JP2011193622A - Laminate core - Google Patents

Laminate core Download PDF

Info

Publication number
JP2011193622A
JP2011193622A JP2010057217A JP2010057217A JP2011193622A JP 2011193622 A JP2011193622 A JP 2011193622A JP 2010057217 A JP2010057217 A JP 2010057217A JP 2010057217 A JP2010057217 A JP 2010057217A JP 2011193622 A JP2011193622 A JP 2011193622A
Authority
JP
Japan
Prior art keywords
insulating film
fullerene
film
laminated core
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010057217A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Okamura
光浩 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010057217A priority Critical patent/JP2011193622A/en
Publication of JP2011193622A publication Critical patent/JP2011193622A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate core capable of solving a problem occurring when an insulating film contains phosphate or chromate. <P>SOLUTION: The laminate core 1 includes laminated electromagnetic steel plates 11, and insulating films 12 are formed between the electromagnetic steel plates 11 respectively. Since the insulating film 12 is made of at least any one of DLC (diamond-like carbon) and fullerene, it can be formed at a low temperature. A step of cooling the insulating film 12 can be remarkably reduced. Since the insulating film 12 contain no hazardous material, it is never limited in use from a view of environmental impact. Since the insulating film 12 has good heat conductivity, heat conduction in a laminate direction is good when a motor having a built-in laminate core is used. When the electromagnetic steel plate 11 is punched, punching processability is good. The insulating film 12 has good substrate followability. When an electromagnetic coil is wound around the laminate core 1, an insulating coating of the electromagnetic coil can be free from damage. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、絶縁膜を間にして電磁鋼板が積層された積層コアに係り、特に、絶縁膜の改良に関する。   The present invention relates to a laminated core in which electromagnetic steel sheets are laminated with an insulating film interposed therebetween, and more particularly to an improvement of the insulating film.

積層コアは、たとえばモータ用コア材として使用されている。積層コアの形成では、電磁鋼板表面に絶縁膜を被覆し、絶縁膜が被覆された電磁鋼板に打抜き加工を行い、その加工後の電磁鋼板を積層している。   The laminated core is used, for example, as a motor core material. In the formation of the laminated core, an insulating film is coated on the surface of the electromagnetic steel sheet, a punching process is performed on the electromagnetic steel sheet coated with the insulating film, and the processed electromagnetic steel sheets are stacked.

絶縁膜には、渦電流を抑制する絶縁性に加えて、耐食性、耐熱性、すべり性、電磁鋼板との密着性、打抜き性、溶接性、皮膜柔軟性等の各種特性が要求されている。たとえば電磁鋼板として方向性電磁鋼板を用いる場合、絶縁膜は、下地層(フォルステライト層)とリン酸塩層とから構成されている。   Insulating films are required to have various properties such as corrosion resistance, heat resistance, slipperiness, adhesion to electromagnetic steel sheets, punchability, weldability, and film flexibility, in addition to insulating properties to suppress eddy currents. For example, when a grain-oriented electrical steel sheet is used as the electrical steel sheet, the insulating film is composed of an underlayer (forsterite layer) and a phosphate layer.

この場合、下地層は、仕上げ焼鈍中、鋼板同士の密着防止のために塗布されるMgOと脱炭焼鈍工程で形成されるSiOとの化学反応により生成され、リン酸塩層は、リン酸塩等を主成分とする液を方向性電磁鋼板に塗布して、その塗布液の焼付けを行うことにより形成される。特に、鋼板への張力付与により磁壁移動を容易にして磁気特性の向上を図るとき、絶縁膜に高い張力を持たせるために、リン酸塩にクロム酸塩等を含有させている(たとえば特許文献1,2)。 In this case, the base layer is generated by a chemical reaction between MgO applied for preventing adhesion between steel plates and SiO 2 formed in the decarburization annealing process during finish annealing, and the phosphate layer is formed of phosphoric acid. It is formed by applying a liquid mainly composed of salt or the like to a grain-oriented electrical steel sheet and baking the applied liquid. In particular, when improving magnetic properties by facilitating the domain wall movement by applying tension to the steel sheet, phosphate contains chromate or the like in order to give high tension to the insulating film (for example, patent document) 1, 2).

また、電磁鋼板として無方向性電磁鋼板を用いる場合には、打抜き性や耐熱性の観点から、有機−無機系の絶縁膜が用いられており、無機組成物として、方向性電磁鋼板と同様にクロム酸塩やリン酸塩が用いられている。   In addition, when a non-oriented electrical steel sheet is used as the electrical steel sheet, an organic-inorganic insulating film is used from the viewpoint of punchability and heat resistance, and the inorganic composition is the same as the directional electrical steel sheet. Chromate and phosphate are used.

特開昭48−39338号公報JP 48-39338 A 特開昭61−41778号公報Japanese Patent Laid-Open No. 61-41778

しかしながら、リン酸塩やクロム酸塩等を含有する絶縁膜の形成では、乾燥あるいは焼付けを200℃〜500℃の高温で行うため、大型の乾燥炉および大型の生産設備が必要となり、生産性が悪い。また、クロム等を含有する化合物の使用は、環境負荷の観点から、たとえばRoHS指令により制限されている。さらに、電磁鋼板間の絶縁膜はセラミックスからなるため、積層方向への熱伝導性が悪く、放熱し難い。   However, in forming an insulating film containing phosphate, chromate, etc., drying or baking is performed at a high temperature of 200 ° C. to 500 ° C., so a large drying furnace and a large production facility are required, and productivity is increased. bad. In addition, the use of a compound containing chromium or the like is restricted by, for example, the RoHS directive from the viewpoint of environmental load. Furthermore, since the insulating film between the electromagnetic steel sheets is made of ceramics, the thermal conductivity in the stacking direction is poor and it is difficult to dissipate heat.

