/100N n−ブチルアミン−トルエン/エタノール(容量比48:52)溶液30mLに入れ、超音波洗浄器(Branson社製、型式1510J−MT)で1時間分散処理する。24時間静置後、セラミックス材料溶液の一部を遠心分離機(日立社製型式CP−56G)を用いて、25,000rpm、60分の条件で固液分離する。分離した液体部10mLをブロムクレゾールグリーン指示薬が添加されているトルエン/エタノール溶剤(容量比2:1)20mLに加えた後、1/100N 塩酸−エタノール溶液にて中和滴定する。この時の滴定量をXmL、1/100N n−ブチルアミン−トルエン/エタノール(容量比48:52)10mLを中和するのに必要な滴定量をBmL、サンプル量をSgとすると、以下の式で、酸量が求められる。
酸量(μmol/g)=30×(B−X)/S
2) Determination of acid amount Weigh 2 g of ceramic material precisely (sample amount), put in 30 mL of 1 / 100N n-butylamine-toluene / ethanol (volume ratio 48:52) solution, ultrasonic cleaner (Branson, For 1 hour with a model 1510J-MT). After standing for 24 hours, a part of the ceramic material solution is subjected to solid-liquid separation using a centrifuge (model CP-56G manufactured by Hitachi, Ltd.) at 25,000 rpm for 60 minutes. 10 mL of the separated liquid part is added to 20 mL of a toluene / ethanol solvent (volume ratio 2: 1) to which bromocresol green indicator is added, and then neutralized with a 1 / 100N hydrochloric acid-ethanol solution. Assuming that the titer at this time is XmL, the titer required to neutralize 10 mL of 1 / 100N n-butylamine-toluene / ethanol (volume ratio 48:52) is BmL, and the sample amount is Sg, The amount of acid is required.
Acid amount (μmol / g) = 30 × (BX) / S

本明細書において、塩基性セラミックス材料とは、前記定義の塩基量が前記定義の酸量よりも大きな値をもつ無機化合物であり、具体的には、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウムなどの金属酸化物、及び、炭酸マグネシウム、炭酸バリウムなどの金属炭酸塩、ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウムなどの複合酸化物を含む。   In the present specification, the basic ceramic material is an inorganic compound in which the amount of base defined above is larger than the amount of acid defined above, specifically, titanium oxide, magnesium oxide, barium oxide, aluminum oxide. And metal oxides such as magnesium carbonate and barium carbonate, and complex oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate, and strontium titanate.

塩基性セラミックス材料の平均粒径は、スラリー組成物の取扱い及び成形の容易性の観点から500nm以下が好ましく、200nm以下がより好ましく、100nm以下がさらに好ましい。また、微分散性と帯電防止性の両立の観点から、5nm以上が好ましく、7nm以上がより好ましく、8nm以上がさらに好ましい。塩基性セラミックス材料の平均粒径としては、本発明におけるスラリー組成物の取扱い性、成形容易性、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性、及び塩基性セラミックス材料の分散性の向上の観点から、5〜500nmが好ましく、7〜200nmがより好ましく、8〜100nm以下がさらに好ましい。なお、本明細書において、塩基性セラミックス材料の平均粒径(BET比表面積に基づく平均粒径)は、好ましくは粉末状の塩基性セラミックス材料の平均粒径をいい、以下のようにして測定される。   The average particle size of the basic ceramic material is preferably 500 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less from the viewpoint of easy handling of the slurry composition and molding. Further, from the viewpoint of achieving both fine dispersion and antistatic properties, the thickness is preferably 5 nm or more, more preferably 7 nm or more, and further preferably 8 nm or more. The average particle size of the basic ceramic material includes the handleability of the slurry composition in the present invention, the ease of forming, the antistatic property of the ceramic sheet before firing obtained using the slurry composition in the present invention, and the basic ceramic material. From the viewpoint of improving the dispersibility of the material, 5 to 500 nm is preferable, 7 to 200 nm is more preferable, and 8 to 100 nm or less is more preferable. In the present specification, the average particle size of the basic ceramic material (average particle size based on the BET specific surface area) is preferably the average particle size of the powdered basic ceramic material, and is measured as follows. The

塩基性セラミックス材料の平均粒径は、粒子径R(m)の球と仮定して、窒素吸着法により測定されたBET比表面積S(m2/g)、無機微粒子の比重ρ(g/cm3)を用いて、求めることができる。すなわち、BET比表面積は単位重量当たりの表面積であるので、表面積をA(m2)、粒子の重量をW(g)とすると、
S(m2/g)=A(m2)/W(g)
=[4×π×(R/2)2]/[4/3×π×(R/2)3×ρ×106
=6/(R×ρ×106
の関係式が求められる。粒子径の単位を変換すると、
R(nm)=6000/(S×ρ)
の式となり、平均粒径(BET比表面積に基づく平均粒径)求めることができる。例えば、チタン酸バリウム(比重6.0)のBET比表面積が5.0(m2/g)であれば、その平均粒径(BET比表面積に基づく平均粒径)は、200nmとなる。
Assuming that the average particle diameter of the basic ceramic material is a sphere having a particle diameter R (m), the BET specific surface area S (m 2 / g) measured by the nitrogen adsorption method and the specific gravity ρ (g / cm) of the inorganic fine particles 3 ) can be used. That is, since the BET specific surface area is a surface area per unit weight, assuming that the surface area is A (m 2 ) and the weight of the particles is W (g),
S (m 2 / g) = A (m 2 ) / W (g)
= [4 × π × (R / 2) 2 ] / [4/3 × π × (R / 2) 3 × ρ × 10 6 ]
= 6 / (R × ρ × 10 6 )
Is obtained. When the unit of particle size is converted,
R (nm) = 6000 / (S × ρ)
The average particle diameter (average particle diameter based on BET specific surface area) can be obtained. For example, if the BET specific surface area of barium titanate (specific gravity 6.0) is 5.0 (m 2 / g), the average particle diameter (average particle diameter based on the BET specific surface area) is 200 nm.

