JP2011194697A - Method and device of manufacturing multilayer extrusion-foamed molding - Google Patents

Method and device of manufacturing multilayer extrusion-foamed molding Download PDF

Info

Publication number
JP2011194697A
JP2011194697A JP2010063451A JP2010063451A JP2011194697A JP 2011194697 A JP2011194697 A JP 2011194697A JP 2010063451 A JP2010063451 A JP 2010063451A JP 2010063451 A JP2010063451 A JP 2010063451A JP 2011194697 A JP2011194697 A JP 2011194697A
Authority
JP
Japan
Prior art keywords
molten resin
resins
resin
laminated
laminated molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010063451A
Other languages
Japanese (ja)
Inventor
Toru Ueda
亨 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010063451A priority Critical patent/JP2011194697A/en
Publication of JP2011194697A publication Critical patent/JP2011194697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • B29C48/71Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows for layer multiplication

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a multilayer extrusion-foamed molding capable of suppressing the turbulence of the layer structure of each of layers constituting a molding.SOLUTION: The method includes a first step for obtaining a laminated molten resin C merging a foaming agent-containing molten resin A and a foaming agent-free molten resin B in the thickness direction at high pressure, a second step for obtaining divided laminated molten resins D1, D2 by dividing and separating the laminated molten resin C at the center in the width direction, a third step for separating the divided laminated molten resins D1, D2 in the thickness direction, a fourth step for fitting the position in such a manner that the divided laminated molten resins D1, D2 are vertically aligned with each other in a separated state, and a fifth step for obtaining a doubling laminated molten resin E by merging the vertical divided laminated molten resins D1, D2. A straightening step for reducing the right and left flow rate difference by holding a positional relationship in right and left direction positions fitted in such a manner that the divided laminated molten resins D1, D2 are vertically aligned with each other, and moving to the downstream side by a predetermined length as in their separated states is provided between the fourth step and the fifth step.

Description

本発明は、建築用、自動車用又は土木用等に好適に使用される、発泡層及び非発泡層を積層してなる多層押出発泡成形体に関する。   The present invention relates to a multilayer extrusion foamed article formed by laminating a foamed layer and a non-foamed layer suitably used for construction, automobiles, civil engineering and the like.

従来から、発泡層及び非発泡層を積層してなる多層押出発泡について、主にポリプロピレン系樹脂を用いたフィルム及びシート形状での検討がなされてきた(例えば、特許文献1〜4参照。)。
また、フィードブロックやマルチマニホールド等の積層装置の構造の複雑化、大型化を伴わずに層数を増加させる方法として、発泡剤を含有する溶融樹脂と発泡剤を含有しない溶融樹脂を厚み方向に合流させた後に幅方向に2分割し、2分割した溶融樹脂の各々を厚み方向に圧縮した後、厚み方向に上下に合流させる積層2倍化方法が提案されており(例えば、非特許文献1参照。)、このような積層2倍化方法を多層化に使用することにより効率良く層数を増やすことができる(例えば、非特許文献1並びに特許文献5及び6参照。)。
Conventionally, with regard to multilayer extrusion foaming obtained by laminating a foamed layer and a non-foamed layer, studies have been made mainly on film and sheet shapes using a polypropylene resin (see, for example, Patent Documents 1 to 4).
Also, as a method of increasing the number of layers without complicating the structure of the laminating equipment such as feed blocks and multi-manifolds and increasing the size, a molten resin containing a foaming agent and a molten resin not containing a foaming agent are used in the thickness direction. There has been proposed a lamination doubling method in which the molten resin is divided into two in the width direction after being merged, and each of the two divided molten resins is compressed in the thickness direction and then merged up and down in the thickness direction (for example, Non-Patent Document 1). The number of layers can be increased efficiently by using such a method of doubling the number of layers for multilayering (see, for example, Non-Patent Document 1 and Patent Documents 5 and 6).

特開平10−748号公報Japanese Patent Laid-Open No. 10-748 特表平4−505594号公報JP-T-4-505594 特公平7−98349号公報Japanese Examined Patent Publication No. 7-98349 国際公開第08/008875号パンフレットWO08 / 008875 pamphlet 特公昭54−23025号公報Japanese Examined Patent Publication No. 54-23025 特開平4−278323号公報JP-A-4-278323

ADITYA P. RANADE, ANNE HILTNER AND ERIC BAER, "Structure-Property Relationships in Coextruded Foam/Film Microlayers", JOURNAL OF CELLULAR PLASTICS, November 2004, Vol.40, pp.497-507ADITYA P. RANADE, ANNE HILTNER AND ERIC BAER, "Structure-Property Relationships in Coextruded Foam / Film Microlayers", JOURNAL OF CELLULAR PLASTICS, November 2004, Vol.40, pp.497-507

上述の積層2倍化方法による多層化において、2分割した溶融樹脂層を厚み方向に上下に合流させる際に、上下の溶融樹脂層の樹脂圧力、流速等が異なると得られる成形体の各層の積層状態の乱れに繋がる懸念があり、超多層プロセスを経ることにより積層状態の乱れがさらに悪化する懸念がある。
特に、多層押出発泡成形体を断熱材用途に使用する場合には、上述のように積層状態の乱れが生じて成形体を構成する各層が厚み方向に斜めに積層されると、発泡層に比べて熱伝導率の高い非発泡層を伝って熱が移動することから断熱性能が大幅に低下するため所期の性能を得ることができないという問題がある。
In the multi-layering by the above-described lamination doubling method, when the molten resin layers divided into two in the thickness direction are merged up and down, the resin pressure, flow rate, etc. of the upper and lower molten resin layers are different. There is a concern that the lamination state may be disturbed, and there is a concern that the lamination state disturbance may be further deteriorated through the super multi-layer process.
In particular, when a multilayer extrusion foamed molded product is used for a heat insulating material application, if each layer constituting the molded product is laminated obliquely in the thickness direction as a result of the disturbance of the laminated state as described above, compared to the foamed layer In addition, since heat is transferred through a non-foamed layer having a high thermal conductivity, there is a problem in that the desired performance cannot be obtained because the heat insulation performance is significantly reduced.

そこで本発明が前述の状況に鑑み、解決しようとするところは、成形体を構成する各層の層構造の乱れを抑制することができる多層押出発泡成形体の製造方法及び製造装置を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to provide a manufacturing method and a manufacturing apparatus for a multilayer extrusion foamed molded body that can suppress the disorder of the layer structure of each layer constituting the molded body. is there.

本願の発明者は、上述の積層2倍化方法による多層化において、2分割した溶融樹脂を厚み方向に上下に合流させる際における積層状態の乱れに着目し、実験及び3次元流動解析シミュレーションを行った結果、上下に合流した直後の溶融樹脂層の厚み方向の流速差に起因して、得られた多層押出発泡成形体を構成する発泡層と非発泡層とが厚み方向に斜めに積層されるという知見を得、これに対する対策を実施することにより本発明を完成するに至った。
すなわち、本発明に係る多層押出発泡成形体の製造方法は、前記課題解決のために、加熱可塑化した溶融樹脂を流れ方向に押し出しながら金型で一定断面の形状に整えて連続的に成形する押出発泡成形体の製造方法において、発泡剤を含有する少なくとも1つの溶融樹脂と発泡剤を含有しない少なくとも1つの溶融樹脂とを高圧下で厚み方向である上下方向に合流させて積層溶融樹脂を得る第1工程と、この積層溶融樹脂を幅方向である左右方向中央で分割し左右方向に離反させて左右2つの分割積層溶融樹脂を得る第2工程と、これら左右2つの分割積層溶融樹脂を、一方の下端が他方の上端よりも上になるように上下方向に離反させる第3工程と、これら2つの分割積層溶融樹脂を左右方向に接近させ、これら2つの分割積層溶融樹脂の左右方向中央が、前記積層溶融樹脂の左右方向中央を通り前記流れ方向に平行な垂直平面内に位置するように上下に重なる位置まで、これら2つの分割積層溶融樹脂が分離した状態で上下に揃うように位置を合わせる第4工程と、これら上下2つの分割積層溶融樹脂を上下方向に合流させて倍加積層溶融樹脂を得る第5工程とを含む多層押出発泡成形体の製造方法であって、前記第4工程と第5工程との間に、前記2つの分割積層溶融樹脂が上下に揃うように位置合せされた左右方向の位置関係を保持して前記2つの分割積層溶融樹脂が分離した状態のまま下流側へ所定長さ移動させることにより、左右の流速差を低減させる整流工程を設けたことを特徴とする。
The inventor of the present application pays attention to the disorder of the lamination state when the molten resin divided into two in the thickness direction is merged up and down in the multi-layering by the above-described double layering method, and performs experiments and three-dimensional flow analysis simulations. As a result, due to the difference in flow rate in the thickness direction of the molten resin layer immediately after merging up and down, the foamed layer and the non-foamed layer constituting the obtained multilayer extruded foamed product are laminated obliquely in the thickness direction. As a result, the present invention was completed.
That is, in order to solve the above-mentioned problem, the method for producing a multilayer extrusion foamed molded body according to the present invention continuously molds a heat-plasticized molten resin into a constant cross-sectional shape with a mold while extruding it in the flow direction. In a method for producing an extrusion foamed molded article, at least one molten resin containing a foaming agent and at least one molten resin not containing a foaming agent are merged in a vertical direction that is a thickness direction under high pressure to obtain a laminated molten resin. The first step, the second step of dividing the laminated molten resin at the center in the left-right direction that is the width direction and separating the laminated molten resin in the left-right direction to obtain two divided laminated molten resins on the left and right, and the two divided laminated molten resins on the left and right, A third step in which the lower end of one side is separated from the upper end of the other side in the up-down direction, and the two divided laminated molten resins are moved in the left-right direction so that the two divided laminated molten resins The two divided laminated molten resins are aligned in a vertical direction until the center in the right direction overlaps vertically so as to be located in the vertical plane parallel to the flow direction through the horizontal center of the laminated molten resin. A method for producing a multilayer extrusion foamed molded article, comprising: a fourth step of aligning the positions as described above; and a fifth step of merging these two upper and lower divided laminated molten resins in the vertical direction to obtain a doubled laminated molten resin, Between the fourth step and the fifth step, the two divided laminated molten resins are in a state in which the two divided laminated molten resins are separated while maintaining the positional relationship in the left-right direction aligned so that the two divided laminated molten resins are aligned vertically. A rectification process is provided to reduce the difference between the left and right flow velocities by moving to a downstream side with a predetermined length.

このような構成によれば、第4工程において分割積層溶融樹脂を左右方向に接近させてこれらが分離した状態で上下に揃うように位置を合わせることにより生じる左右の流速差を、上下の分割積層溶融樹脂が第5工程において合流する前に設けた整流工程により低減することができる。
したがって、第5工程において、流路の左端部及び右端部において流速の遅い溶融樹脂と流速の速い溶融樹脂とが上下に合流することがなくなり、倍加積層溶融樹脂の流路の左端部及び右端部で厚み方向の流速が逆転することがないことから、製造された多層押出発泡成形体を構成する発泡層と非発泡層とが厚み方向に斜めに積層されずに非発泡層が略水平になるため、所期の断熱性能を確保することができる。
According to such a configuration, the difference between the left and right flow velocities caused by bringing the divided laminated molten resin close to the left and right in the fourth step and aligning them so as to be aligned in the vertical direction is divided into the upper and lower divided laminated layers. It can be reduced by a rectification step provided before the molten resin merges in the fifth step.
Therefore, in the fifth step, the molten resin having a low flow velocity and the molten resin having a high flow velocity do not merge vertically at the left end portion and the right end portion of the flow path, and the left end portion and the right end portion of the flow path of the doubling laminated molten resin Since the flow rate in the thickness direction does not reverse, the foamed layer and the non-foamed layer constituting the manufactured multilayer extrusion foamed molded product are not laminated obliquely in the thickness direction, and the non-foamed layer becomes substantially horizontal. Therefore, the expected heat insulation performance can be ensured.

ここで、前記第1工程と前記第2工程との間に、前記積層溶融樹脂の断面積を変化させずに幅を2倍に拡大する幅拡大工程を設けてなることが好ましく、前記第2工程と前記第3工程との間、前記第3工程と前記第4工程との間又は前記第4工程と前記第5工程との間に、前記分割積層溶融樹脂の各々について断面積を変化させずに幅を2倍に拡大する幅拡大工程を設けてもよく、前記第5工程の後に、前記倍加積層溶融樹脂の断面積を変化させずに幅を2倍に拡大する幅拡大工程を設けてもよい。
これらのような構成によれば、積層2倍化工程の前後、すなわち第1工程の下流側の流路断面積と第5工程の下流側の流路断面積(第5工程の後に幅拡大工程を設ける場合はこの幅拡大工程の下流側の流路断面積)とが同一になることから、積層2倍化工程を多段化する際に好都合であり、簡素な構成により積層2倍化工程の多段化流路を構成して成形体を多層化することができる。
Here, it is preferable to provide a width expansion step for expanding the width twice without changing the cross-sectional area of the laminated molten resin between the first step and the second step. The sectional area of each of the divided laminated molten resins is changed between the step and the third step, between the third step and the fourth step, or between the fourth step and the fifth step. A width expanding step for expanding the width twice may be provided, and after the fifth step, a width expanding step for expanding the width twice without changing the cross-sectional area of the doubled laminated molten resin is provided. May be.
According to such a configuration, before and after the stack doubling step, that is, the downstream channel cross-sectional area of the first step and the downstream channel cross-sectional area of the fifth step (the width expanding step after the fifth step). This is convenient when multi-layering the layer doubling step, and the layer doubling step is simplified with a simple structure. A multi-stage flow path can be configured to form a multilayered product.

本発明に係る多層押出発泡成形体の製造装置は、前記課題解決のために、加熱可塑化した溶融樹脂を流れ方向に押し出しながら金型で一定断面の形状に整えて連続的に成形する押出発泡成形体の製造装置において、発泡剤を含有する溶融樹脂を加圧して供給する発泡用押出機及び発泡剤を含有しない溶融樹脂を加圧して供給する非発泡用押出機、これらの押出機から供給された、発泡剤を含有する少なくとも1つの溶融樹脂と発泡剤を含有しない少なくとも1つの溶融樹脂とを厚み方向である上下方向に合流させて積層溶融樹脂とする積層装置、前記積層溶融樹脂を幅方向である左右方向中央で分割して2つの分割積層溶融樹脂とし、これら分割積層溶融樹脂を上下に重ね合わせるように合流させて倍加積層溶融樹脂とする積層2倍化装置、並びに、前記倍加積層溶融樹脂を大気圧下に開放して発泡剤を気化させることにより高倍化させる成形金型を備えた多層押出発泡成形体の製造装置であって、前記積層2倍化装置が、前記左右2つの分割積層溶融樹脂を、一方の下端が他方の上端よりも上になるように上下方向に離反させ、これら2つの分割積層溶融樹脂を左右方向に接近させ、これら2つの分割積層溶融樹脂の左右方向中央が、前記積層溶融樹脂の左右方向中央を通り前記流れ方向に平行な垂直平面内に位置するように上下に重なる位置まで、これら2つの分割積層溶融樹脂が分離した状態で上下に揃うように位置を合わせた後に、前記2つの分割積層溶融樹脂が上下に揃うように位置合せされた左右方向の位置関係を保持して前記2つの分割積層溶融樹脂が分離した状態のまま下流側へ所定長さ移動させる整流路を備え、この整流路により左右の流速差を低減させた後に前記分割積層溶融樹脂を上下に重ね合わせるように合流させることを特徴とする。   In order to solve the above-mentioned problems, an apparatus for producing a multilayer extrusion foamed molded product according to the present invention is an extrusion foaming method in which a heat-plasticized molten resin is extruded in the flow direction and arranged in a mold with a constant cross-sectional shape and continuously molded. In a molding body manufacturing apparatus, a foaming extruder that pressurizes and supplies a molten resin containing a foaming agent, a non-foaming extruder that pressurizes and supplies a molten resin that does not contain a foaming agent, and supply from these extruders A laminated apparatus that combines at least one molten resin containing a blowing agent and at least one molten resin not containing a blowing agent in a thickness direction to form a laminated molten resin, the width of the laminated molten resin A doubling laminated molten resin that is divided into two divided laminated molten resins by being divided at the center in the left-right direction that is the direction, and these divided laminated molten resins are merged so as to overlap each other vertically; And a multi-layer extrusion foamed molded article manufacturing apparatus comprising a molding die for increasing the pressure by opening the doubled laminated molten resin under atmospheric pressure and evaporating the foaming agent. The left and right divided laminated molten resins are separated in the vertical direction so that one lower end is higher than the other upper end, and the two divided laminated molten resins are moved in the left and right directions so that the two divided laminated resins are In a state where these two divided laminated molten resins are separated until the position where the center of the molten resin overlaps vertically so that the center of the molten resin passes through the center of the laminated molten resin in the horizontal direction and is parallel to the flow direction. A state where the two divided laminated molten resins are separated while maintaining the positional relationship in the left-right direction so that the two divided laminated molten resins are aligned vertically after the positions are aligned so as to be aligned vertically Mom downstream moving a predetermined length includes a rectifier circuit, and wherein said causing the split multilayer molten resin merges as superimposed vertically after reducing the flow rate difference between the right and left by the rectification circuit.

このような構成によれば、積層2倍化装置により分割積層溶融樹脂を左右方向に接近させてこれらが分離した状態で上下に揃うように位置を合わせることにより生じる左右の流速差を、上下の分割積層溶融樹脂が合流する前に設けた整流路により低減することができる。
したがって、積層2倍化装置における上下の分割積層溶融樹脂が合流する流路の左端部及び右端部において、流速の遅い溶融樹脂と流速の速い溶融樹脂とが上下に合流することがなくなり、倍加積層溶融樹脂の流路の左端部及び右端部で厚み方向の流速が逆転することがないことから、製造された多層押出発泡成形体を構成する発泡層と非発泡層とが厚み方向に斜めに積層されずに非発泡層が略水平になるため、所期の断熱性能を確保することができる。
According to such a configuration, the difference between the left and right flow velocities caused by bringing the divided laminated molten resin closer to the left and right directions by the lamination doubling device and aligning them so as to be aligned vertically in the separated state is It can be reduced by a rectifying path provided before the divided laminated molten resin joins.
Therefore, the molten resin having a low flow velocity and the molten resin having a high flow velocity do not merge vertically at the left end portion and the right end portion of the flow path where the upper and lower divided laminated molten resins merge in the lamination doubling apparatus. Since the flow rate in the thickness direction does not reverse at the left end and right end of the flow path of the molten resin, the foamed layer and the non-foamed layer constituting the manufactured multilayer extruded foamed product are laminated obliquely in the thickness direction. In addition, since the non-foamed layer becomes substantially horizontal, the desired heat insulating performance can be ensured.

