JP5745289B2 - Styrene resin extruded foam laminate and method for producing the same - Google Patents

Styrene resin extruded foam laminate and method for producing the same Download PDF

Info

Publication number
JP5745289B2
JP5745289B2 JP2011040430A JP2011040430A JP5745289B2 JP 5745289 B2 JP5745289 B2 JP 5745289B2 JP 2011040430 A JP2011040430 A JP 2011040430A JP 2011040430 A JP2011040430 A JP 2011040430A JP 5745289 B2 JP5745289 B2 JP 5745289B2
Authority
JP
Japan
Prior art keywords
foam
foamed layer
styrene
laminate
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011040430A
Other languages
Japanese (ja)
Other versions
JP2012176533A (en
Inventor
達郎 伏見
達郎 伏見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011040430A priority Critical patent/JP5745289B2/en
Publication of JP2012176533A publication Critical patent/JP2012176533A/en
Application granted granted Critical
Publication of JP5745289B2 publication Critical patent/JP5745289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、軽量性、強度に優れ、かつリサイクル性に優れたスチレン系樹脂発泡積層体に関する。   The present invention relates to a styrene-based resin foam laminate that is excellent in lightness, strength, and recyclability.

従来、スチレン系樹脂を押出機などにて加熱溶融し、次いで、発泡剤を添加し溶融混練した樹脂組成物やスチレン系樹脂に熱分解型発泡剤を添加し押出機などにて加熱溶融・混練した樹脂組成物を、金型を通して低圧域に押出すことにより発泡体を連続的に製造する方法は既に知られている(特許文献1、2参照)。   Conventionally, a styrene resin is heated and melted with an extruder, etc., and then a foaming agent is added and melt-kneaded resin composition or a thermally decomposable foaming agent is added to a styrene resin and heated and melted and kneaded with an extruder. A method for continuously producing a foam by extruding the obtained resin composition through a mold into a low pressure region is already known (see Patent Documents 1 and 2).

スチレン系樹脂発泡体は、断熱材、芯材等の様々な用途にて使用されている。しかし、構造部材として用いられている木質系材料の代替となりうる高強度のものはなかった。   Styrenic resin foams are used in various applications such as heat insulating materials and core materials. However, there was no high-strength material that could replace the wood-based material used as a structural member.

これに対して、近年、木質系部材の代替品として使用する種々の発泡体製品が上市されている。   On the other hand, in recent years, various foam products used as substitutes for wooden members have been put on the market.

しかしながら、木質系部材が使用されている材料として必要とされる強度等の物性を得るために、発泡体の倍率を1.5〜2倍という低倍率としたり、木質系粉体やフィラーを添加する方策がとられている。そのため、木質系部材と比較して同程度の密度となるため、軽量性の特性を付与できていない。また、木質系粉体を添加している場合は、リサイクル性が低く、製造工程で排出される端材や使用後の部材はサーマルリサイクルにしか転用できないのが現状である。
また、1.5〜2倍の低発泡倍率の発泡体においては、木ネジ等により固定する工程において、割れ、欠けが生じやすく、その欠点を解決するために、耐衝撃性改良剤等が添加される場合がある。そのため、コストアップやリサイクル性を損なう場合がある。
However, in order to obtain physical properties such as the strength required for the materials in which wood-based materials are used, the magnification of the foam is reduced to 1.5-2 times, or wood-based powders and fillers are added. Measures are being taken. Therefore, since it becomes a density comparable as compared with a wood type member, the characteristic of lightweight property cannot be provided. In addition, when wood-based powder is added, the recyclability is low, and the end materials discharged in the manufacturing process and the used members can only be used for thermal recycling.
In addition, in foams with a low foaming ratio of 1.5 to 2 times, cracking and chipping are likely to occur in the process of fixing with wood screws and the like, and an impact resistance improver is added to solve the drawbacks. May be. For this reason, cost increases and recyclability may be impaired.

他方、発泡倍率が3倍以上の発泡体はセル構造体であることから、木質系部材の代替品とするには、釘柔らかい、脆い等の物性的欠点や、表面に細かい凹凸が存在する等の外観的欠点がある。
そのため、発泡倍率が3倍以上の発泡体に対して、釘で打つ、木ネジで止める等の施工を行ったり、物が当たった場合、割れたり、ひびが入ったり、大きくへこんだりすることがある。
On the other hand, a foam with a foaming ratio of 3 times or more is a cell structure, so that it can be used as a substitute for a wood-based member, such as physical defects such as soft nails and brittleness, and fine irregularities on the surface. There are appearance defects.
For this reason, when foaming with a foaming ratio of 3 times or more is applied, such as hitting with a nail or fastening with a wood screw, or if it hits the object, it may crack, crack, or be greatly dented. is there.

これらの欠陥を補うために、発泡層の表面に非発泡層を積層してなる発泡積層体とする方策がとられている。
しかしながら、発泡層の表面に非発泡層を形成しても局所的な荷重を受けた際には、非発泡層直下の発泡層の破損により、所望の強度が得られない場合があり、それを改善するために、非発泡層の厚みを厚くする等の方策がとられる場合がある。しかし、その場合には、軽量性に劣ったりする問題が発生する。
また、非発泡層として、硬度の高い樹脂を用いて薄くする方法も挙げられるが、その場合、リサイクル性が確保できない問題が生じる。
In order to compensate for these defects, measures have been taken to obtain a foam laminate obtained by laminating a non-foam layer on the surface of the foam layer.
However, even when a non-foamed layer is formed on the surface of the foamed layer, when a local load is applied, the desired strength may not be obtained due to the damage of the foamed layer immediately below the non-foamed layer. In order to improve, measures such as increasing the thickness of the non-foamed layer may be taken. However, in that case, the problem of being inferior in lightness occurs.
Moreover, although the method of making thin using resin with high hardness as a non-foamed layer is also mentioned, the problem which cannot ensure recyclability arises in that case.

上記のような状況の中、軽量で強度に優れ、施工性、リサイクル性に優れた合成樹脂からなる木質系材料に変わる部材が望まれている。   Under the circumstances as described above, there is a demand for a member that changes to a wood-based material that is made of a synthetic resin that is lightweight, excellent in strength, workability, and recyclability.

特公昭31−5393号公報Japanese Patent Publication No.31-5393 特公昭42−19195号公報Japanese Patent Publication No.42-19195

本発明は、スチレン系樹脂押出積層発泡体が有する前記課題を解決するためになされたものであって、軽量性、強度に優れ、さらに施工性に優れるスチレン系樹脂押出発泡積層体を提供することを目的とする。   The present invention was made to solve the above-mentioned problems of the styrene resin extruded laminate foam, and provides a styrene resin extruded foam laminate that is excellent in lightness, strength, and workability. With the goal.

本発明者は、前記課題の解決のため鋭意研究の結果、発泡積層体において、表面に形成された非発泡層の厚みを特定の範囲にすると共に、非発泡層直下の発泡倍率および積層体全体の発泡倍率を特定の範囲とすることにより、軽量性を備え、圧縮強度に優れ、釘、木ネジ等による施工性にも優れる発泡体が得られることを見出した。   As a result of diligent research to solve the above-mentioned problems, the inventor made the thickness of the non-foamed layer formed on the surface of the foamed laminate a specific range, the expansion ratio directly below the non-foamed layer, and the entire laminate. It has been found that by setting the expansion ratio of the foam to a specific range, a foam having lightness, excellent compressive strength, and excellent workability with nails, wood screws and the like can be obtained.

すなわち、本発明は、以下の構成からなるものである。
[1]スチレン系樹脂を加熱溶融させ、発泡剤を添加し、これを押出発泡してなるスチレン系樹脂発泡層の少なくとも片面に、厚みが0.015〜0.7mmである非発泡層が形成されてなるスチレン系発泡積層体であって、
非発泡層の直下1mmにおける発泡倍率が1.5〜4倍であり、
非発泡層を含む発泡積層体全体の発泡倍率が3〜10倍であることを特徴とする、スチレン系発泡積層体に関する。
[2]表面硬度が、400N〜1000Nであることを特徴とする、前記[1]記載のスチレン系樹脂押出発泡積層体に関する。
[3]前記発泡層の独立気泡率が75%以上で有ることを特徴とする、前記[1]または[2]記載のスチレン系樹脂押出発泡積層体に関する。
[4]スチレン系樹脂を加熱溶融させ、発泡剤を添加し、これを押出発泡してなるスチレン系樹脂発泡層を含む発泡積層体の製造方法であって、発泡層の両面に厚みが0.015〜0.7mmである非発泡層が形成されており、発泡層の非発泡層直下1mmにおける発泡倍率が1.5〜4倍であり、発泡積層体全体の倍率が3〜10倍であることを特徴とするスチレン系発泡体の製造方法に関する。
That is, this invention consists of the following structures.
[1] A non-foamed layer having a thickness of 0.015 to 0.7 mm is formed on at least one surface of a styrenic resin foamed layer obtained by heating and melting a styrenic resin, adding a foaming agent, and extruding and foaming the foaming agent. A styrene foam laminate,
The expansion ratio at 1 mm immediately below the non-foamed layer is 1.5 to 4 times,
The present invention relates to a styrene-based foam laminate, characterized in that the expansion ratio of the entire foam laminate including a non-foam layer is 3 to 10 times.
[2] The styrene-based resin extruded foam laminate according to [1] above, wherein the surface hardness is 400N to 1000N.
[3] The styrene-based resin extruded foam laminate according to [1] or [2], wherein the foamed layer has a closed cell ratio of 75% or more.
[4] A method for producing a foam laminate including a styrene resin foam layer obtained by heating and melting a styrene resin, adding a foaming agent, and extruding and foaming the foaming agent. A non-foamed layer of 015 to 0.7 mm is formed, the foaming magnification in the 1 mm immediately below the non-foamed layer of the foamed layer is 1.5 to 4 times, and the magnification of the entire foamed laminate is 3 to 10 times The present invention relates to a method for producing a styrenic foam.