一方、本明細書において、塩基性セラミックス材料の平均粒径は、走査型電子顕微鏡(好適には3000〜30000倍)又は透過型電子顕微鏡(好適には10000〜300000倍)の写真を画像解析することにより求めることができるものをいう。具体的には、拡大写真等を用い、個々の粒子の最大長を少なくとも200個の粒子について測定し、該長さを直径とする球の体積を算出し、小粒径側からの累積体積頻度が50%となる粒径(D50)を体積中位粒径とする。   On the other hand, in this specification, the average particle size of the basic ceramic material is obtained by image analysis of a photograph of a scanning electron microscope (preferably 3000 to 30000 times) or a transmission electron microscope (preferably 10,000 to 300000 times). It can be obtained by Specifically, using an enlarged photograph or the like, the maximum length of each particle is measured for at least 200 particles, the volume of a sphere having the length as a diameter is calculated, and the cumulative volume frequency from the small particle diameter side is calculated. Is the particle size (D50) at which the volume is 50%.

スラリー組成物における塩基性セラミックス材料の含有量としては、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、5〜60重量%が好ましく、10〜50重量%がより好ましく、15〜40重量%がさらに好ましい。また、塩基性セラミックス材料100重量部に対する高分子分散剤(A)の含有量は、塩基性セラミックス材料の粒径により異なるが、例えば、体積中位粒径(D50)が10〜500nmの塩基性セラミックス材料を使用する場合、0.1〜10重量部が好ましく、0.2〜5重量部がより好ましい。   As the content of the basic ceramic material in the slurry composition, from the viewpoint of coexistence of the antistatic property of the ceramic sheet before firing obtained using the slurry composition in the present invention and the improvement of the dispersibility of the basic ceramic material, 5-60 weight% is preferable, 10-50 weight% is more preferable, 15-40 weight% is further more preferable. In addition, the content of the polymer dispersant (A) with respect to 100 parts by weight of the basic ceramic material varies depending on the particle size of the basic ceramic material. For example, the basic material having a volume median particle size (D50) of 10 to 500 nm. When using ceramic material, 0.1-10 weight part is preferable and 0.2-5 weight part is more preferable.

[バインダー樹脂]
スラリー組成物は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの強度維持の観点からバインダー樹脂を含有する。バインダー樹脂として、ポリビニルアルコール、カチオン化でんぷん、メチルセルロース、エチルセルロース、ブチラール樹脂(ポリビニルブチラール)、(メタ)アクリルアミド重合体、(メタ)アクリル酸重合体、(メタ)アクリル酸アルキルエステル重合体、(メタ)アクリル酸と(メタ)アクリル酸アルキルエステルの共重合体、ポリビニルブチラール(ブチラール樹脂)などが挙げられ、中でも、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの可撓性の観点からエチルセルロース、ポリビニルブチラール(ブチラール樹脂)、(メタ)アクリル系樹脂が好ましく、ポリビニルブチラール(ブチラール樹脂)がより好ましい。
[Binder resin]
The slurry composition contains a binder resin from the viewpoint of maintaining the strength of the ceramic sheet before firing obtained using the slurry composition of the present invention. As binder resin, polyvinyl alcohol, cationized starch, methyl cellulose, ethyl cellulose, butyral resin (polyvinyl butyral), (meth) acrylamide polymer, (meth) acrylic acid polymer, (meth) acrylic acid alkyl ester polymer, (meth) Examples include acrylic acid and (meth) acrylic acid alkyl ester copolymers, polyvinyl butyral (butyral resin), and the like. Among them, the viewpoint of flexibility of the ceramic sheet before firing obtained using the slurry composition of the present invention. To ethyl cellulose, polyvinyl butyral (butyral resin), and (meth) acrylic resins are preferred, and polyvinyl butyral (butyral resin) is more preferred.

スラリー組成物におけるバインダー樹脂の含有量は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの強度維持及びバインダー機能発揮の観点から塩基性セラミックス材料に対して0.5重量%以上が好ましく、1重量%以上がより好ましく、2重量%以上がさらに好ましい。また、バインダー樹脂の含有量は、スラリー組成物の粘度低下の点から、20重量%以下が好ましく、15重量%以下がより好ましく、12重量%以下がさらに好ましい。バインダー樹脂の含有量は、本発明におけるスラリー組成物を用いて得られる焼成前のセラミックスシートの帯電防止性及び塩基性セラミックス材料の分散性の向上の両立の観点から、塩基性セラミックス材料に対して0.5〜20重量%が好ましく、より好ましくは1〜15重量%、さらに好ましくは2〜12重量%である。   The content of the binder resin in the slurry composition is 0.5% by weight or more based on the basic ceramic material from the viewpoint of maintaining the strength of the ceramic sheet before firing obtained using the slurry composition of the present invention and exhibiting the binder function. Is preferable, 1% by weight or more is more preferable, and 2% by weight or more is more preferable. Further, the content of the binder resin is preferably 20% by weight or less, more preferably 15% by weight or less, and still more preferably 12% by weight or less from the viewpoint of a decrease in the viscosity of the slurry composition. The content of the binder resin is based on the basic ceramic material from the viewpoint of both the antistatic property of the ceramic sheet before firing obtained using the slurry composition of the present invention and the improvement of the dispersibility of the basic ceramic material. 0.5-20 weight% is preferable, More preferably, it is 1-15 weight%, More preferably, it is 2-12 weight%.