加えて、方向性電磁鋼板を用いる場合、仕上げ焼鈍中に形成される下地層は、セラミックスからなり、非常に硬い層である。このため、打抜き加工に使用する金型寿命が無方向性電磁鋼板を用いる場合と比較して、非常に短くなる。また、方向性電磁鋼板を用いる場合には、鋼板への張力付与では絶縁膜に高い張力が必要となるが、従来の絶縁膜はセラミックスからなるため、張力付与に限界があった。   In addition, when the grain-oriented electrical steel sheet is used, the base layer formed during finish annealing is made of ceramics and is a very hard layer. For this reason, the life of the mold used for the punching process becomes very short as compared with the case where the non-oriented electrical steel sheet is used. In addition, when a grain-oriented electrical steel sheet is used, a high tension is required for the insulating film in order to apply tension to the steel sheet, but since the conventional insulating film is made of ceramics, there is a limit to the application of tension.

したがって、本発明は、絶縁膜がリン酸塩やクロム酸塩等を含有する場合に生じる上記問題を解消することができる積層コアを提供することを目的とする。   Therefore, an object of this invention is to provide the laminated core which can eliminate the said problem produced when an insulating film contains a phosphate, chromate, etc.

本発明の積層コアは、積層された電磁鋼板と、電磁鋼板間に形成された絶縁膜とを備え、絶縁膜は、DLCおよびフラーレンのうちの少なくとも一つからなることを特徴としている。   The laminated core of the present invention includes laminated electromagnetic steel sheets and an insulating film formed between the electromagnetic steel sheets, and the insulating film is made of at least one of DLC and fullerene.

本発明の積層コアでは、絶縁膜はDLCおよびフラーレンのうちの少なくとも一つからなるから、絶縁膜の低温形成が可能となり、そのための大型設備が不要となる。しかも、絶縁膜形成時の冷却工程を大幅に低減することができるから、生産性の向上を図ることができる。また、絶縁膜は、おもに炭素を主成分としており、有害物質を含有しないから、環境負荷の観点から、使用が制限されることはない。   In the laminated core of the present invention, since the insulating film is composed of at least one of DLC and fullerene, the insulating film can be formed at a low temperature, and a large facility for that purpose is not required. In addition, since the cooling process during the formation of the insulating film can be greatly reduced, productivity can be improved. In addition, since the insulating film is mainly composed of carbon and does not contain harmful substances, its use is not limited from the viewpoint of environmental burden.

また、絶縁膜の上記材質の熱伝導性が良いから、積層コアが組み込まれたモータの使用時、積層方向への熱伝導性が良くなり、放熱を容易に行うことができる。積層コアの製造において電磁鋼板へに絶縁膜の形成後に電磁鋼板に打抜き加工を行う場合、打抜き加工性が良い。これにより、打抜き加工用の金型の長寿命化を図ることができ、打抜き加工で発生するプレス部品のカエリを小さくすることができる。また、絶縁膜の基板追従性が良いから、鋼板への張力付与時に絶縁膜の絶縁性低下の原因となるクラックの発生を防止することができる。   In addition, since the above-described material of the insulating film has good thermal conductivity, when a motor incorporating a laminated core is used, the thermal conductivity in the laminating direction is improved and heat dissipation can be easily performed. In the production of a laminated core, when punching a magnetic steel sheet after forming an insulating film on the magnetic steel sheet, the punching workability is good. Thereby, it is possible to extend the life of the die for punching, and it is possible to reduce the burrs of the press parts generated in the punching. In addition, since the substrate followability of the insulating film is good, it is possible to prevent the occurrence of cracks that cause a decrease in the insulating property of the insulating film when tension is applied to the steel sheet.

さらに積層コアの垂直方向両端部の電磁鋼板の表面が絶縁膜で被覆されるから、積層コアに電磁コイルの巻き線を行った場合、電磁コイルの絶縁被覆の破壊を防止することができる。   Furthermore, since the surfaces of the electromagnetic steel sheets at both ends in the vertical direction of the laminated core are covered with an insulating film, when the electromagnetic coil is wound around the laminated core, the insulation coating of the electromagnetic coil can be prevented from being broken.

本発明の積層コアは種々の構成を用いることができる。たとえば、電磁コイルの巻き線が行われる電磁鋼板が露出している部分(たとえば電磁鋼板の端部)に上記絶縁膜と同じ材質からなる他の絶縁膜が形成されている態様を用いることができる。この態様では、電磁鋼板の水平方向端部を他の絶縁膜で被覆することができるので、電磁コイルの絶縁被覆の破壊を効果的に防止することができる。   Various configurations can be used for the laminated core of the present invention. For example, it is possible to use a mode in which another insulating film made of the same material as the above insulating film is formed on a portion where the electromagnetic steel sheet on which the winding of the electromagnetic coil is exposed (for example, an end of the electromagnetic steel sheet). . In this aspect, since the horizontal direction edge part of an electromagnetic steel plate can be coat | covered with another insulating film, destruction of the insulation coating of an electromagnetic coil can be prevented effectively.

