JP2011193607A - Intermediate connecting structure of superconductive cable power transmission line, and laying method of superconductive cable power transmission line - Google Patents

Intermediate connecting structure of superconductive cable power transmission line, and laying method of superconductive cable power transmission line Download PDF

Info

Publication number
JP2011193607A
JP2011193607A JP2010056647A JP2010056647A JP2011193607A JP 2011193607 A JP2011193607 A JP 2011193607A JP 2010056647 A JP2010056647 A JP 2010056647A JP 2010056647 A JP2010056647 A JP 2010056647A JP 2011193607 A JP2011193607 A JP 2011193607A
Authority
JP
Japan
Prior art keywords
cable
cable core
transmission line
intermediate connection
traveling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010056647A
Other languages
Japanese (ja)
Other versions
JP5067724B2 (en
Inventor
Yuichi Ashibe
祐一 芦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010056647A priority Critical patent/JP5067724B2/en
Publication of JP2011193607A publication Critical patent/JP2011193607A/en
Application granted granted Critical
Publication of JP5067724B2 publication Critical patent/JP5067724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Cable Accessories (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intermediate connecting structure of a superconductive cable power transmission line which is suitable for transmitting a low-voltage power, and can improve the degree of freedom of route design, and a laying method of the superconductive cable power transmission line. <P>SOLUTION: The intermediate connecting structure comprises cable cores 10a, 10b having superconductive bodies, and an intermediate connecting box 3a which connects the ends of the cable cores 10a, 10b. Then, the cable cores 10a, 10b are used for transmitting the low-voltage power. The intermediate connecting box 3a comprises a coolant vessel 30 which is filled with a coolant and accommodates the ends of the cable core 10a, 10b which are connected, and a connecting conductor 50 which is fixed into the coolant vessel 30, and connected with the ends of the cable cores 10a, 10b. Furthermore, the connecting conductor 50 electrically connects the ends of the cable cores 10a, 10b, and the advancing direction of the end of the cable core 10b on a demand side changes with respect to the advancing direction of the end of the cable core 10a on a power supply side via the connecting conductor 50. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超電導導体を有するケーブルコアと、ケーブルコアの端部同士を接続する中間接続箱と、を備える超電導ケーブル送電線の中間接続構造、及び超電導ケーブル送電線の布設方法に関する。   The present invention relates to an intermediate connection structure for a superconducting cable transmission line including a cable core having a superconducting conductor and an intermediate connection box for connecting ends of the cable core, and a method for laying the superconducting cable transmission line.

超電導ケーブルは、既存の常電導ケーブル(例、OFやCVケーブル)と比較して、大容量の電力を低損失で送電できることから、省エネルギー技術として期待されている。最近では、超電導ケーブルを布設し、実際の送電線に利用する実証試験が行われつつある。   Superconducting cables are expected as an energy-saving technology because they can transmit large amounts of power with low loss compared to existing normal conducting cables (eg, OF and CV cables). Recently, a demonstration test is being conducted in which a superconducting cable is installed and used for an actual transmission line.

超電導ケーブルは、超電導導体を有するケーブルコアを断熱管(二重コルゲート管)内に収納し、この断熱管内に冷媒(例、液体窒素(LN2))を流通させることで、超電導導体を超電導状態まで冷却する構造のものが代表的である。 A superconducting cable stores a cable core with a superconducting conductor in a heat insulating pipe (double corrugated pipe), and circulates a refrigerant (eg, liquid nitrogen (LN 2 )) in the heat insulating pipe, thereby making the superconducting conductor superconductive. A structure that cools to a typical temperature is typical.