[スラリー組成物の製造方法]
本発明におけるスラリー組成物は、高分子分散剤(A)を用いて塩基性セラミックス材料を非水系溶媒に分散させる工程を含む製造方法によって製造できる。前記の分散工程は、例えば、高分子分散剤(A)、塩基性セラミックス材料、及び非水系溶媒を、好ましくはジルコニアビーズと共に、混合することを含む。その後、帯電防止剤(B)及びバインダー樹脂を含む残りの成分を混合して本発明におけるスラリー組成物を得ることができる。各成分の含有量は上述を参照して決定できる。
[Method for producing slurry composition]
The slurry composition in this invention can be manufactured with the manufacturing method including the process of disperse | distributing a basic ceramic material to a non-aqueous solvent using a polymer dispersing agent (A). The dispersion step includes, for example, mixing the polymer dispersant (A), the basic ceramic material, and the non-aqueous solvent, preferably together with zirconia beads. Then, the remaining components including the antistatic agent (B) and the binder resin can be mixed to obtain the slurry composition in the present invention. The content of each component can be determined with reference to the above description.

[スラリー組成物]
本発明におけるスラリー組成物によれば、塩基性セラミックス材料の微細な分散と成形品の帯電防止性との両立を達成できる。本発明におけるスラリー組成物は、塩基性セラミックス材料の微分散性に優れるため、粒子の再凝集を抑制し、好ましくは塩基性セラミックス材料を平均粒径に近い状態で分散できる。すなわち、本発明によれば、スラリー組成物製造前のセラミックス材料の平均粒径とスラリー組成物中のセラミックス材料の平均粒径との比(スラリー組成物中のセラミックス材料の平均粒径/スラリー組成物製造前のセラミックス材料の平均粒径)が小さいスラリー組成物を提供できる。本発明におけるスラリー組成物は、該比を、好ましくは1〜1.9、より好ましくは1〜1.8、さらに好ましくは1〜1.7、さらにより好ましくは1〜1.5とすることができる。
[Slurry composition]
According to the slurry composition of the present invention, both the fine dispersion of the basic ceramic material and the antistatic property of the molded product can be achieved. Since the slurry composition in the present invention is excellent in fine dispersibility of the basic ceramic material, it can suppress reaggregation of the particles, and can preferably disperse the basic ceramic material in a state close to the average particle diameter. That is, according to the present invention, the ratio of the average particle size of the ceramic material before production of the slurry composition to the average particle size of the ceramic material in the slurry composition (average particle size of the ceramic material in the slurry composition / slurry composition) A slurry composition having a small average particle size) of the ceramic material before manufacturing the product can be provided. In the slurry composition of the present invention, the ratio is preferably 1 to 1.9, more preferably 1 to 1.8, still more preferably 1 to 1.7, and still more preferably 1 to 1.5. Can do.

また、本発明では、スラリー組成物における塩基性セラミックス材料の凝集粒子の発生度合は、D90/D50の比で定義され、この比が小さいほど凝集粒子が発生していないことを示す。したがって、本明細書において微分散性は、D90/D50の比を指標として評価できる。スラリー組成物における塩基性セラミックス材料のD90/D50は、1.0〜3.0が好ましく、1.0〜2.1がより好ましく、1.0〜1.9がさらに好ましい。なお、本明細書において、体積中位粒径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。同様に、体積粒径粒径(D90)とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して90%になる粒径を意味する。   Moreover, in this invention, the generation | occurrence | production degree of the aggregated particle of the basic ceramic material in a slurry composition is defined by ratio of D90 / D50, and it shows that the aggregated particle is not generated, so that this ratio is small. Therefore, in the present specification, the fine dispersibility can be evaluated using the ratio of D90 / D50 as an index. 1.0-3.0 are preferable, as for D90 / D50 of the basic ceramic material in a slurry composition, 1.0-2.1 are more preferable, and 1.0-1.9 are further more preferable. In the present specification, the volume median particle size (D50) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% when calculated from the smaller particle size. Similarly, the volume particle size particle size (D90) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 90% when calculated from the smaller particle size.

本発明におけるスラリー組成物は、電子機器分野に用いられるセラミックス成形品に用いることができる。例えば、シート、鋳込み、プレス、押出し、射出などの成形法により薄いシート状に成形する場合、本発明におけるスラリー組成物であれば、微分散性に優れるから薄く平坦性の良好なシート状成形品を容易に製造でき、またその成形品の帯電を良好に防止できる。   The slurry composition in the present invention can be used for a ceramic molded product used in the field of electronic equipment. For example, when forming into a thin sheet by a molding method such as sheet, casting, pressing, extrusion, injection, etc., the slurry composition according to the present invention is excellent in fine dispersibility, and thus is thin and has good flatness. Can be easily manufactured, and charging of the molded product can be satisfactorily prevented.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