以上のように、本発明に係る多層押出発泡成形体の製造方法及び製造装置によれば、成形体を構成する各層の層構造の乱れを抑制することができることから、製造された多層押出発泡成形体を構成する発泡層と非発泡層とが厚み方向に斜めに積層されずに非発泡層が略水平になるため、所期の断熱性能を確保することができるという顕著な効果を奏する。   As described above, according to the method and apparatus for producing a multilayer extruded foam molded body according to the present invention, it is possible to suppress the disorder of the layer structure of each layer constituting the molded body. Since the foamed layer and the non-foamed layer constituting the body are not laminated obliquely in the thickness direction, the non-foamed layer becomes substantially horizontal, so that a remarkable effect of ensuring the desired heat insulation performance can be obtained.

本発明の実施の形態に係る多層押出発泡成形体の製造装置の構成を示す概略図である。It is the schematic which shows the structure of the manufacturing apparatus of the multilayer extrusion foaming molding which concerns on embodiment of this invention. 本発明の実施の形態に係る多層押出発泡成形体の製造方法及び製造装置により製造された多層押出発泡成形体の例を示す断面図である。It is sectional drawing which shows the example of the multilayer extrusion foaming molding manufactured by the manufacturing method and manufacturing apparatus of the multilayer extrusion foaming molding which concern on embodiment of this invention. 本発明の実施の形態に係る多層押出発泡成形体の製造方法の工程説明図を流路断面の模式図と併せて示したものであり、幅拡大工程を第1工程と第2工程との間に設ける場合を示している。The process explanatory drawing of the manufacturing method of the multilayer extrusion foaming molding which concerns on embodiment of this invention is shown with the schematic diagram of a flow-path cross section, and shows a width expansion process between a 1st process and a 2nd process. The case where it provides is shown. 同じく工程説明図を流路断面の模式図と併せて示したものであり、幅拡大工程を第2工程と第3工程との間に設ける場合を示している。The process explanatory drawing is shown together with the schematic diagram of the cross section of the flow path, and shows the case where the width expansion process is provided between the second process and the third process. 同じく工程説明図を流路断面の模式図と併せて示したものであり、幅拡大工程を第3工程と第4工程との間に設ける場合を示している。The process explanatory drawing is shown together with the schematic diagram of the cross section of the flow path, and shows the case where the width expansion process is provided between the third process and the fourth process. 同じく工程説明図を流路断面の模式図と併せて示したものであり、幅拡大工程を第4工程と第5工程との間に設ける場合を示している。The process explanatory drawing is shown together with the schematic diagram of the cross section of the flow path, and shows the case where the width expansion process is provided between the fourth process and the fifth process. 同じく工程説明図を流路断面の模式図と併せて示したものであり、幅拡大工程を第5工程と第6工程との間に設ける場合を示している。The process explanatory drawing is shown together with the schematic diagram of the cross section of the flow path, and shows the case where the width expansion process is provided between the fifth process and the sixth process. 図3に示す工程において、(a)は整流路の長さLが30mm(実施例1)、50mm(実施例2)、80mm(実施例3)、0mm(比較例)の場合について第5工程で合流直後の幅方向各部の流速分布のシミュレーション結果を示す図であり、(b)は積層2倍化装置の流路を示す模式図である。In the process shown in FIG. 3, (a) is the fifth process for the case where the length L of the rectifying path is 30 mm (Example 1), 50 mm (Example 2), 80 mm (Example 3), and 0 mm (Comparative Example). FIG. 6B is a diagram showing a simulation result of flow velocity distribution in each part in the width direction immediately after joining, and (b) is a schematic diagram showing a flow path of the stacking doubler. 図6に示す工程において、整流路の長さLが30mm(実施例4)の場合について第5工程で合流直後の幅方向各部の流速分布のシミュレーション結果を示す図であり、(b)は積層2倍化装置の流路を示す模式図である。In the process shown in FIG. 6, when the length L of the rectifying path is 30 mm (Example 4), it is a figure which shows the simulation result of the flow velocity distribution of each part of the width direction immediately after merging in a 5th process, (b) is a lamination | stacking. It is a schematic diagram which shows the flow path of a doubling apparatus. 図7に示す工程において、整流路の長さLが30mm(実施例5)の場合について第5工程で合流直後の幅方向各部の流速分布のシミュレーション結果を示す図であり、(b)は積層2倍化装置の流路を示す模式図である。In the process shown in FIG. 7, in the case where the length L of the rectifying path is 30 mm (Example 5), it is a diagram showing a simulation result of the flow velocity distribution of each part in the width direction immediately after merging in the fifth process. It is a schematic diagram which shows the flow path of a doubling apparatus.

以下において、左方及び右方は、溶融樹脂の流れ方向(上流側から下流側へ向かう方向。押出方向。図中矢印F参照。)の下流側へ向かっていうものとする。   In the following, the left side and the right side refer to the downstream side of the flow direction of the molten resin (the direction from the upstream side to the downstream side, the extrusion direction, see arrow F in the figure).

図1に示すように、本発明の実施の形態に係る多層押出発泡成形体の製造装置は、加熱可塑化した溶融樹脂を流れ方向(図中矢印F参照。)に押し出しながら金型で一定断面の形状に整えて連続的に成形するものであり、発泡剤を含有する溶融樹脂を加圧して供給する発泡用押出機1及び発泡剤を含有しない溶融樹脂を加圧して供給する非発泡用押出機2、これらの押出機1,2から供給された、発泡剤を含有する少なくとも1つの溶融樹脂と発泡剤を含有しない少なくとも1つの溶融樹脂とを厚み方向である上下方向に合流させて積層溶融樹脂とする、例えばフィードブロックである積層装置3、前記積層溶融樹脂を幅方向である左右方向中央で分割して2つの分割積層溶融樹脂とし、これら分割積層溶融樹脂を上下に重ね合わせるように合流させて倍加積層溶融樹脂とする積層2倍化装置4、前記倍加積層溶融樹脂を大気圧下に開放して発泡剤を気化させることにより高倍化させる成形金型5、並びに、発泡成形体を引き取り上下方向に拘束しながら冷却して最終形状とする成形機6からなる。   As shown in FIG. 1, the apparatus for producing a multilayer extrusion foamed molded article according to an embodiment of the present invention has a constant cross section with a mold while extruding a heat-plasticized molten resin in a flow direction (see arrow F in the figure). Non-foaming extruder 1 that pressurizes and supplies molten resin containing a foaming agent and pressurizes and supplies molten resin that does not contain a foaming agent. Machine 2 and at least one molten resin containing a foaming agent and at least one molten resin not containing a foaming agent supplied from these extruders 1 and 2 are merged in the vertical direction, which is the thickness direction, and laminated and melted. Laminating apparatus 3 that is a resin, for example, a feed block, the laminated molten resin is divided into two divided laminated molten resins by dividing the laminated molten resin at the center in the left-right direction that is the width direction, and these divided laminated molten resins are superposed vertically A doubling and laminating apparatus 4 for flowing a doubling laminated molten resin, a molding die 5 for increasing the magnification by releasing the doubling laminated molten resin under atmospheric pressure and vaporizing a foaming agent, and a foamed molded body The molding machine 6 is cooled to a final shape while being restrained in the vertical direction.

ここで、発泡剤を含有する溶融樹脂中の発泡剤が、大気圧下に開放されるまでに経由する流路内で発泡すると、発泡層ではセル肥大化、低独立気泡率化が起こり、得られる多層押出発泡成形体は多層化によって期待される熱伝導率の低減効果が発現しないものとなる傾向がある。
したがって、発泡剤を含有する溶融樹脂と発泡剤を含有しない溶融樹脂を高圧下で合流させることにより、発泡剤を含有する溶融樹脂中の発泡剤が大気圧下に開放されるまでに経由する流路内での発泡を抑える必要がある。
図2は、このような多層押出発泡成形体の製造装置により製造された多層押出発泡成形体7の一例を示す断面図であり、後述する図3〜図7の積層2倍化工程における整流工程、すなわち積層2倍化装置4の整流路10(図8(b)、図9(b)及び図10(b)参照。)による整流効果により、2層の非発泡層9,9が、厚み方向に斜めに積層されることなく、略水平に(多層押出発泡成形体7の表面と略平行に)上下の発泡層8,8の間に積層されている。
Here, if the foaming agent in the molten resin containing the foaming agent foams in the flow path through which it is released under atmospheric pressure, cell enlargement and low closed cell ratio occur in the foamed layer. The resulting multilayer extrusion foamed molded product tends not to exhibit the effect of reducing the thermal conductivity expected by multilayering.
Therefore, a flow through which the foaming agent in the molten resin containing the foaming agent is released under atmospheric pressure by joining the molten resin containing the foaming agent and the molten resin not containing the foaming agent under high pressure. It is necessary to suppress foaming in the road.
FIG. 2 is a cross-sectional view showing an example of the multilayer extrusion foam molded body 7 manufactured by such a multilayer extrusion foam molded body manufacturing apparatus, and a rectifying process in the lamination doubling process of FIGS. 3 to 7 described later. That is, the two non-foamed layers 9 and 9 have a thickness due to the rectification effect by the rectification path 10 (see FIGS. 8B, 9B, and 10B) of the stacking doubler 4. It is laminated | stacked between the upper and lower foam layers 8 and 8 substantially horizontally (it is substantially parallel to the surface of the multilayer extrusion foaming molding 7), without being laminated | stacked diagonally in a direction.

多層押出発泡成形体7の構造としては、図2に示すように、押出発泡成形体7の厚み方向に発泡層8,…が非発泡層9,…を介して積層されてなる構造を有することが好ましい。これは、非発泡層9の上下両面に発泡層8が積層された構造において、非発泡層9の膜厚が発泡層8を構成するセルの膜厚に対して厚いことにより、輻射伝熱の抑制に起因する熱伝導率低減効果が有効に作用することによる。
なお、上下に積層する層の構成が非発泡層/発泡層/非発泡層の如く、非発泡層の片面のみに発泡層が積層された構造では、非発泡層による輻射伝熱の抑制に起因する熱伝導率低減効果が十分発現しない傾向がある。
また、多層押出発泡成形体7の構造としては、図2に示すような上下に積層する層の構成が発泡層/非発泡層/発泡層/非発泡層/発泡層の如く、非発泡層が複数層存在することがさらに好ましい。これは、押出発泡成形体7の厚み方向に非発泡層9を複数層設けることにより、1層の非発泡層9では得られない優れた熱伝導率の低減効果が発現することによる。
As shown in FIG. 2, the multilayer extruded foam 7 has a structure in which the foamed layers 8,... Are laminated in the thickness direction of the extruded foam 7 via the non-foamed layers 9. Is preferred. This is because, in the structure in which the foam layers 8 are laminated on the upper and lower surfaces of the non-foam layer 9, the thickness of the non-foam layer 9 is larger than the thickness of the cells constituting the foam layer 8, thereby This is because the effect of reducing the thermal conductivity due to the suppression works effectively.
In addition, in the structure where the layer laminated on the top and bottom is a structure in which the foam layer is laminated only on one side of the non-foam layer, such as non-foam layer / foam layer / non-foam layer, There is a tendency that the effect of reducing the thermal conductivity is not sufficiently exhibited.
Also, the structure of the multilayer extrusion foamed molded body 7 is such that the non-foamed layer has a layered structure such as foamed layer / non-foamed layer / foamed layer / non-foamed layer / foamed layer as shown in FIG. More preferably, there are multiple layers. This is because by providing a plurality of non-foamed layers 9 in the thickness direction of the extruded foamed molded body 7, an excellent effect of reducing the thermal conductivity that cannot be obtained with one non-foamed layer 9 appears.

次に、本発明の実施の形態に係る多層押出発泡成形体の製造方法について、図3〜図7に示す工程説明図を用いて説明する。図3〜図7における工程において、第1工程は図1の押出機1,2及び積層装置3による工程を、第2ないし第5工程は図1の積層2倍化装置4による工程(積層2倍化工程)を、第6工程は図1の成形金型5及び成形機6による工程を示している。
また、図3〜図7における流路断面の模式図は、下流側から見た断面を示している。
Next, the manufacturing method of the multilayer extrusion foaming molding which concerns on embodiment of this invention is demonstrated using the process explanatory drawing shown in FIGS. 3-7, the first step is a step by the extruders 1 and 2 and the laminating apparatus 3 in FIG. 1, and the second to fifth steps are steps by the laminating doubler 4 in FIG. 1 (lamination 2). The sixth step shows a step by the molding die 5 and the molding machine 6 of FIG.
Moreover, the schematic diagram of the flow-path cross section in FIGS. 3-7 has shown the cross section seen from the downstream.

先ず、図3に示す工程について説明する。
(第1工程)
第1工程は、発泡剤を含有する少なくとも1つの溶融樹脂の例として示す発泡剤を含有する上下2層の溶融樹脂A,Aと、発泡剤を含有しない少なくとも1つの溶融樹脂の例として示す1層の発泡剤を含有しない溶融樹脂Bとを高圧下で厚み方向である上下方向に合流させ、上下の溶融樹脂A,Aの間に溶融樹脂Bを介在させた積層溶融樹脂Cを得る工程である。
(幅拡大工程)
幅拡大工程は、第1工程で積層された積層溶融樹脂Cの断面積を変化させずに左右方向に拡大(例えば、β1/α1=2)する工程である。
(第2工程)
第2工程は、幅拡大工程で拡大された積層溶融樹脂Cを左右方向中央で分割し左右方向に離反させて左右2つの分割積層溶融樹脂D1,D2を得る工程である。
(第3工程)
第3工程は、第2工程で分割された分割積層溶融樹脂D1,D2を、一方の下端が他方の上端よりも上になるように(図3の例ではD1の下端がD2の上端よりも上になるように)上下方向に離反させる工程である。
(第4工程)
第4工程は、第3工程で上下に離反した分割積層溶融樹脂D1,D2を左右方向に接近させ、これら2つの分割積層溶融樹脂D1,D2の左右方向中央が、積層溶融樹脂Cの左右方向中央を通り流れ方向Fに平行な垂直平面内に位置するように上下に重なる位置まで、分割積層溶融樹脂D1,D2が分離した状態で上下に揃うように位置を合わせる工程である。
(整流工程)
整流工程は、第4工程で分割積層溶融樹脂D1,D2が上下に揃うように位置合せされた左右方向の位置関係を保持して2つの分割積層溶融樹脂D1,D2が分離した状態のまま下流側へ所定長さL(図8(b)参照。)移動させることにより、左右方向における流速分布の差を低減させる工程である。
(第5工程)
第5工程は、整流工程で左右方向における流速分布の差が低減した上下2つの分割積層溶融樹脂D1,D2を上下方向に合流させて倍加積層溶融樹脂Eを得る工程である。
(第6工程)
第6工程は、第5工程で得られた倍加積層溶融樹脂Eを大気圧下に開放して発泡剤を気化させることにより高倍化させ、発泡成形体を引き取り上下方向に拘束しながら冷却して最終形状(例えば図2参照。)とする工程である。
First, the process shown in FIG. 3 will be described.
(First step)
The first step is shown as an example of at least one molten resin containing no foaming agent, and two upper and lower layers of molten resin A, A containing a foaming agent as an example of at least one molten resin containing a foaming agent. In a step of obtaining a laminated molten resin C in which the molten resin B containing no foaming agent is merged in the vertical direction which is the thickness direction under high pressure, and the molten resin B is interposed between the upper and lower molten resins A, A is there.
(Width expansion process)
The width expansion step is a step of expanding in the left-right direction (for example, β1 / α1 = 2) without changing the cross-sectional area of the laminated molten resin C laminated in the first step.
(Second step)
The second step is a step in which the laminated molten resin C expanded in the width expanding step is divided at the center in the left-right direction and separated in the left-right direction to obtain two left and right divided laminated molten resins D1, D2.
(Third step)
In the third step, the divided laminated molten resins D1 and D2 divided in the second step are arranged so that one lower end is above the other upper end (in the example of FIG. 3, the lower end of D1 is higher than the upper end of D2 This is a step of separating the vertical direction.
(4th process)
In the fourth step, the divided laminated molten resins D1 and D2 separated vertically in the third step are made to approach in the left-right direction, and the center in the left-right direction of these two divided laminated molten resins D1, D2 is the left-right direction of the laminated molten resin C. This is a step of aligning the divided laminated molten resins D1 and D2 so as to be aligned in the vertical direction up to a position overlapping vertically so as to be located in a vertical plane passing through the center and parallel to the flow direction F.
(Rectifying process)
The flow straightening process is downstream in the state where the two divided laminated molten resins D1 and D2 are separated while maintaining the positional relationship in the left-right direction aligned so that the divided laminated molten resins D1 and D2 are aligned vertically in the fourth process. This is a step of reducing the difference in the flow velocity distribution in the left-right direction by moving a predetermined length L (see FIG. 8B) to the side.
(5th process)
The fifth step is a step of obtaining the doubled laminated molten resin E by joining the two upper and lower divided laminated molten resins D1 and D2 in which the difference in flow velocity distribution in the left and right direction is reduced in the rectifying step in the vertical direction.
(Sixth step)
In the sixth step, the doubled laminated molten resin E obtained in the fifth step is opened at atmospheric pressure to evaporate the foaming agent, and then the foamed molded product is taken up and cooled while being restrained in the vertical direction. This is a step of making the final shape (see, for example, FIG. 2).

次に、図4〜図7に示す工程について説明する。
図4〜図7に示す工程では、図3に示す工程と幅拡大工程の位置(全体工程における幅拡大工程を行う順序)が異なっている。
すなわち、図4に示す工程では第2工程と第3工程との間に、図5に示す工程では第3工程と第4工程との間に、図6に示す工程では整流工程と第5工程との間に、図7に示す工程では第5工程と第6工程との間に幅拡大工程を設けている。
そして、図4〜図6に示す工程では、幅拡大工程により、分割積層溶融樹脂D1,D2を、これらの断面積を変化させずに左右方向に拡大(例えば、β2/α2=2)しており、図7に示す工程では、幅拡大工程により、倍加積層溶融樹脂Eを、この断面積を変化させずに左右方向に拡大(例えば、β2/α2=2)している。
なお、第4工程と整流工程との間に幅拡大工程を設けてもよい。
Next, the steps shown in FIGS. 4 to 7 will be described.
In the steps shown in FIGS. 4 to 7, the position of the step of expanding the width (the order of performing the width expanding step in the entire step) is different from that of the step shown in FIG. 3.
That is, the process shown in FIG. 4 is between the second process and the third process, the process shown in FIG. 5 is between the third process and the fourth process, and the process shown in FIG. 6 is the rectifying process and the fifth process. In the process shown in FIG. 7, a width expansion process is provided between the fifth process and the sixth process.
In the steps shown in FIGS. 4 to 6, the divided laminated molten resins D1 and D2 are expanded in the left-right direction without changing their cross-sectional areas (for example, β2 / α2 = 2) by the width expanding step. In the step shown in FIG. 7, the doubled laminated molten resin E is expanded in the left-right direction (for example, β2 / α2 = 2) without changing the cross-sectional area by the width expansion step.
In addition, you may provide a width expansion process between a 4th process and a rectification | straightening process.