また、積層方向において中央部から端部に向かうに従って、水平方向長さが小さくなるような断面形状を有する態様を用いることができる。この態様では、電磁鋼板の水平方向端部のエッジを絶縁膜で被覆することができるので、巻き線時に電磁コイルが接触するエッジ部を絶縁膜で被覆することができ、その結果、電磁コイルの絶縁被覆の破壊を効果的に防止することができる。さらに、DLCに含有される水素量が20at%以上である態様を用いることができる。この態様では、絶縁膜の基板追従性がさらに良いから、鋼板への張力付与時に絶縁膜の絶縁性低下の原因となるクラックの発生を効果的に防止することができる。   Moreover, the aspect which has a cross-sectional shape that a horizontal direction length becomes small as it goes to an edge part from a center part in a lamination direction can be used. In this aspect, the edge of the horizontal end portion of the electromagnetic steel sheet can be covered with the insulating film, so that the edge portion that contacts the electromagnetic coil at the time of winding can be covered with the insulating film. Breakage of the insulation coating can be effectively prevented. Furthermore, the aspect whose amount of hydrogen contained in DLC is 20 at% or more can be used. In this aspect, since the substrate followability of the insulating film is further improved, it is possible to effectively prevent the occurrence of cracks that cause a decrease in the insulating property of the insulating film when tension is applied to the steel sheet.

本発明の積層コアによれば、モータの使用時の放熱を容易に行うことでき、かつ電磁コイルの絶縁被覆の破壊を防止することができる。また、積層コアの製造では、絶縁膜形成のために大型設備が不要となるとともに、生産性の向上を図ることができる。環境負荷の観点から、絶縁膜の材料の使用が制限されることはない。打抜き加工用の金型の長寿命化を図ることができ、打抜き加工で発生するプレス部品のカエリを小さくすることができ、鋼板への張力付与時に絶縁膜の絶縁性低下の原因となるクラックの発生を防止することができる。   According to the laminated core of the present invention, it is possible to easily dissipate heat when the motor is used, and to prevent the insulation coating of the electromagnetic coil from being broken. In the production of the laminated core, a large facility is not required for forming the insulating film, and productivity can be improved. From the viewpoint of environmental load, the use of the insulating film material is not limited. It is possible to extend the service life of the die for punching, reduce the burrs of the press parts generated in the punching process, and prevent cracks that cause a decrease in insulation of the insulating film when tension is applied to the steel sheet. Occurrence can be prevented.

本発明の一実施形態に係る積層コアの概略構成を表す側断面図である。It is a sectional side view showing the schematic structure of the laminated core which concerns on one Embodiment of this invention. 本発明の一実施形態に係る積層コアの変形例の概略構成を表す側断面図である。It is a sectional side view showing the schematic structure of the modification of the laminated core which concerns on one Embodiment of this invention. 打抜加工前の電磁鋼板の概略構成を表す上面図である。It is a top view showing schematic structure of the electromagnetic steel plate before stamping.

(1)第1実施形態
以下、本発明の一実施形態について図面を参照して説明する。図1は、本発明の一実施形態に係る積層コア1の概略構成を表す側断面図である。積層コア1は、積層された電磁鋼板11を備え、電磁鋼板11間には絶縁膜12が形成されている。また、電磁鋼板11が露出している部分(たとえば電磁鋼板11の端部)に絶縁膜12と同じ材質からなる絶縁膜が形成されていることが好適である。
(1) First Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view showing a schematic configuration of a laminated core 1 according to an embodiment of the present invention. The laminated core 1 includes laminated electromagnetic steel plates 11, and an insulating film 12 is formed between the electromagnetic steel plates 11. In addition, it is preferable that an insulating film made of the same material as the insulating film 12 is formed on a portion where the electromagnetic steel plate 11 is exposed (for example, an end of the electromagnetic steel plate 11).

絶縁膜12は、DLC(ダイヤモンド・ライク・カーボン(Diamond-Like Carbon))およびフラーレンのうちの少なくとも一つからなる。具体的には、絶縁膜12は、フラーレン膜、DLC膜、フラーレン含有DLC膜、あるいは、それら膜の混合膜である。   The insulating film 12 is made of at least one of DLC (Diamond-Like Carbon) and fullerene. Specifically, the insulating film 12 is a fullerene film, a DLC film, a fullerene-containing DLC film, or a mixed film of these films.

フラーレンは、フラーレン単体、化学修飾がなされた化学修飾フラーレン単体、あるいは、それらの混合体である。フラーレン単体としては、たとえばC60、C70、C76、C78、C82、C84、C90、C94、C96等の単体あるいはそれらの混合体が挙げられる。この場合、フラーレン単体には、C100以上の高次フラーレンが含まれていてもよい。化学修飾フラーレン単体は、C60等の単体あるいはそれらの混合体が挙げられる。フラーレンの転動作用を利用する場合には、フラーレンとして、C60、C70、C76、C78、C82、C84、C90、C94、C96を用いることが好適である。 Fullerene is a fullerene simple substance, a chemically modified fullerene simple substance subjected to chemical modification, or a mixture thereof. The fullerene itself, for example C 60, C 70, C 76 , C 78, C 82, C 84, C 90, C 94, C alone or a mixture thereof, such as 96 and the like. In this case, the fullerene simple substance may contain C 100 or higher order fullerene. Examples of the chemically modified fullerene simple substance include simple substances such as C 60 F x or a mixture thereof. When using the fullerene rolling operation, it is preferable to use C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 , C 96 as the fullerene.

絶縁膜12としてフラーレン膜を用いる場合、フラーレン膜の膜厚は特に限定されるものではないが、0.7nm〜100μmの範囲内が好適である。膜厚が0.7nm未満の場合、最小フラーレン分子の直径以下となるため、良好な絶縁性を得ることができない。膜厚が100μm超の場合、フラーレン分子が凝集し、凝集塊となるため、均一な皮膜を得ることができない。   When a fullerene film is used as the insulating film 12, the film thickness of the fullerene film is not particularly limited, but is preferably in the range of 0.7 nm to 100 μm. When the film thickness is less than 0.7 nm, it becomes not more than the diameter of the minimum fullerene molecule, so that good insulation cannot be obtained. When the film thickness is more than 100 μm, the fullerene molecules aggregate and form aggregates, so that a uniform film cannot be obtained.