また、超電導ケーブルは、製造上、輸送上、布設上などの理由によりケーブルの単位長が制限される。そのため、ケーブルの単位長を超える長距離に亘る超電導ケーブル送電線を布設する場合は、送電線の途中に超電導ケーブル同士を接続する中間接続構造が必要となる(例えば、特許文献1、2参照)。通常、この中間接続構造は、次のようにして施工される。送電線の経路設計に従って超電導ケーブルを布設した後、接続する互いの超電導ケーブルの断熱管端部からケーブルコア端部を引き出す。次に、引き出した両ケーブルコアの端部同士を突き合わせて超電導導体同士を接続し、この接続箇所の外側に補強絶縁層を設け、中間接続部を形成する。そして、中間接続部、及びケーブルコアの端部を収納する冷媒容器を取り付け、中間接続箱を組み立てる。   In addition, the unit length of a superconducting cable is limited for reasons such as manufacturing, transportation, and installation. Therefore, when laying a superconducting cable transmission line over a long distance exceeding the unit length of the cable, an intermediate connection structure for connecting the superconducting cables to each other in the middle of the transmission line is required (for example, see Patent Documents 1 and 2). . Usually, this intermediate connection structure is constructed as follows. After laying the superconducting cable according to the route design of the power transmission line, the end of the cable core is pulled out from the end of the heat insulating tube of each superconducting cable to be connected. Next, the ends of the two cable cores drawn out are butted together to connect the superconducting conductors, and a reinforcing insulating layer is provided outside the connecting portion to form an intermediate connecting portion. And the refrigerant | coolant container which accommodates the intermediate connection part and the edge part of a cable core is attached, and an intermediate connection box is assembled.

特開2005‐251570号公報JP 2005-251570 A 特開2006‐221877号公報JP 2006-221877 A

従来の中間接続構造は、ケーブルコアの端部同士を突き合わせて接続するため、作業上の観点から、接続されるケーブルコアの端部同士が同一直線上に並ぶ位置に設置することが基本と考えられていた。つまり、従来は、中間接続構造を送電線の曲がり部に設置することはせず、一般に送電線の直線部に中間接続構造が設置されている。一方、送電線の経路設計において、送電線の途中に曲がり部を設ける必要があるときは、超電導ケーブルの中間部を許容曲げ半径以上の曲率半径で曲げることで対応している。しかし、一般的な超電導ケーブルの許容曲げ半径は、5m程度であり、それに応じて送電線の曲がり部の曲率半径を大きくとる必要がある。そのため、例えばビルや橋梁などの構造物の壁面に沿って超電導ケーブルを直角に曲げ、構造物に合わせて送電線の経路を設計することはされていなかった。   In the conventional intermediate connection structure, the ends of the cable cores are butted against each other, so from the viewpoint of work, it is considered that the ends of the cable cores to be connected should be installed on the same straight line. It was done. That is, conventionally, the intermediate connection structure is not installed at the bent portion of the transmission line, and the intermediate connection structure is generally installed at the straight portion of the transmission line. On the other hand, in the route design of the power transmission line, when it is necessary to provide a bent portion in the middle of the power transmission line, this is dealt with by bending the intermediate portion of the superconducting cable with a radius of curvature greater than the allowable bending radius. However, the allowable bending radius of a general superconducting cable is about 5 m, and the curvature radius of the bent portion of the transmission line needs to be increased accordingly. For this reason, for example, a superconducting cable is not bent at right angles along the wall of a structure such as a building or a bridge, and a transmission line route is not designed in accordance with the structure.

また、現状では超電導ケーブルを主に、発電所から一次変電所までの一次送電線、或いは一次変電所から二次変電所までの二次送電線といった基幹送電用途に利用することが想定されている。そのため、ケーブルコアに高電圧(22kV以上)が課電されることから、ケーブルコアの端部同士の接続箇所に補強絶縁層が設けられている。今後は更なるCO2削減のため、配電用変電所以降の低電圧(6.6kV以下)を送電するような、大規模ビルや工場などの産業用途の配電にも超電導ケーブルを利用することが考えられる。しかし、産業用配電用途に超電導ケーブルを利用することは具体的に検討されていなかった。 In addition, at present, superconducting cables are mainly used for basic power transmission applications such as primary transmission lines from power plants to primary substations or secondary transmission lines from primary substations to secondary substations. . Therefore, since a high voltage (22 kV or more) is applied to the cable core, a reinforcing insulating layer is provided at a connection location between the ends of the cable core. In the future, in order to further reduce CO 2, it is considered to use superconducting cables for power distribution in industrial applications such as large buildings and factories that transmit low voltage (6.6 kV or less) after distribution substations. It is done. However, the use of superconducting cables for industrial power distribution applications has not been specifically studied.