ここで、図3に示す工程のようにβ1/α1=2とすることにより、あるいは、図4〜図7に示す工程のようにβ2/α2=2とすることにより、積層2倍化工程の前後、すなわち第1工程の下流側の流路断面積と第5工程の下流側の流路断面積(第5工程の後に幅拡大工程を設ける場合はこの幅拡大工程の下流側の流路断面積)とが同一になることから、積層2倍化工程を多段化する際に好都合であり、簡素な構成により積層2倍化工程の多段化流路を構成して成形体を多層化することができる。   Here, by setting β1 / α1 = 2 as in the step shown in FIG. 3, or by setting β2 / α2 = 2 as in the steps shown in FIGS. Before and after, that is, the cross-sectional area of the downstream side of the first step and the cross-sectional area of the downstream side of the fifth step (if a width-enlarging step is provided after the fifth step, (Area) is the same, it is convenient when multi-layering the multi-layer stacking process, and a multi-layered flow path of the multi-layer stacking process is configured with a simple structure to form a multilayered product. Can do.

また、図3〜図7に示す工程のように、第4工程と第5工程との間に、すなわち第4工程で2つの分割積層溶融樹脂D1,D2が上下に揃うように位置合せされた後、第5工程で分割積層溶融樹脂D1,D2が上下方向に合流する前に、第4工程で左右方向の位置関係を保持して2つの分割積層溶融樹脂D1,D2が分離した状態のまま下流側へ所定長さL(例えば、図8(b)、図9(b)及び図10(b)参照。)移動させることにより、左右の流速差(左右方向の中央から等距離左右に離間した位置における下流方向の流速差)を低減させる整流工程(例えば、図8(b)、図9(b)及び図10(b)の整流路10参照。)を設けているため、第5工程で合流直後の倍加積層溶融樹脂Eの左右方向各部での厚み方向の流速差が低減する。
したがって、本発明の多層押出発泡成形体の製造方法において、分割積層溶融樹脂D1,D2を第5工程で厚み方向に合流させる前に、左右方向における流速分布の差を低減させる整流工程を設けたことによる整流効果により、製造された多層押出発泡成形体は、例えば図2に示す多層押出発泡成形体7のように、上下の発泡層8,8にそれぞれ挟まれた非発泡層9,9が、厚み方向に斜めに積層されることなく、略水平に積層される。
Also, as in the steps shown in FIGS. 3 to 7, the two divided laminated molten resins D <b> 1 and D <b> 2 are aligned vertically between the fourth step and the fifth step, that is, in the fourth step. After that, before the divided laminated molten resins D1 and D2 merge in the vertical direction in the fifth step, the two divided laminated molten resins D1 and D2 remain separated in the fourth step while maintaining the positional relationship in the left-right direction. By moving a predetermined length L to the downstream side (for example, see FIG. 8B, FIG. 9B and FIG. 10B), the left and right flow velocity difference (equal distance from the center in the left-right direction) Since the rectification process (for example, refer to rectification path 10 of Drawing 8 (b), Drawing 9 (b), and Drawing 10 (b)) which reduces the flow velocity difference of the downstream direction in the done position is provided, the 5th process The difference in flow velocity in the thickness direction at each part in the left and right direction of the doubled laminated molten resin E immediately after merging is reduced. .
Therefore, in the method for producing a multilayer extrusion foamed molded article of the present invention, a rectifying step for reducing the difference in flow velocity distribution in the left-right direction is provided before the divided laminated molten resins D1, D2 are joined in the thickness direction in the fifth step. Due to the rectifying effect, the produced multi-layer extrusion foamed molded product has non-foamed layers 9 and 9 sandwiched between upper and lower foam layers 8 and 8, for example, a multi-layer extruded foam molded product 7 shown in FIG. 2. The layers are laminated substantially horizontally without being obliquely laminated in the thickness direction.

これに対して、整流工程を設けない場合には、厚み方向に合流される2つの分割積層溶融樹脂D1,D2の左右の流速差に起因して、第5工程で合流した直後の倍加積層溶融樹脂Eの厚み方向に流速差が生じるため、製造された多層押出発泡成形体を構成する発泡層と非発泡層とが厚み方向に斜めに積層されたものとなる。
これは、図3〜図7に示すような積層2倍化方法では、第4工程において分割積層溶融樹脂D1,D2を左右方向に接近させてこれらが分離した状態で上下に揃うように位置を合わせることから、上側の分割積層溶融樹脂D1では、(右端の流路長さD1a)>(左端の流路長さD1b)となり、下側の分割積層溶融樹脂D2では、(右端の流路長さD2a)<(左端の流路長さD2b)となり、管路抵抗により、上側の分割積層溶融樹脂D1では右端の流速が左端の流速よりも遅くなり、下側の分割積層溶融樹脂D2では左端の流速が右端の流速よりも遅くなるため、このように左右の流速差が生じることによる。
On the other hand, when the rectifying process is not provided, the doubling lamination melting immediately after merging in the fifth process due to the difference in flow rate between the left and right of the two divided lamination molten resins D1 and D2 merged in the thickness direction. Since a difference in flow velocity occurs in the thickness direction of the resin E, the foamed layer and the non-foamed layer constituting the manufactured multilayer extrusion foamed molded body are laminated obliquely in the thickness direction.
This is because, in the method for doubling the lamination as shown in FIGS. 3 to 7, in the fourth step, the divided laminated molten resins D1 and D2 are moved close to each other in the left-right direction so that they are aligned in the vertical direction. Therefore, in the upper divided laminated molten resin D1, (right end channel length D1a)> (left end channel length D1b), and in lower divided laminated molten resin D2, (right end channel length). D2a) <(left end flow path length D2b), and due to the pipe resistance, the flow velocity at the right end is slower than the flow velocity at the left end in the upper divided laminated molten resin D1, and the left end in the lower divided laminated molten resin D2 This is due to the difference between the left and right flow rates.

すなわち、上側の分割積層溶融樹脂D1と下側の分割積層溶融樹脂D2とを比較すると、流路の左端部では、(上側の分割積層溶融樹脂D1の流速)>(下側の分割積層溶融樹脂D2の流速)となり、流路の右端部では、(上側の分割積層溶融樹脂D1の流速)<(下側の分割積層溶融樹脂D2の流速)となることから、整流工程を設けない場合には、第5工程において、流路の左右において流速の遅い溶融樹脂と流速の速い溶融樹脂とが上下に合流するとともに、このように合流した倍加積層溶融樹脂Eにおいて、その流路の左右で厚み方向の流速の方向が反転するため、製造された多層押出発泡成形体を構成する発泡層と非発泡層とが厚み方向に斜めに積層されたものとなるのである。   That is, when the upper divided laminated molten resin D1 and the lower divided laminated molten resin D2 are compared, at the left end portion of the flow path, (the flow velocity of the upper divided laminated molten resin D1)> (lower divided laminated molten resin) D2 flow velocity), and at the right end of the flow path, (the flow velocity of the upper divided laminated molten resin D1) <(the flow velocity of the lower divided laminated molten resin D2). In the fifth step, the molten resin having a low flow velocity and the molten resin having a high flow velocity merge vertically in the left and right sides of the flow path, and in the doubled laminated molten resin E thus merged, the thickness direction on the left and right sides of the flow path Since the direction of the flow rate of the material is reversed, the foamed layer and the non-foamed layer constituting the manufactured multilayer extrusion foamed molded product are laminated obliquely in the thickness direction.

このように多層押出発泡成形体において成形体を構成する発泡層と非発泡層が厚み方向に斜めに積層される現象は、第5工程で合流した直後の倍加積層溶融樹脂Eの左右における厚み方向の流速差に起因するものであるため、これを解消するためには、合流直後の左右方向各部における倍加積層溶融樹脂Eの厚み方向の平均流速((厚み方向の流速の最大値+厚み方向の流速の最小値)/2)に対する厚み方向の流速差(厚み方向の流速の最大値−厚み方向の流速の最小値)の比率(厚み方向の流速差/厚み方向の平均流速)を小さくすればよい。
この比率(厚み方向の流速差/厚み方向の平均流速)としては、0.3以下が好ましく、0.2以下が更に好ましく、0.1以下が最も好ましい。
In this way, the phenomenon in which the foamed layer and the non-foamed layer constituting the molded body are obliquely laminated in the thickness direction in the multilayer extrusion foamed molded article is the thickness direction in the right and left of the doubled laminated molten resin E immediately after joining in the fifth step. In order to eliminate this, the average flow velocity in the thickness direction of the doubling laminated molten resin E in each part in the left-right direction immediately after merging ((maximum value of flow velocity in the thickness direction + thickness direction) If the ratio of the flow rate difference in the thickness direction (maximum value of the flow rate in the thickness direction−the minimum value of the flow rate in the thickness direction) to the minimum flow velocity) / 2) (flow rate difference in the thickness direction / average flow velocity in the thickness direction) is reduced. Good.
The ratio (difference in flow rate in the thickness direction / average flow rate in the thickness direction) is preferably 0.3 or less, more preferably 0.2 or less, and most preferably 0.1 or less.

また、少なくとも1層の発泡剤を含有する溶融樹脂Aと、少なくとも1層の発泡剤を含有しない溶融樹脂Bを厚み方向に合流させることにより、多層化によって期待される熱伝導率の低減効果を発現しやすい構造を得ることができる。これは、断熱材の熱伝導率はJIS A9511に規定されるように断熱材の厚み方向で測定され、厚み方向に非発泡層が複数層存在することにより、発泡層間の輻射伝熱を抑制する効果が期待され、また、発泡層を被覆する非発泡層の面積が広くなることにより、効率的なガスバリアー効果が期待されることによる。
このため、発泡剤を含有する溶融樹脂Aと発泡剤を含有しない溶融樹脂Bとを厚み方向に合流させて得られる多層押出発泡成形体は熱伝導率が低い断熱性が良好なものとなる。一方、左右方向に合流させた場合は、得られる多層押出発泡成形体は、発泡層に比べて熱伝導率の高い非発泡層を熱量が伝熱する(熱橋として働く)ため熱伝導率が高く断熱性能に劣るものとなる傾向がある。
Further, by joining the molten resin A containing at least one layer of foaming agent and the molten resin B not containing at least one layer of foaming agent in the thickness direction, the effect of reducing the thermal conductivity expected by multilayering can be obtained. A structure that is easy to express can be obtained. This is because the thermal conductivity of the heat insulating material is measured in the thickness direction of the heat insulating material as defined in JIS A9511, and the presence of multiple non-foamed layers in the thickness direction suppresses radiant heat transfer between the foam layers. This is because an effect is expected, and an effective gas barrier effect is expected by increasing the area of the non-foamed layer covering the foamed layer.
For this reason, the multilayer extrusion foaming molding obtained by making the molten resin A containing a foaming agent and the molten resin B not containing a foaming agent join in the thickness direction becomes a thing with favorable heat insulation with low heat conductivity. On the other hand, when combined in the left-right direction, the resulting multilayer extruded foamed product has a high thermal conductivity because it conducts heat in a non-foamed layer having a higher thermal conductivity than the foamed layer (acts as a thermal bridge). It tends to be high and inferior in heat insulation performance.

なお、本発明のような整流工程を設けない場合には、上述のとおり成形体を構成する発泡層及び非発泡層が厚み方向に斜めに積層されるが、このような積層状態においても、左右方向に合流させた場合に得られる多層押出発泡成形体と同様に、発泡層に比べて熱伝導率の高い非発泡層を熱量が伝熱する(熱橋として働く)ため熱伝導率が高く断熱性能に劣るものとなる傾向がある。
また、発泡剤を含有する溶融樹脂Aと発泡剤を含有しない溶融樹脂Bを合流させ大気圧下に開放する共押出発泡を使用することの意味は、経済的な有利性に加え、製造直後に発生する発泡層セル内への空気の侵入を非発泡層が抑止することにより高断熱化が期待されることによる。
In the case where the rectifying step is not provided as in the present invention, the foamed layer and the non-foamed layer constituting the molded body are laminated obliquely in the thickness direction as described above. In the same way as the multilayer extrusion foamed product obtained when merging in the direction, heat transfer is conducted in the non-foamed layer, which has a higher thermal conductivity than the foamed layer (it acts as a thermal bridge), resulting in high thermal conductivity and heat insulation There is a tendency to be inferior in performance.
Moreover, the meaning of using the co-extrusion foaming in which the molten resin A containing the foaming agent and the molten resin B not containing the foaming agent are merged and opened to atmospheric pressure is in addition to economic advantages, This is because high heat insulation is expected by the non-foamed layer suppressing the intrusion of air into the foamed layer cell.

本発明の多層押出発泡成形体の製造方法により得られる多層押出発泡成形体を構成する発泡層とは、複数の気泡が気泡壁(wall)及び気泡壁結合部(struts)によって結合された気泡構造を有する層をいう。その形状としては、特に限定されず、フィルム形状、シート形状、ボード形状が挙げられ、これらの中でも、断熱性能を発現しやすいこと、押出発泡成形体に軽量性を付与できることより、シート形状、ボード形状が好ましい。
前記発泡層の密度は、目的とする押出発泡成形体の密度にもよるが、500kg/m3以下が好ましい。
前記発泡層としては、平均気泡径の1.2倍未満の気泡径を有し、気泡径が0.25mm以下の小気泡と、平均気泡径の1.2倍以上の気泡径を有する大気泡よりなるが海島状に混在する特徴的な気泡構造を有してもよい。このような特徴的な気泡構造を有することにより、得られる成形体は低密度化が可能となり、断熱性、成形性に優れた発泡成形体を得ることができる。ここで、小気泡は主に断熱性能の向上に寄与し、大気泡は主に低密度化、成形性改善に寄与するものである。
The foamed layer constituting the multilayer extruded foamed product obtained by the method for producing a multilayer extruded foamed product of the present invention is a foamed structure in which a plurality of bubbles are joined together by a foam wall (wall) and a foam wall joint (struts). A layer having The shape is not particularly limited, and examples thereof include a film shape, a sheet shape, and a board shape. Among these, a sheet shape and a board can be obtained because it easily exhibits heat insulation performance and can impart lightness to an extruded foam molded body. Shape is preferred.
The density of the foamed layer is preferably 500 kg / m 3 or less, although it depends on the density of the extrusion-molded molded article.
The foam layer has a bubble diameter less than 1.2 times the average bubble diameter, small bubbles with a bubble diameter of 0.25 mm or less, and large bubbles with a bubble diameter greater than 1.2 times the average bubble diameter. Although it is comprised, you may have a characteristic bubble structure mixed in the shape of a sea island. By having such a characteristic cell structure, it is possible to reduce the density of the obtained molded body, and it is possible to obtain a foam molded body having excellent heat insulation and moldability. Here, the small bubbles mainly contribute to the improvement of the heat insulating performance, and the large bubbles mainly contribute to the reduction in density and the improvement of moldability.

なお、通常の均一な気泡径の気泡のみからなる発泡成形体においても、気泡径を小さくすることにより、断熱性能をある程度向上させることは可能である。ただし、均一な気泡径の気泡のみからなる発泡成形体では、気泡径が小さくなると、所定の厚さを出すためには、より多くの樹脂が必要となって高密度化し、結果として、断熱性能改善効果が低下する傾向となる。また、押出時の圧力が高くなる、吐出量が少なくなる等、成形性が低下する傾向となる。
これに対して、小気泡と大気泡が海島状に混在する前記特徴的な気泡構造では、断熱性能を向上させると共に、大気泡により得られる発泡層が低密度で厚み方向の拡大率が高い発泡成形体を得ることが可能となる。
小気泡と大気泡の気泡径の関係について、小気泡が平均気泡径の1.2倍未満であり、小気泡の平均気泡径が0.25mm以下であり、且つ、大気泡の平均気泡径が平均気泡径の1.2倍以上であれば、特に限定はされない。
In addition, even in a foamed molded article composed only of bubbles having a normal uniform bubble diameter, it is possible to improve the heat insulation performance to some extent by reducing the bubble diameter. However, in the case of foamed molded products consisting only of bubbles having a uniform cell diameter, if the cell diameter is reduced, more resin is required to obtain a predetermined thickness, resulting in higher density, resulting in heat insulation performance. The improvement effect tends to decrease. In addition, the moldability tends to decrease, for example, the pressure during extrusion increases and the discharge amount decreases.
On the other hand, the characteristic bubble structure in which small bubbles and large bubbles are mixed in a sea-island shape improves the heat insulation performance, and the foam layer obtained by the large bubbles has a low density and a high expansion rate in the thickness direction. It becomes possible to obtain a molded body.
Regarding the relationship between the bubble sizes of small bubbles and large bubbles, the small bubbles are less than 1.2 times the average bubble size, the average bubble size of the small bubbles is 0.25 mm or less, and the average bubble size of the large bubbles is If it is 1.2 times or more of an average bubble diameter, it will not specifically limit.

前記発泡層において、小気泡と大気泡の気泡径の中間に位置する気泡が全く存在しないわけではないが、該気泡が目立って増加すると、小気泡と大気泡との区別がつきにくくなり、すなわち、異なる気泡径が連続的に存在する気泡構造となり、海島状に存在する前記の特徴的な気泡構造ではなくなることから、断熱性能と成形性のバランスが崩れる傾向となる。   In the foam layer, there is no absence of bubbles located between the bubble diameters of small bubbles and large bubbles, but when the bubbles increase noticeably, it becomes difficult to distinguish between small bubbles and large bubbles, Since the cell structure becomes a cell structure in which different cell diameters are continuously present and does not have the characteristic cell structure in a sea-island shape, the balance between heat insulation performance and moldability tends to be lost.