[高分子分散剤(A)の合成]
高分子分散剤A1(MAA/PEGMA9/SMA)の合成
還流管、攪拌装置、温度計、窒素導入管を取り付けた、セパラブルフラスコにメタクリル酸(MAA:和光純薬工業社製試薬)2.25g、メタクリル酸ステアリル(SMA:新中村化学社製 NK−エステル S)2.25g、メトキシポリエチレングリコール(9)メタクリレート(PEGMA9:新中村化学社製 NK−エステル M−90G、エチレンオキサイドの平均付加モル数 9)10.5g、トルエン(和光純薬工業社製試薬)6.0gを仕込み、窒素置換し、65℃に加熱する。槽内が65℃に到達後、2,2’−アゾビス(2,4−ジメチルバレロニトリル)(V−65B:和光純薬工業社製)0.45g、トルエン2.5gの混合物を添加した。その後、メタクリル酸20.25g、メタクリル酸ステアリル20.25g、メトキシポリエチレングリコール(9)メタクリレート94.5g、トルエン90g、V−65B4.05gの混合液を3時間かけて滴下した。65℃で3hr攪拌後、冷却した。濃度調整のためにトルエンを添加し、高分子分散剤A1のトルエン溶液を得た。高分子分散剤溶液の不揮発分は39.4重量%で、高分子分散剤の重量平均分子量は44200であった。なお、高分子分散剤溶液の不揮発分は、以下のようにして測定した。シャーレにガラス棒と乾燥無水硫酸ナトリウム10gを量り取り、そこにポリマー溶液2gを入れ、ガラス棒で混合し、105℃の減圧乾燥機(圧力8kPa)で2hr乾燥する。乾燥後の重さを量り、次式より得られた値を不揮発分とした。
不揮発分={[サンプル量−(乾燥後の重さ−(シャーレの重さ+ガラス棒の重さ+無水硫酸ナトリウムの重さ))]/サンプル量}×100
[Synthesis of Polymer Dispersant (A)]
Synthesis of Polymer Dispersant A1 (MAA / PEGMA9 / SMA) 2.25 g of methacrylic acid (MAA: Wako Pure Chemical Industries, Ltd. reagent) in a separable flask equipped with a reflux tube, a stirrer, a thermometer, and a nitrogen introduction tube , Stearyl methacrylate (SMA: NK-ester S, manufactured by Shin-Nakamura Chemical Co., Ltd.), methoxypolyethylene glycol (9) methacrylate (PEGMA9: NK-ester M-90G, manufactured by Shin-Nakamura Chemical Co., Ltd.), average number of moles of ethylene oxide added 9) Charge 10.5 g and 6.0 g of toluene (reagent manufactured by Wako Pure Chemical Industries, Ltd.), purge with nitrogen and heat to 65 ° C. After the inside of the tank reached 65 ° C., a mixture of 0.42 g of 2,2′-azobis (2,4-dimethylvaleronitrile) (V-65B: manufactured by Wako Pure Chemical Industries, Ltd.) and 2.5 g of toluene was added. Thereafter, a mixed solution of 20.25 g of methacrylic acid, 20.25 g of stearyl methacrylate, 94.5 g of methoxypolyethylene glycol (9) methacrylate, 90 g of toluene and 4.05 g of V-65B was dropped over 3 hours. The mixture was stirred at 65 ° C. for 3 hours and then cooled. Toluene was added to adjust the concentration to obtain a toluene solution of the polymer dispersant A1. The nonvolatile content of the polymer dispersant solution was 39.4% by weight, and the weight average molecular weight of the polymer dispersant was 44200. The nonvolatile content of the polymer dispersant solution was measured as follows. A glass rod and 10 g of dry anhydrous sodium sulfate are weighed into a petri dish, and 2 g of the polymer solution is added thereto, mixed with the glass rod, and dried for 2 hours with a 105 ° C. vacuum dryer (pressure 8 kPa). The weight after drying was measured, and the value obtained from the following formula was defined as the nonvolatile content.
Nonvolatile content = {[sample amount− (weight after drying− (weight of petri dish + weight of glass rod + weight of anhydrous sodium sulfate)]] / sample amount} × 100

また、高分子分散剤A1の重量平均分子量は、下記条件のGPCにより測定した。下記のその他の高分子分散剤の重量平均分子量も同様に測定した。   Moreover, the weight average molecular weight of polymer dispersing agent A1 was measured by GPC of the following conditions. The weight average molecular weights of the following other polymer dispersants were also measured in the same manner.

高分子分散剤A2〜A7の合成
下記表1に示す原料と仕込み量を用いて、高分子分散剤A1と同様の方法にて、高分子分散剤A2〜A7を合成した。各高分子分散剤溶液の不揮発分と重量平均分子量も下記表1に記載する。下記表1において、MAAはメタクリル酸、PEGMAはメトキシポリエチレングリコールメタクリレート、SMAはステアリルメタクリレート、MMAはメチルメタクリレート、Stはスチレンを表す。
Synthesis of Polymer Dispersants A2 to A7 Polymer Dispersants A2 to A7 were synthesized in the same manner as Polymer Dispersant A1 using the raw materials and preparation amounts shown in Table 1 below. The nonvolatile content and the weight average molecular weight of each polymer dispersant solution are also shown in Table 1 below. In Table 1 below, MAA represents methacrylic acid, PEGMA represents methoxypolyethylene glycol methacrylate, SMA represents stearyl methacrylate, MMA represents methyl methacrylate, and St represents styrene.