本発明は、上記の事情に鑑みてなされたものであり、その目的の一つは、低電圧の送電用途に適し、経路設計の自由度の向上を図ることができる超電導ケーブル送電線の中間接続構造、及び超電導ケーブル送電線の布設方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is an intermediate connection of superconducting cable transmission lines that is suitable for low-voltage power transmission applications and can improve the degree of freedom in route design. The object is to provide a structure and a method for laying a superconducting cable transmission line.

本発明の超電導ケーブル送電線の中間接続構造は、超電導導体を有するケーブルコアと、ケーブルコアの端部同士を接続する中間接続箱と、を備える。そして、ケーブルコアは、低電圧送電用である。中間接続箱は、冷媒が充填され、接続されるケーブルコアの端部が収納される冷媒容器と、冷媒容器内に固定され、ケーブルコアの端部が接続される接続用導体と、を備える。また、接続用導体が、ケーブルコアの端部同士を電気的に接続し、この接続用導体を介して、電力供給側の少なくとも1つのケーブルコア端部の進行方向に対して需要側の少なくとも1つのケーブルコア端部の進行方向が変わることを特徴とする。   The intermediate connection structure for a superconducting cable transmission line according to the present invention includes a cable core having a superconducting conductor and an intermediate connection box for connecting ends of the cable core. The cable core is for low-voltage power transmission. The intermediate connection box includes a refrigerant container that is filled with a refrigerant and accommodates an end portion of the cable core to be connected, and a connection conductor that is fixed in the refrigerant container and to which the end portion of the cable core is connected. Further, the connecting conductor electrically connects the ends of the cable cores, and through the connecting conductor, at least one on the demand side with respect to the traveling direction of the at least one cable core end on the power supply side. It is characterized in that the traveling direction of the two cable core ends changes.

本発明の中間接続構造によれば、中間接続箱の接続用導体により、電力供給側のケーブルコア端部の進行方向に対して需要側のケーブルコア端部の進行方向を変えることができる。そのため、送電線経路の所定の位置に本発明の中間接続構造を設置することで、その位置に曲がり部が形成され、送電線の進行方向を任意に変えることができる。また、送電線の曲がり部の曲率半径を超電導ケーブルの許容曲げ半径未満にすることができ、曲がり部の曲率半径を従来に比較して小さくすることが可能である。したがって、送電線の経路設計の自由度を向上させることができ、また、構造物に合わせた経路設計が可能となるため、特に、大規模ビルや工場などの産業用途の配電に適している。なお、本発明でいう低電圧送電とは、6.6kV以下の送電を意味する。   According to the intermediate connection structure of the present invention, the traveling direction of the cable core end on the demand side can be changed with respect to the traveling direction of the cable core end on the power supply side by the connection conductor of the intermediate connection box. Therefore, by installing the intermediate connection structure of the present invention at a predetermined position in the transmission line route, a bent portion is formed at that position, and the traveling direction of the transmission line can be arbitrarily changed. Further, the radius of curvature of the bent portion of the transmission line can be made smaller than the allowable bending radius of the superconducting cable, and the radius of curvature of the bent portion can be reduced as compared with the conventional case. Therefore, the degree of freedom in route design of the transmission line can be improved, and the route design according to the structure can be performed, so that it is particularly suitable for power distribution for industrial use such as large-scale buildings and factories. In addition, the low voltage power transmission referred to in the present invention means power transmission of 6.6 kV or less.

本発明では、接続用導体を介して接続される電力供給側と需要側のケーブルコアの本数が同じであっても、異なってもよい。つまり、電力供給側のケーブルコア対需要側のケーブルコアの本数が、1対1又は同数の複数対複数の対応関係であってもよく、1対複数又はその逆の対応関係であってもよい。   In the present invention, the number of cable cores on the power supply side and the demand side connected via the connection conductor may be the same or different. That is, the number of cable cores on the power supply side versus the cable core on the demand side may be one-to-one or the same number of multiple-to-multiple correspondences, or may be one-to-multiple or vice versa. .