前記多層押出発泡成形体の厚み方向中央部に位置する発泡層の断面に占める小気泡の総面積の割合(単位断面積あたりの占有面積率)は、5〜95%が好ましく、10〜90%がよりに好ましく、20〜80%がさらに好ましく、25〜70%が特に好ましい。発泡層断面に占める小気泡の総面積の割合が5〜95%の場合、断熱性と成形性に優れた良好な押出発泡成形体が得られる。
小気泡と大気泡からなる特徴的な気泡構造の発泡層を作製する方法としては、発泡剤として物理型発泡剤と水を併用することがあげられる。
The ratio of the total area of small bubbles (occupied area ratio per unit cross-sectional area) in the cross section of the foamed layer located in the thickness direction center of the multilayer extruded foam molded body is preferably 5 to 95%, and 10 to 90%. Is more preferable, 20 to 80% is more preferable, and 25 to 70% is particularly preferable. When the ratio of the total area of the small bubbles in the cross section of the foam layer is 5 to 95%, a good extruded foam molded body excellent in heat insulation and moldability can be obtained.
As a method for producing a foam layer having a characteristic cell structure composed of small bubbles and large bubbles, a physical foaming agent and water may be used in combination as a foaming agent.

発泡剤として使用される水の添加量としては、小気泡及び大気泡の生成しやすさや加工性の面から、発泡層を構成する熱可塑性樹脂100重量部に対して、0.1〜5.0重量部が好ましく、0.2〜4.0重量部がより好ましく、0.3〜3.0重量部が特に好ましい。
また、水の添加量は、発泡層剤全量に対して、1〜80重量%が好ましく、2〜70重量%がより好ましく、3〜60重量%が特に好ましい。
水の添加量が発泡層を構成する熱可塑性樹脂100重量部に対して、0.1〜5.0重量部であり、且つ、発泡剤全量に対して1〜80重量%を満たす場合、得られる発泡層は容易に小気泡と大気泡からなる特徴的な気泡構造をとることが可能となり、結果、得られる多層押出発泡成形体は軽量性と断熱性、成形性に優れたものとなる。
The amount of water used as the foaming agent is 0.1 to 5. with respect to 100 parts by weight of the thermoplastic resin constituting the foamed layer, from the viewpoint of easy generation of small bubbles and large bubbles and processability. 0 parts by weight is preferable, 0.2 to 4.0 parts by weight is more preferable, and 0.3 to 3.0 parts by weight is particularly preferable.
The amount of water added is preferably 1 to 80% by weight, more preferably 2 to 70% by weight, and particularly preferably 3 to 60% by weight based on the total amount of the foamed layer agent.
When the amount of water added is 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin constituting the foamed layer, and 1 to 80% by weight with respect to the total amount of the foaming agent is obtained, The resulting foamed layer can easily have a characteristic cell structure composed of small cells and large cells, and as a result, the resulting multilayer extrusion foamed molded product is excellent in lightness, heat insulation and moldability.

小気泡と大気泡からなる特徴的な気泡構造の発泡層を作製する方法において、発泡層を構成する熱可塑性樹脂と相溶性のない水を如何に溶融樹脂中に均一に分散させるかが、重要となる。その方法としては、熱可塑性樹脂中にスメクタイト、膨潤性フッ素雲母等の吸水性または水膨潤性の層状珪酸塩類またはこれらの有機化処理品、吸水性高分子、日本アエロジル(株)製AEROSIL等のシラノール基を有する無水シリカ等(本明細書においては、これらの物質を「吸水性物質」と総称する)の1種または複数種を添加することがあげられる。これにより、発泡層中の小気泡及び大気泡の分散状態が安定化し、得られる多層押出発泡成形体の成形性、生産性及び断熱性能をさらに向上させることができる。   In producing a foam layer with a characteristic cell structure consisting of small bubbles and large cells, it is important how water that is incompatible with the thermoplastic resin constituting the foam layer is uniformly dispersed in the molten resin. It becomes. As the method, water-absorbing or water-swelling layered silicates such as smectite and swellable fluoromica in a thermoplastic resin or organically treated products thereof, water-absorbing polymers, AEROSIL manufactured by Nippon Aerosil Co., Ltd., etc. One or more kinds of anhydrous silica having a silanol group and the like (in the present specification, these substances are collectively referred to as “water-absorbing substances”) can be mentioned. Thereby, the dispersed state of small bubbles and large bubbles in the foamed layer is stabilized, and the moldability, productivity and heat insulation performance of the resulting multilayer extrusion foamed molded product can be further improved.

前記発泡層を製造する際に用いられる吸水性物質の添加量は、水の添加量等によって適宜調整されるものであるが、一般に、発泡層を構成する熱可塑性樹脂100重量部に対して0.1〜10重量部が好ましく、0.2〜8重量部がさらに好ましく、0.3〜7重量部が特に好ましい。吸水性物質の添加量が0.1〜10重量部の場合、押出機内で水が良好に分散されて、気泡ムラ、ボイド等の発生が無い良好なセル構造を有する発泡層が得られ、バラツキのない良好な断熱性能を有する押出発泡成形体を得ることができる。   The amount of the water-absorbing substance used when the foamed layer is produced is appropriately adjusted depending on the amount of water added, etc., but is generally 0 with respect to 100 parts by weight of the thermoplastic resin constituting the foamed layer. 0.1 to 10 parts by weight is preferable, 0.2 to 8 parts by weight is more preferable, and 0.3 to 7 parts by weight is particularly preferable. When the water-absorbing substance is added in an amount of 0.1 to 10 parts by weight, water is well dispersed in the extruder, and a foamed layer having a good cell structure free from bubble unevenness and voids is obtained. It is possible to obtain an extrusion foamed molded article having good heat insulation performance without any problems.

前記発泡層を製造する際に用いられる層状珪酸塩とは、酸化ケイ素を主成分とする四面体シートと金属水酸化物を主成分とする八面体シートからなり、前記四面体シートと前記八面体シートが単位層を形成し、単位層単独構造の、または複数の単位層が層間に陽イオン等を介して積層された構造の一次粒子、及び、一次粒子の凝集体(二次粒子)として存在するものである。層状珪酸塩の具体例としては、例えば、スメクタイト族粘土及び膨潤性雲母等があげられる。
前記のスメクタイト族粘土は下記一般式(I)
0.2〜0.62〜3410(OH)2・nH2O・・・・・・・・・・・一般式(I)
(ただし、XはK、Na、1/2Ca、及び1/2Mgからなる群より選ばれる1種以上であり、YはMg、Fe、Mn、Ni、Zn、Li、Al、及びCrからなる群より選ばれる1種以上であり、ZはSi、及びAlからなる群より選ばれる1種以上である。なお、H2Oは層間イオンと結合している水分子を表わすが、nは層間イオン及び相対湿度に応じて著しく変動する)で表される、天然または合成されたものである。
前記スメクタイト族粘土の具体例としては、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト、スチブンサイト及びベントナイト等、またはこれらの置換体、誘導体、またはこれらの混合物が挙げられる。
The layered silicate used in manufacturing the foamed layer is composed of a tetrahedral sheet mainly composed of silicon oxide and an octahedral sheet mainly composed of a metal hydroxide, and the tetrahedral sheet and the octahedron. Sheets form unit layers and exist as primary particles and primary particle aggregates (secondary particles) that have a single unit layer structure or a structure in which a plurality of unit layers are laminated with cations between layers. To do. Specific examples of the layered silicate include smectite clay and swellable mica.
The smectite clay is represented by the following general formula (I)
X 0.2 to 0.6 Y 2 to 3 Z 4 O 10 (OH) 2 .nH 2 O... General formula (I)
(However, X is at least one selected from the group consisting of K, Na, 1 / 2Ca, and 1 / 2Mg, and Y is a group consisting of Mg, Fe, Mn, Ni, Zn, Li, Al, and Cr. One or more selected from Z and one or more selected from the group consisting of Si and Al, where H 2 O represents a water molecule bonded to an interlayer ion, and n represents an interlayer ion. As well as natural or synthetic).
Specific examples of the smectite group clay include, for example, montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, soconite, stevensite, bentonite, and the like, or a substitution product, a derivative thereof, or a mixture thereof. .

また、前記の膨潤性雲母は下記一般式(II)
0.5〜1.02〜3(Z410)(F、OH)2・・・・・・・・・・・一般式(II)
(ただし、XはLi、Na、K、Rb、Ca、Ba、及びSrからなる群より選ばれる1種以上であり、YはMg、Fe、Ni、Mn、Al、及びLiからなる群より選ばれる1種以上であり、ZはSi、Ge、Al、Fe、及びBからなる群より選ばれる1種以上である)で表される、天然または合成されたものである。
これらは、水、水と任意の割合で相溶する極性のある有機化合物、及び水と該極性のある有機化合物の混合溶媒中で膨潤する性質を有する物であり、例えば、リチウム型テニオライト、ナトリウム型テニオライト、リチウム型四ケイ素雲母、及びナトリウム型四ケイ素雲母等、またはこれらの置換体、誘導体、またはこれらの混合物が挙げられる。
The swellable mica is represented by the following general formula (II)
X 0.5 to 1.0 Y 2 to 3 (Z 4 O 10 ) (F, OH) 2 ... General formula (II)
(However, X is at least one selected from the group consisting of Li, Na, K, Rb, Ca, Ba, and Sr, and Y is selected from the group consisting of Mg, Fe, Ni, Mn, Al, and Li) Z is one or more selected from the group consisting of Si, Ge, Al, Fe, and B), and is natural or synthesized.
These are water, a polar organic compound that is compatible with water at an arbitrary ratio, and a substance that swells in a mixed solvent of water and the polar organic compound. For example, lithium teniolite, sodium Type teniolite, lithium type tetrasilicon mica, sodium type tetrasilicon mica and the like, or a substituted product, a derivative thereof, or a mixture thereof.

前記膨潤性雲母の中にはバーミキュライト類と似通った構造を有するものもあり、この様なバーミキュライト類相当品等も使用し得る。該バーミキュライト類相当品には3八面体型と2八面体型があり、下記一般式(III)
(Mg,Fe,Al)2〜3(Si4-xAlx)O10(OH)2・(M+,M2+1/2)x・nH2
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・一般式(III)
(ただし、MはNa及びMg等のアルカリまたはアルカリ土類金属の交換性陽イオン、x=0.6〜0.9、n=3.5〜5である)で表されるものがあげられる。
Some of the swellable mica have a structure similar to vermiculites, and such vermiculites and the like can also be used. The vermiculite-equivalent products include three octahedron type and two octahedron type, and the following general formula (III)
(Mg, Fe, Al) 2~3 (Si 4-x Al x) O 10 (OH) 2 · (M +, M 2 + 1/2) x · nH 2 O
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ General formula (III)
(Wherein M is an exchangeable cation of an alkali or alkaline earth metal such as Na and Mg, x = 0.6 to 0.9, n = 3.5 to 5). .

膨潤性層状珪酸塩は、単独で用いても良く、2種以上組み合わせて用いても良い。これらの内では、得られる多層押出発泡成形体中の分散性の点等から、スメクタイト族粘土、膨潤性雲母が好ましく、モンモリロナイト、ベントナイト、ヘクトライト、合成スメクタイト及び膨潤性フッ素雲母等の層間にナトリウムイオンを有する膨潤性雲母が、さらに好ましい。
ベントナイトの代表例としては、天然ベントナイト、精製ベントナイト等があげられる。また、有機化ベントナイト等も使用できる。本発明におけるスメクタイトには、アニオン系ポリマー変性モンモリロナイト、シラン処理モンモリロナイト、高極性有機溶剤複合モンモリロナイト等のモンモリロナイト変性処理生成物もその範疇に含まれる。
Swellable layered silicates may be used alone or in combination of two or more. Of these, smectite group clay and swellable mica are preferable from the viewpoint of dispersibility in the obtained multilayer extrusion foamed molded article, and sodium is interposed between layers such as montmorillonite, bentonite, hectorite, synthetic smectite, and swellable fluorine mica. Swelling mica having ions is more preferred.
Typical examples of bentonite include natural bentonite and purified bentonite. Also, organic bentonite can be used. The smectite in the present invention includes montmorillonite-modified products such as anionic polymer-modified montmorillonite, silane-treated montmorillonite, and highly polar organic solvent composite montmorillonite.

ベントナイト等のスメクタイトの含有量は、水の添加量等によって、適宜調整されるものであるが、熱可塑性樹脂100重量部に対して、0.1〜10重量部が好ましくは0.2〜8重量部がさらに好ましく、0.3〜7重量部が特に好ましく、1〜5重量部が最も好ましい。   The content of smectite such as bentonite is appropriately adjusted depending on the amount of water added and the like, but 0.1 to 10 parts by weight is preferably 0.2 to 8 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Part by weight is more preferred, 0.3 to 7 parts by weight is particularly preferred, and 1 to 5 parts by weight is most preferred.

スメクタイトの添加量が0.1〜10重量部の場合、押出機内で水が良好に分散され、気泡ムラ、ボイドの発生が無い良好なセル構造を有する発泡層が得られ、バラツキのない良好な断熱性能を有する押出発泡成形体を得ることができる。
水/スメクタイトの混合比率は、重量比で、0.02〜20が好ましく、0.1〜10がさらに好ましく、0.15〜5が特に好ましく、0.25〜2の範囲が最も好ましい。
When the added amount of smectite is 0.1 to 10 parts by weight, water is well dispersed in the extruder, a foamed layer having a good cell structure free from bubble unevenness and voids is obtained, and good with no variation An extruded foam molded product having heat insulation performance can be obtained.
The mixing ratio of water / smectite is preferably 0.02 to 20, more preferably 0.1 to 10, particularly preferably 0.15 to 5, and most preferably 0.25 to 2, in terms of weight ratio.

発泡層の密度としては、前記のように、500kg/m3以下であれば特に限定はされないが、軽量でかつ優れた断熱性及び曲げ強度、圧縮強度を付与するためには、20〜65kg/m3であることが好ましく、20〜50kg/m3であることが更に好ましく、20〜40kg/m3であることがより好ましい。密度が20〜60kg/m3の範囲では、軽量性、圧縮強度等機械的特性、断熱性に優れた発泡成形体が得られる。 As described above, the density of the foamed layer is not particularly limited as long as it is 500 kg / m 3 or less. However, in order to impart lightweight heat resistance, bending strength, and compressive strength, 20 to 65 kg / m 3 is preferable, 20 to 50 kg / m 3 is further preferable, and 20 to 40 kg / m 3 is more preferable. When the density is in the range of 20 to 60 kg / m 3 , a foamed molded article excellent in mechanical properties such as lightness, compressive strength, and heat insulation can be obtained.

前記発泡層を構成する樹脂(以降、「発泡層構成樹脂」と称する場合がある)は、押出発泡成形が可能な熱可塑性樹脂から任意に選択される。
熱可塑性樹脂としては、例えば、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−(メタ)アクリル酸共重合体、スチレン−(メタ)アクリル酸エステル共重合体等のスチレン系樹脂、ポリメチルメタクリレート、ポリアクリロニトリル系樹脂、ポリ塩化ビニル系樹脂等のビニル系樹脂;ポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン3元共重合体、シクロオレフィン系(共)重合体等のポリオレフィン系樹脂及びこれらに分岐構造、架橋構造を導入してレオロジーコントロールされたポリオレフィン系樹脂;ナイロン6、ナイロン66、ナイロン11、ナイロン12、MXDナイロン等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート等のポリエステル系樹脂;ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、変性ポリフェニレンエーテル系樹脂、ポリオキシメチレン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフェニレンサルファイド系樹脂、芳香族ポリエーテル系樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂等のエンジニアリングプラスチック;ポリ乳酸等の脂肪族ポリエステル系樹脂等が挙げられ、これらは単独または2種以上を混合して使用することができる。
The resin constituting the foam layer (hereinafter sometimes referred to as “foam layer constituent resin”) is arbitrarily selected from thermoplastic resins capable of extrusion foam molding.
Examples of the thermoplastic resin include polystyrene, styrene-acrylonitrile copolymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid ester copolymer, and other styrene resins, polymethyl methacrylate, poly Vinyl resins such as acrylonitrile resin and polyvinyl chloride resin; Polyolefin resins such as polypropylene, polyethylene, ethylene-propylene copolymer, ethylene-propylene-butene terpolymer, and cycloolefin (co) polymer Polyolefin resins whose rheology is controlled by introducing a branched structure or a crosslinked structure into these; Polyamide resins such as nylon 6, nylon 66, nylon 11, nylon 12, MXD nylon; polyethylene terephthalate, polybutylene terephthalate, Polyester resins such as rearylates; polycarbonate resins, polyphenylene ether resins, modified polyphenylene ether resins, polyoxymethylene resins, polyphenylene sulfide resins, polyphenylene sulfide resins, aromatic polyether resins, polyether ether ketone resins Engineering plastics such as liquid crystal resins; aliphatic polyester resins such as polylactic acid, and the like. These may be used alone or in admixture of two or more.

発泡層を構成する樹脂としてスチレン系樹脂を用いる場合には、特に限定されず、例えば、スチレン単量体のみから得られるスチレンホモポリマー、スチレン単量体とスチレンと共重合可能な単量体またはその誘導体から得られるランダム、ブロックまたはグラフト共重合体、後臭素化ポリスチレン、ゴム強化ポリスチレン等の変性ポリスチレン、ABS樹脂等が挙げられる。これらは単独または2種以上混合して使用することができる。
スチレンと共重合可能な単量体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレン等のスチレン誘導体;ジビニルベンゼン等の多官能性ビニル化合物;アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、メタクリロニトリル、α−クロロアクリロニトリル、アクリロニトリル等の(メタ)アクリル系化合物;ブダジエン等のジエン系化合物またはその誘導体;無水マレイン酸、無水イタコン酸、無水シトラコン酸等の不飽和カルボン酸無水物;N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−4−ジフェニルマレイミド、N−2−クロロフェニルマレイミド、N−4−ブロモフェニルマレイミド、N−1−ナフチルマレイミド等のN−アルキル置換マレイミド化合物;等があげられる。これらは単独または2種以上混合して使用することができる。
When a styrene resin is used as the resin constituting the foam layer, it is not particularly limited. For example, a styrene homopolymer obtained only from a styrene monomer, a monomer copolymerizable with styrene monomer and styrene, or Examples thereof include random, block or graft copolymers obtained from the derivatives, post-brominated polystyrene, modified polystyrene such as rubber-reinforced polystyrene, ABS resin, and the like. These can be used alone or in admixture of two or more.
Examples of monomers copolymerizable with styrene include styrene such as methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, and trichlorostyrene. Derivatives; polyfunctional vinyl compounds such as divinylbenzene; (meth) acrylic such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, methacrylonitrile, α-chloroacrylonitrile, acrylonitrile Diene compounds such as budadiene or derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride; N-methylmaleimide, N-butylmaleimide, N-alkyl substituted maleimide compounds such as cyclohexylmaleimide, N-phenylmaleimide, N-4-diphenylmaleimide, N-2-chlorophenylmaleimide, N-4-bromophenylmaleimide, N-1-naphthylmaleimide; . These can be used alone or in admixture of two or more.