本発明のスチレン系発泡積層体は、軽量性を備え、圧縮強度に優れ、釘、木ネジ等による施工性に優れるスチレン系樹脂押出発泡積層体を、製造することが可能となる。本発明のスチレン系樹脂発泡積層体は、その優れた性能により、自動車部材、建築部材、住宅設備用部材、包装用部材、等の様々な用途に有用である。   The styrenic foam laminate of the present invention can be produced with a styrene resin extruded foam laminate having lightness, excellent compressive strength, and excellent workability with nails, wood screws and the like. The styrene resin foam laminate of the present invention is useful for various applications such as automobile members, building members, housing equipment members, packaging members, and the like due to its excellent performance.

図1は、本発明のスチレン系発泡積層体の厚み方向断面の拡大写真で、非発泡層が微発泡層を含む場合の拡大写真である。FIG. 1 is an enlarged photograph of a cross section in the thickness direction of the styrene-based foam laminate of the present invention, and is an enlarged photograph when the non-foamed layer includes a fine foamed layer. 図2は、本発明のスチレン系発泡積層体の製造に用いられる、成型金型の概略図である。FIG. 2 is a schematic view of a molding die used for producing the styrene-based foam laminate of the present invention. 図3は、従来のスチレン系発泡積層体の製造に用いられる、ロール法による成型工程の概略図である。押出機内にて発泡に適正な樹脂温度に調整された発泡性スチレン系樹脂組成物を、押出金型7(例えば、Tダイ)より大気中に押出し、成型固定ロール8にて表面をこすり、表層の気泡をつぶし、次いで冷却フリーロール9にて冷却固化させ、次いで、引取り用駆動ロール6により、一定速度にて引取られ、その後切断され、スチレン系樹脂発泡積層体10を得ることができる。FIG. 3 is a schematic view of a molding process by a roll method used for producing a conventional styrene foam laminate. A foamable styrenic resin composition adjusted to a resin temperature suitable for foaming in an extruder is extruded into the atmosphere from an extrusion die 7 (for example, a T-die), and the surface is rubbed with a molding fixing roll 8 to obtain a surface layer. The bubbles are then crushed and then cooled and solidified by the cooling free roll 9, and then taken by the take-up drive roll 6 at a constant speed and then cut to obtain the styrene-based resin foam laminate 10.

本発明のスチレン系発泡積層体は、スチレン系樹脂を加熱溶融させ、発泡剤を添加し、これを押出発泡してなるスチレン系樹脂発泡層の、少なくとも片面に、厚みが0.015〜0.7mmである非発泡層が形成されてなるスチレン系発泡積層体であって、非発泡層の直下1mmにおける発泡倍率が1.5〜4倍であり、非発泡層を含む発泡積層体全体の発泡倍率が3〜10倍であることを特徴とする、スチレン系発泡積層体に関する。   The styrene foam laminate of the present invention has a thickness of 0.015 to 0.00 on at least one side of a styrene resin foam layer obtained by heating and melting a styrene resin, adding a foaming agent, and extruding the styrene resin. A styrene-based foam laminate having a 7 mm non-foamed layer formed, the foaming ratio at 1 mm immediately below the non-foamed layer being 1.5 to 4 times, and foaming of the entire foamed laminate including the non-foamed layer The present invention relates to a styrene-based foam laminate, wherein the magnification is 3 to 10 times.

本発明のスチレン系発泡積層体においては、非発泡層の厚みを制御することにより、釘を打ち付けた際の釘の頭の食い込みによる割れや亀裂の発生を防止することができる。   In the styrenic foam laminate of the present invention, by controlling the thickness of the non-foamed layer, it is possible to prevent cracks and cracks caused by biting of the head of the nail when the nail is struck.

本発明における非発泡層の厚みは、0.015〜0.7mmが好ましく、0.02〜0.6mmがより好ましく、0.1〜0.6mmが特に好ましい。
非発泡層の厚みが0.015mmより小さい場合には、釘を打ち付けた際に、非発泡層の釘の頭の食い込み部に割れが発生する場合がある。非発泡層の厚みが0.7mmより大きい場合には、釘を打ち付けた際に、非発泡層に亀裂が入ったり、軽量性に劣ったりする場合がある。
The thickness of the non-foamed layer in the present invention is preferably 0.015 to 0.7 mm, more preferably 0.02 to 0.6 mm, and particularly preferably 0.1 to 0.6 mm.
When the thickness of the non-foamed layer is smaller than 0.015 mm, a crack may occur in the biting portion of the head of the nail of the non-foamed layer when the nail is driven. When the thickness of the non-foamed layer is larger than 0.7 mm, the non-foamed layer may be cracked or inferior in weight when the nail is struck.

本発明における非発泡層とは、非発泡層および微発泡層を表す。微発泡層とは、発泡倍率が1.0〜1.3倍の層を表す。
ここで、非発泡層の厚みは、下記のように求めた値である。
得られた発泡積層体より、幅方向に等間隔にて、長さ30mm×幅30mmのサンプルを5個切り出た各サンプルに関して、幅方向の中点を結ぶ線に沿って切断した、垂直方向(厚み方向)の切断面の拡大写真をマイクロスコープにて撮影する。図1に示すように、得られた写真(倍率:200倍)において、気泡が存在しない領域または、気泡の数が著しく減った領域を非発泡層と判断して、非発泡層の厚みを測定し、相加平均した値である。
The non-foamed layer in the present invention represents a non-foamed layer and a fine foamed layer. The fine foam layer represents a layer having a foaming ratio of 1.0 to 1.3 times.
Here, the thickness of the non-foamed layer is a value determined as follows.
From the obtained foamed laminate, the vertical direction was cut along a line connecting the midpoints in the width direction with respect to each sample obtained by cutting five samples of length 30 mm × width 30 mm at equal intervals in the width direction. An enlarged photograph of the cut surface (thickness direction) is taken with a microscope. As shown in FIG. 1, in the obtained photograph (magnification: 200 times), a region where no bubbles exist or a region where the number of bubbles is remarkably reduced is determined as a non-foamed layer, and the thickness of the non-foamed layer is measured. And an arithmetic average value.

本発明のスチレン系発泡積層体においては、発泡層に対して少なくとも片面に形成されておればよいが、他の部材へ木ネジで締結する場合における締結力確保の点から、両面に形成されてなる方がより好ましい。   In the styrene-based foam laminate of the present invention, it is sufficient that it is formed on at least one side with respect to the foam layer, but it is formed on both sides in terms of securing a fastening force when fastening to other members with wood screws. Is more preferable.

本発明のスチレン系発泡積層体においては、非発泡層の直下1mmにおける発泡倍率を制御することにより、局所的な力を非発泡層表面に受けた際の強度を高くできるとともに非発泡層の厚みを薄くでき、強度と軽量性を兼ね備えることができる。   In the styrene-based foam laminate of the present invention, by controlling the foaming ratio at 1 mm immediately below the non-foamed layer, the strength when receiving a local force on the surface of the non-foamed layer can be increased and the thickness of the non-foamed layer Can be made thin, and both strength and light weight can be achieved.

本発明における非発泡層の直下1mmにおける発泡倍率は、1.5〜4.0倍が好ましく、2.0〜3.5倍がより好ましく2.0〜3.0倍が特に好ましい。
非発泡層の直下1mmにおける発泡倍率が1.5倍より小さい場合には、軽量性に劣る傾向があり、4倍より大きい場合には、木ネジ等による他部材への締結が十分に行われない場合がある。
The expansion ratio at 1 mm immediately below the non-foamed layer in the present invention is preferably 1.5 to 4.0 times, more preferably 2.0 to 3.5 times, and particularly preferably 2.0 to 3.0 times.
When the expansion ratio at 1 mm directly below the non-foamed layer is less than 1.5 times, the lightness tends to be inferior, and when it is more than 4 times, it is sufficiently fastened to other members with wood screws or the like. There may not be.

ここで、非発泡層の直下1mmにおける発泡倍率は、以下の方法により、測定した値である。
得られた発泡積層体より、巾方向の中心部から巾150mm×長さ1820mmのサンプルを切り出す。次に、切り出したサンプル重量A(g)を測定し、木工加工機を用いて、表面から非発泡層の厚み+1mmの位置にて、切削後の面に樹脂の溶融が目視にて認められないように切削した後、重量B(g)を測定する。
得られた測定値より、非発泡層直下1mmの密度(g/cm)={(A−B)−(182×15×非発泡層厚み×1.05)}/(182×15×0.1)の式に基づき、非発泡層直下1mmの密度を計算する。
得られた非発泡層直下1mmの密度で、ポリスチレン樹脂密度1.05g/ccを除した値を、非発泡層直下1mmの発泡倍率として採用した。
Here, the expansion ratio at 1 mm immediately below the non-foamed layer is a value measured by the following method.
A sample having a width of 150 mm and a length of 1820 mm is cut out from the center in the width direction from the obtained foamed laminate. Next, the cut sample weight A (g) was measured, and using a woodworking machine, the melting of the resin was not visually observed on the surface after cutting at the position of the thickness of the non-foamed layer + 1 mm from the surface. After cutting, the weight B (g) is measured.
From the obtained measured value, the density (g / cm 3 ) = {(A−B) − (182 × 15 × non-foamed layer thickness × 1.05)} / (182 × 15 × 0) immediately below the non-foamed layer. Calculate the density of 1 mm directly under the non-foamed layer based on the equation of .1).
A value obtained by dividing the polystyrene resin density of 1.05 g / cc by the density of 1 mm immediately below the obtained non-foamed layer was adopted as the foaming magnification of 1 mm immediately below the non-foamed layer.