絶縁膜12としてフラーレン含有DLC膜を用いる場合、フラーレン含有DLC膜の膜厚は特に限定されるものではないが、1nm〜100μmの範囲内が好適である。膜厚が1nm未満の場合、均一な膜を形成することができず、良好な絶縁性を得ることができない。膜厚が100μm超の場合、フラーレン含有DLC膜が形成された電磁鋼板の絶縁性が高くなり、CVD成膜の際に生じる電子が滞留し、電磁鋼板11周辺の電位が不安定となるため、膜質が不均一となる。   When a fullerene-containing DLC film is used as the insulating film 12, the film thickness of the fullerene-containing DLC film is not particularly limited, but is preferably in the range of 1 nm to 100 μm. When the film thickness is less than 1 nm, a uniform film cannot be formed, and good insulating properties cannot be obtained. When the film thickness is more than 100 μm, the electrical insulation of the electrical steel sheet on which the fullerene-containing DLC film is formed becomes high, electrons generated during the CVD film formation stay, and the potential around the electrical steel sheet 11 becomes unstable. The film quality becomes non-uniform.

DLC膜およびフラーレン含有DLC膜では、たとえば30W/(m・K)程度の高い熱伝導性を有することができるから、積層コア1の積層方向への熱拡散が大きくなる。フラーレン膜は、所望の絶縁性を得るための膜厚は非常に薄いから、電磁鋼板11間に介在していることの影響は小さい。これにより、積層コア1が適用されたモータの使用時に放熱を容易に行うことできる。   Since the DLC film and the fullerene-containing DLC film can have high thermal conductivity of, for example, about 30 W / (m · K), thermal diffusion in the stacking direction of the stacked core 1 is increased. Since the fullerene film has a very thin film thickness for obtaining a desired insulating property, the influence of being interposed between the electromagnetic steel sheets 11 is small. Thereby, heat radiation can be easily performed when the motor to which the laminated core 1 is applied is used.

上記構成を有する積層コア1の製造方法について説明する。まず、電磁鋼板11を準備する。電磁鋼板11は、製鋼、熱延、焼鈍、冷延、および焼鈍を行う(必要に応じてさらに焼鈍を行う)ことにより形成された所定の板厚を有する電磁鋼板である。次いで、電磁鋼板11の表面に絶縁膜12を均一に形成する。   A method for manufacturing the laminated core 1 having the above configuration will be described. First, the electromagnetic steel sheet 11 is prepared. The electrical steel sheet 11 is an electrical steel sheet having a predetermined thickness formed by steelmaking, hot rolling, annealing, cold rolling, and annealing (further annealing is performed as necessary). Next, the insulating film 12 is uniformly formed on the surface of the electromagnetic steel sheet 11.

絶縁膜12としてフラーレン膜を用いる場合、電磁鋼板11表面へのフラーレンの被覆では、揮発しやすい溶剤にフラーレンを溶解させ、フラーレン溶液を作製して電磁鋼板11表面に均一コーティングを行う。溶剤は、特に限定はされないが、フラーレンが溶解する非極性溶媒やベンゼン系溶媒等である。非極性溶媒を用いる場合、フラーレンの非極性溶媒への溶解後、その非極性溶媒を揮発性の高い極性溶媒と混合してもよい。なお、フラーレンとして化学修飾フラーレンを用いる場合、化学修飾フラーレンは極性溶媒にも溶解するから、溶媒の非極性・極性は限定されない。   When a fullerene film is used as the insulating film 12, the fullerene is coated on the surface of the electromagnetic steel sheet 11 by dissolving the fullerene in a solvent that easily volatilizes to produce a fullerene solution and uniformly coating the surface of the electromagnetic steel sheet 11. The solvent is not particularly limited, but is a nonpolar solvent or a benzene solvent in which fullerene is dissolved. When a nonpolar solvent is used, the nonpolar solvent may be mixed with a highly volatile polar solvent after the fullerene is dissolved in the nonpolar solvent. When chemically modified fullerene is used as the fullerene, the non-polarity / polarity of the solvent is not limited because the chemically modified fullerene is dissolved in a polar solvent.

フラーレン溶液のコーティング手法としては、スプレー方式や、どぶ付け方式、滴下方式等が挙げられる。この場合、密着性を高めるために、アクリルやエポキシ等の有機物質をフラーレン溶液に混合してもよい。この手法では、揮発性の高い溶剤を使用することにより、常温での絶縁膜12の形成が可能となる。   Examples of the coating method of the fullerene solution include a spray method, a splashing method, and a dropping method. In this case, an organic substance such as acrylic or epoxy may be mixed with the fullerene solution in order to improve the adhesion. In this method, the insulating film 12 can be formed at room temperature by using a highly volatile solvent.

絶縁膜12としてフラーレン膜とDLC膜との混合膜を用いる場合、フラーレン膜の上記被覆手法と、DLC膜の下記被覆手法を組み合わせる。DLC膜の被覆では、特にその手法は限定されるものではないが、熱CVD法や、プラズマCVD法、光CVD法、触媒化学気相成長法(Cat-CVD)、常圧CVD、真空蒸着法 、イオンプレーティング(直流励起、高周波励起)、スパッタ法(2極スパッタ、マグネトロンスパッタ、ECRスパッタ)、レーザーアブレーション法 、イオンビームデポジション 、イオン注入法等が挙げられる。それら手法のなかでは、低温での三次元成膜が可能なプラズマCVDおよび常圧CVDが好適である。たとえばプラズマCVDの場合を用いる場合、40℃〜100℃程度の低温での絶縁膜12の形成が可能となる。   When a mixed film of a fullerene film and a DLC film is used as the insulating film 12, the above-described coating method for the fullerene film is combined with the following coating method for the DLC film. For DLC film coating, the method is not particularly limited, but thermal CVD method, plasma CVD method, photo CVD method, catalytic chemical vapor deposition (Cat-CVD), atmospheric pressure CVD, vacuum deposition method , Ion plating (direct current excitation, high frequency excitation), sputtering method (bipolar sputtering, magnetron sputtering, ECR sputtering), laser ablation method, ion beam deposition, ion implantation method and the like. Among these methods, plasma CVD and atmospheric pressure CVD capable of three-dimensional film formation at a low temperature are preferable. For example, when using the case of plasma CVD, the insulating film 12 can be formed at a low temperature of about 40 ° C. to 100 ° C.