〔重量平均分子量の測定法〕
溶離液を毎分1mlの流速で流し、40℃の恒温槽中でカラムを安定させた。そこに試料溶液100μLを注入して測定を行った。試料の分子量は、予め作成した検量線に基づき算出した。検量線の作成には、以下の単分散ポリスチレンを標準試料として用いた。
測定装置:HLC−8120GPC(東ソー社製)
測定条件:試料溶液 0.5wt%N,N−ジメチルホルムアミド(DMF)溶液
溶離液 :60mmol/L H3PO4,50mmol/L LiBr/ DMF
カラム :α−M + α−M(東ソー社製)
検出器 :示差屈折率
検量線 :東ソー社製 5.26×102、1.02×105、8.42×106;西尾工
業社製 4.0×103、3.0×104、9.0×105(数字はそれぞれ分子量)
[Measurement method of weight average molecular weight]
The eluent was flowed at a flow rate of 1 ml per minute, and the column was stabilized in a constant temperature bath at 40 ° C. Measurement was performed by injecting 100 μL of the sample solution. The molecular weight of the sample was calculated based on a calibration curve prepared in advance. For the preparation of the calibration curve, the following monodisperse polystyrene was used as a standard sample.
Measuring device: HLC-8120GPC (manufactured by Tosoh Corporation)
Measurement conditions: Sample solution 0.5 wt% N, N-dimethylformamide (DMF) solution Eluent: 60 mmol / L H 3 PO 4 , 50 mmol / L LiBr / DMF
Column: α-M + α-M (manufactured by Tosoh Corporation)
Detector: Differential refractive index calibration curve: 5.26 × 10 2 , 1.02 × 10 5 , 8.42 × 10 6 manufactured by Tosoh Corporation; 4.0 × 10 3 , 3.0 × 10 4 manufactured by Nishio Kogyo Co., Ltd. 9.0 × 10 5 (numbers are molecular weights)

[スラリー組成物の調製]
前述の高分子分散剤A1〜A7、後述する帯電防止剤B1〜B6、混合有機溶媒、チタン酸バリウム粉末、及びバインダー樹脂を用いて下記表2に示す実施例1〜11及び比較例1〜4のスラリー組成物を調製した(チタン酸バリウムの固形分濃度35%)。
[Preparation of slurry composition]
Examples 1 to 11 and Comparative Examples 1 to 4 shown in Table 2 below using the aforementioned polymer dispersants A1 to A7, antistatic agents B1 to B6 described later, mixed organic solvent, barium titanate powder, and binder resin. A slurry composition was prepared (solid content concentration of barium titanate 35%).

具体的には、チタン酸バリウム(BET比表面積より計算した平均粒径50nm)20g、アニオン性高分子分散剤(A)0.4g(有効分)を直径1mmのジルコニアビーズ50gと一緒に100mLの容器に入れ、トルエン/エタノール=48/52(容積比)の混合溶媒を加え、チタン酸バリウムの固形分濃度が50%になるように調整し、卓上型ボールミルにて、96時間、分散処理をおこなった。次いで、ブチラール樹脂1.6g、可塑剤としてジオクチルフタレート0.32g、帯電防止剤(B)0.16g、トルエン/エタノール=48/52(容積比)の混合溶媒を加えて、チタン酸バリウムの固形分濃度が35%になるように調整し、卓上型ボールミルにて、2時間混合し、スラリー組成物を得た。   Specifically, 20 g of barium titanate (average particle diameter of 50 nm calculated from the BET specific surface area) and 0.4 g of anionic polymer dispersant (A) (effective amount) together with 50 g of zirconia beads having a diameter of 1 mm are added to 100 mL. Put in a container, add a mixed solvent of toluene / ethanol = 48/52 (volume ratio), adjust the solid content concentration of barium titanate to 50%, and disperse for 96 hours with a desktop ball mill. I did it. Next, 1.6 g of butyral resin, 0.32 g of dioctyl phthalate as a plasticizer, 0.16 g of an antistatic agent (B), and a mixed solvent of toluene / ethanol = 48/52 (volume ratio) were added to form a solid barium titanate. The partial concentration was adjusted to 35% and mixed for 2 hours with a desktop ball mill to obtain a slurry composition.

帯電防止剤(B)として、以下のものを使用した。なお、B1については、特開2009−280744号公報に記載されている公知の方法にて合成し、B2〜B6については市販品を用いた。
B1:1−エチル−1−ヒドロキシエチル−2−ヘプタデセニルイミダゾリニウム・エチルサルフェート(1−ヒドロキシエチル−2−ヘプタデセニルイミダゾリンと硫酸ジエチルとを反応させて得られた反応物;分子量504.7、合成品)
B2:1−エチル−3−メチルイミダゾリウム・エチルサルフェート(分子量236.3、シグマアルドリッチ社製)
B3:1−ブチル−3−メチルイミダゾリウム・メチルサルフェート(分子量250.3、シグマアルドリッチ社製)
B4:1−エチル−3−メチルイミダゾリウムメタンスルホネート(分子量206.3、東京化成社製)
B5:1−エチル−3−メチルピリジニウムエチルサルフェート(分子量247.3、東京化成社製)
B6:1−エチル−3−ヒドロキシメチルピリジニウム・エチルサルフェート(分子量263.3、東京化成社製)
また、高分子分散剤C1として市販されているアニオン性高分子分散剤であるマリアリムAKM−0531(日本油脂社製)を使用し、帯電防止剤D1としてラウリルアミンのエチレンオキシド2モル付加物を硫酸ジエチルと反応させることで得られる4級アンモニウム塩(合成品)を用いた(下記表2、比較例2及び3)。
The following were used as the antistatic agent (B). In addition, about B1, it synthesize | combined by the well-known method described in Unexamined-Japanese-Patent No. 2009-280744, and the commercial item was used about B2-B6.
B1: 1-ethyl-1-hydroxyethyl-2-heptadecenylimidazolinium ethyl sulfate (a reaction product obtained by reacting 1-hydroxyethyl-2-heptadecenylimidazoline with diethyl sulfate; (Molecular weight 504.7, synthetic product)
B2: 1-ethyl-3-methylimidazolium ethyl sulfate (molecular weight 236.3, manufactured by Sigma-Aldrich)
B3: 1-butyl-3-methylimidazolium methylsulfate (molecular weight 250.3, manufactured by Sigma-Aldrich)
B4: 1-ethyl-3-methylimidazolium methanesulfonate (molecular weight 206.3, manufactured by Tokyo Chemical Industry Co., Ltd.)
B5: 1-ethyl-3-methylpyridinium ethyl sulfate (molecular weight 247.3, manufactured by Tokyo Chemical Industry Co., Ltd.)
B6: 1-ethyl-3-hydroxymethylpyridinium ethyl sulfate (molecular weight 263.3, manufactured by Tokyo Chemical Industry Co., Ltd.)
Further, Marialim AKM-053 (manufactured by NOF Corporation), which is an anionic polymer dispersant marketed as the polymer dispersant C1, is used, and ethylene oxide 2-mole adduct of laurylamine is diethyl sulfate as the antistatic agent D1. A quaternary ammonium salt (synthetic product) obtained by reacting with (Table 2 below, Comparative Examples 2 and 3) was used.