本発明のスチレン系発泡積層体においては、発泡積層体全体の発泡倍率を制御することにより、軽量性にすぐれた発泡積層体を得ることができる。   In the styrene foam laminate of the present invention, a foam laminate excellent in light weight can be obtained by controlling the expansion ratio of the entire foam laminate.

本発明における発泡積層体全体の発泡倍率は、3.0〜10倍が好ましく、4.0〜8.0倍がより好ましく、4.5〜7.0倍が特に好ましい。
発泡積層体全体の泡倍率が3.0倍より小さい場合には、軽量性に劣る傾向があり、10倍より大きい場合には、釘を打ち付けた際に割れたり、圧縮強度に劣る場合がある。
In the present invention, the expansion ratio of the entire foam laminate is preferably 3.0 to 10 times, more preferably 4.0 to 8.0 times, and particularly preferably 4.5 to 7.0 times.
When the foam ratio of the entire foamed laminate is less than 3.0 times, the lightness tends to be inferior, and when it is more than 10 times, it may be cracked when nailing, or may have inferior compressive strength. .

本発明のスチレン系発泡積層体においては、表面硬度としては、400〜1000Nであることが好ましく、450〜800Nであることがより好ましく、500〜700Nであることが特に好ましい。
表面硬度が400Nより小さい場合には、木ネジを用いて他部材へ締結する際に緩み易い場合がある。表面硬度が1000Nより大きい場合、非発泡層の厚みが厚かったり、非発泡層直下1mmの倍率が低く、軽量性に劣る場合がある。
In the styrene-based foam laminate of the present invention, the surface hardness is preferably 400 to 1000N, more preferably 450 to 800N, and particularly preferably 500 to 700N.
If the surface hardness is less than 400N, it may be easy to loosen when fastened to other members using wood screws. When the surface hardness is larger than 1000 N, the thickness of the non-foamed layer may be thick, or the magnification of 1 mm immediately below the non-foamed layer may be low, resulting in poor lightness.

ここで、表面硬度とは、以下の方法により求められる値である。すなわち、発泡積層体から切り出した長さ30mm×幅30mmの試験サンプルに対して、圧縮試験機(島津製作所製、オートグラフAG−X/R)を用いて、試験サンプルの非発泡層表面の中央部に、直径5mmの鋼球を静置した後、テストスピード1000mm/分にて垂直方向に5mm押し込んだ際に、得られる応力−歪み線図の降伏点における荷重を、発泡積層体の硬度とした。   Here, the surface hardness is a value obtained by the following method. That is, using a compression tester (manufactured by Shimadzu Corp., Autograph AG-X / R) for a test sample of length 30 mm × width 30 mm cut out from the foam laminate, the center of the non-foamed layer surface of the test sample When the steel ball having a diameter of 5 mm is left in place, the load at the yield point of the obtained stress-strain diagram when the test ball is pushed in at 5 mm in the vertical direction at a test speed of 1000 mm / min is determined as the hardness of the foam laminate. did.

本発明のスチレン系発泡積層体においては、発泡積層体の独立気泡率としては75%〜100%であることが好ましく、80〜100%であることがより好ましく、85〜95%であることが特に好ましい。独立気泡率とは発泡体を構成する気泡において、気泡膜に穴、欠損等が無い気泡の含有率を示す数値である。
独立気泡率が75%より低い場合には、圧縮強度に劣る場合がある。
In the styrene-based foam laminate of the present invention, the closed cell ratio of the foam laminate is preferably 75% to 100%, more preferably 80 to 100%, and 85 to 95%. Particularly preferred. The closed cell rate is a numerical value indicating the content rate of bubbles that do not have a hole, a deficiency, or the like in the bubble film in the bubbles constituting the foam.
When the closed cell ratio is lower than 75%, the compression strength may be inferior.

本発明のスチレン系発泡積層体においては、発泡積層体の総厚みとしては、6〜30 mmが好ましく、8〜28mmがより好ましく、10〜25mmが特に好ましい。   In the styrenic foam laminate of the present invention, the total thickness of the foam laminate is preferably 6 to 30 mm, more preferably 8 to 28 mm, and particularly preferably 10 to 25 mm.

本発明で用いられるスチレン系樹脂は、特に限定されるものではなく、スチレン単量体のみから得られるスチレンホモポリマー;スチレン単量体とスチレンと共重合可能な単量体あるいはその誘導体から得られるランダム、ブロックあるいはグラフト共重合体;後臭素化ポリスチレン、ゴム強化ポリスチレンなどの変性ポリスチレンなどが挙げられる。これらは、単独あるいは2種以上混合して使用することができる。   The styrenic resin used in the present invention is not particularly limited, and is obtained from a styrene homopolymer obtained only from a styrene monomer; a monomer copolymerizable with styrene monomer and styrene, or a derivative thereof. Random, block or graft copolymers; post-brominated polystyrene, modified polystyrene such as rubber reinforced polystyrene, and the like. These can be used alone or in admixture of two or more.

スチレンと共重合可能な単量体としては、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレンなどのスチレン誘導体;ジビニルベンゼンなどの多官能性ビニル化合物;アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、アクリロニトリルなどの(メタ)アクリル酸系化合物;ブダジエンなどのジエン系化合物あるいはその誘導体;無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物などが挙げられる。これらは単独あるいは2種以上混合して使用することができる。   Examples of monomers copolymerizable with styrene include styrene derivatives such as methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, and trichlorostyrene; Polyfunctional vinyl compounds such as divinylbenzene; (meth) acrylic compounds such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, and acrylonitrile; Diene compounds or derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride. These can be used alone or in admixture of two or more.

スチレン系樹脂では、押出発泡成形性などの面から、スチレンホモポリマー、スチレンアクリロニトリル共重合体、(メタ)アクリル酸共重合ポリスチレン、無水マレイン酸変性ポリスチレン、耐衝撃性ポリスチレンなどが好ましい。コスト面からスチレンホモポリマーがより好ましい。   Among the styrene resins, styrene homopolymers, styrene acrylonitrile copolymers, (meth) acrylic acid copolymer polystyrene, maleic anhydride-modified polystyrene, impact-resistant polystyrene, and the like are preferable from the viewpoint of extrusion foam moldability and the like. Styrene homopolymer is more preferable from the viewpoint of cost.

また、本発明で用いられるスチレン系樹脂は、バージン樹脂に限定されず、リサイクルされたスチレン系樹脂も使用できる。例としては、魚箱EPS、家電緩衝材、食品発泡ポリスチレントレーなどのスチレン系樹脂発泡体、または冷蔵庫内装材としてのポリスチレントレーなどである。また、これとは別に、製品の仕上げカット工程で発生したカット屑をリサイクルしたスチレン系樹脂も使用することができる。これらのスチレン系樹脂はそのまま、押出機へ投入しても良いし、押出機に投入しやすいように、減容化・ペレット化を行なっても良い。   Further, the styrene resin used in the present invention is not limited to virgin resin, and recycled styrene resin can also be used. Examples include fish box EPS, home appliance cushioning materials, styrene resin foams such as food foam polystyrene trays, or polystyrene trays as refrigerator interior materials. Separately from this, a styrenic resin obtained by recycling cutting waste generated in the finish cutting process of the product can also be used. These styrenic resins may be fed as they are into the extruder, or may be reduced in volume and pelletized so as to be easily fed into the extruder.

本発明で用いられる発泡剤としては、特に限定するものではないが、炭素数3〜5の飽和炭化水素を使用することにより、優れた環境適合性を付与することができる。
本発明で用いられる炭素数3〜5の飽和炭化水素としては、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタンなどが挙げられる。これらの炭素数3〜5の飽和炭化水素のなかでは、発泡性の点から、プロパン、n−ブタン、i−ブタン、あるいは、これらの混合物が好ましい。また、入手が容易である点から、n−ブタン、i−ブタン、あるいは、これらの混合物が好ましい。
Although it does not specifically limit as a foaming agent used by this invention, The outstanding environmental compatibility can be provided by using a C3-C5 saturated hydrocarbon.
Examples of the saturated hydrocarbon having 3 to 5 carbon atoms used in the present invention include propane, n-butane, i-butane, n-pentane, i-pentane, neopentane and the like. Among these saturated hydrocarbons having 3 to 5 carbon atoms, propane, n-butane, i-butane, or a mixture thereof is preferable from the viewpoint of foamability. In addition, n-butane, i-butane, or a mixture thereof is preferable because it is easily available.

本発明では、さらに、他の発泡剤を用いることにより、発泡体製造時の可塑化効果や助発泡効果が得られ、押出圧力を低減し、安定的に発泡体の製造が可能となる。ただし、目的とする発泡倍率の発泡体の諸特性いかんによっては、その使用量などが制限される場合があり、押出発泡成形性などが充分でない場合がある。   In the present invention, by using another foaming agent, a plasticizing effect and an auxiliary foaming effect at the time of foam production can be obtained, the extrusion pressure can be reduced, and the foam can be stably produced. However, depending on various properties of the foam having the desired expansion ratio, the amount of use may be limited, and the extrusion foam moldability may not be sufficient.