絶縁膜12としてフラーレン含有DLC膜を用いる場合、DLC膜の上記被覆手法において、DLCの原材料あるいはターゲットにフラーレンを含有させておく。これにより、フラーレン含有DLC膜が得られる。   When a fullerene-containing DLC film is used as the insulating film 12, fullerene is contained in the DLC raw material or target in the above-described coating method of the DLC film. Thereby, a fullerene-containing DLC film is obtained.

上記のような手法により電磁鋼板11表面に絶縁膜12が均一に形成される。また、絶縁膜12の低温形成が可能となり、そのための大型設備が不要となる。しかも、絶縁膜12の形成時の冷却工程を大幅に低減することができるから、生産性の向上を図ることができる。また、絶縁膜12は、DLCおよびフラーレンのうちの少なくとも一つからなり、おもに炭素を主成分とするから、環境への影響はない。   The insulating film 12 is uniformly formed on the surface of the electromagnetic steel sheet 11 by the above method. Further, the insulating film 12 can be formed at a low temperature, and a large facility for that purpose is not required. In addition, since the cooling process during the formation of the insulating film 12 can be significantly reduced, productivity can be improved. Further, the insulating film 12 is made of at least one of DLC and fullerene, and mainly contains carbon, so there is no environmental impact.

次いで、電磁鋼板11の所定領域X(図3)に打抜き加工を行う。ここで、絶縁膜12の材質として用いるDLCはすべり性に優れ、フラーレンは潤滑性に優れるから、絶縁膜12であるフラーレン膜、DLC膜、フラーレン含有DLC膜、あるいは、それら膜の混合膜により、打抜き加工性の向上を図ることができる。これにより、打抜加工用の金型の長寿命化を図ることができ、打抜き加工で発生するプレス部品のカエリを小さくすることができる。また、DLC膜あるいはフラーレン含有DLC膜では、微細クラックが生じることにより、電磁鋼板11に追従することができる。また、フラーレン膜では、フラーレン分子同士は分子間結合であるから、電磁鋼板11への追従性が良い。したがって、電磁鋼板11への張力付与時に絶縁膜の絶縁性低下の原因となるクラック発生を防止することができる。   Next, a punching process is performed on a predetermined region X (FIG. 3) of the electromagnetic steel sheet 11. Here, since DLC used as the material of the insulating film 12 is excellent in slipperiness and fullerene is excellent in lubricity, the fullerene film, the DLC film, the fullerene-containing DLC film that is the insulating film 12, or a mixed film of these films, The punching processability can be improved. Thereby, it is possible to extend the life of the die for punching, and it is possible to reduce the burrs of the press parts generated in the punching. Moreover, in a DLC film or a fullerene containing DLC film, it can follow the electromagnetic steel plate 11 by a fine crack producing. Further, in the fullerene film, fullerene molecules are intermolecular bonds, and therefore followability to the electromagnetic steel sheet 11 is good. Therefore, it is possible to prevent the occurrence of cracks that cause a decrease in the insulating properties of the insulating film when tension is applied to the electromagnetic steel sheet 11.

特に、DLC膜あるいはフラーレン含有DLC膜に含有される水素量が、20at%以上である場合、電磁鋼板11への絶縁膜12の追従性がより良くなるから、クラックの発生の防止を効果的に得ることができる。なお、打抜き加工では、打抜き加工に用いる打抜き冶具に絶縁膜12と同様な材質からなる絶縁膜を被覆してもよい。   In particular, when the amount of hydrogen contained in the DLC film or the fullerene-containing DLC film is 20 at% or more, the followability of the insulating film 12 to the electromagnetic steel sheet 11 is improved, so that the occurrence of cracks is effectively prevented. Obtainable. In the punching process, the punching jig used for the punching process may be coated with an insulating film made of the same material as the insulating film 12.

次いで、絶縁膜12が形成された電磁鋼板11を積層して、積層された電磁鋼板11を固定することにより、積層コア1が得られる。続いて、積層コア1に電磁コイル(図示略)の巻き線を行う。   Next, the laminated core 1 is obtained by laminating the electromagnetic steel plates 11 on which the insulating film 12 is formed and fixing the laminated electromagnetic steel plates 11. Subsequently, an electromagnetic coil (not shown) is wound around the laminated core 1.

ここで、積層コア1の上面および下面に位置する電磁鋼板11の表面を、すべり性あるいは潤滑性の良い絶縁膜12で被覆しているから、そこに当接する電磁コイルの絶縁被覆の破壊を防止することができる。特に、積層コア1の側面部において電磁鋼板11が露出している部分に絶縁膜12と同じ材質からなる絶縁膜を形成することにより、そこに当接する電磁コイルの絶縁被覆の破壊を防止することができる。   Here, since the surface of the electromagnetic steel sheet 11 located on the upper surface and the lower surface of the laminated core 1 is covered with the insulating film 12 having good sliding property or lubricity, the insulation coating of the electromagnetic coil in contact therewith is prevented from being broken. can do. In particular, by forming an insulating film made of the same material as that of the insulating film 12 in a portion where the electromagnetic steel plate 11 is exposed in the side surface portion of the laminated core 1, it is possible to prevent the insulation coating of the electromagnetic coil contacting the same from being destroyed. Can do.