また、ケーブルコアが低電圧送電用であるため、冷媒容器内の冷媒により必要な絶縁を十分に確保することが可能であり、ケーブルコア端部と接続用導体との接続箇所の外側に補強絶縁層を必ずしも設ける必要がない。そのため、補強絶縁層を省略又は簡易化することができ、中間接続箱(中間接続構造)の小型化、簡易化を図ることができる。   In addition, since the cable core is for low-voltage power transmission, it is possible to ensure sufficient insulation by the refrigerant in the refrigerant container, and reinforcement insulation is provided outside the connection portion between the cable core end and the connection conductor. It is not always necessary to provide a layer. Therefore, the reinforcing insulating layer can be omitted or simplified, and the intermediate connection box (intermediate connection structure) can be reduced in size and simplified.

本発明の中間接続構造において、電力供給側のケーブルコア端部の進行方向に対して需要側のケーブルコア端部の進行方向が変わる形態としては、次の形態が挙げられる。
形態1:電力供給側のケーブルコア端部の進行方向と需要側のケーブルコア端部の進行方向とが互いにずれて逆向きになる形態。
形態2:電力供給側のケーブルコア端部の進行方向と需要側のケーブルコア端部の進行方向とが交差する形態。
形態3:電力供給側のケーブルコア端部の進行方向と需要側のケーブルコア端部の進行方向とが互いにずれ、電力供給側のケーブルコア端部の進行方向の延長方向と需要側のケーブルコア端部の進行方向とが同じ向きになる形態。
In the intermediate connection structure of the present invention, the form in which the traveling direction of the cable core end on the demand side changes with respect to the traveling direction of the cable core end on the power supply side includes the following forms.
Form 1: A form in which the traveling direction of the cable core end on the power supply side and the traveling direction of the cable core end on the demand side are shifted from each other and opposite to each other.
Form 2: Form in which the traveling direction of the cable core end on the power supply side intersects with the traveling direction of the cable core end on the demand side.
Form 3: The traveling direction of the cable core end on the power supply side and the traveling direction of the cable core end on the demand side are shifted from each other, and the extension direction in the traveling direction of the cable core end on the power supply side and the cable core on the demand side A form in which the direction of travel of the end is the same.

上記の形態1を採用した場合は、電力供給側と需要側とのケーブルコア(超電導ケーブル)端部の進行方向が逆向きになり、送電線の途中にU字状の曲がり部を設けることができる。   When said form 1 is employ | adopted, the advancing direction of the cable core (superconducting cable) edge part of an electric power supply side and a demand side may become reverse direction, and a U-shaped bending part may be provided in the middle of a power transmission line. it can.

上記の形態2を採用した場合は、電力供給側と需要側とのケーブルコア(超電導ケーブル)端部の進行方向が交差し、送電線の途中に任意角度の曲がり部を設けることができる。例えば、電力供給側と需要側とのケーブルコア端部の進行方向が直交する場合、送電線の途中にL字状(直角)の曲がり部を設けることができる。   When said form 2 is employ | adopted, the advancing direction of the cable core (superconducting cable) edge part of a power supply side and a demand side cross | intersects, and the bending part of arbitrary angles can be provided in the middle of a power transmission line. For example, when the traveling directions of the cable core ends on the power supply side and the demand side are orthogonal to each other, an L-shaped (right angle) bent portion can be provided in the middle of the transmission line.

上記の形態3を採用した場合は、電力供給側と需要側とのケーブルコア(超電導ケーブル)の進行方向が互いにずれ、かつ、進行方向が同じ向きになり、送電線の途中にZ字状の曲がり部を設けることができる。   When the above form 3 is adopted, the traveling directions of the cable cores (superconducting cables) on the power supply side and the demand side are shifted from each other, and the traveling directions are the same, and a Z-shape is formed in the middle of the transmission line. A bent portion can be provided.

また、上記の形態2では、電力供給側のケーブルコア端部の進行方向に対して需要側のケーブルコア端部の進行方向が三次元的に交差するようにしてもよい。   Moreover, in said form 2, you may make it the advancing direction of the cable core edge part of a demand side cross | intersect three-dimensionally with respect to the advancing direction of the cable core edge part of an electric power supply side.