〔分散性の評価方法〕
調製した実施例1〜11及び比較例1〜4のスラリー組成物について、25℃、せん断速度10sec-1の条件にて、粘度測定をおこなった(ブルックフィールド社製DV−IIを使用)。スラリーの粘度が低い方ものが、粘度の高いものと比較して、分散性が良好である。下記表2に測定結果を示す。
[Method for evaluating dispersibility]
For the prepared slurry compositions of Examples 1 to 11 and Comparative Examples 1 to 4, viscosity was measured under the conditions of 25 ° C. and a shear rate of 10 sec −1 (using DV-II manufactured by Brookfield). A slurry having a lower viscosity has better dispersibility than a slurry having a higher viscosity. The measurement results are shown in Table 2 below.

[セラミックスシートの成形]
調製した実施例1〜11及び比較例1〜4のスラリー組成物を使用してセラミックスシートを成形し、下記の方法で帯電防止性を評価した。
[Ceramic sheet forming]
Ceramic sheets were molded using the prepared slurry compositions of Examples 1 to 11 and Comparative Examples 1 to 4, and antistatic properties were evaluated by the following methods.

実施例1〜11及び比較例1〜4のスラリー組成物を50μmのアプリケーターを用いて、シリコーン処理された離型フィルム(帝人ヂュポン社製ピューレックス)に塗工し、60℃にて16時間乾燥し、セラミックスシートを得た。   The slurry compositions of Examples 1 to 11 and Comparative Examples 1 to 4 were applied to a silicone-treated release film (Purex manufactured by Teijin DuPont) using a 50 μm applicator and dried at 60 ° C. for 16 hours. Thus, a ceramic sheet was obtained.

〔帯電防止性の評価方法〕
離型フィルムとともに、セラミックスシートを4cmx10cmの寸法の試験片に裁断し、塗工面と反対側(フィルム側)を下にして、90度剥離試験用治具を装着した卓上型精密試験機(島津製作所社製オートグラフAGS−X)の台座に両面テープを用いて固定した。次に、セラミックスシートの片端を離型フィルムから少し剥離した後、1cm/秒の速度にて90度剥離し、セラミックスシートの剥離面側の帯電量の最大値を3cm離れたところに設置した静電気センサー(キーエンス社製SK−200)にて測定した。この剥離帯電量が小さいほど、帯電防止性が良好である。表2に測定結果を示す。
[Antistatic Evaluation Method]
A table type precision testing machine (Shimadzu Corporation) with a release film and a ceramic sheet cut into 4cm x 10cm test pieces, with the 90 ° peel test jig on the opposite side (film side) of the coated surface It fixed to the base of the autograph AGS-X made by a company using the double-sided tape. Next, after slightly peeling one end of the ceramic sheet from the release film, it peeled 90 degrees at a rate of 1 cm / second, and the electrostatic charge was placed 3 cm away from the maximum charge amount on the peeling surface side of the ceramic sheet. It measured with the sensor (Keyence SK-200). The smaller the peel charge amount, the better the antistatic property. Table 2 shows the measurement results.

Figure 2011195436
Figure 2011195436

Figure 2011195436
Figure 2011195436

前記表2に示すとおり、実施例1〜11において高分子分散剤(A)と帯電防止剤(B)との組み合わせにより、スラリー組成物の粘度が低減し(微分散性が向上し)、かつ、剥離帯電量が低減された(帯電防止性が向上した)。なお、比較例4はスラリー組成物の粘度が高くセラミックスシートを形成することができなかった。   As shown in Table 2, the viscosity of the slurry composition is reduced (the fine dispersibility is improved) by the combination of the polymer dispersant (A) and the antistatic agent (B) in Examples 1 to 11, and , Peel charge amount was reduced (antistatic property was improved). In Comparative Example 4, the viscosity of the slurry composition was high and a ceramic sheet could not be formed.

以上説明したとおり、本発明は、セラミックス成形を行う分野、例えば、セラミックス製電子部品の製造に関する分野に有用である。   As described above, the present invention is useful in the field of ceramic forming, for example, the field related to the manufacture of ceramic electronic components.