他の発泡剤としては、例えば、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2−メチルフラン、テトラヒドロフラン、テトラヒドロピランなどのエーテル類;ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチルn−プロピルケトン、メチル−n−ブチルケトン、メチル−i−ブチルケトン、メチル−n−アミルケトン、メチル−n−ヘキシルケトン、エチル−n−プロピルケトン、エチル−n−ブチルケトンなどのケトン類;メタノール、エタノール、プロピルアルコール、i−プロピルアルコール、ブチルアルコール、i−ブチルアルコール、t−ブチルアルコールなどの炭素数1〜4の飽和アルコール類;蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステルなどのカルボン酸エステル類;塩化メチル、塩化エチルなどのハロゲン化アルキル、などの有機発泡剤、水、二酸化炭素などの無機発泡剤、アゾ化合物、テトラゾールなどの化学発泡剤などを用いることができる。これら他の発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。
他の発泡剤の中では、発泡性、発泡体成形性などの点からは、炭素数1〜4の飽和アルコール、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、塩化メチル、塩化エチルなどが挙げられる。
Other foaming agents include, for example, ethers such as dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methyl furan, tetrahydrofuran, tetrahydropyran; dimethyl ketone, methyl ethyl ketone , Diethyl ketone, methyl n-propyl ketone, methyl-n-butyl ketone, methyl-i-butyl ketone, methyl-n-amyl ketone, methyl-n-hexyl ketone, ethyl-n-propyl ketone, ethyl-n-butyl ketone, etc. A saturated alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, t-butyl alcohol; Organic esters such as acid methyl ester, formic acid ethyl ester, formic acid propyl ester, formic acid butyl ester, formic acid amyl ester, propionic acid methyl ester, propionic acid ethyl ester; alkyl halides such as methyl chloride and ethyl chloride A foaming agent, an inorganic foaming agent such as water or carbon dioxide, a chemical foaming agent such as an azo compound or tetrazole, or the like can be used. These other blowing agents may be used alone or in combination of two or more.
Among other foaming agents, C1-C4 saturated alcohol, dimethyl ether, diethyl ether, methyl ethyl ether, methyl chloride, ethyl chloride, etc. are mentioned from points, such as foamability and foam moldability.

本発明における発泡剤の使用量は、スチレン系樹脂100重量部に対して、1〜6重量部が好ましく、1.5〜4重量部がより好ましい。発泡剤の使用量が1重量部未満では、発泡倍率が低く、樹脂発泡体としての軽量性が発揮されにくい場合があり、6重量部より多いと、倍率が高く、その結果、強度が許容できない場合がある。   1-6 weight part is preferable with respect to 100 weight part of styrene resin, and, as for the usage-amount of the foaming agent in this invention, 1.5-4 weight part is more preferable. When the amount of the foaming agent used is less than 1 part by weight, the foaming ratio is low, and the lightness as a resin foam may be difficult to be exhibited. When the amount exceeds 6 parts by weight, the ratio is high, and as a result, the strength is not acceptable. There is a case.

本発明においては、必要に応じて、本発明の効果を阻害しない範囲で、気泡調整剤、脂肪酸金属塩、脂肪酸アミド、脂肪酸エステル、流動パラフィン、オレフィン系ワックスなどの加工助剤、難燃剤、帯電防止剤、顔料などの着色剤などの添加剤を含有させることができる。
さらに、本発明においては、必要に応じて、さらに、フェノール系抗酸化剤、窒素系安定剤、イオウ系安定剤,ラクトン系安定剤、ベンゾトリアゾール類・ヒンダートアミン系などの安定剤を含有することができる。
In the present invention, if necessary, processing aids such as bubble regulators, fatty acid metal salts, fatty acid amides, fatty acid esters, liquid paraffin, olefinic wax, flame retardants, electrification, and the like within the range not inhibiting the effects of the present invention. Additives such as colorants such as inhibitors and pigments can be included.
Furthermore, in the present invention, if necessary, a stabilizer such as a phenol-based antioxidant, a nitrogen-based stabilizer, a sulfur-based stabilizer, a lactone-based stabilizer, a benzotriazole or a hindered amine-based agent is further contained. be able to.

本発明のスチレン系樹脂押出発泡積層体における発泡層の製造方法としては、スチレン系樹脂および各種添加剤からなるスチレン系樹脂組成物を押出機等の加熱溶融手段に供給し、任意の段階で高圧条件下にて発泡剤をスチレン系樹脂に添加し、溶融混練し、押出発泡に適する温度に冷却した後、金型を通して該スチレン系樹脂組成物を低圧領域に押出発泡して、発泡体を成形することにより製造される。   As a method for producing a foam layer in the styrene resin extruded foam laminate of the present invention, a styrene resin composition comprising a styrene resin and various additives is supplied to a heating and melting means such as an extruder, and high pressure is applied at an arbitrary stage. Under conditions, a foaming agent is added to the styrene resin, melt-kneaded, cooled to a temperature suitable for extrusion foaming, and then the styrene resin composition is extruded and foamed into a low pressure region through a mold to form a foam. It is manufactured by doing.

スチレン系樹脂と発泡剤などの添加剤を加熱溶融混練する際の加熱温度、溶融混練時間および溶融混練手段については特に制限するものではない。
加熱温度は、使用するスチレン系樹脂が溶融する温度以上であればよいが、樹脂の分子劣化ができる限り抑制される温度、例えば150〜250℃程度が好ましい。
溶融混練時間は、単位時間当たりの押出量、溶融混練手段などによって異なるので一概には決定することができないが、スチレン系樹脂と発泡剤が均一に分散混合するのに要する時間が適宜選ばれる。
また、溶融混練手段としては、例えばスクリュー型の押出機などが挙げられるが、通常の押出発泡に用いられているものであれば特に限定はない。ただし、樹脂の分子劣化をできる限り抑えるため、スクリュー形状については、低剪断タイプのスクリューを用いる方が好ましい。
There are no particular restrictions on the heating temperature, melt kneading time, and melt kneading means when heating and kneading the styrene resin and additives such as a foaming agent.
Although heating temperature should just be more than the temperature which the styrene resin to use melt | dissolves, the temperature which suppresses the molecular degradation of resin as much as possible, for example, about 150-250 degreeC is preferable.
The melt-kneading time varies depending on the amount of extrusion per unit time, the melt-kneading means, etc., and thus cannot be determined unconditionally. However, the time required for uniformly dispersing and mixing the styrene resin and the foaming agent is appropriately selected.
Examples of the melt-kneading means include a screw type extruder, but there is no particular limitation as long as it is used for ordinary extrusion foaming. However, in order to suppress the molecular degradation of the resin as much as possible, it is preferable to use a low shear type screw for the screw shape.

発泡成形方法も特に制限されないが、例えば、スリットダイより圧力開放して得られた発泡体をスリットダイと密着または接して設置した一定の間隙を持つ成形金型および、または成形ロールなどを用いて、断面積の大きい板状発泡体を成形する一般的な方法を用いることができる。   Although the foam molding method is not particularly limited, for example, using a molding die having a certain gap in which a foam obtained by releasing pressure from the slit die is placed in close contact with or in contact with the slit die and / or a molding roll. A general method for molding a plate-like foam having a large cross-sectional area can be used.

本発明における非発泡層の形成方法としては、
(イ)別途得られた発泡層表面に、非発泡のフィルムまたはシートを熱融着する熱ラミネート法、
(ロ)得られた発泡層表面に、溶融した樹脂組成物をフィルム状に押出し、その直後に冷却ロール等により圧着と融着を同時に行うバインダー法、
(ハ)得られた発泡層表面に、フィルム状のホットメルト接着材を介して非発泡のフィルムまたはシートを接着するホットメルト接着法、
(ニ)発泡層を押出す際に発泡層を形成する樹脂組成物の金型内の流路に非発泡層を形成する樹脂組成物を別の押出機等により供給し、発泡層樹脂組成物と非発泡層樹脂組成物を合一させた後に金型より押出して非発泡層を有する発泡積層体を形成する共押出法、
(ホ)発泡体を押出した直後に発泡体表面に、ロール等にこすりつけて表面の気泡をつぶし、次いで冷却ロール等にて冷却固化させて、非発泡層を形成する熱ロール法、
(ヘ)発泡体が金型から押出された直後に発泡体表面を空気にて冷却し、発泡体表面のみの発泡を抑制することにより、非発泡層を形成する空冷法、
(ヘ)発泡体が金型から押出されて板状に成形金型にて賦形される際に、温調された成形金型にて表面を冷却して、発泡体表面のみの発泡を抑制することにより、非発泡層を形成する冷却成形法、
などが挙げられる。
As a method for forming the non-foamed layer in the present invention,
(A) a heat laminating method in which a non-foamed film or sheet is thermally fused to the surface of a separately obtained foam layer,
(B) A binder method in which the melted resin composition is extruded into a film on the surface of the obtained foamed layer, and immediately after that, pressure bonding and fusion are simultaneously performed with a cooling roll or the like,
(C) a hot melt bonding method in which a non-foamed film or sheet is bonded to the surface of the obtained foam layer via a film-like hot melt adhesive;
(D) When the foamed layer is extruded, the resin composition for forming the non-foamed layer is supplied to the flow path in the mold of the resin composition for forming the foamed layer by another extruder or the like, and the foamed layer resin composition A coextrusion method in which a foamed laminate having a non-foamed layer is formed by extruding from a mold after unifying the non-foamed layer resin composition,
(E) Immediately after extruding the foam, the surface of the foam is rubbed against a roll or the like to crush bubbles on the surface, and then cooled and solidified with a cooling roll or the like to form a non-foamed layer,
(F) An air cooling method for forming a non-foamed layer by cooling the foam surface with air immediately after the foam is extruded from the mold and suppressing foaming only on the foam surface;
(F) When the foam is extruded from the mold and shaped into a plate shape by the mold, the surface is cooled by the temperature-controlled mold to suppress foaming only on the foam surface. A cooling molding method for forming a non-foamed layer,
Etc.

これらの中で、発泡層と非発泡層の押出成形を一度にでき、かつ押出設備の構造が複雑でない事より、冷却成形法が好適に用いられる。   Among these, the cooling molding method is preferably used because the foamed layer and the non-foamed layer can be extruded at one time and the structure of the extrusion equipment is not complicated.