本実施形態では、モータの使用時の放熱を容易に行うことでき、かつ電磁コイルの絶縁被覆12の破壊を防止することができる。また、積層コア1の製造では、絶縁膜12の形成のために大型設備が不要となるとともに、生産性の向上を図ることができる。環境負荷の観点から、絶縁膜12の材料の使用が制限されることはない。また、打抜き加工用の金型の長寿命化を図ることができる。また、打抜き加工で発生するプレス部品のカエリを小さくすることができ、鋼板への張力付与時に絶縁膜12の絶縁性低下の原因となるクラックの発生を防止することができる。   In this embodiment, it is possible to easily dissipate heat when the motor is used, and to prevent the insulation coating 12 of the electromagnetic coil from being broken. Further, in the manufacture of the laminated core 1, a large facility is not required for forming the insulating film 12, and productivity can be improved. From the viewpoint of environmental load, the use of the material of the insulating film 12 is not limited. In addition, the life of the die for punching can be extended. Further, it is possible to reduce the burrs of the pressed parts generated in the punching process, and it is possible to prevent the occurrence of cracks that cause a decrease in insulating properties of the insulating film 12 when tension is applied to the steel sheet.

(2)第2実施形態
図2は、本発明の第2実施形態の積層コア2の概略構成を表す側断面図である。積層コア2は、積層方向において中央部から端部に向かうに従って、水平方向長さが小さくなるような断面形状を有することのみが積層コア1と異なり、それ以外は積層コア1と同様である。
(2) Second Embodiment FIG. 2 is a side sectional view showing a schematic configuration of a laminated core 2 according to a second embodiment of the present invention. The laminated core 2 is different from the laminated core 1 only in that it has a cross-sectional shape such that the length in the horizontal direction decreases from the center to the end in the lamination direction.

電磁鋼板11の打抜き加工では、図3に示す所定領域Xの大きさを適宜変更することにより、積層コア2に用いられる各種サイズの電磁鋼板11が得られる。積層コア2の中央部に位置する電磁鋼板11では、その上面および下面に絶縁膜12を形成してもよい。   In the punching process of the electromagnetic steel sheet 11, various sizes of the electromagnetic steel sheet 11 used for the laminated core 2 are obtained by appropriately changing the size of the predetermined region X shown in FIG. 3. In the electromagnetic steel sheet 11 located in the center part of the laminated core 2, the insulating film 12 may be formed on the upper surface and the lower surface.

積層コア2では、第1実施形態の積層コア1の上記効果に加えて、次の効果を得ることができる。積層コア2では、電磁鋼板11の水平方向端部のエッジを絶縁膜12で被覆することができるので、巻き線時に電磁コイルが接触するエッジ部を絶縁膜12で被覆することができる。その結果、電磁コイルの絶縁被覆の破壊を効果的に防止することができる。   In the laminated core 2, in addition to the above effects of the laminated core 1 of the first embodiment, the following effects can be obtained. In the laminated core 2, since the edge of the horizontal direction edge part of the electromagnetic steel plate 11 can be coat | covered with the insulating film 12, the edge part which an electromagnetic coil contacts can be coat | covered with the insulating film 12 at the time of winding. As a result, it is possible to effectively prevent the insulation coating of the electromagnetic coil from being broken.

以下、具体的な実施例を参照して本発明の実施形態をさらに詳細に説明する。実施例では、各種絶縁膜で被覆した電磁鋼板の特性について調べた。   Hereinafter, embodiments of the present invention will be described in more detail with reference to specific examples. In the examples, the characteristics of electrical steel sheets covered with various insulating films were examined.

(1)試料の準備
試料11〜13および比較試料11では、電磁鋼板として長さが0.35mmである無方向性電磁鋼板(材質:Fe−Si)を用いた。試料11の作製では、密着性を高めるためにスパッタによりSi下地層を電磁鋼板表面にコーティングした後、プラズマCVDによりDLC膜(膜厚約1μm程度)を形成した。
(1) Sample preparation In samples 11 to 13 and comparative sample 11, a non-oriented electrical steel sheet (material: Fe-Si) having a length of 0.35 mm was used as the electrical steel sheet. In the preparation of Sample 11, a Si underlayer was coated on the surface of the magnetic steel sheet by sputtering in order to improve adhesion, and then a DLC film (film thickness of about 1 μm) was formed by plasma CVD.

試料12の作製では、C60,C70の混合体からなるフラーレンを1,24-トリメチルベンゼン(溶解度17.9mg/ml)に溶解した後、その溶液を揮発性の高いエタノールと混合し、所定量のフラーレン溶剤を作製した。フラーレン溶剤を電磁鋼板に塗布し、自然乾燥によフラーレン膜を形成した。試料13の作製では、試料11と同様な手法で電磁鋼板にDLC膜を形成した後、試料12と同様な手法でフラーレン膜を形成した。比較試料11として、従来技術の手法でリン酸塩膜で被覆された電磁鋼板を用いた。試料11〜13および比較試料11の絶縁膜形成温度は表1に示している。 In the preparation of Sample 12, fullerene composed of a mixture of C 60 and C 70 was dissolved in 1,24-trimethylbenzene (solubility 17.9 mg / ml), and then the solution was mixed with highly volatile ethanol. A fixed amount of fullerene solvent was prepared. Fullerene solvent was applied to the electrical steel sheet and a fullerene film was formed by natural drying. In the preparation of Sample 13, after a DLC film was formed on the electromagnetic steel sheet by the same method as Sample 11, a fullerene film was formed by the same method as Sample 12. As the comparative sample 11, an electrical steel sheet coated with a phosphate film by a conventional technique was used. The insulating film formation temperatures of Samples 11 to 13 and Comparative Sample 11 are shown in Table 1.