Claims (5)

下記一般式(1)で表される構成単位(a)と下記一般式(2)で表される構成単位(b)と下記一般式(3)で表される構成単位(c)とを含有するアニオン性高分子分散剤(A)、イミダゾリニウム、イミダゾリウム、ピリジニウム、及びピロリジニウムからなる群から選ばれる少なくとも1種のカチオンを有する帯電防止剤(B)、非水系溶媒、塩基性セラミックス材料、並びにバインダー樹脂を含有するスラリー組成物。
Figure 2011195436
[前記式(1)及び(2)中、R1、R2、R3、R4、R5及びR6は同一又は異なり水素原子又は炭素数1〜2のアルキル基を示し、R7は炭素数1〜4の直鎖又は分岐鎖のアルキレン基を示し、R8は水素原子又は炭素数1〜2のアルキル基を示し、X1は酸素原子又はNHを示し、Mは水素原子又は陽イオンを示し、nは1〜50の数を示す。
前記式(3)中、R9、R10及びR11は同一又は異なり水素原子又は炭素数1〜2のアルキル基を示し、X2は酸素原子又はNHを示し、R12及びR13は炭素数1〜30の直鎖、分岐鎖若しくは環状のアルキル基若しくはアルケニル基又はアリール基を示す。]
Containing the structural unit (a) represented by the following general formula (1), the structural unit (b) represented by the following general formula (2), and the structural unit (c) represented by the following general formula (3) Anionic polymer dispersant (A), antistatic agent (B) having at least one cation selected from the group consisting of imidazolinium, imidazolium, pyridinium, and pyrrolidinium, a non-aqueous solvent, a basic ceramic material And a slurry composition containing a binder resin.
Figure 2011195436
[In the formula (1) and (2), R 1, R 2, R 3, R 4, R 5 and R 6 are the same or different hydrogen atom or an alkyl group having a carbon number of 1 to 2, R 7 is A linear or branched alkylene group having 1 to 4 carbon atoms, R 8 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X 1 represents an oxygen atom or NH, and M represents a hydrogen atom or a positive chain. Represents an ion, and n represents a number of 1 to 50.
In the formula (3), R 9 , R 10 and R 11 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, X 2 represents an oxygen atom or NH, and R 12 and R 13 represent carbon. A linear, branched or cyclic alkyl group, alkenyl group or aryl group having a number of 1 to 30 is shown. ]
帯電防止剤(B)が、下記一般式(4)〜(7)で表される少なくとも1種のカチオンを有する、請求項1記載のスラリー組成物。
Figure 2011195436


[前記式(4)中、R14は水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示し、R15は炭素数1〜21のアルキル基を示し、R16及びR17は同一又は異なり水素原子又は炭素数1〜4のアルキル基を示す。
前記式(5)中、R19は水素原子又は水酸基を有していてもよい炭素数1〜4のアルキル基を示し、R18及びR20は同一又は異なり炭素数1〜4のアルキル基を示す。
前記式(6)中、R21は炭素数1〜4のアルキル基を示し、R22、R23、及びR24は同一又は異なり水素原子又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。
前記式(7)中、R25及びR26は同一又は異なり炭素数1〜4のアルキル基を示す。]
The slurry composition according to claim 1, wherein the antistatic agent (B) has at least one cation represented by the following general formulas (4) to (7).
Figure 2011195436


[The formula (4), R 14 represents a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms which may have a hydroxyl group, R 15 represents an alkyl group having 1 to 21 carbon atoms, R 16 And R 17 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In the formula (5), R 19 represents an alkyl group having 1 to 4 hydrogen atoms or carbon atoms which may have a hydroxyl group, R 18 and R 20 are the same or different alkyl group of 1 to 4 carbon atoms Show.
In the formula (6), R 21 represents an alkyl group having 1 to 4 carbon atoms, and R 22 , R 23 , and R 24 may be the same or different and may have a hydrogen atom or a hydroxyl group. Represents an alkyl group.
In the formula (7), R 25 and R 26 are the same or different alkyl group of 1 to 4 carbon atoms. ]
帯電防止剤(B)が、前記一般式(5)で表されるイミダゾリウムカチオンを有する、請求項2記載のスラリー組成物。 The slurry composition according to claim 2, wherein the antistatic agent (B) has an imidazolium cation represented by the general formula (5). 帯電防止剤(B)が有するカチオンが、分子量が300以下である、請求項1から3のいずれかに記載のスラリー組成物。 The slurry composition according to any one of claims 1 to 3, wherein the cation of the antistatic agent (B) has a molecular weight of 300 or less. 前記塩基性セラミックス材料が、酸化マグネシウム、炭酸バリウム、酸化チタン、チタン酸カルシウム、チタン酸バリウム、ジルコン酸バリウム、及びジルコン酸カルシウムからなる群から選ばれる無機化合物である、請求項1から4のいずれかに記載のスラリー組成物。 5. The method according to claim 1, wherein the basic ceramic material is an inorganic compound selected from the group consisting of magnesium oxide, barium carbonate, titanium oxide, calcium titanate, barium titanate, barium zirconate, and calcium zirconate. A slurry composition according to claim 1.
JP2011037410A 2010-02-26 2011-02-23 Slurry composition containing basic ceramics Active JP5666941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037410A JP5666941B2 (en) 2010-02-26 2011-02-23 Slurry composition containing basic ceramics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010042653 2010-02-26
JP2010042653 2010-02-26
JP2011037410A JP5666941B2 (en) 2010-02-26 2011-02-23 Slurry composition containing basic ceramics

Publications (2)

Publication Number Publication Date
JP2011195436A true JP2011195436A (en) 2011-10-06
JP5666941B2 JP5666941B2 (en) 2015-02-12

Family

ID=44874104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037410A Active JP5666941B2 (en) 2010-02-26 2011-02-23 Slurry composition containing basic ceramics

Country Status (1)

Country Link
JP (1) JP5666941B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035608A1 (en) * 2011-09-07 2013-03-14 株式会社村田製作所 Ceramic green sheet and laminated ceramic electronic component
WO2013035573A1 (en) * 2011-09-07 2013-03-14 花王株式会社 Basic ceramic-containing slurry composition
JP2013227192A (en) * 2012-03-28 2013-11-07 Ngk Insulators Ltd Ceramic paste and laminated body