本発明における非発泡層は特に限定されないが、リサイクル性の点からスチレン系樹脂が好ましい。   The non-foamed layer in the present invention is not particularly limited, but a styrene resin is preferable from the viewpoint of recyclability.

非発泡層直下1mmにおける発泡倍率の調整方法は、
(1)発泡層を押し出す際に発泡層を形成する樹脂組成物の金型内の流路に、1.5〜4倍になるように調整された樹脂組成物を別の押出機等により供給し、発泡層樹脂組成物と1.5〜4倍になるように調整された樹脂組成物を合一させた後に金型より押出して表層に1.5〜4倍の発泡層を有する発泡積層体を得る共押出発泡法、
(2)前記の冷却成形法において、押出金型から成形金型へ押出された発泡体表層部を1.5〜3倍になるように除冷して発泡体を得る方法にて発泡層を構成する発泡体を得た後に、熱ラミネート法、バインダー法、ホットメルト接着法により非発泡層を形成する方法
(3)前記の冷却成形法において、押出金型から成形金型へ押出された直後の発泡体表層部を1.5〜3倍になるように温調した成形金型にて除冷した後、その直後、発泡体表面を温調した成形金型にて冷却し、表面に非発泡層を形成する2段冷却法が挙げられる。
これらの中で、発泡層と非発泡層の押出成形を一度にでき、かつ、押出設備の構造が複雑でないことより、2段冷却成形法が好適に用いられる。
The adjustment method of the expansion ratio in 1 mm directly under the non-foamed layer is
(1) Supply the resin composition adjusted to 1.5 to 4 times to the flow path in the mold of the resin composition that forms the foam layer when the foam layer is extruded by another extruder or the like. Then, after the resin composition adjusted so as to be 1.5 to 4 times the foam layer resin composition is united, it is extruded from a mold and has a foam layer having a foam layer of 1.5 to 4 times on the surface layer. Co-extrusion foaming method to obtain the body,
(2) In the cooling molding method described above, the foam layer is formed by a method of obtaining a foam by removing the foam surface layer portion extruded from the extrusion mold to the molding mold to 1.5 to 3 times. A method of forming a non-foamed layer by a heat laminating method, a binder method, or a hot-melt bonding method after obtaining a foam to constitute (3) In the above cooling molding method, immediately after being extruded from an extrusion die to a molding die The foam surface layer was removed by cooling with a molding die whose temperature was adjusted to 1.5 to 3 times, and immediately thereafter, the surface of the foam was cooled with a molding die with temperature control, and the surface was non-coated. A two-stage cooling method for forming a foam layer can be mentioned.
Among these, the two-stage cooling molding method is preferably used because the foamed layer and the non-foamed layer can be extruded at one time and the structure of the extrusion equipment is not complicated.

2段冷却成形法に関して、図2を用いて、簡単に説明するが、これに限定される訳でない。
押出機内にて、発泡に適正な樹脂温度に調整されたスチレン系樹脂組成物を、押出金型1より大気中に押出し、次いで、押出金型1に密着させて設置した一定の間隙高さを持つ成型金型2に導入する。
成型金型2においては、押出方向に対して、上流側と下流側に温度調整した熱媒体(上流側熱媒体3,下流側熱媒体4)を通し、成型金型2の上流側と下流側を別途温調する。
ここで、成型金型2での熱媒体の温度は、吐出量、引取り速度、樹脂温度、発泡剤量により異なり、一概には決められないが、上流側熱媒体3の温度は、スチレン系樹脂のガラス転移温度〜樹脂温度の範囲にて温調することが好ましく、下流側熱媒体4の温度は、スチレン系樹脂のガラス転移温度〜(ガラス転移温度−40℃)の範囲にて温調することが好ましい。
成型金型2の上流部を除冷却温度領域とするにより、得られる積層発泡体における非発泡層1mm直下での発泡倍率を調整することができ、下流側を冷却温度領域とすることにより、得られる積層発泡体における非発泡層の厚みの調整をすることができる。
成型金型2により腑形された発泡積層体は、次いで、引取り用駆動ロール6により、一定速度にて引き取られ、その後、切断され、スチレン系樹脂発泡積層体5を得ることができる。
The two-stage cooling molding method will be briefly described with reference to FIG. 2, but is not limited thereto.
In the extruder, a styrenic resin composition adjusted to a resin temperature suitable for foaming is extruded into the atmosphere from the extrusion die 1, and then the fixed gap height set in close contact with the extrusion die 1 is set. Introduce into the mold 2 you have.
In the molding die 2, the upstream side and the downstream side of the molding die 2 are passed through a heat medium (upstream side heat medium 3, downstream side heat medium 4) adjusted in temperature upstream and downstream with respect to the extrusion direction. Adjust the temperature separately.
Here, the temperature of the heat medium in the molding die 2 varies depending on the discharge amount, the take-off speed, the resin temperature, and the amount of the foaming agent, and cannot be generally determined. It is preferable to adjust the temperature within the range of the glass transition temperature of the resin to the resin temperature, and the temperature of the downstream heat medium 4 is controlled within the range of the glass transition temperature of the styrene resin to (glass transition temperature −40 ° C.). It is preferable to do.
By setting the upstream portion of the molding die 2 as the decooling temperature region, the foaming ratio immediately below the non-foamed layer 1 mm in the laminated foam obtained can be adjusted, and by obtaining the downstream side as the cooling temperature region, it is obtained. The thickness of the non-foamed layer in the resulting laminated foam can be adjusted.
The foamed laminate formed by the molding die 2 is then taken up at a constant speed by the take-up drive roll 6 and then cut to obtain the styrene-based resin foamed laminate 5.

本発明のスチレン系樹脂発泡積層体は、その優れた性能により、自動車部材、建築部材、住宅設備用部材、包装用部材、等の様々な用途に有用である。   The styrene resin foam laminate of the present invention is useful for various applications such as automobile members, building members, housing equipment members, packaging members, and the like due to its excellent performance.

本発明のスチレン系樹脂発泡積層体の使用の形態においては、特に制限はないが、フィルム状、シート状、板状のものを接着・熱融着等の方法にて積層して用いても良い。別の使用形態として、鋼材・木質系部材等に接着・ビス止め等の方法にて固定して用いても良い。   The form of use of the styrene resin foam laminate of the present invention is not particularly limited, but a film, sheet, or plate may be laminated and used by a method such as adhesion or heat fusion. . As another form of use, it may be used by being fixed to a steel material, a wood-based member or the like by a method such as adhesion or screwing.

次に、本発明の熱可塑性樹脂押出発泡体の製造方法を実施例に基づいてさらに詳細に説明する。ただし、本発明は、かかる実施例のみに制限されるものではない。   Next, the manufacturing method of the thermoplastic resin extrusion foam of this invention is demonstrated in detail based on an Example. However, the present invention is not limited to such an example.

実施例および比較例にて実施した評価方法は、次の通りである。   The evaluation methods implemented in the examples and comparative examples are as follows.

(1)発泡積層体全体の発泡倍率
発泡体密度(g/cm)=発泡体重量(g)/発泡体体積(cm)に基づいて、発泡体密度を求め、得られた発泡体密度にてポリスチレン樹脂密度1.05g/ccを除した値を発泡体倍率とした。
(1) Foaming magnification foam density of the entire foamed laminate (g / cm 3 ) = foam weight (g) / foam volume (cm 3 ) to obtain the foam density, and the obtained foam density The value obtained by removing the polystyrene resin density of 1.05 g / cc was taken as the foam magnification.

(2)非発泡層の厚み
得られた発泡積層体より、幅方向に等間隔にて、長さ30mm×幅30mmのサンプルを5個切り出た。
得られた各サンプルに関して、幅方向の中点を結ぶ線に沿って切断した、垂直方向(厚み方向)の切断面の拡大写真(倍率:200倍)を、マイクロスコープ[ソニック株式会社製、デジタルマイクロスコープBS−D8000]を用いて撮影した。得られた写真より、気泡が存在しない、あるいは、気泡の数が著しく減った領域を非発泡層と判断して、非発泡層の厚みを測定した。
上記測定を行った後、得られた数値の相加平均値を、非発泡層の厚みとして採用した。
(2) Thickness of non-foamed layer Five samples of length 30 mm × width 30 mm were cut out at equal intervals in the width direction from the obtained foamed laminate.
For each of the obtained samples, an enlarged photograph (magnification: 200 times) of a cut surface in the vertical direction (thickness direction) cut along a line connecting the midpoints in the width direction is used with a microscope [manufactured by Sonic Corporation, Digital Photographed using a microscope BS-D8000]. From the photograph obtained, a region where no bubbles exist or the number of bubbles was remarkably reduced was judged as a non-foamed layer, and the thickness of the non-foamed layer was measured.
After performing the above measurement, the arithmetic average value of the obtained numerical values was adopted as the thickness of the non-foamed layer.