発泡層を構成する樹脂としては、これらの中でも、押出発泡成形が容易で軽量かつ断熱性に優れた押出発泡成形体が得られること等から、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−(メタ)アクリル酸共重合体、スチレン−(メタ)アクリル酸エステル共重合体、無水マレイン酸変性ポリスチレン、スチレン−不飽和ジカルボン酸無水物−N−アルキル置換マレイミド系共重合体、耐衝撃性ポリスチレン等のスチレン系樹脂、あるいは、ポリメチルメタクリレート、ポリ塩化ビニル系樹脂等のビニル系樹脂;ポリスチレン系樹脂とポリフェニレンエーテル系樹脂の混合樹脂である変性ポリフェニレンエーテル系樹脂が好ましい。最も好ましくはポリスチレンホモポリマーである。   Among these, as the resin constituting the foamed layer, polystyrene, styrene-acrylonitrile copolymer, styrene- (meta ) Acrylic acid copolymer, styrene- (meth) acrylic acid ester copolymer, maleic anhydride modified polystyrene, styrene-unsaturated dicarboxylic anhydride-N-alkyl substituted maleimide copolymer, high impact polystyrene, etc. Styrenic resins or vinyl resins such as polymethyl methacrylate and polyvinyl chloride resins; modified polyphenylene ether resins which are mixed resins of polystyrene resins and polyphenylene ether resins are preferred. Most preferred is a polystyrene homopolymer.

前記発泡層は、溶融状態にある発泡層構成樹脂に、高圧下で、水及び物理型発泡剤を圧入し、低圧領域に開放することにより得られる。
圧入する物理型発泡剤としては、特に限定されず、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン等の炭素数3〜5の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2−メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン、メチルn−プロピルケトン、メチルn−ブチルケトン、メチルi−ブチルケトン、メチルn−アミルケトン、メチルn−ヘキシルケトン、エチルn−プロピルケトン、エチルn−ブチルケトン等のケトン類;メタノール、エタノール、プロピルアルコール、i−プロピルアルコール、ブチルアルコール、i−ブチルアルコール、t−ブチルアルコール等のアルコール類;蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル、プロピオン酸メチル、プロピオン酸エチル等のエステル類;塩化メチル、塩化エチル等のハロゲン化アルキル類;窒素、空気、二酸化炭素等の無機発泡剤、等が挙げられる。これら発泡剤は単独または2種以上混合して使用することができる。
The foamed layer can be obtained by press-fitting water and a physical foaming agent into a foamed layer-constituting resin in a molten state and releasing it into a low-pressure region.
The physical blowing agent to be injected is not particularly limited, and examples thereof include saturated hydrocarbons having 3 to 5 carbon atoms such as propane, n-butane, i-butane, n-pentane, i-pentane, neopentane; dimethyl ether, diethyl Ethers such as ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methylfuran, tetrahydrofuran, tetrahydropyran; acetone, methyl ethyl ketone, diethyl ketone, methyl n-propyl ketone, methyl n- Ketones such as butyl ketone, methyl i-butyl ketone, methyl n-amyl ketone, methyl n-hexyl ketone, ethyl n-propyl ketone, ethyl n-butyl ketone; methanol, ethanol, propyl alcohol, i-propyl Alcohols such as alcohol, butyl alcohol, i-butyl alcohol, t-butyl alcohol; methyl formate, ethyl formate, propyl formate, butyl formate, amyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, amyl acetate, propion Examples thereof include esters such as methyl acid and ethyl propionate; alkyl halides such as methyl chloride and ethyl chloride; inorganic foaming agents such as nitrogen, air and carbon dioxide. These foaming agents can be used alone or in admixture of two or more.

前記発泡剤の中でも、押出発泡成形性と高断熱性を両立できるという点から、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン、シクロペンタン等の炭化水素が好ましい。また、低密度の押出発泡体が得られるという点から、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等のエーテル類;メタノール、エタノール、プロピルアルコール、i−プロピルアルコール、ブチルアルコール、i−ブチルアルコール、t−ブチルアルコール等のアルコール類;塩化メチル、塩化エチル等のハロゲン化アルキル類が好ましい。さらに、不燃性であり環境適合性に優れるという点から、窒素、空気、二酸化炭素等の無機発泡剤が好ましい。   Among the foaming agents, hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and cyclopentane are preferable because they can achieve both extrusion foam moldability and high heat insulation. From the point that a low density extruded foam can be obtained, ethers such as dimethyl ether, diethyl ether and methyl ethyl ether; methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, t- Alcohols such as butyl alcohol; halogenated alkyls such as methyl chloride and ethyl chloride are preferred. Further, inorganic foaming agents such as nitrogen, air, carbon dioxide and the like are preferable from the viewpoint of nonflammability and excellent environmental compatibility.

溶融した発泡層構成樹脂(熱可塑性樹脂)中に圧入される物理型発泡剤の量としては、発泡倍率の設定値等に応じて適宜選定されるが、通常、発泡剤の合計量を、熱可塑性樹脂100重量部に対して1〜20重量部とすることが好ましく、3〜8重量部とすることがより好ましい。物理型発泡剤の合計圧入量が1〜20重量部の場合、発泡成形体中にボイドが無く、難燃性が制御可能な、適度な発泡倍率を有する発泡層が得られ、押出発泡成形体として軽量、断熱性等の特性が発現される。
発泡剤を圧入する際の圧力としては、特に限定されず、押出機等の内圧力よりも高い圧力であればよい。
The amount of the physical foaming agent that is press-fitted into the molten foam layer-constituting resin (thermoplastic resin) is appropriately selected according to the setting value of the foaming ratio, etc. It is preferable to set it as 1-20 weight part with respect to 100 weight part of plastic resins, and it is more preferable to set it as 3-8 weight part. When the total amount of the physical foaming agent is 1 to 20 parts by weight, there is no void in the foamed molded product, and a foamed layer having an appropriate foaming ratio that can control flame retardancy is obtained. As a result, characteristics such as light weight and heat insulation are exhibited.
The pressure at which the foaming agent is injected is not particularly limited as long as it is higher than the internal pressure of an extruder or the like.

発泡層の気泡径分布を調整する方法としては、発泡剤に水を用い、他の発泡剤の種類及び使用量、吸水性物質の種類及び使用量、押出発泡の成形条件等により調整できる。このような成形条件としては、例えば、溶融されたスチレン系樹脂組成物を大気中へ吐出する際の厚みの拡大率の調整(つまり、ダイリップのスリットの厚みと矩形にするための成形金型の高さの調整)、成形抵抗の調整、等が挙げられる。
発泡層の厚み方向の平均気泡径を制御する方法としては、シリカ、タルク、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、酸化チタン、炭酸カルシウム、炭酸水素ナトリウム等の無機化合物等に代表される造核剤や、前述された層状珪酸塩をスチレン系樹脂に添加し、これらの添加量を調整する方法があげられる。また、発泡剤の種類、組成及び添加量によっても、平均気泡径は調整される。さらに、溶融混練手段である押出機のスクリュー形状や、加熱温度、圧力、溶融混練されたスチレン系樹脂組成物がダイリップから吐出される量、ダイス形状、吐出の際の樹脂温度等によっても、平均気泡径は調整される。
As a method of adjusting the cell diameter distribution of the foamed layer, water can be used as the foaming agent, and it can be adjusted according to the type and amount of other foaming agent, the type and amount of water-absorbing substance, the molding conditions for extrusion foaming, and the like. As such molding conditions, for example, adjustment of the enlargement ratio of the thickness when the molten styrene-based resin composition is discharged into the atmosphere (that is, the die lip slit thickness and the molding die for making a rectangle) Height adjustment), molding resistance adjustment, and the like.
Examples of the method for controlling the average cell diameter in the thickness direction of the foam layer include inorganic compounds such as silica, talc, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, calcium carbonate, and sodium bicarbonate. And a method of adding the above-described nucleating agent and the above-described layered silicate to the styrene-based resin and adjusting the addition amount thereof. The average cell diameter is also adjusted by the type, composition and amount of the blowing agent. Furthermore, depending on the screw shape of the extruder as the melt kneading means, the heating temperature, the pressure, the amount of the melt-kneaded styrene resin composition discharged from the die lip, the die shape, the resin temperature at the time of discharge, etc. The bubble diameter is adjusted.

発泡層の製造時において、必要に応じて、難燃剤、難燃助剤、シリカ、タルク、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、酸化チタン、炭酸カルシウム等の無機化合物、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸バリウム、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物等の加工助剤、フェノール系抗酸化剤、リン系安定剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類、ヒンダードアミン類等の耐光性安定剤、帯電防止剤、顔料等の着色剤等の添加剤を添加させることが好ましい。   In the production of the foam layer, inorganic compounds such as flame retardant, flame retardant aid, silica, talc, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, calcium carbonate, etc., as necessary , Processing aids such as sodium stearate, magnesium stearate, barium stearate, liquid paraffin, olefin wax, stearylamide compound, phenolic antioxidant, phosphorus stabilizer, nitrogen stabilizer, sulfur stabilizer It is preferable to add additives such as light-resistant stabilizers such as benzotriazoles and hindered amines, colorants such as antistatic agents and pigments.

また、より安定的に押出発泡するためには、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルホスフェート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレイト等のヒンダードフェノール系抗酸化剤;トリフェニルフォスファイト、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジフォスファイト、ビスステアリルペンタエリスリトールジフォスファイト、ビス(2,4−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジフォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスホナイト等のリン系安定剤;2,2,4−トリメチル−1,2−ジヒドロキノリン重合体、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミン等のアミン系安定剤;3,3−チオビスプロピオン酸ジオデシルエステル、3,3’−チオビスプロピオン酸ジオクタデシルエステル等のイオウ系安定剤を添加するのが好ましい。   For more stable extrusion foaming, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis {3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate}, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-t-butyl-4- Hydroxyphenyl) propionate, 3,5-di-t-butyl-4-hydroxy-benzyl phosphate-diethyl ester, 1,3,5-trimethyl-2,4,6- Hindered phenolic antioxidants such as lis (3,5-di-t-butyl-4-hydroxybenzyl) benzene and tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate; Phenylphosphite, tris (2,4-di-t-butylphenyl) phosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bisstearyl pentaerythritol diphosphite, bis (2 , 4-Di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) [1,1-biphenyl] -4,4′-diylbisphosphonite Phosphorus stabilizers such as 2,2,4-trimethyl-1,2-dihydroquinoline polymer, alkylated dipheny Amine stabilizers such as amine, octylated diphenylamine, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine; 3,3-thiobispropionic acid didecyl ester, 3,3′-thiobispropionic acid diester It is preferable to add a sulfur-based stabilizer such as octadecyl ester.

発泡層の厚みは、多層押出発泡成形体の厚み及び多層押出発泡成形体中の発泡層の数(発泡層/非発泡層/発泡層からなるユニットの数)に応じて適宜選択される。   The thickness of the foamed layer is appropriately selected according to the thickness of the multilayer extruded foamed molded product and the number of foamed layers in the multilayer extruded foamed molded product (number of units composed of foamed layer / non-foamed layer / foamed layer).

本発明の多層押出発泡成形体の製造方法により得られる多層押出発泡成形体を構成する非発泡層とは、発泡層を構成する気泡の気泡壁あるいは気泡壁結合部のうち厚みの大きな部分よりも1.1倍以上の厚みを有する層をいう。非発泡層の密度は用いる樹脂、添加剤等の密度にもよるが、500kg/m3超であることが好ましい。非発泡層には発泡層より少ない数の気泡が含まれていてもよい。
非発泡層を構成する樹脂あるいは樹脂組成物(以降、「非発泡層構成樹脂」と称する場合がある)は、目的の高断熱性の多層押出発泡成形体を得るためには得られた発泡層と非発泡層とが良好に接着されていることが好ましいため、発泡層を構成する樹脂と相溶性を有する樹脂を選定することが好ましい。
The non-foamed layer constituting the multilayer extruded foamed molded product obtained by the method for producing a multilayer extruded foamed molded product of the present invention is larger than the thicker portion of the cell walls or cell wall joints of the cells constituting the foamed layer. A layer having a thickness of 1.1 times or more. The density of the non-foamed layer is preferably more than 500 kg / m 3 , although it depends on the density of the resin and additives used. The non-foamed layer may contain fewer bubbles than the foamed layer.
The resin or resin composition constituting the non-foamed layer (hereinafter sometimes referred to as “non-foamed layer constituting resin”) is the foam layer obtained in order to obtain the desired highly heat-insulating multilayer extruded foam Therefore, it is preferable to select a resin that is compatible with the resin constituting the foamed layer.

発泡層を構成する樹脂と相溶性を有する熱可塑性樹脂としては、特に限定されず、例えば、ポリスチレン等のスチレン系樹脂;ポリプロピレン、ポリエチレン、エチレンプロピレンランダム共重合体等のポリオレフィン系樹脂;ナイロン6、ナイロン66、ナイロン12等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;ポリフェニレンエーテル系樹脂、変性ポリフェニレンエーテル系樹脂;ポリオキシメチレン系樹脂、ポリアリレート樹脂、ポリフェニレンスルフィド系樹脂、ポリアクリロニトリル、ポリビニルアルコール、エチレン−ビニル酢酸共重合体、ポリアクリル酸、ポリメチルメタクリレート、熱可塑性フェノール系樹脂等が挙げられ、これらは単独または2種以上を混合して使用することができる。これらの中でも、前記発泡層を構成する樹脂との相溶性に優れること、成形性が容易なことから、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリフェニレンエーテル系樹脂、変性ポリフェニレンエーテル系樹脂が好ましく、スチレン系樹脂がより好ましい。   The thermoplastic resin having compatibility with the resin constituting the foam layer is not particularly limited, and examples thereof include styrene resins such as polystyrene; polyolefin resins such as polypropylene, polyethylene, and ethylene propylene random copolymer; nylon 6, Polyamide resins such as nylon 66 and nylon 12; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polycarbonate resins; polyphenylene ether resins, modified polyphenylene ether resins; polyoxymethylene resins, polyarylate resins, polyphenylene sulfide Resin, polyacrylonitrile, polyvinyl alcohol, ethylene-vinyl acetic acid copolymer, polyacrylic acid, polymethyl methacrylate, thermoplastic phenol resin, etc. It can be used as a mixture of at least alone or in combination. Among these, polystyrene resins, polyolefin resins, polyphenylene ether resins, and modified polyphenylene ether resins are preferred because they are excellent in compatibility with the resin constituting the foam layer and are easy to mold. A resin is more preferable.

スチレン系樹脂としては、特に限定されず、例えば、スチレン単量体のみから得られるスチレンホモポリマー、スチレン単量体とスチレンと共重合可能な単量体またはその誘導体から得られるランダム、ブロックまたはグラフト共重合体、後臭素化ポリスチレン、ゴム強化ポリスチレン等の変性ポリスチレン、ABS樹脂等が挙げられる。これらは単独または2種以上混合して使用することができる。
スチレンと共重合可能な単量体としては、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレン等のスチレン誘導体、ジビニルベンゼン等の多官能性ビニル化合物、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、メタクリロニトリル、α−クロロアクリロニトリル、アクリロニトリル等の(メタ)アクリル系化合物、ブダジエン等のジエン系化合物またはその誘導体、無水マレイン酸、無水イタコン酸、無水シトラコン酸等の不飽和カルボン酸無水物、N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−4−ジフェニルマレイミド、N−2−クロロフェニルマレイミド、N−4−ブロモフェニルマレイミド、N−1−ナフチルマレイミド等のN−アルキル置換マレイミド化合物;等があげられる。これらは単独または2種以上混合して使用することができる。
The styrenic resin is not particularly limited, and for example, a styrene homopolymer obtained only from a styrene monomer, a random, block or graft obtained from a monomer copolymerizable with a styrene monomer and styrene or a derivative thereof. Examples thereof include copolymers, modified polystyrene such as post-brominated polystyrene and rubber-reinforced polystyrene, and ABS resins. These can be used alone or in admixture of two or more.
Examples of monomers copolymerizable with styrene include methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, and trichlorostyrene. Polyfunctional vinyl compounds such as divinylbenzene, (meth) acrylic compounds such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, methacrylonitrile, α-chloroacrylonitrile, acrylonitrile Diene compounds such as budadiene or derivatives thereof, unsaturated carboxylic acid anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, N-methylmaleimide, N-butylmaleimide, N-cycl Hexyl maleimide, N- phenylmaleimide, N-4-diphenyl-maleimide, N-2-chlorophenyl maleimide, N-4-bromophenyl maleimide, N- alkyl-substituted maleimide compounds such as N-1- naphthyl maleimide; and the like. These can be used alone or in admixture of two or more.

特に、非発泡層の構成樹脂としてスチレン系樹脂を用いる場合には、発泡層との相溶性の点から、スチレンホモポリマー、スチレンアクリロニトリル共重合体、(メタ)アクリル酸共重合ポリスチレン、無水マレイン酸変性ポリスチレン、スチレン−不飽和ジカルボン酸無水物−N−アルキル置換マレイミド系共重合体、耐衝撃性ポリスチレンを用いることがさらに好ましく、最も好ましくはスチレンホモポリマーである。
粘着性・接着性を有する樹脂としては、ポリオレフィン系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、ビニルアルコール系樹脂、エチレン−ビニルアルコール系共重合体樹脂、アクリル系樹脂、スチレン−ブタジエン系共重合樹脂、天然ゴム系樹脂、クロロプレン系樹脂及び、上記樹脂にロジン類、ロジン誘導体、石油系樹脂、テルペン系樹脂、フェノール樹脂、ロジンフェノール樹脂、ケトン樹脂等の粘着付与剤樹脂を配合してなる樹脂組成物等が挙げられる。
In particular, when a styrene resin is used as the constituent resin of the non-foamed layer, styrene homopolymer, styrene acrylonitrile copolymer, (meth) acrylic acid copolymer polystyrene, maleic anhydride are used from the viewpoint of compatibility with the foamed layer. It is more preferable to use modified polystyrene, styrene-unsaturated dicarboxylic anhydride-N-alkyl substituted maleimide copolymer, and high impact polystyrene, and most preferably styrene homopolymer.
Examples of adhesive and adhesive resins include polyolefin resins, vinyl chloride resins, vinylidene chloride resins, vinyl alcohol resins, ethylene-vinyl alcohol copolymer resins, acrylic resins, and styrene-butadiene copolymers. Resins, natural rubber resins, chloroprene resins, and resins obtained by blending the above resins with tackifier resins such as rosins, rosin derivatives, petroleum resins, terpene resins, phenol resins, rosin phenol resins, and ketone resins Examples thereof include compositions.