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019A (en) * 1847-03-13 Shirt-bosom
JPS62223060A (en) * 1986-03-22 1987-10-01 ライオン株式会社 Binder for forming ceramic
JPH0672759A (en) * 1991-07-30 1994-03-15 Lion Corp Binder for molding ceramic
JPH0733533A (en) * 1993-06-28 1995-02-03 Lion Corp Additive for ceramic green sheet
JP2001039773A (en) * 1999-07-23 2001-02-13 Murata Mfg Co Ltd Production of ceramic slurry, ceramic green sheet and laminated ceramic electronic parts
JP2002321981A (en) * 2001-04-23 2002-11-08 Sanyo Chem Ind Ltd Dispersant for ceramic material
JP2003104778A (en) * 2001-09-28 2003-04-09 Nisshin Chem Ind Co Ltd Aqueous solution type binder for ceramic molding
JP2004099362A (en) * 2002-09-09 2004-04-02 Kurosaki Harima Corp Dispersant for monolithic refractory, and monolithic refractory
WO2009014091A1 (en) * 2007-07-23 2009-01-29 Sanyo Chemical Industries, Ltd. Dispersing agent for ceramic extrusion molding
WO2010024188A1 (en) * 2008-08-27 2010-03-04 株式会社村田製作所 Molded ceramic and process for producing multilayered ceramic electronic part

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019A (en) * 1847-03-13 Shirt-bosom
JPS62223060A (en) * 1986-03-22 1987-10-01 ライオン株式会社 Binder for forming ceramic
JPH0672759A (en) * 1991-07-30 1994-03-15 Lion Corp Binder for molding ceramic
JPH0733533A (en) * 1993-06-28 1995-02-03 Lion Corp Additive for ceramic green sheet
JP2001039773A (en) * 1999-07-23 2001-02-13 Murata Mfg Co Ltd Production of ceramic slurry, ceramic green sheet and laminated ceramic electronic parts
JP2002321981A (en) * 2001-04-23 2002-11-08 Sanyo Chem Ind Ltd Dispersant for ceramic material
JP2003104778A (en) * 2001-09-28 2003-04-09 Nisshin Chem Ind Co Ltd Aqueous solution type binder for ceramic molding
JP2004099362A (en) * 2002-09-09 2004-04-02 Kurosaki Harima Corp Dispersant for monolithic refractory, and monolithic refractory
WO2009014091A1 (en) * 2007-07-23 2009-01-29 Sanyo Chemical Industries, Ltd. Dispersing agent for ceramic extrusion molding
WO2010024188A1 (en) * 2008-08-27 2010-03-04 株式会社村田製作所 Molded ceramic and process for producing multilayered ceramic electronic part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035608A1 (en) * 2011-09-07 2013-03-14 株式会社村田製作所 Ceramic green sheet and laminated ceramic electronic component
WO2013035573A1 (en) * 2011-09-07 2013-03-14 花王株式会社 Basic ceramic-containing slurry composition
JP2013056783A (en) * 2011-09-07 2013-03-28 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2013067552A (en) * 2011-09-07 2013-04-18 Kao Corp Basic ceramic-containing slurry composition
JP2013227192A (en) * 2012-03-28 2013-11-07 Ngk Insulators Ltd Ceramic paste and laminated body
US9187374B2 (en) 2012-03-28 2015-11-17 Ngk Insulators, Ltd. Ceramics paste and laminated body

Also Published As

Publication number Publication date
JP5666941B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
CN103124766B (en) The manufacture method of paste compound
JP4785988B2 (en) Polymer dispersant for inorganic pigments
JP5666941B2 (en) Slurry composition containing basic ceramics
EP2882697B1 (en) Redispersible polymer powder mixtures for use in dry-mix formulations having improved properties
AU2005310501A1 (en) Powdery polycarboxylic-acid cement dispersant and dispersant composition containing the dispersant
WO2023236401A1 (en) Battery separator and preparation method therefor, and secondary battery
JP6646404B2 (en) Polymer dispersant for inorganic pigment
JP2013193912A (en) Slurry composition for molding ceramic sheet
KR20020002311A (en) Ceramic slurry composition, manufacturing method therefor and ceramic green sheet formed thereby
TW201513930A (en) Polymer dispersant for inorganic pigment
Nouri-Khezrabad et al. Citric acid role and its migration effects in nano-bonded refractory castables
JP5885622B2 (en) Slurry composition containing basic ceramics
JP6846767B2 (en) Method for Producing Binder Resin Composition for Water-based Baking, Paste for Water-based Baking, and Binder Resin Composition for Water-based Baking
JP6276770B2 (en) Redispersible polymer powder mixture for use in dry mix formulations
JP6371616B2 (en) Binder composition for ceramic molding and ceramic green sheet
JP2012036373A (en) Antistatic agent composition for ceramic green sheet
JP5727717B2 (en) Method for producing polymer emulsion
JP2015195114A (en) Aqueous binder for electrode composition
WO2016143563A1 (en) High-molecular dispersant for inorganic pigments
CN112534021A (en) Resin composition for vibration damping material
JP6545961B2 (en) Polymeric dispersant for inorganic pigments
JP2017214517A (en) Polymer dispersant for inorganic pigment
JP5557555B2 (en) Polymer dispersant for inorganic pigments
CN106943947B (en) Dispersant composition for powder
TW202334365A (en) Binder composition for ceramic molding and slurry composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141211

R151 Written notification of patent or utility model registration

Ref document number: 5666941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250