(3)非発泡層直下1mmにおける発泡倍率
得られた発泡積層体より、巾方向の中心部から巾150mm×長さ1820mmのサンプルを切り出す。次に、切り出したサンプル重量A(g)を測定し、木工加工機[アミテック製、バーチカルミーリングマシンPV−70CA]を用いて、表面から非発泡層の厚み+1mmの位置にて、切削後の面に樹脂の溶融が目視にて認められないように切削した後、重量B(g)を測定した。
得られた測定値より、非発泡層直下1mmの密度(g/cm)={(A−B)−(182×15×非発泡層厚み×1.05)}/(182×15×0.1)の式に基づき、非発泡層直下1mmの密度を計算した。
得られた非発泡層直下1mmの密度で、ポリスチレン樹脂密度1.05g/ccを除した値を、非発泡層直下1mmの倍率として採用した。
(3) Foaming magnification at 1 mm immediately below the non-foamed layer From the obtained foamed laminate, a sample having a width of 150 mm and a length of 1820 mm is cut out from the center in the width direction. Next, the cut sample weight A (g) was measured, and using a woodworking machine [manufactured by Amitech, vertical milling machine PV-70CA], the surface after cutting at the position of the non-foamed layer thickness + 1 mm from the surface After cutting so that the resin was not visually melted, the weight B (g) was measured.
From the obtained measured value, the density (g / cm 3 ) = {(A−B) − (182 × 15 × non-foamed layer thickness × 1.05)} / (182 × 15 × 0) immediately below the non-foamed layer. The density of 1 mm directly under the non-foamed layer was calculated based on the equation of .1).
The value obtained by dividing the polystyrene resin density of 1.05 g / cc by the density of 1 mm directly under the non-foamed layer was adopted as the magnification of 1 mm directly under the non-foamed layer.

(4)硬度
得られた発泡積層体の巾方向に、等間隔にて長さ30mm×幅30mmのサンプルを5個切り出し、測定用サンプルとした。下記試験を行った後、得られた数値の相加平均値を、硬度として採用した。
圧縮試験機[島津製作所製、オートグラフAG−X/R]を用いて、発泡積層体の非発泡層表面の中央部に、直径5mmの鋼球を静置した後、テストスピード1000mm/分にて垂直方向に5mm押し込んだ際に、得られる応力−歪み線図の降伏点における荷重を、発泡積層体の硬度とした。
(4) Hardness Five samples having a length of 30 mm and a width of 30 mm were cut out at equal intervals in the width direction of the obtained foamed laminate, and used as measurement samples. After the following test, the arithmetic average value of the obtained numerical values was adopted as the hardness.
Using a compression tester [manufactured by Shimadzu Corp., Autograph AG-X / R], a steel ball having a diameter of 5 mm was left at the center of the non-foamed layer surface of the foamed laminate, and then the test speed was 1000 mm / min. Then, the load at the yield point of the obtained stress-strain diagram when 5 mm was pushed in the vertical direction was defined as the hardness of the foamed laminate.

(5)独立気泡率
得られた発泡積層体から巾150mm×長さ600mmを切り出し、木工加工機[アミテック製、バーチカルミーリングマシンPV−70CA]を用いて、表面から非発泡層厚み+0.5mmの厚みを、切削後の面に樹脂の溶融が目視にて認められないように切削し、同様の方法にて反対側の面も切削し、非発泡層を除去する。次に発泡層の巾方向に、等間隔にて20mm×20mmのサンプルを5個切り出した。
得られた各サンプルに関して、ピクノメーター[東京サイエンス社製]を用いて、サンプルの閉空間体積Vc(cc)を測定した。その後、同サンプルの外形によって占められる体積Vo(cc)を測定した後、独立気泡率=Vc/Vo×100の式に基づき計算し、得られた数値の相加平均値を、独立気泡率として採用した。
(5) Closed cell ratio A width of 150 mm × length of 600 mm was cut out from the obtained foamed laminate, and a non-foamed layer thickness +0.5 mm from the surface using a woodworking machine [manufactured by Amitech, vertical milling machine PV-70CA]. The thickness is cut so that melting of the resin is not visually recognized on the surface after cutting, and the opposite surface is also cut by the same method to remove the non-foamed layer. Next, 5 samples of 20 mm × 20 mm were cut out at equal intervals in the width direction of the foam layer.
For each of the obtained samples, the closed space volume Vc (cc) of the sample was measured using a pycnometer [manufactured by Tokyo Science Co., Ltd.]. Then, after measuring the volume Vo (cc) occupied by the outer shape of the sample, calculation was performed based on the formula of closed cell ratio = Vc / Vo × 100, and the arithmetic average value of the obtained numerical values was set as the closed cell ratio. Adopted.

(6)圧縮強度
得られた発泡積層体から、巾方向に等間隔にて長さ30mm×幅30mmのサンプルを5個切り出した。各サンプルに関して、JIS A 9511に準じて、圧縮強度を測定した。得られた数値の相加平均値を、圧縮強度として採用した。
そして、以下の評価基準に基づき、評価を行った。
○:圧縮強度が150N/cm以上。
△:圧縮強度が100N/cm以上、150N/cm未満。
×:圧縮強度が100N/cm未満。
(6) Compressive strength Five samples having a length of 30 mm and a width of 30 mm were cut out at equal intervals in the width direction from the obtained foamed laminate. For each sample, the compressive strength was measured according to JIS A 9511. The arithmetic average value of the obtained numerical values was adopted as the compressive strength.
And evaluation was performed based on the following evaluation criteria.
A: The compressive strength is 150 N / cm 2 or more.
Δ: The compressive strength is 100 N / cm 2 or more and less than 150 N / cm 2 .
X: The compressive strength is less than 100 N / cm 2 .

(7)ビス引抜性
得られた発泡積層体から、巾方向に等間隔にて長さ30mm×幅30mmのサンプルを5個切り出し、その非発泡層面に、垂直方向に木用ネジ(太さ3.8mm×長さ32mm)を8mmねじ込んだ測定用サンプルを得た。
各測定用サンプルに関して、引張り試験機[島津製作所製、オートグラフAG−X/R]を用いて、木ネジの頭および発泡積層体をつかみ、テストスピード2.0mm/分にて引き抜き、その際に最大荷重を得た。得られた数値の相加平均値を、ビス引抜強度として採用した。
そして、以下の評価規準に基づき、ビス引き抜き性の評価を行った。
○:ビス引抜強度が150N以上。
△:ビス引抜強度が100N以上150N未満。
×:ビス引抜強度が100N未満。
(7) Screw drawability Five samples of length 30 mm × width 30 mm were cut out at equal intervals in the width direction from the obtained foamed laminate, and wood screws (thickness 3) were vertically formed on the non-foamed layer surface. .8 mm × length 32 mm) was obtained by screwing in 8 mm.
For each measurement sample, using a tensile tester [manufactured by Shimadzu Corp., Autograph AG-X / R], grab the head of the wood screw and the foamed laminate, and pull it out at a test speed of 2.0 mm / min. The maximum load was obtained. The arithmetic average value of the obtained numerical values was adopted as the screw drawing strength.
Based on the following evaluation criteria, the screw pullability was evaluated.
○: Screw pullout strength is 150 N or more.
Δ: Screw drawing strength is 100N or more and less than 150N.
X: Screw drawing strength is less than 100N.

(8)釘打ち性
得られた発泡積層体から、長さ30mm×幅30mmのサンプルを20個切り出した。
得られたサンプルに関して、鉄丸釘(外径φ3mm)を非発泡層面の中心部に、ハンマーを用いて垂直に釘の頭が沈み込むまで打ちつけ、以下の評価基準に基づき、釘打ち性の評価を行った。
○:すべてのサンプルの非発泡層に、割れが認められない。
△:1〜5個のサンプルの非発泡層に、割れが認められた。
×:6個以上のサンプルに非発泡層に、割れが認められた。
(8) Nailing property 20 samples having a length of 30 mm and a width of 30 mm were cut out from the obtained foamed laminate.
With respect to the obtained sample, an iron round nail (outer diameter: 3 mm) was struck in the center of the non-foamed layer surface using a hammer until the nail head subducted vertically, and the nailability was evaluated based on the following evaluation criteria. Went.
○: No cracks are observed in the non-foamed layer of all samples.
Δ: Cracks were observed in the non-foamed layers of 1 to 5 samples.
X: Cracks were observed in the non-foamed layer in 6 or more samples.

(9)釘割れ性
得られた発泡積層体から、長さ30mm×幅30mmのサンプルを20個切り出した。
鉄丸釘(外径φ3mm)を、発泡積層体の切断端部からそれぞれ8mm内側の位置の非発泡層に、ハンマーを用いて垂直に打ちつけ、以下の評価基準に基づき、釘割れ性の評価を行った。
○:全ての発泡積層体において、欠け・割れが認められない。
△:1〜5個のサンプルにおいて、欠け・割れが認められた。
×:6個以上のサンプルにおいて、欠け・割れが認められた。
(9) Nail cracking property 20 samples 30 mm long by 30 mm wide were cut out from the obtained foamed laminate.
An iron round nail (outer diameter: 3 mm) was struck vertically with a hammer to the non-foamed layer at a position 8 mm inside from the cut end of the foamed laminate, and the nail cracking was evaluated based on the following evaluation criteria. went.
○: No chipping or cracking is observed in all foam laminates.
Δ: Chipping / cracking was observed in 1 to 5 samples.
X: Chipping / cracking was observed in 6 or more samples.