非発泡層の構造は、特に限定されず、単層、複層のいずれの構造も採りうる。
非発泡層の厚みは、押出発泡成形体の厚み及び多層押出発泡成形体中の発泡層の数(発泡層/非発泡層/発泡層からなるユニットの数)に応じて適宜選択されるが、10〜500μmが好ましく、20〜300μmがより好ましく、30〜200μmが特に好ましく、40〜100μmが最も好ましい。非発泡層の厚みが10〜500μmの範囲では、軽量性及び断熱性を備えた押出発泡成形体を得ることができる。
The structure of the non-foamed layer is not particularly limited, and any structure of a single layer or multiple layers can be adopted.
The thickness of the non-foamed layer is appropriately selected according to the thickness of the extruded foamed molded product and the number of foamed layers in the multilayer extruded foamed molded product (number of units composed of foamed layer / non-foamed layer / foamed layer). 10-500 micrometers is preferable, 20-300 micrometers is more preferable, 30-200 micrometers is especially preferable, and 40-100 micrometers is the most preferable. When the thickness of the non-foamed layer is in the range of 10 to 500 μm, an extruded foam molded product having lightness and heat insulation can be obtained.

非発泡層の製造時において、必要に応じて、可塑剤、難燃剤、難燃助剤、シリカ、タルク、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、酸化チタン、炭酸カルシウム等の無機化合物、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸バリウム、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物等の加工助剤、フェノール系抗酸化剤、リン系安定剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類、ヒンダードアミン類等の耐光性安定剤、帯電防止剤、顔料等の着色剤等の添加剤を添加させることが好ましい。
これらの添加剤のなかでも、可塑剤は、本発明の多層押出発泡成形体の製造方法により得られる多層押出発泡成形体製造の際、樹脂合流界面の流れを乱さないようにするため、また、非発泡層構成樹脂の溶融粘度を発泡剤含有樹脂の溶融粘度に近づける調整を行う際に有効に働くため、添加することが好ましい。
When manufacturing non-foamed layers, plasticizer, flame retardant, flame retardant aid, silica, talc, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, calcium carbonate, as necessary Inorganic compounds such as sodium stearate, magnesium stearate, barium stearate, liquid paraffin, olefin wax, stearyl amide compound and other processing aids, phenolic antioxidants, phosphorus stabilizers, nitrogen stabilizers, It is preferable to add additives such as sulfur stabilizers, light-resistant stabilizers such as benzotriazoles and hindered amines, antistatic agents, and colorants such as pigments.
Among these additives, the plasticizer is used so as not to disturb the flow at the resin joining interface during the production of the multilayer extrusion foamed molded article obtained by the method for producing a multilayer extrusion foamed molded article of the present invention. Since it works effectively when adjusting the melt viscosity of the non-foamed layer-constituting resin to be close to the melt viscosity of the foaming agent-containing resin, it is preferably added.

非発泡層構成樹脂に添加する可塑剤としては、特に限定されず、一般に可塑剤として使用されているいずれの化合物の使用も可能であり、例えば、フタル酸ジメチル(DMP)、フタル酸ジエチル(DEP)、フタル酸ジブチル(DBP)、フタル酸ジ−2−エチルヘキシル(DOP)、フタル酸ジノルマルオクチル(DNOP)、フタル酸ジイソノニル(DINP)、フタル酸ジノニル(DNP)、フタル酸ジイソデシル(DIDP)、フタル酸ブチルベンジル(BBP)、フタル酸混基エステル(C6〜C11)等のフタル酸エステル類;アジピン酸ジオクチル(DOA)、アジピン酸ジイソノニル(DINA)、アジピン酸ジアルキル(C6,8,10)(610A)、アジピン酸ジアルキル(C7,C9)(79A)アゼライン酸ジオクチル(DOZ)セバシン酸ジブチル(DBS)、セバシン酸ジオクチル(DOS)、リン酸トリクレシル(TCP)、アセチルクエン酸トリブチル(ATBC)、エポキシ化大豆油(ESBO)、トリメリット酸トリオクチル(TOTM)、塩素化パラフィン等の非フタル酸エステル類、等が挙げられる。
非発泡層構成樹脂に対する可塑剤の添加量は、狙いとする溶融粘度によって適宜選択されるが、非発泡層構成樹脂100重量部に対して1〜20重量部が好ましく、2〜15重量部が更に好ましく、3〜12重量部が特に好ましく、4〜10重量部が好ましい。可塑剤の添加量が非発泡層構成樹脂100重量部に対して、1〜20重量部の範囲では、押出の際に吐出変動が無く、押出後の表面ブリードアウトの無い非発泡層が得られる。
The plasticizer added to the non-foamed layer constituting resin is not particularly limited, and any compound generally used as a plasticizer can be used. For example, dimethyl phthalate (DMP), diethyl phthalate (DEP) ), Dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DOP), dinormaloctyl phthalate (DNOP), diisononyl phthalate (DINP), dinonyl phthalate (DNP), diisodecyl phthalate (DIDP), Phthalates such as butylbenzyl phthalate (BBP) and phthalic acid mixed ester (C6-C11); dioctyl adipate (DOA), diisononyl adipate (DINA), dialkyl adipate (C6, 8, 10) ( 610A), dialkyl adipate (C7, C9) (79A) azelaic acid di Cutyl (DOZ) dibutyl sebacate (DBS), dioctyl sebacate (DOS), tricresyl phosphate (TCP), tributyl acetylcitrate (ATBC), epoxidized soybean oil (ESBO), trioctyl trimellitic acid (TOTM), chlorine Non-phthalic acid esters such as modified paraffins.
The amount of plasticizer added to the non-foamed layer constituting resin is appropriately selected depending on the target melt viscosity, but is preferably 1 to 20 parts by weight, and 2 to 15 parts by weight with respect to 100 parts by weight of the non-foamed layer constituting resin. More preferably, 3 to 12 parts by weight is particularly preferable, and 4 to 10 parts by weight is preferable. When the addition amount of the plasticizer is in the range of 1 to 20 parts by weight with respect to 100 parts by weight of the non-foamed layer constituting resin, a non-foamed layer with no discharge fluctuation during extrusion and no surface bleed-out after extrusion is obtained. .

本発明において、各々の溶融樹脂を積層装置にて多層状に合流させ積層する方法としては、特に限定されず、例えば、共押出フィルムで一般に使用されているフィードブロック法、マルチマニホールド法、特表2005−523831号公報、特開2004−249520号公報等に記載の複数の分割流を作った後、逐次積層する方法、等が挙げられる。   In the present invention, the method of laminating each molten resin in a laminating apparatus with a laminating apparatus is not particularly limited, and for example, a feed block method, a multi-manifold method, a special table generally used for co-extruded films Examples include a method in which a plurality of divided flows described in JP-A-2005-523831, JP-A-2004-249520, and the like are formed and then sequentially stacked.

押出発泡体を製造する際の積層装置の温度は、積層装置に供給される発泡剤含有溶融樹脂の樹脂温度に等しいか、異なっていても±10℃以下が好ましい。温度差が±10℃以下の場合、発泡適正温度でダイによる成形加工が可能となり、高倍率で低独立気泡率の良好な発泡層を有する押出発泡体を得ることができる。
押出発泡体を製造する際の積層装置内の圧力は、積層装置に供給される発泡剤含有溶融樹脂が積層装置内で発泡を起こさない圧力に設定される。但し、積層装置内で発泡を起こさない圧力は、発泡剤種、発泡剤量、発泡剤含有溶融樹脂の温度に依存するため、一概には設定できない。
The temperature of the laminating apparatus in producing the extruded foam is preferably ± 10 ° C. or lower even if it is equal to or different from the resin temperature of the foaming agent-containing molten resin supplied to the laminating apparatus. When the temperature difference is ± 10 ° C. or less, molding with a die can be performed at an appropriate foaming temperature, and an extruded foam having a foam layer with a high magnification and a low closed cell ratio can be obtained.
The pressure in the laminating apparatus when producing the extruded foam is set to a pressure at which the foaming agent-containing molten resin supplied to the laminating apparatus does not cause foaming in the laminating apparatus. However, the pressure that does not cause foaming in the laminating apparatus cannot be generally set because it depends on the type of foaming agent, the amount of foaming agent, and the temperature of the foaming agent-containing molten resin.

本発明において、発泡成形方法も特に制限されないが、例えば、スリットダイより圧力開放して得られた発泡体をスリットダイと密着または接して設置した成形金型及び成形ロール等を用いて、断面積の大きい板状発泡体を成形する一般的な方法を用いることができる。   In the present invention, the foam molding method is not particularly limited, for example, using a molding die, a molding roll, etc., in which a foam obtained by releasing pressure from a slit die is placed in close contact with or in contact with the slit die. A general method for molding a plate-like foam having a large size can be used.

なお、発泡層の構成樹脂の溶融混練に関しては、
(i)熱可塑性樹脂に、必要に応じて前記添加剤を混合した後、加熱溶融する、
(ii)熱可塑性樹脂に、必要に応じて前記添加剤から選ばれる1種以上を混合した後、加熱溶融し、これに残りの前記添加剤をそのまま、または必要により液体化または溶融させて添加し加熱混合する、
(iii)予め熱可塑性樹脂に、必要に応じて前記添加剤から選ばれる1種以上の添加剤を混合した後、加熱溶融した組成物を準備し、次いで、該組成物と残りの前記添加剤、必要に応じて熱可塑性樹脂を改めて混合し、押出機に供給して加熱溶融する、
等、熱可塑性樹脂、必要に応じて、前記添加剤を加熱溶融押出機に供給し、
その後、任意の段階において高圧条件下で発泡剤を熱可塑性樹脂に添加し、流動ゲルとなす。その後、該流動ゲルは、押出発泡に適する温度に冷却した後、積層装置に供給される。
Regarding the melt kneading of the constituent resin of the foam layer,
(I) The thermoplastic resin is mixed with the additive as necessary, and then melted by heating.
(Ii) One or more selected from the above-mentioned additives are mixed with the thermoplastic resin, if necessary, and then melted by heating, and the remaining additive is added to the thermoplastic resin as it is, or liquefied or melted as necessary. Then heat and mix,
(Iii) One or more additives selected from the above-mentioned additives are mixed with a thermoplastic resin in advance, and then a heated and melted composition is prepared. Then, the composition and the remaining additive are prepared. , If necessary, mix the thermoplastic resin again, supply to the extruder and melt by heating,
Etc., thermoplastic resin, if necessary, supply the additive to a hot melt extruder,
Thereafter, a foaming agent is added to the thermoplastic resin under high pressure conditions at an arbitrary stage to form a fluid gel. Thereafter, the fluid gel is cooled to a temperature suitable for extrusion foaming and then supplied to the laminating apparatus.

熱可塑性樹脂と発泡剤等の添加剤を加熱溶融混練する際の加熱温度、溶融混練時間及び溶融混練手段については特に制限するものではない。加熱温度は、使用する熱可塑性樹脂が溶融する温度以上であればよいが、難燃剤等の影響による樹脂の分子劣化ができる限り抑制される温度、例えば150〜280℃程度が好ましい。溶融混練時間は、単位時間あたりの押出量、溶融混練手段等によって異なるので一概には決定することができないが、熱可塑性樹脂と発泡剤が均一に分散混合するのに要する時間が適宜選ばれる。また、溶融混練手段としては、例えばスクリュー型の押出機等があげられるが、通常の押出発泡に用いられているものであれば特に限定はない。ただし、樹脂の分子劣化をできる限り抑えるため、スクリュー形状については、低剪断タイプのスクリュー形状を用いる方が好ましい。   There are no particular limitations on the heating temperature, melt kneading time, and melt kneading means when heating and kneading the thermoplastic resin and additives such as a foaming agent. Although the heating temperature should just be more than the temperature which the thermoplastic resin to use melt | dissolves, the temperature which suppresses the molecular degradation of resin by the influence of a flame retardant etc. as much as possible, for example, about 150-280 degreeC is preferable. The melt-kneading time varies depending on the amount of extrusion per unit time, the melt-kneading means and the like and cannot be determined unconditionally. However, the time required for uniformly dispersing and mixing the thermoplastic resin and the foaming agent is appropriately selected. Further, examples of the melt-kneading means include a screw type extruder, but there is no particular limitation as long as it is used for ordinary extrusion foaming. However, in order to suppress the molecular deterioration of the resin as much as possible, it is preferable to use a low shear type screw shape for the screw shape.

また、非発泡層の構成樹脂の溶融混練に関しても、例えば、
(i)熱可塑性樹脂に、必要に応じて前記添加剤を混合した後、加熱溶融する、
(ii)熱可塑性樹脂に、必要に応じて前記添加剤から選ばれる1種以上を混合した後、加熱溶融し、これに残りの前記添加剤をそのまま、または必要により液体化または溶融させて添加し加熱混合する、
(iii)予め熱可塑性樹脂に、必要に応じて前記添加剤から選ばれる1種以上の添加剤を混合した後、加熱溶融した組成物を準備し、次いで、該組成物と残りの前記添加剤、必要に応じて熱可塑性樹脂を改めて混合し、押出機に供給して加熱溶融する、
等、熱可塑性樹脂、必要に応じて前記添加剤を押出機に供給し、加熱溶融混練を行う。その後、該溶融混練物は積層装置に供給される。
Further, regarding the melt kneading of the constituent resin of the non-foamed layer, for example,
(I) The thermoplastic resin is mixed with the additive as necessary, and then melted by heating.
(Ii) One or more selected from the above-mentioned additives are mixed with the thermoplastic resin, if necessary, and then melted by heating, and the remaining additive is added to the thermoplastic resin as it is, or liquefied or melted as necessary. Then heat and mix,
(Iii) One or more additives selected from the above-mentioned additives are mixed with a thermoplastic resin in advance, and then a heated and melted composition is prepared. Then, the composition and the remaining additive are prepared. , If necessary, mix the thermoplastic resin again, supply to the extruder and melt by heating,
The thermoplastic resin and, if necessary, the additive are supplied to an extruder and heated and melt-kneaded. Thereafter, the melt-kneaded product is supplied to a laminating apparatus.

熱可塑性樹脂と添加剤を加熱溶融混練する際の加熱温度、溶融混練時間及び溶融混練手段については特に制限するものではない。加熱温度は、使用する熱可塑性樹脂が溶融する温度以上であればよいが、溶融樹脂が供給される積層装置の設定温度と等しいか、異なっていても温度差が±10℃以内であることが好ましい。温度差が±10℃以下の場合、発泡層と非発泡層の界面部分に破泡がなく接着不良のない良好な押出発泡体を得ることができる。溶融混練時間は、単位時間あたりの押出量、溶融混練手段等によって異なるので、一概には決定することができないが、熱可塑性樹脂と添加剤が均一に分散混合するのに要する時間が適宜選ばれる。また、溶融混練手段としては、例えばスクリュー型の押出機等があげられるが、通常の樹脂押出に用いられているものであれば特に限定はない。ただし、樹脂の分子劣化をできる限り抑えるため、スクリュー形状については、低剪断タイプのスクリュー形状を用いる方が好ましい。   There are no particular limitations on the heating temperature, melt kneading time, and melt kneading means when the thermoplastic resin and additive are heat melt kneaded. The heating temperature may be equal to or higher than the temperature at which the thermoplastic resin used melts, but the temperature difference may be within ± 10 ° C. even if the temperature is equal to or different from the set temperature of the laminating apparatus to which the molten resin is supplied. preferable. When the temperature difference is ± 10 ° C. or less, it is possible to obtain a good extruded foam that does not have bubble breakage at the interface portion between the foamed layer and the non-foamed layer and does not have poor adhesion. The melt-kneading time varies depending on the amount of extrusion per unit time, the melt-kneading means, etc., and thus cannot be generally determined, but the time required for uniformly dispersing and mixing the thermoplastic resin and the additive is appropriately selected. . Examples of the melt-kneading means include a screw type extruder, but there is no particular limitation as long as it is used for ordinary resin extrusion. However, in order to suppress the molecular deterioration of the resin as much as possible, it is preferable to use a low shear type screw shape for the screw shape.

本発明の多層押出発泡成形体の製造方法により得られる多層押出発泡成形体の厚みは、特に限定されず、用途に応じて適宜選択される。例えば、建材等に使用される断熱材用途の場合、好ましい断熱性、曲げ強度及び圧縮強度を付与するためには、シートのような薄いものよりも、通常の板状物のような厚さのあるものが好ましく、通常10〜150mm、好ましくは20〜100mmである。   The thickness of the multilayer extrusion foam molded article obtained by the method for producing a multilayer extrusion foam molded article of the present invention is not particularly limited, and is appropriately selected depending on the application. For example, in the case of a heat insulating material used for a building material or the like, in order to give a preferable heat insulating property, bending strength and compressive strength, the thickness of a normal plate-like material is less than a thin material such as a sheet. Some are preferred, usually 10 to 150 mm, preferably 20 to 100 mm.

本発明の多層押出発泡成形体の製造方法により得られる多層押出発泡成形体の20℃での等価熱伝導率は、0.034W/(m・K)(0.0292kcal/(m・h・℃))以下が好ましく、0.032W/(m・K)(0.0275kcal/(m・h・℃))以下がより好ましく、0.030W/(m・K)(0.0258kcal/(m・h・℃))以下が特に好ましい。
等価熱伝導率が0.034W/(m・K)以下である発泡成形体は、建築用部材用途として好適に使用され、快適な居住空間の提供に貢献する。
The equivalent thermal conductivity at 20 ° C. of the multilayer extrusion foam molded article obtained by the method for producing a multilayer extrusion foam molded article of the present invention is 0.034 W / (m · K) (0.0292 kcal / (m · h · ° C.). )) Or less, preferably 0.032 W / (m · K) (0.0275 kcal / (m · h · ° C.)) or less, more preferably 0.030 W / (m · K) (0.0258 kcal / (m · h · ° C.) The following are particularly preferred:
The foamed molded product having an equivalent thermal conductivity of 0.034 W / (m · K) or less is suitably used as a building material application, and contributes to providing a comfortable living space.

本発明の多層押出発泡成形体の製造方法により得られる多層押出発泡成形体は、その優れた軽量性、断熱性の点から、種々の用途、例えば、床材、壁材、屋根材等の建築用部材、保冷車用断熱材、車両バンパー、自動車天井材等の自動車用部材、地盤の凍上防止剤等の土木用部材等に好適に使用できる。   The multilayer extrusion foam molded article obtained by the method for producing a multilayer extrusion foam molded article of the present invention has various uses such as floor materials, wall materials, roof materials and the like from the viewpoint of its excellent light weight and heat insulation properties. It can be suitably used for automobile members such as structural members, heat insulating materials for cold cars, vehicle bumpers, and automobile ceiling materials, and civil engineering members such as antifreezing agents for the ground.