(2)試料の特性
試料11〜13および比較試料11について、絶縁抵抗率、熱伝導率、静摩擦係数、および、絶縁膜の柔軟性(追従性)について調べた。絶縁抵抗率測定では、4探針法を用い、鋼板の絶縁膜表面の測定対象とした。熱伝導率測定では、各試料について径が10mmとなるように加工したものを3枚積層し、積層体(全体厚さ1.05mm)を得、レーザーフラッシュ法により積層体の熱伝導率を得た。静摩擦係数測定では、傾斜方式静摩擦測定機を用いて、相手材を10mm×10mmの超硬片を用いて、電磁鋼板の絶縁膜の静摩擦係数を得た。この場合、接触子の重量を200g、 測定時間を約10secに設定した。絶縁膜の柔軟性は、電磁鋼板に90°曲げを行い、そのときの電磁鋼板端部の絶縁膜の絶縁性の低下の程度を得、それに基づきクラックの有無の判断を行った。その結果を表1に示す。表1では、各特性のデータは、試料11のデータを基準(=1)として示している。表1には、絶縁膜の形成温度を併記している。
(2) Sample characteristics Samples 11 to 13 and comparative sample 11 were examined for insulation resistivity, thermal conductivity, static friction coefficient, and flexibility (followability) of the insulating film. In the insulation resistivity measurement, a four-probe method was used as a measurement target of the insulating film surface of the steel plate. In thermal conductivity measurement, three samples processed to have a diameter of 10 mm for each sample were laminated to obtain a laminate (total thickness 1.05 mm), and the thermal conductivity of the laminate was obtained by the laser flash method. It was. In the static friction coefficient measurement, the static friction coefficient of the insulating film of the electromagnetic steel sheet was obtained using a 10 mm × 10 mm cemented carbide piece using an inclined type static friction measuring machine. In this case, the weight of the contact was set to 200 g, and the measurement time was set to about 10 seconds. The flexibility of the insulating film was obtained by bending the electromagnetic steel sheet by 90 °, obtaining the degree of deterioration of the insulating film at the edge of the electromagnetic steel sheet at that time, and determining the presence or absence of cracks. The results are shown in Table 1. In Table 1, the data of each characteristic is shown using the data of the sample 11 as a reference (= 1). Table 1 also shows the formation temperature of the insulating film.

Figure 2011193622
Figure 2011193622

表1から判るように、熱伝導率および絶縁膜の柔軟性について、試料11〜13は、比較試料11のものと比較して向上した。その結果、電磁鋼板の絶縁膜としてDLCおよびフラーレンのうちの少なくとも一つからなる絶縁膜を用いることにより、熱伝導率および絶縁膜の柔軟性の向上を図ることができることを確認した。また、絶縁膜の静摩擦係数について、試料11〜13は、比較試料11のものと比較して小さくなることを確認した。その結果、電磁鋼板の絶縁膜としてDLCおよびフラーレンのうちの少なくとも一つからなる絶縁膜を用いることにより、打抜き加工性の向上を図ることができることを確認した。   As can be seen from Table 1, the samples 11 to 13 were improved in comparison with those of the comparative sample 11 in terms of thermal conductivity and flexibility of the insulating film. As a result, it was confirmed that the thermal conductivity and the flexibility of the insulating film can be improved by using an insulating film made of at least one of DLC and fullerene as the insulating film of the electromagnetic steel sheet. Moreover, it confirmed that the samples 11-13 became small compared with the thing of the comparative sample 11 about the static friction coefficient of an insulating film. As a result, it was confirmed that the punching workability can be improved by using an insulating film made of at least one of DLC and fullerene as the insulating film of the electromagnetic steel sheet.

1,2…積層コア、11…電磁鋼板、12…絶縁膜   1, 2 ... laminated core, 11 ... electromagnetic steel sheet, 12 ... insulating film

Claims (6)

積層された電磁鋼板と、
前記電磁鋼板間に形成された絶縁膜とを備え、
前記絶縁膜は、DLCおよびフラーレンのうちの少なくとも一つからなるを特徴とする積層コア。
Laminated electrical steel sheets,
An insulating film formed between the electromagnetic steel plates,
The laminated core is characterized in that the insulating film is made of at least one of DLC and fullerene.
前記電磁鋼板の端部に前記絶縁膜と同じ材質からなる他の絶縁膜が形成されていることを特徴とする請求項1に記載の積層コア。 The laminated core according to claim 1, wherein another insulating film made of the same material as the insulating film is formed at an end of the electromagnetic steel sheet. 積層方向において中央部から端部に向かうに従って、水平方向長さが小さくなるような断面形状を有することを特徴とする請求項1または2に記載の積層コア。   3. The laminated core according to claim 1, wherein the laminated core has a cross-sectional shape such that a length in a horizontal direction becomes smaller from a center portion toward an end portion in the lamination direction. 前記DLCに含有される水素量が、20at%以上であることを特徴とする請求項1〜3のいずれかに記載の積層コア。   The laminated core according to any one of claims 1 to 3, wherein the amount of hydrogen contained in the DLC is 20 at% or more. 前記絶縁膜はフラーレン膜であり、その膜厚は0.7nm〜100μmの範囲内であることを特徴とする請求項1〜3のいずれかに記載の積層コア。   The laminated core according to claim 1, wherein the insulating film is a fullerene film, and the film thickness thereof is in a range of 0.7 nm to 100 μm. 前記絶縁膜はフラーレン含有DLC膜であり、その膜厚は1nm〜100μmの範囲内であることを特徴とする請求項1〜4のいずれかに記載の積層コア。   The laminated core according to any one of claims 1 to 4, wherein the insulating film is a fullerene-containing DLC film, and the film thickness thereof is in a range of 1 nm to 100 µm.
JP2010057217A 2010-03-15 2010-03-15 Laminate core Pending JP2011193622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010057217A JP2011193622A (en) 2010-03-15 2010-03-15 Laminate core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057217A JP2011193622A (en) 2010-03-15 2010-03-15 Laminate core