(実施例1)
ポリスチレン樹脂[PSジャパン(株)製、680]100部に対し、タルク[林化成(株)製、タルカンパウダーPK−Z]3重量部を添加し、ドライブレンドした。得られた樹脂混合物を、口径65mmの単軸押出機(第一押出機)と口径90mmの単軸押出機(第二押出機)を直列に連結したタンデム型二段押出機へ、20kg/hrの割合で供給した。
第一押出機に供給した樹脂混合物を、樹脂温度200℃に加熱して溶融ないし可塑化、混練し、発泡剤としてノルマルブタン[岩谷産業(株)製]を、第一押出機の先端付近で樹脂中に0.4kg/hrの割合にて圧入した後、第一押出機に連結された第二押出機中にて、樹脂温度を135℃に冷却した。
冷却された発泡性樹脂組成物を、図2に示すように、第二押出機の先端に設けた厚さ2mm×幅180mmの長方形断面の押出金型より大気中へ押出発泡させた後、押出金型に密着させて設置した間隙高さ12.5mm×幅300mm×長さ100mmの成形金型にて、板状に腑形した。成型金型においては、図2に示すように、押出金型との設置面から20mm(成型金型の上流側)および80mm(成型金型の下流側)の部分に、幅方向に熱媒体を通して温調した。その際、成形金型の上流側を115℃、下流側を64℃に温調した。
次に、その下流側に設置した引取りロールにより引取り、厚さ12.7mm×幅242mmである断面形状の、両面に非発泡層が形成された発泡積層体を得た。
得られた発泡積層体の性状および物性を、表1に示す。
Example 1
3 parts by weight of talc [manufactured by Hayashi Kasei Co., Ltd., Talcan Powder PK-Z] was added to 100 parts of polystyrene resin [PS Japan Co., Ltd., 680] and dry blended. The obtained resin mixture is transferred to a tandem type two-stage extruder in which a single-screw extruder having a diameter of 65 mm (first extruder) and a single-screw extruder having a diameter of 90 mm (second extruder) are connected in series at 20 kg / hr. Was supplied at a rate of
The resin mixture supplied to the first extruder is heated to a resin temperature of 200 ° C. to be melted or plasticized and kneaded, and normal butane [manufactured by Iwatani Corporation] is used as a foaming agent near the tip of the first extruder. After press-fitting into the resin at a rate of 0.4 kg / hr, the resin temperature was cooled to 135 ° C. in the second extruder connected to the first extruder.
As shown in FIG. 2, the cooled foamable resin composition is extruded and foamed into the atmosphere from an extrusion mold having a rectangular cross section with a thickness of 2 mm × width of 180 mm provided at the tip of the second extruder, and then extruded. It was formed into a plate shape with a molding die having a gap height of 12.5 mm, a width of 300 mm, and a length of 100 mm, which was placed in close contact with the die. In the molding die, as shown in FIG. 2, a heat medium is passed in the width direction through 20 mm (upstream side of the molding die) and 80 mm (downstream side of the molding die) from the installation surface with the extrusion die. The temperature was adjusted. At that time, the temperature on the upstream side of the molding die was adjusted to 115 ° C., and the temperature on the downstream side was adjusted to 64 ° C.
Next, it took up with the take-up roll installed in the downstream, and obtained the foaming laminated body by which the non-foaming layer was formed in both surfaces of the cross-sectional shape which is thickness 12.7mm x width 242mm.
Table 1 shows the properties and physical properties of the obtained foamed laminate.

(実施例2〜6、比較例1〜5)
表1に示すように、樹脂温度,発泡剤圧入量、成形金型上流側温調温度,成形金型下流温調温度を変更する以外は、実施例1と同様の方法にて、発泡積層板を得た。
得られた発泡積層体の性状および物性を、表1に示す。
(Examples 2-6, Comparative Examples 1-5)
As shown in Table 1, in the same manner as in Example 1, except for changing the resin temperature, the foaming agent press-fitting amount, the molding die upstream side temperature control temperature, and the molding die downstream temperature control temperature, the foam laminate was obtained. Got.
Table 1 shows the properties and physical properties of the obtained foamed laminate.

(実施例7)
比較例3で得られた発泡積層体を、0.8m/分の速度で繰り出し、その非発泡層表面に、別途、以下の条件にて得られる溶融状態のフィルム状ポリスチレン樹脂[PSジャパン(株)製、680]を厚み0.2mmとなるように押し出した直後に、冷却ロールにて圧着・固化して、発泡体表面に非発泡層を形成したポリスチレン系樹脂発泡積層体を得た。
なお、溶融状態のフィルム状ポリスチレン樹脂は、口径30mmの2軸押出機にポリスチレン樹脂を5kg/hrの割合で供給し、樹脂温度200℃にて溶融状態とした後、2軸押出機の先端に連結した幅650mmのTダイからフィルム状に押し出した。得られた発泡積層体の幅方向にはみ出た非発泡層フィルムを除去し、発泡積層体を得た。
得られた発泡積層体の性状および物性を、表1に示す。
(Example 7)
The foamed laminate obtained in Comparative Example 3 was fed out at a speed of 0.8 m / min, and on the surface of the non-foamed layer, a melted film-like polystyrene resin obtained under the following conditions [PS Japan Co., Ltd. ), 680] was extruded to a thickness of 0.2 mm, and immediately after pressing and solidifying with a cooling roll, a polystyrene-based resin foam laminate having a non-foamed layer formed on the foam surface was obtained.
The film-like polystyrene resin in the melted state is supplied to a twin screw extruder having a diameter of 30 mm at a rate of 5 kg / hr, and after being made into a molten state at a resin temperature of 200 ° C., at the tip of the twin screw extruder. The film was extruded from a connected T-die having a width of 650 mm. The non-foamed layer film protruding in the width direction of the obtained foamed laminate was removed to obtain a foamed laminate.
Table 1 shows the properties and physical properties of the obtained foamed laminate.

(比較例6)
ポリスチレン樹脂[PSジャパン(株)製、680]100部に対し、タルク[林化成(株)製、タルカンパウダーPK−Z]3重量部を添加し、ドライブレンドした。得られた樹脂混合物を、口径65mmの単軸押出機(第一押出機)と口径90mmの単軸押出機(第二押出機)を直列に連結したタンデム型二段押出機へ、20kg/hrの割合で供給した。
第一押出機に供給した樹脂混合物を、樹脂温度200℃に加熱して溶融ないし可塑化、混練し、発泡剤としてノルマルブタン[岩谷産業(株)製]を、第一押出機の先端付近で樹脂中に0.37kg/hrの割合にて圧入した後、第一押出機に連結された第二押出機中にて、樹脂温度を135℃に冷却した。
冷却された発泡性樹脂組成物を、図3のように、第二押出機の先端に設けた、厚さ1.5mm×幅250mmの開口部を有するTダイより、大気中に押出発泡させた。次いで、70℃に温調された成形固定ロールを用いて、押出された発泡体の表面をこすり、直後に30℃に温調された冷却フリーロールを用いて冷却固化した後、引取り用駆動ロールにて引取り、発泡積層体を得た。
得られた発泡積層体の性状および物性を、表1に示す。
(Comparative Example 6)
3 parts by weight of talc [manufactured by Hayashi Kasei Co., Ltd., Talcan Powder PK-Z] was added to 100 parts of polystyrene resin [PS Japan Co., Ltd., 680] and dry blended. The obtained resin mixture is transferred to a tandem type two-stage extruder in which a single-screw extruder having a diameter of 65 mm (first extruder) and a single-screw extruder having a diameter of 90 mm (second extruder) are connected in series at 20 kg / hr. Was supplied at a rate of
The resin mixture supplied to the first extruder is heated to a resin temperature of 200 ° C. to be melted or plasticized and kneaded, and normal butane [manufactured by Iwatani Corporation] is used as a foaming agent near the tip of the first extruder. After press-fitting into the resin at a rate of 0.37 kg / hr, the resin temperature was cooled to 135 ° C. in the second extruder connected to the first extruder.
The cooled foamable resin composition was extruded and foamed into the atmosphere from a T-die having an opening with a thickness of 1.5 mm and a width of 250 mm provided at the tip of the second extruder as shown in FIG. . Next, the surface of the extruded foam is rubbed using a molding fixed roll temperature-controlled at 70 ° C., and immediately after cooling and solidified using a cooling free roll temperature-controlled at 30 ° C., a take-up drive It took up with the roll and obtained the foaming laminated body.
Table 1 shows the properties and physical properties of the obtained foamed laminate.

Figure 0005745289
Figure 0005745289

実施例1〜7および比較例1〜6に示す様にポリスチレン系樹脂発泡積層体において、非発泡層厚み、非発泡層直下1mmの発泡倍率、発泡積層体の総倍率を特定の範囲にする事により、軽量性、強度に優れた発泡積層体を得られることが判る。   As shown in Examples 1 to 7 and Comparative Examples 1 to 6, in the polystyrene-based resin foam laminate, the non-foam layer thickness, the foam magnification of 1 mm immediately below the non-foam layer, and the total magnification of the foam laminate are within a specific range. Thus, it can be seen that a foam laminate having excellent lightness and strength can be obtained.

1 押出金型
2 成型金型
3 成型金型上流側温調用熱媒体管
4 成型金型下流側温調用熱媒体管
5 発泡積層体
6 引き取り用駆動ロール
7 押出金型(Tダイ)
8 成型固定ロール
9 冷却フリーロール
10 発泡積層体
DESCRIPTION OF SYMBOLS 1 Extrusion die 2 Molding die 3 Molding mold upstream temperature control heat medium pipe 4 Molding mold downstream temperature control heat medium pipe 5 Foamed laminate 6 Take-up drive roll 7 Extrusion mold (T die)
8 Molding fixed roll 9 Cooling free roll 10 Foam laminate

Claims (10)