次に、本発明を実施例に基づき詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、特に断らない限り、「%」は重量%を表わす。
実施例及び比較例に対する評価方法は、以下のとおりである。
(1)押出発泡成形体の寸法[単位:mm]
時間間隔をおいてサンプリングした3つの多層押出発泡成形体について、幅方向(押出方向と直交する水平方向。左右方向。)における中央部(幅方向の中点)での厚みを測定し、平均値を算出した。
時間間隔をおいてサンプルングした3つの多層押出発泡成形体について、厚み方向における中央部(厚み方向の中点)での幅を測定し、平均値を算出した。なお、多層押出発泡成形体の上表面から前記厚みの1/2の値、左側面から前記幅の1/2の値に位置する部分を中央部分とした。
(2)押出発泡成形体の密度[単位:kg/m3
時間間隔をおいてサンプリングした3つの押出発泡成形体に対して、JIS K7222−1999「発泡プラスチック及びゴム−見掛け密度の測定」に記載の方法に則り、発泡体密度を測定して、その平均値を算出した。
(3)押出発泡成形体の熱伝導率[単位:W/(m・K)]
押出発泡成形体の熱伝導率を、熱伝導率測定装置(栄弘精機製、HC−074−300)を用いて測定した。押出発泡成形体気泡内の空気の分圧が51kPa時の熱伝導率を実施例に示した。
(4)押出発泡成形体気泡内の空気の分圧
押出発泡成形体を切り出し面から10mmの部分を削除した後、幅方向における中央部より幅方向25mm、長さ方向25mm、厚み方向は成形体のままの厚さで切り出し、押出発泡成形体中の空気量を、ガスクロマトグラフ(島津製作所製 GC−14A)を用いて分析測定し、平均値を算出することにより、押出発泡成形体気泡内の空気の分圧を求めた。
(5)流速分布
有限要素法流動解析ソフトウェアPOLYFLOWを用いて下記仮定のもと流速分布を測定した。
・発泡剤を含有する溶融樹脂と発泡剤を含有しない溶融樹脂の区別は行わず、ダイ内での発泡は無視する。
・層流は高粘性流(粘度1.7×106Pa・sのニュートン流)とし慣性項は無視する。
・装置内の温度は一定とし等温流とする。
Next, the present invention will be described in detail based on examples, but the present invention is not limited to such examples. Unless otherwise specified, “%” represents wt%.
Evaluation methods for Examples and Comparative Examples are as follows.
(1) Dimensions of extruded foam molding [unit: mm]
For three multilayer extruded foam samples sampled at time intervals, the thickness was measured at the center (the middle point in the width direction) in the width direction (horizontal direction orthogonal to the extrusion direction, left and right direction), and the average value was measured. Was calculated.
About three multilayer extrusion-foaming moldings sampled at time intervals, the width at the center in the thickness direction (the middle point in the thickness direction) was measured, and the average value was calculated. In addition, the part located in the value of 1/2 of the said thickness from the upper surface of a multilayer extrusion foaming molding and the value of 1/2 of the said width from the left side surface was made into the center part.
(2) Density of extruded foam molding [unit: kg / m 3 ]
For three extruded foam moldings sampled at time intervals, the foam density was measured according to the method described in JIS K7222-1999 "Foamed plastics and rubbers-Measurement of apparent density", and the average value was measured. Was calculated.
(3) Thermal conductivity of extruded foam molding [unit: W / (m · K)]
The thermal conductivity of the extruded foamed product was measured using a thermal conductivity measuring device (Eihiro Seiki, HC-074-300). The thermal conductivity when the partial pressure of air in the foam of the extruded foam body is 51 kPa is shown in the examples.
(4) Partial pressure of air in the foam of the extruded foam molded body After the extruded foam molded body was cut out and 10 mm from the cut surface was removed, the width direction was 25 mm from the center in the width direction, the length direction was 25 mm, and the thickness direction was the molded body. It cuts out with the thickness as it is, analyzed and measured the amount of air in an extrusion foaming molding using a gas chromatograph (Shimadzu GC-14A), and calculating an average value. The partial pressure of air was determined.
(5) Flow velocity distribution The flow velocity distribution was measured under the following assumptions using finite element flow analysis software POLYFLOW.
・ No distinction is made between molten resin containing foaming agent and molten resin not containing foaming agent, and foaming in the die is ignored.
・ The laminar flow is a highly viscous flow (Newtonian flow with a viscosity of 1.7 × 10 6 Pa · s), and the inertia term is ignored.
・ The temperature inside the equipment is constant and the flow is isothermal.

(実施例1)
[発泡剤を含有する溶融樹脂Aの製造方法]
ポリスチレン(PSジャパン株式会社製、商品名:PSJ−ポリスチレン680、MFR=7.0g/10分)100重量部に対して、タルク(林化成株式会社製、商品名:TALCAN PAWDER PK−Z)0.5重量部、ステアリン酸カルシウム(堺化学工業株式会社製、商品名:SC−P)0.3重量部、流動パラフィン(新日本石油株式会社製、商品名:ポリブテンLV−50)0.1重量部からなる混合物をドライブレンドしてスチレン系樹脂組成物とした。該スチレン系樹脂組成物を、口径65mmの第1押出機と口径90mmの第2押出機とを直列に連結した二段式押出機に対して、60.5kg/時間で供給した。
第1押出機に供給したスチレン系樹脂組成物を、180℃に加熱して混練を行い、第1押出機の先端付近(第2押出機に接続される側)において、発泡剤として、スチレン系樹脂組成物100重量%に対して、i−ブタン(三井化学株式会社製)4.0重量%、ジメチルエーテル(大洋液化ガス株式会社製)4.0重量%を、溶融されたスチレン系樹脂組成物に圧入した。この際、第1押出機の先端における樹脂圧は15.2MPaであり、これに対して、発泡剤の圧入圧力は13.3MPaであった。
第1押出機に連結された第2押出機において、樹脂温度を121℃に冷却した後、2つに分流し、発泡剤を含有する溶融樹脂Aを第2押出機の先端に設けられた2種3層多層積層用フィードブロック(株式会社プラ技研製)に供給した。
Example 1
[Method for Producing Molten Resin A Containing Foaming Agent]
Talc (manufactured by Hayashi Kasei Co., Ltd., trade name: TALCAN PAWDER PK-Z) 0 with respect to 100 parts by weight of polystyrene (PS Japan, trade name: PSJ-polystyrene 680, MFR = 7.0 g / 10 min) 0.5 part by weight, calcium stearate (manufactured by Sakai Chemical Industry Co., Ltd., trade name: SC-P), 0.3 part by weight, liquid paraffin (manufactured by Nippon Oil Corporation, trade name: Polybutene LV-50) 0.1 weight The mixture consisting of parts was dry blended to obtain a styrene resin composition. The styrene-based resin composition was supplied at 60.5 kg / hour to a two-stage extruder in which a first extruder having a diameter of 65 mm and a second extruder having a diameter of 90 mm were connected in series.
The styrenic resin composition supplied to the first extruder is kneaded by heating to 180 ° C., and as a foaming agent near the tip of the first extruder (the side connected to the second extruder) Styrenic resin composition obtained by melting 4.0% by weight of i-butane (manufactured by Mitsui Chemicals) and 4.0% by weight of dimethyl ether (manufactured by Taiyo Liquefaction Gas Co., Ltd.) with respect to 100% by weight of the resin composition. Press fit into. At this time, the resin pressure at the tip of the first extruder was 15.2 MPa, while the press-fitting pressure of the foaming agent was 13.3 MPa.
In the second extruder connected to the first extruder, after the resin temperature was cooled to 121 ° C., it was divided into two, and a molten resin A containing a foaming agent was provided at the tip of the second extruder 2 It supplied to the seed 3 layer multilayer lamination feed block (made by Pla Giken Co., Ltd.).

[発泡剤を含有しない溶融樹脂Bの製造方法]
ポリスチレン(PSジャパン株式会社製、商品名:PSJ−ポリスチレン679、MFR=18g/10分)100重量部に対して、可塑剤としてジメチルフタレート(大八化学工業株式会社製、商品名:DMP)8.0重量部を添加して予めマスターバッチ化した。得られた樹脂を、口径50mmの押出機へ2.3kg/時間で供給した。供給した樹脂を125℃に加熱して溶融混練を行い、分流することなく、発泡剤を含有しない溶融樹脂Bを前記2種3層多層積層用フィードブロックに供給した。
[Method for producing molten resin B containing no blowing agent]
For 100 parts by weight of polystyrene (manufactured by PS Japan Co., Ltd., trade name: PSJ-polystyrene 679, MFR = 18 g / 10 min), dimethyl phthalate (made by Daihachi Chemical Industry Co., Ltd., trade name: DMP) 8 as a plasticizer 0.0 part by weight was added to prepare a master batch in advance. The obtained resin was supplied to an extruder having a diameter of 50 mm at 2.3 kg / hour. The supplied resin was heated to 125 ° C., melted and kneaded, and the molten resin B containing no foaming agent was supplied to the feed block for the two-kind / three-layer multilayer lamination without diverting.

[第1工程:発泡剤を含有する溶融樹脂Aと発泡剤を含有しない溶融樹脂Bを厚み方向に合流させ積層溶融樹脂Cを得る工程]
120℃に温調された前記2種3層多層積層用フィードブロック内で、3.1MPaの圧力下にて、厚み方向に、発泡剤を含有しない溶融樹脂Bを、2つに分流された発泡剤を含有する溶融樹脂Aで挟み込むようにして、それぞれ、11mm/3mm/11mmの厚みで合流させ積層溶融樹脂Cを得た。
[First step: A step of obtaining a laminated molten resin C by joining a molten resin A containing a blowing agent and a molten resin B not containing a blowing agent in the thickness direction]
Foam in which molten resin B not containing a foaming agent is divided into two in the thickness direction under a pressure of 3.1 MPa, within the feed block for the two-type three-layer multi-layer lamination temperature-controlled at 120 ° C. A laminated molten resin C was obtained by merging at a thickness of 11 mm / 3 mm / 11 mm, respectively, so as to be sandwiched between molten resins A containing an agent.

[第2工程2〜第5工程:積層2倍化工程により倍加積層溶融樹脂Eを得る工程]
積層溶融樹脂Cを、図3に示す積層2倍化工程からなる120℃に温調された積層2倍化装置(株式会社プラ技研製)に供給して倍加積層溶融樹脂Eを得た。なお、整流工程の長さL(図8(b)参照。)は30mmとした。
また、分割積層溶融樹脂D1,D2を第5工程で合流させた直後の幅方向各部における倍加積層溶融樹脂Eの厚み方向の平均流速((厚み方向の流速の最大値+厚み方向の流速の最小値)/2)に対する厚み方向の流速差(厚み方向の流速の最大値−厚み方向の流速の最小値)の比率(厚み方向の流速差/厚み方向の平均流速)を前記有限要素法流動解析ソフトウェアにより算出した結果(図8(a)参照。)、最大値は0.28であった。
[Second Step 2 to Fifth Step: A Step of Obtaining a Doubled Laminated Molten Resin E by a Double Layering Step]
The laminated molten resin C was supplied to a laminated doubling apparatus (manufactured by Pla Giken Co., Ltd.) that was temperature-controlled at 120 ° C. in the laminated doubling process shown in FIG. Note that the length L (see FIG. 8B) of the rectification process was 30 mm.
In addition, the average flow velocity in the thickness direction of the doubling laminated molten resin E in each part in the width direction immediately after joining the divided laminated molten resins D1 and D2 in the fifth step ((maximum value of flow velocity in the thickness direction + minimum flow velocity in the thickness direction Value) / 2) ratio of flow rate difference in the thickness direction (maximum value of flow rate in the thickness direction-minimum value of flow rate in the thickness direction) (flow rate difference in the thickness direction / average flow velocity in the thickness direction). As a result of calculation by software (see FIG. 8A), the maximum value was 0.28.

[第6工程:多層押出発泡成形体を得る工程]
倍加積層溶融樹脂Eを厚さ方向1.6mm、幅方向50mmの長方形断面の空隙を有し、80℃に温調されたダイリップより、合流された多層流を大気中へ押し出し、上下にベルトコンベアを配置した装置に挟み込んで引き取り、例えば図2のような断面の、厚み29mm、幅230mmの直方体状で発泡層/非発泡層/発泡層/非発泡層/発泡層の5層構造からなる多層押出発泡成形体を得た。
得られた多層押出発泡成形体は、成形体を構成する発泡層及び非発泡層が厚み方向に若干斜めに積層された構造を有し、成形体密度は33kg/m3であり、空気分圧51kPaにおける熱伝導率は0.0283W/(m・K)であった。
[Sixth Step: Step of Obtaining Multilayer Extrusion Foam Molded Body]
Double layered molten resin E has a rectangular cross section with a thickness of 1.6 mm and a width of 50 mm, and a combined multi-layer flow is pushed out into the atmosphere from a die lip controlled at 80 ° C. 2 and having a cross section as shown in FIG. 2, for example, a rectangular parallelepiped shape having a thickness of 29 mm and a width of 230 mm and having a five-layer structure of foamed layer / non-foamed layer / foamed layer / non-foamed layer / foamed layer An extruded foam molding was obtained.
The obtained multilayer extrusion foamed molded article has a structure in which the foamed layer and the non-foamed layer constituting the molded article are laminated slightly obliquely in the thickness direction, the density of the molded article is 33 kg / m 3 , and the air partial pressure The thermal conductivity at 51 kPa was 0.0283 W / (m · K).

(実施例2)
積層2倍化工程において、整流工程の長さL(図8(b)参照。)を50mmとした以外は、実施例1と同様とし、厚み25mm、幅235mmの直方体状で発泡層/非発泡層/発泡層/非発泡層/発泡層の5層構造からなる押出発泡成形体を得た。
得られた多層押出発泡成形体は、成形体を構成する発泡層及び非発泡層が厚み方向に水平に積層された構造を有し、成形体密度は35kg/m3であり、空気分圧51kPaにおける熱伝導率は0.0279W/(m・K)であった。
また、分割積層溶融樹脂D1,D2を第5工程で合流させた直後の幅方向各部における倍加積層溶融樹脂Eの厚み方向の平均流速((厚み方向の流速の最大値+厚み方向の流速の最小値)/2)に対する厚み方向の流速差(厚み方向の流速の最大値−厚み方向の流速の最小値)の比率(厚み方向の流速差/厚み方向の平均流速)を前記有限要素法流動解析ソフトウェアにより算出した結果(図8(a)参照。)、最大値は0.15であった。
(Example 2)
In the double layering step, the same as in Example 1 except that the length L of the rectifying step (see FIG. 8B) is 50 mm, a rectangular parallelepiped shape having a thickness of 25 mm and a width of 235 mm, and non-foamed layer An extruded foam molded article having a five-layer structure of layer / foamed layer / non-foamed layer / foamed layer was obtained.
The obtained multilayer extrusion foamed molded article has a structure in which the foamed layer and the non-foamed layer constituting the molded article are horizontally laminated in the thickness direction, the molded article density is 35 kg / m 3 , and the air partial pressure is 51 kPa. The thermal conductivity of was 0.0279 W / (m · K).
In addition, the average flow velocity in the thickness direction of the doubling laminated molten resin E in each part in the width direction immediately after joining the divided laminated molten resins D1 and D2 in the fifth step ((maximum value of flow velocity in the thickness direction + minimum flow velocity in the thickness direction). Value) / 2) ratio of flow rate difference in the thickness direction (maximum value of flow rate in the thickness direction-minimum value of flow rate in the thickness direction) (flow rate difference in the thickness direction / average flow velocity in the thickness direction). As a result calculated by software (see FIG. 8A), the maximum value was 0.15.

(実施例3)
積層2倍化工程において、整流工程の長さL(図8(b)参照。)を80mmとした以外は、実施例1と同様とし、厚み26mm、幅232mmの直方体状で発泡層/非発泡層/発泡層/非発泡層/発泡層の5層構造からなる押出発泡成形体を得た。
得られた多層押出発泡成形体は、成形体を構成する発泡層及び非発泡層が厚み方向に水平に積層された構造を有し、成形体密度は37kg/m3であり、空気分圧51kPaにおける熱伝導率は0.0277W/(m・K)であった。
また、分割積層溶融樹脂D1,D2を第5工程で合流させた直後の幅方向各部における倍加積層溶融樹脂Eの厚み方向の平均流速((厚み方向の流速の最大値+厚み方向の流速の最小値)/2)に対する厚み方向の流速差(厚み方向の流速の最大値−厚み方向の流速の最小値)の比率(厚み方向の流速差/厚み方向の平均流速)を前記有限要素法流動解析ソフトウェアにより算出した結果(図8(a)参照。)、最大値は0.09であった。
(Example 3)
In the double layering step, the same as in Example 1 except that the length L of the rectifying step (see FIG. 8B) is 80 mm, a rectangular parallelepiped shape with a thickness of 26 mm and a width of 232 mm / non-foamed An extruded foam molded article having a five-layer structure of layer / foamed layer / non-foamed layer / foamed layer was obtained.
The obtained multilayer extrusion foamed molded article has a structure in which a foamed layer and a non-foamed layer constituting the molded article are laminated horizontally in the thickness direction, the density of the molded article is 37 kg / m 3 , and the air partial pressure is 51 kPa. The thermal conductivity of was 0.0277 W / (m · K).
In addition, the average flow velocity in the thickness direction of the doubling laminated molten resin E in each part in the width direction immediately after joining the divided laminated molten resins D1 and D2 in the fifth step ((maximum value of flow velocity in the thickness direction + minimum flow velocity in the thickness direction). Value) / 2) ratio of flow rate difference in the thickness direction (maximum value of flow rate in the thickness direction-minimum value of flow rate in the thickness direction) (flow rate difference in the thickness direction / average flow velocity in the thickness direction). As a result of calculation by software (see FIG. 8A), the maximum value was 0.09.