Publications (1)

Publication Number Publication Date
JP2011193622A true JP2011193622A (en) 2011-09-29

Family

ID=44797952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057217A Pending JP2011193622A (en) 2010-03-15 2010-03-15 Laminate core

Country Status (1)

Country Link
JP (1) JP2011193622A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099215A1 (en) * 2011-12-27 2013-07-04 株式会社デンソー Current sensor
JP2014023224A (en) * 2012-07-13 2014-02-03 Jtekt Corp Motor stator core, and method of manufacturing the same
EP3402039A1 (en) * 2017-05-10 2018-11-14 Siemens Aktiengesellschaft Insulation of an electric machine
KR20190072509A (en) * 2016-06-07 2019-06-25 사파이어 모터스 A stator assembly in which coating conductors are laminated
CN113056859A (en) * 2018-12-17 2021-06-29 日本制铁株式会社 Bonded laminated core, method for manufacturing same, and rotating electrical machine
JP7239088B1 (en) * 2021-12-14 2023-03-14 Jfeスチール株式会社 laminated core
RU2796635C1 (en) * 2022-07-25 2023-05-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Magnetically active elastomer
WO2023112418A1 (en) * 2021-12-14 2023-06-22 Jfeスチール株式会社 Laminated core

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099215A1 (en) * 2011-12-27 2013-07-04 株式会社デンソー Current sensor
JP2013152221A (en) * 2011-12-27 2013-08-08 Denso Corp Current sensor
CN104024869A (en) * 2011-12-27 2014-09-03 株式会社电装 Current sensor
US9529018B2 (en) 2011-12-27 2016-12-27 Denso Corporation Current sensor
JP2014023224A (en) * 2012-07-13 2014-02-03 Jtekt Corp Motor stator core, and method of manufacturing the same
KR20190072509A (en) * 2016-06-07 2019-06-25 사파이어 모터스 A stator assembly in which coating conductors are laminated
KR102476984B1 (en) 2016-06-07 2022-12-14 사파이어 모터스 Stator assembly with laminated coated conductors
EP3402039A1 (en) * 2017-05-10 2018-11-14 Siemens Aktiengesellschaft Insulation of an electric machine
CN113056859A (en) * 2018-12-17 2021-06-29 日本制铁株式会社 Bonded laminated core, method for manufacturing same, and rotating electrical machine
JP7239088B1 (en) * 2021-12-14 2023-03-14 Jfeスチール株式会社 laminated core
WO2023112418A1 (en) * 2021-12-14 2023-06-22 Jfeスチール株式会社 Laminated core
RU2796635C1 (en) * 2022-07-25 2023-05-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Magnetically active elastomer

Similar Documents

Publication Publication Date Title
JP2011193622A (en) Laminate core
RU2578296C2 (en) Textured electrical steel sheet and a method of reducing the iron loss
JP2009120915A (en) Iron powder for powder magnetic core and production method therefor
JP6275277B2 (en) Coating agent for electrical steel sheet, method for producing the same, and method for coating electrical steel sheet using the same
JP2016176137A (en) Magnetic steel sheet with insulating coating, laminated magnetic steel sheet and production method of them
JP2018028140A (en) Chromium-free tensile film-forming process liquid, chromium-free tensile film-attached grain-oriented electromagnetic steel sheet, method for producing chromium-free tensile film-attached grain-oriented electromagnetic steel sheet, and transformer core
KR101353697B1 (en) Method for preparing grain-oriented electrical steel sheet having improved adhesion and grain-oriented electrical steel sheet prepared by the same
JP5023552B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
US11180834B2 (en) Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
KR101353703B1 (en) Oriented electrical steel sheet and method for manufacturing thereof
KR101294944B1 (en) Oriented electrical steel sheet having ultra-high tension and method for manufacturing thereof
CN113166950B (en) Oriented electrical steel sheet and method for manufacturing same
JP6579260B2 (en) Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
JP2005240157A (en) Grain-oriented electromagnetic steel sheet with phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium, and method for forming phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium
JP2005240102A (en) Grain oriented silicon steel sheet having excellent core loss property
WO2023190660A1 (en) Method for manufacturing laminate
JP2003282330A (en) Adhesive-fixed laminated iron core and its manufacturing method
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
KR101241164B1 (en) Method for manufacturing electrical steel sheet with low core loss
WO2022085263A1 (en) Grain-oriented electrical steel sheet, method for manufacturing grain-oriented electrical steel sheet, and method for evaluating grain-oriented electrical steel sheet
JP2019161766A (en) Electromagnetic steel sheet
JP2012031517A (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film of grain-oriented electromagnetic steel sheet
KR20200066041A (en) Electrical steel sheet and manufacturing method of the same
JP2003342699A (en) Production method for ultralow-iron-loss unidirectional silicon steel sheet excellnet in adhesion to film and free of degradation in cahracteristics after stress relieving annealing
JP2005120405A (en) Grain oriented silicon steel sheet for lamination type iron core