スチレン系樹脂を加熱溶融させ、発泡剤を添加し、これを押出発泡してなるスチレン系樹脂発泡層の、厚み方向の少なくとも片面に、厚みが0.015〜0.7mmである非発泡層が形成されてなるスチレン系発泡積層体であって、
非発泡層の直下1mmにおける発泡倍率が1.5〜4倍であり
発泡層を含む発泡積層体全体の発泡倍率が3〜10倍であり、かつ、
前記非発泡層の直下1mmにおける発泡倍率が、前記発泡積層体全体の発泡倍率より小さいことを特徴とする、スチレン系発泡積層体。
A non-foamed layer having a thickness of 0.015 to 0.7 mm is formed on at least one surface in the thickness direction of a styrenic resin foam layer obtained by heating and melting a styrene resin, adding a foaming agent, and extruding and foaming the foaming agent. A formed styrene foam laminate,
The expansion ratio at 1 mm immediately below the non-foamed layer is 1.5 to 4 times ,
The expansion ratio of the total foam laminate comprising a non-foamed layer is Ri 3-10 Baidea and
The styrene-based foam laminate , wherein the foaming ratio at 1 mm immediately below the non-foamed layer is smaller than the foaming ratio of the whole foamed laminate.
スチレン系樹脂を加熱溶融させ、発泡剤を添加し、これを押出発泡してなるスチレン系樹脂発泡層の、厚み方向の少なくとも片面に、厚みが0.015〜0.7mmである非発泡層が形成されてなるスチレン系発泡積層体であって、A non-foamed layer having a thickness of 0.015 to 0.7 mm is formed on at least one surface in the thickness direction of a styrenic resin foam layer obtained by heating and melting a styrene resin, adding a foaming agent, and extruding and foaming the foaming agent. A formed styrene foam laminate,
非発泡層の直下1mmにおける発泡倍率が1.5〜3.8倍であり、かつ、The expansion ratio at 1 mm immediately below the non-foamed layer is 1.5 to 3.8 times, and
非発泡層を含む発泡積層体全体の発泡倍率が3.8〜10倍であることを特徴とする、スチレン系発泡積層体。A styrene-based foam laminate, characterized in that the expansion ratio of the entire foam laminate including a non-foam layer is 3.8 to 10 times.
前記非発泡層の直下1mmにおける発泡倍率が1.5〜3.5倍であり、The expansion ratio at 1 mm immediately below the non-foamed layer is 1.5 to 3.5 times,
前記発泡積層体全体の発泡倍率が3.8〜10倍である請求項2に記載のスチレン系発泡積層体。The styrene foam laminate according to claim 2, wherein the expansion ratio of the entire foam laminate is 3.8 to 10 times.
前記非発泡層の直下1mmにおける発泡倍率が1.5〜3.8倍であり、The expansion ratio at 1 mm immediately below the non-foamed layer is 1.5 to 3.8 times,
前記発泡積層体全体の発泡倍率が4.0〜10倍である請求項2に記載のスチレン系発泡積層体。The styrene-based foam laminate according to claim 2, wherein the foaming magnification of the whole foam laminate is 4.0 to 10 times.
非発泡層の表面硬度が、400N〜1000Nであることを特徴とする、請求項1〜4のいずれかに記載のスチレン系樹脂押出発泡積層体。 The surface hardness of the non-foamed layer is 400N to 1000N, and the styrene resin extruded foam laminate according to any one of claims 1 to 4 . 発泡層の独立気泡率が75%以上であることを特徴とする、請求項1〜5のいずれかに記載のスチレン系樹脂押出発泡積層体。 The styrene resin extruded foam laminate according to any one of claims 1 to 5, wherein the closed cell ratio of the foam layer is 75% or more. スチレン系樹脂を加熱溶融させ、発泡剤を添加し、これを押出発泡してなるスチレン系樹脂発泡層を含む発泡積層体の製造方法であって、
発泡層の少なくとも片面に、厚みが0.015〜0.7mmである非発泡層が形成されており、非発泡層直下1mmにおける発泡倍率が1.5〜4倍であり、発泡積層体全体の倍率が3〜10倍であり、かつ、前記非発泡層の直下1mmにおける発泡倍率が、前記発泡積層体全体の発泡倍率より小さいことを特徴とする、スチレン系発泡体の製造方法。
A method for producing a foam laminate including a styrene resin foam layer obtained by heating and melting a styrene resin, adding a foaming agent, and extruding and foaming the foaming agent,
A non-foamed layer having a thickness of 0.015 to 0.7 mm is formed on at least one surface of the foamed layer, and the foaming ratio at 1 mm immediately below the non-foamed layer is 1.5 to 4 times. magnification Ri 3-10 Baidea, and said non-foaming expansion ratio immediately below 1mm of layer, characterized in that said foam laminate overall expansion ratio smaller, the manufacturing method of the styrenic foam.
スチレン系樹脂を加熱溶融させ、発泡剤を添加し、これを押出発泡してなるスチレン系樹脂発泡層を含む発泡積層体の製造方法であって、A method for producing a foam laminate including a styrene resin foam layer obtained by heating and melting a styrene resin, adding a foaming agent, and extruding and foaming the foaming agent,
発泡層の少なくとも片面に、厚みが0.015〜0.7mmである非発泡層が形成されており、非発泡層直下1mmにおける発泡倍率が1.5〜3.8倍であり、発泡積層体全体の倍率が3.8〜10倍であることを特徴とする、スチレン系発泡体の製造方法。A non-foamed layer having a thickness of 0.015 to 0.7 mm is formed on at least one surface of the foamed layer, and the foaming ratio at 1 mm immediately below the non-foamed layer is 1.5 to 3.8 times. A method for producing a styrene-based foam, wherein the overall magnification is 3.8 to 10 times.
前記非発泡層の直下1mmにおける発泡倍率が1.5〜3.5倍であり、The expansion ratio at 1 mm immediately below the non-foamed layer is 1.5 to 3.5 times,
前記発泡積層体全体の発泡倍率が3.8〜10倍である請求項8に記載のスチレン系発泡体の製造方法。The method for producing a styrene-based foam according to claim 8, wherein the expansion ratio of the entire foam laminate is 3.8 to 10 times.
前記非発泡層の直下1mmにおける発泡倍率が1.5〜3.8倍であり、The expansion ratio at 1 mm immediately below the non-foamed layer is 1.5 to 3.8 times,
前記発泡積層体全体の発泡倍率が4.0〜10倍である請求項8に記載のスチレン系発泡体の製造方法。The method for producing a styrenic foam according to claim 8, wherein the expansion ratio of the entire foam laminate is 4.0 to 10 times.
JP2011040430A 2011-02-25 2011-02-25 Styrene resin extruded foam laminate and method for producing the same Active JP5745289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040430A JP5745289B2 (en) 2011-02-25 2011-02-25 Styrene resin extruded foam laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040430A JP5745289B2 (en) 2011-02-25 2011-02-25 Styrene resin extruded foam laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012176533A JP2012176533A (en) 2012-09-13
JP5745289B2 true JP5745289B2 (en) 2015-07-08

Family

ID=46978749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040430A Active JP5745289B2 (en) 2011-02-25 2011-02-25 Styrene resin extruded foam laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5745289B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037572A1 (en) * 2013-09-12 2015-03-19 積水化学工業株式会社 Process and device for producing resin laminate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209925A (en) * 1987-02-27 1988-08-31 Meiwa Sangyo Kk Manufacture of laminated interior finish plate for vehicle
JPH0694192B2 (en) * 1991-10-11 1994-11-24 日本製紙株式会社 Polystyrene resin laminated sheet and manufacturing method thereof
JPH09141773A (en) * 1995-11-24 1997-06-03 Sekisui Plastics Co Ltd Polystyrene resin laminated foam sheet and molding, and manufacture of laminated foam sheet
JP3681558B2 (en) * 1998-11-06 2005-08-10 株式会社カネカ Polystyrene-based resin foam sheet, expanded polystyrene-based resin laminated sheet, the molded product, and the production method
JP4570224B2 (en) * 1999-09-29 2010-10-27 株式会社ジェイエスピー Thermoplastic resin laminated foam sheet, polystyrene resin foam sheet, and containers thereof
JP2003136575A (en) * 2001-11-02 2003-05-14 Kanegafuchi Chem Ind Co Ltd Polystyrene resin extruded foam and method for manufacturing the extruded foam
JP4709533B2 (en) * 2004-11-09 2011-06-22 積水化成品工業株式会社 Polystyrene-based resin laminated foam sheet that excels in deep drawing
JP4966881B2 (en) * 2008-01-30 2012-07-04 積水化成品工業株式会社 Polystyrene resin laminated foam sheet and method for producing the same

Also Published As

Publication number Publication date
JP2012176533A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP4257826B2 (en) Method for producing polypropylene resin foam molding
EP3083802B1 (en) Polymeric foam
JP5454731B2 (en) Styrenic resin extruded foam and method for producing the same
JP7315571B2 (en) foam sheet
JP2008132676A (en) Heat insulating panel
WO2007118765A1 (en) Foams comprising polystyrene and other thermoplastics
KR101859913B1 (en) High strength extruded thermoplastic polymer foam
US20150376361A1 (en) Composition For Preparing A Polymeric Foam
KR20120083389A (en) San extruded foams
JP2007320264A (en) Extruded multilayer foam sheet
JP5745289B2 (en) Styrene resin extruded foam laminate and method for producing the same
JP2013124281A (en) Method for producing polystyrene-based resin extruded foam
JP2011025521A (en) Extrusion foamed molding excellent in heat insulating performance
JP4973044B2 (en) Heat resistant thermoplastic resin foam and method for producing the same
JP4959396B2 (en) Water-absorbing polystyrene resin foam board
JP4965158B2 (en) Heat resistant thermoplastic resin foam and method for producing the same
JP4008904B2 (en) Polystyrene resin laminated foam sheet
JP4188664B2 (en) Polystyrene resin foam sheet and polystyrene resin laminated foam sheet
JP7324673B2 (en) Composite resin foam board, resin pallet, and method for manufacturing composite resin foam board
JP5365902B2 (en) Roll receiver made of styrene resin foam plate
JP2004284149A (en) Skinned foamed molded object and its manufacturing method
JP2008280388A (en) Extruded foam of styrenic resin and method for producing the same
JP2012025815A (en) Extrusion foam-molded product exhibiting excellent heat insulating performance
JP2022155021A (en) Method for producing polystyrene-based resin extruded foam
JP5052141B2 (en) Thermoplastic resin foam and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150501

R150 Certificate of patent or registration of utility model

Ref document number: 5745289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250