(比較例1)
積層2倍化工程において、整流部の長さ(図8(b)参照。)を0mmとした以外は、実施例1と同様とし、発泡層/非発泡層/発泡層/非発泡層/発泡層の5層構造からなる押出発泡成形体を得た。
得られた多層押出発泡成形体は、成形体を構成する発泡層及び非発泡層が厚み方向に斜めに積層された構造を有し、成形体密度は35.5kg/m3であり、空気分圧51kPaにおける熱伝導率は0.0295W/(m・K)であった。
また、分割積層溶融樹脂D1,D2を第5工程で合流させた直後の幅方向各部における倍加積層溶融樹脂Eの厚み方向の平均流速((厚み方向の流速の最大値+厚み方向の流速の最小値)/2)に対する厚み方向の流速差(厚み方向の流速の最大値−厚み方向の流速の最小値)の比率(厚み方向の流速差/厚み方向の平均流速)を前記有限要素法流動解析ソフトウェアにより算出した結果(図8(a)参照。)、最大値は0.90であった。
(Comparative Example 1)
In the layer doubling process, the same as in Example 1 except that the length of the rectifying part (see FIG. 8B) was set to 0 mm, and foamed layer / non-foamed layer / foamed layer / non-foamed layer / foamed An extruded foam molded body having a five-layer structure was obtained.
The obtained multilayer extrusion foamed molded article has a structure in which a foamed layer and a non-foamed layer constituting the molded article are laminated obliquely in the thickness direction, and the density of the molded article is 35.5 kg / m 3. The thermal conductivity at a pressure of 51 kPa was 0.0295 W / (m · K).
In addition, the average flow velocity in the thickness direction of the doubling laminated molten resin E in each part in the width direction immediately after joining the divided laminated molten resins D1 and D2 in the fifth step ((maximum value of flow velocity in the thickness direction + minimum flow velocity in the thickness direction). Value) / 2) ratio of flow rate difference in the thickness direction (maximum value of flow rate in the thickness direction-minimum value of flow rate in the thickness direction) (flow rate difference in the thickness direction / average flow velocity in the thickness direction). As a result of calculation by software (see FIG. 8A), the maximum value was 0.90.

(実施例4)
積層2倍化工程を図6に示す工程(図9(b)も参照。)とし、それ以外は実施例1と同様とし、倍加積層溶融樹脂Eを得た。
得られた多層押出発泡成形体は、成形体を構成する発泡層及び非発泡層が厚み方向に水平に積層された構造を有し、成形体密度は36kg/m3であり、空気分圧51kPaにおける熱伝導率は0.0275W/(m・K)であった。
また、分割積層溶融樹脂D1,D2を第5工程で合流させた直後の幅方向各部における倍加積層溶融樹脂Eの厚み方向の平均流速((厚み方向の流速の最大値+厚み方向の流速の最小値)/2)に対する厚み方向の流速差(厚み方向の流速の最大値−厚み方向の流速の最小値)の比率(厚み方向の流速差/厚み方向の平均流速)を前記有限要素法流動解析ソフトウェアにより算出した結果(図9(a)参照。)、幅方向各部全てにおいて流速差(左右の流速差)は認められなかった。
Example 4
The doubling lamination molten resin E was obtained by changing the lamination doubling process to the process shown in FIG. 6 (see also FIG. 9B), and otherwise performing the same process as in Example 1.
The obtained multilayer extrusion foamed molded article has a structure in which a foamed layer and a non-foamed layer constituting the molded article are laminated horizontally in the thickness direction, the density of the molded article is 36 kg / m 3 , and the air partial pressure is 51 kPa. The thermal conductivity of was 0.0275 W / (m · K).
In addition, the average flow velocity in the thickness direction of the doubling laminated molten resin E in each part in the width direction immediately after joining the divided laminated molten resins D1 and D2 in the fifth step ((maximum value of flow velocity in the thickness direction + minimum flow velocity in the thickness direction). Value) / 2) ratio of flow rate difference in the thickness direction (maximum value of flow rate in the thickness direction-minimum value of flow rate in the thickness direction) (flow rate difference in the thickness direction / average flow velocity in the thickness direction). As a result of calculation by software (see FIG. 9A), no difference in flow velocity (difference in flow rate between the left and right sides) was observed in all parts in the width direction.

(実施例5)
積層2倍化工程を図7に示す工程(図10(b)も参照。)とし、それ以外は実施例1と同様とし、倍加積層溶融樹脂Eを得た。
得られた多層押出発泡成形体は、成形体を構成する発泡層及び非発泡層が厚み方向に水平に積層された構造を有し、成形体密度は37kg/m3であり、空気分圧51kPaにおける熱伝導率は0.0277W/(m・K)であった。
また、分割積層溶融樹脂D1,D2を第5工程で合流させた直後の幅方向各部における倍加積層溶融樹脂Eの厚み方向の平均流速((厚み方向の流速の最大値+厚み方向の流速の最小値)/2)に対する厚み方向の流速差(厚み方向の流速の最大値−厚み方向の流速の最小値)の比率(厚み方向の流速差/厚み方向の平均流速)を前記有限要素法流動解析ソフトウェアにより算出した結果(図10(a)参照。)、幅方向各部全てにおいて流速差(左右の流速差)は認められなかった。
(Example 5)
The doubling lamination molten resin E was obtained in the same manner as in Example 1 except that the lamination doubling process was the process shown in FIG. 7 (see also FIG. 10B).
The obtained multilayer extrusion foamed molded article has a structure in which a foamed layer and a non-foamed layer constituting the molded article are laminated horizontally in the thickness direction, the density of the molded article is 37 kg / m 3 , and the air partial pressure is 51 kPa. The thermal conductivity of was 0.0277 W / (m · K).
In addition, the average flow velocity in the thickness direction of the doubling laminated molten resin E in each part in the width direction immediately after joining the divided laminated molten resins D1 and D2 in the fifth step ((maximum value of flow velocity in the thickness direction + minimum flow velocity in the thickness direction). Value) / 2) ratio of flow rate difference in the thickness direction (maximum value of flow rate in the thickness direction-minimum value of flow rate in the thickness direction) (flow rate difference in the thickness direction / average flow velocity in the thickness direction). As a result of calculation by software (see FIG. 10A), no difference in flow velocity (difference in flow rate between the left and right sides) was observed in each part in the width direction.

以上の実施例1〜5並びに比較例1により、積層2倍化工程における第4工程と第5工程との間に、2つの分割積層溶融樹脂D1,D2が上下に揃うように位置合せされた左右方向の位置関係を保持して2つの分割積層溶融樹脂D1,D2が分離した状態のまま下流側へ所定長さ(整流工程の長さL)移動させる、左右の流速差を低減させる整流工程を設けたことにより、第5工程で合流後の倍加積層溶融樹脂Eにおいて、その幅方向各部での厚み方向の流速差が低減し、得られた多層押出発泡成形体において成形体を構成する発泡層及び非発泡層が斜めに積層される現象を解消できるとともに、断熱性能を改善できることが確認できた。   By the above Examples 1 to 5 and Comparative Example 1, the two divided laminated molten resins D1 and D2 were aligned so as to be aligned vertically between the fourth step and the fifth step in the double layering step. A rectifying process that reduces the difference between the left and right flow velocity by moving the predetermined length (the length L of the rectifying process) to the downstream side while maintaining the positional relationship in the left-right direction while the two divided laminated molten resins D1, D2 are separated. In the doubled laminated molten resin E after merging in the fifth step, the difference in flow velocity in the thickness direction at each part in the width direction is reduced, and the foam constituting the molded body in the obtained multilayer extrusion foamed molded body It was confirmed that the phenomenon in which the layer and the non-foamed layer were laminated obliquely could be eliminated and the heat insulation performance could be improved.

A 発泡剤を含有する溶融樹脂
B 発泡剤を含有しない溶融樹脂
C 積層溶融樹脂
D1,D2 分割積層溶融樹脂
E 倍加積層溶融樹脂
F 流れ方向
L 整流路の長さ
1 発泡用押出機
2 非発泡用押出機
3 積層装置
4 積層2倍化装置
5 成形金型
6 成形機
7 多層押出発泡成形体
8 発泡層
9 非発泡層
10 整流路
A Molten resin containing a foaming agent B Molten resin not containing a foaming agent C Laminated molten resin D1, D2 Split laminated molten resin E Double layered molten resin F Flow direction L Length of rectifying path 1 Foaming extruder 2 For non-foaming Extruder 3 Laminating apparatus 4 Double doubling apparatus 5 Mold 6 Molding machine 7 Multi-layer extruded foam 8 Foamed layer 9 Non-foamed layer 10 Rectifier

Claims (5)

加熱可塑化した溶融樹脂を流れ方向に押し出しながら金型で一定断面の形状に整えて連続的に成形する押出発泡成形体の製造方法において、発泡剤を含有する少なくとも1つの溶融樹脂と発泡剤を含有しない少なくとも1つの溶融樹脂とを高圧下で厚み方向である上下方向に合流させて積層溶融樹脂を得る第1工程と、この積層溶融樹脂を幅方向である左右方向中央で分割し左右方向に離反させて左右2つの分割積層溶融樹脂を得る第2工程と、これら左右2つの分割積層溶融樹脂を、一方の下端が他方の上端よりも上になるように上下方向に離反させる第3工程と、これら2つの分割積層溶融樹脂を左右方向に接近させ、これら2つの分割積層溶融樹脂の左右方向中央が、前記積層溶融樹脂の左右方向中央を通り前記流れ方向に平行な垂直平面内に位置するように上下に重なる位置まで、これら2つの分割積層溶融樹脂が分離した状態で上下に揃うように位置を合わせる第4工程と、これら上下2つの分割積層溶融樹脂を上下方向に合流させて倍加積層溶融樹脂を得る第5工程とを含む多層押出発泡成形体の製造方法であって、
前記第4工程と第5工程との間に、前記2つの分割積層溶融樹脂が上下に揃うように位置合せされた左右方向の位置関係を保持して前記2つの分割積層溶融樹脂が分離した状態のまま下流側へ所定長さ移動させることにより、左右の流速差を低減させる整流工程を設けたことを特徴とする多層押出発泡成形体の製造方法。
In a method for producing an extrusion foamed molded article in which a heat-plasticized molten resin is extruded in the flow direction while being continuously shaped by shaping it into a shape of a constant cross section with a mold, at least one molten resin containing a foaming agent and the foaming agent are used. A first step of obtaining a laminated molten resin by joining at least one molten resin not contained in a vertical direction that is a thickness direction under high pressure, and dividing the laminated molten resin at a horizontal center that is a width direction, A second step of separating the left and right two divided laminated molten resins by separating them, and a third step of separating the left and right two divided laminated molten resins in the vertical direction so that one lower end is above the other upper end; These two divided laminated molten resins are made to approach in the left-right direction, and the center in the left-right direction of these two divided laminated molten resins passes through the center in the left-right direction of the laminated molten resin and is perpendicular to the flow direction. A fourth step of aligning the two divided laminated molten resins so as to be aligned vertically in a state where they are separated to a position where they are vertically overlapped so as to be positioned in the plane; A method for producing a multilayer extrusion foamed molded article comprising a fifth step of merging and obtaining a doubled laminated molten resin,
Between the fourth step and the fifth step, the two divided laminated molten resins are separated while maintaining the positional relationship in the left-right direction so that the two divided laminated molten resins are aligned vertically. A method for producing a multilayer extrusion foamed molded article, characterized in that a straightening step for reducing the difference in flow rate between the left and right sides is provided by moving a predetermined length downstream.
前記第1工程と前記第2工程との間に、前記積層溶融樹脂の断面積を変化させずに幅を2倍に拡大する幅拡大工程を設けてなる請求項1記載の多層押出発泡成形体の製造方法。   2. The multilayer extrusion foamed molded article according to claim 1, wherein a width expanding step is provided between the first step and the second step to expand the width twice without changing the cross-sectional area of the laminated molten resin. Manufacturing method. 前記第2工程と前記第3工程との間、前記第3工程と前記第4工程との間又は前記第4工程と前記第5工程との間に、前記分割積層溶融樹脂の各々について断面積を変化させずに幅を2倍に拡大する幅拡大工程を設けてなる請求項1記載の多層押出発泡成形体の製造方法。   Between each of the second step and the third step, between the third step and the fourth step, or between the fourth step and the fifth step, a sectional area of each of the divided laminated molten resins. The manufacturing method of the multilayer extrusion foaming molding of Claim 1 which provides the width expansion process which expands a width twice without changing this. 前記第5工程の後に、前記倍加積層溶融樹脂の断面積を変化させずに幅を2倍に拡大する幅拡大工程を設けてなる請求項1記載の多層押出発泡成形体の製造方法。   The manufacturing method of the multilayer extrusion foaming molding of Claim 1 which provides the width expansion process which expands a width twice without changing the cross-sectional area of the said doubling lamination molten resin after the said 5th process. 加熱可塑化した溶融樹脂を流れ方向に押し出しながら金型で一定断面の形状に整えて連続的に成形する押出発泡成形体の製造装置において、発泡剤を含有する溶融樹脂を加圧して供給する発泡用押出機及び発泡剤を含有しない溶融樹脂を加圧して供給する非発泡用押出機、これらの押出機から供給された、発泡剤を含有する少なくとも1つの溶融樹脂と発泡剤を含有しない少なくとも1つの溶融樹脂とを厚み方向である上下方向に合流させて積層溶融樹脂とする積層装置、前記積層溶融樹脂を幅方向である左右方向中央で分割して2つの分割積層溶融樹脂とし、これら分割積層溶融樹脂を上下に重ね合わせるように合流させて倍加積層溶融樹脂とする積層2倍化装置、並びに、前記倍加積層溶融樹脂を大気圧下に開放して発泡剤を気化させることにより高倍化させる成形金型を備えた多層押出発泡成形体の製造装置であって、
前記積層2倍化装置が、前記左右2つの分割積層溶融樹脂を、一方の下端が他方の上端よりも上になるように上下方向に離反させ、これら2つの分割積層溶融樹脂を左右方向に接近させ、これら2つの分割積層溶融樹脂の左右方向中央が、前記積層溶融樹脂の左右方向中央を通り前記流れ方向に平行な垂直平面内に位置するように上下に重なる位置まで、これら2つの分割積層溶融樹脂が分離した状態で上下に揃うように位置を合わせた後に、前記2つの分割積層溶融樹脂が上下に揃うように位置合せされた左右方向の位置関係を保持して前記2つの分割積層溶融樹脂が分離した状態のまま下流側へ所定長さ移動させる整流路を備え、この整流路により左右の流速差を低減させた後に前記分割積層溶融樹脂を上下に重ね合わせるように合流させることを特徴とする多層押出発泡成形体の製造装置。
Foam supplied by pressurizing molten resin containing a foaming agent in an extrusion foamed molded product manufacturing apparatus that continuously molds the molten resin that has been heat plasticized in the flow direction while shaping it into a fixed cross-section with a mold. Extruder for extrusion and non-foaming extruder for supplying molten resin containing no blowing agent under pressure, at least one molten resin containing a blowing agent and at least one containing no blowing agent supplied from these extruders A laminating apparatus that joins two molten resins in the vertical direction, which is the thickness direction, to form a laminated molten resin, and divides the laminated molten resin at the center in the left-right direction, which is the width direction, to form two divided laminated molten resins. A lamination doubling device that merges molten resins so as to overlap each other to form a doubled laminated molten resin, and releases the doubled laminated molten resin under atmospheric pressure to vaporize the foaming agent. An apparatus for producing a multi-layer extrusion foaming body having a molding die for high doubled by a,
The lamination doubling device separates the two left and right divided laminated molten resins in the vertical direction so that one lower end is above the other upper end, and these two divided laminated molten resins are moved in the left and right directions. The two split laminates are stacked up to a position where the center of the two split laminate molten resins in the vertical direction passes through the center of the laminate molten resin in the left and right direction and is in a vertical plane parallel to the flow direction. After aligning the melted resin so that they are aligned vertically, the two split laminate melts are maintained while maintaining the positional relationship in the left-right direction so that the two split laminate molten resins are aligned vertically A rectifying path that moves the resin to the downstream side by a predetermined length while the resin is separated is provided, and after the flow velocity difference between the left and right is reduced by this rectifying path, the divided laminated molten resins are joined so as to overlap each other. Apparatus for manufacturing a multilayer extrusion foamed molded article according to claim Rukoto.
JP2010063451A 2010-03-19 2010-03-19 Method and device of manufacturing multilayer extrusion-foamed molding Pending JP2011194697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063451A JP2011194697A (en) 2010-03-19 2010-03-19 Method and device of manufacturing multilayer extrusion-foamed molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063451A JP2011194697A (en) 2010-03-19 2010-03-19 Method and device of manufacturing multilayer extrusion-foamed molding

Publications (1)

Publication Number Publication Date
JP2011194697A true JP2011194697A (en) 2011-10-06

Family

ID=44873502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063451A Pending JP2011194697A (en) 2010-03-19 2010-03-19 Method and device of manufacturing multilayer extrusion-foamed molding

Country Status (1)

Country Link
JP (1) JP2011194697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058075B2 (en) 2013-08-19 2021-07-13 Mebiol Inc. Plant cultivation system and a method for plant cultivation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058075B2 (en) 2013-08-19 2021-07-13 Mebiol Inc. Plant cultivation system and a method for plant cultivation

Similar Documents

Publication Publication Date Title
JP2011025521A (en) Extrusion foamed molding excellent in heat insulating performance
KR102129044B1 (en) Styrene resin extruded foam and its manufacturing method
JP5471118B2 (en) Extruded foam with excellent heat insulation performance
JP6722753B2 (en) Styrenic resin extruded foam and method for producing the same
JP2007320264A (en) Extruded multilayer foam sheet
JP5470924B2 (en) Extruded foam laminate with excellent heat insulation performance
JP7057068B2 (en) Insulation material containing styrene resin extruded foam and its manufacturing method
JP2013124281A (en) Method for producing polystyrene-based resin extruded foam
JP2011194697A (en) Method and device of manufacturing multilayer extrusion-foamed molding
JP2007296686A (en) Multilayered extrusion foamed laminated sheet and car trim material using the same
JP5849507B2 (en) Extruded foam with excellent heat insulation performance
JP2012158024A (en) Method for producing extrusion foamed molding
JP2013202812A (en) Polystyrene resin extrusion foamed laminate with superior heat insulating performance
JP5915017B2 (en) Method for producing extruded foam excellent in heat insulation performance
JP2012025815A (en) Extrusion foam-molded product exhibiting excellent heat insulating performance
JP2013103465A (en) Extrusion foamed molding having excellent thermal insulation performance
JP2019031636A (en) Styrenic resin extrusion foam and method for producing the same
JP5526855B2 (en) Heat insulation material made of extruded foam with excellent heat insulation performance
JP2012219174A (en) Extrusion foamed molding having excellent thermal insulation performance
JP7042038B2 (en) Method for manufacturing styrene resin extruded foam
KR102129032B1 (en) Styrene resin extruded foam and its manufacturing method
JP5831038B2 (en) Extruded foam with excellent heat insulation performance
JP5745289B2 (en) Styrene resin extruded foam laminate and method for producing the same
WO2017078025A1 (en) Styrene resin extruded foam and method for producing same
JP2017007296A (en) Method for producing extrusion foamed molding having excellent thermal insulation performance