この場合、一方のケーブルコア(超電導ケーブル)端部の進行方向に対して他方のケーブルコア(超電導ケーブル)端部の進行方向を高さ方向に変更することができ、送電線の途中に傾斜や高低差を設ける必要があるときに対応することができる。例えば、両者の進行方向が直交するようにL字状(直角)の曲がり部を設けることで、進行方向を水平方向から鉛直方向に又はその逆に変更することができる。   In this case, the traveling direction of the other cable core (superconducting cable) end can be changed to the height direction with respect to the traveling direction of one cable core (superconducting cable), and the inclination or It is possible to cope with when it is necessary to provide a height difference. For example, the traveling direction can be changed from the horizontal direction to the vertical direction or vice versa by providing an L-shaped (right angle) bent portion so that the traveling directions of the two are orthogonal to each other.

本発明の中間接続構造において、中間接続箱を牽引するフックが取り付けられるフック取付部を備える形態が好ましい。   In the intermediate connection structure of the present invention, a mode including a hook attachment portion to which a hook for pulling the intermediate connection box is attached is preferable.

本発明では、ケーブルコアの端部を接続用導体に接続し、中間接続箱を予め組み立てた後、この中間接続箱を移動させ、送電線経路の所定の位置に設置してもよい。この場合、中間接続構造の施工を十分な作業スペースが確保できる場所で行うことができるので、例えば送電線経路の所定の位置に十分な作業スペースが確保できない場合にも対応でき、作業性の向上、工期の短縮を図ることができる。上記構成によれば、中間接続箱を移動する際、フック取付部にフックを取り付けて中間接続箱を牽引することが可能であり、中間接続構造の施工が完了した状態で、例えば中間接続箱を吊り上げたり、中間接続箱を先頭にして管路に引き込むことができる。   In the present invention, the end of the cable core may be connected to the connection conductor, and the intermediate connection box may be assembled in advance, and then the intermediate connection box may be moved and installed at a predetermined position in the transmission line path. In this case, since the construction of the intermediate connection structure can be performed in a place where a sufficient work space can be secured, for example, it is possible to cope with a case where a sufficient work space cannot be secured in a predetermined position of the transmission line route, and workability is improved. The construction period can be shortened. According to the above configuration, when moving the intermediate connection box, it is possible to pull the intermediate connection box by attaching a hook to the hook mounting portion. Can be lifted or pulled into the pipeline with the intermediate junction box at the top.

本発明の中間接続構造において、冷媒容器に冷媒を供給するための冷媒導入口と、冷媒容器の鉛直上方に設けられた開口で、この開口から冷媒が流出することをもって、冷媒容器に冷媒が充填されたことを検知するための冷媒排出口と、を備える形態が好ましい。   In the intermediate connection structure of the present invention, the refrigerant is filled into the refrigerant container when the refrigerant flows out of the refrigerant introduction port for supplying the refrigerant to the refrigerant container and the opening provided vertically above the refrigerant container. And a refrigerant discharge port for detecting that it has been performed.

送電線経路に高低差がある場合、本発明の中間接続構造が高さ方向の最も高い位置に設置されることが考えられ、その場合、中間接続箱の冷媒容器から冷媒を供給して、超電導ケーブル送電線全体に冷媒を行き渡らせることが考えられる。上記構成によれば、冷媒導入口から冷媒を供給して送電線全体に冷媒を導入し、冷媒排出口から冷媒が流出することもって、送電線全体に冷媒が行き渡ったことを確認することができる。   When there is a height difference in the transmission line route, it is considered that the intermediate connection structure of the present invention is installed at the highest position in the height direction. In this case, the refrigerant is supplied from the refrigerant container of the intermediate connection box, It is conceivable to distribute the refrigerant over the entire cable transmission line. According to the above configuration, the refrigerant is supplied from the refrigerant introduction port to introduce the refrigerant to the entire transmission line, and the refrigerant flows out from the refrigerant discharge port, so that it can be confirmed that the refrigerant has spread throughout the transmission line. .

一方、本発明の超電導ケーブル送電線の布設方法は、次の工程を備えることを特徴とする。
超電導導体を有する電力供給側のケーブルコアの端部を接続用導体に接続する工程。
超電導導体を有する需要側のケーブルコアの端部を、電力供給側のケーブルコアの端部の進行方向に対して進行方向が変わるように、接続用導体に接続する工程。
両ケーブルコアの端部を接続用導体に接続した状態で、両ケーブルコアの端部を冷媒容器に収納し、接続用導体を冷媒容器内に固定して、中間接続箱を組み立てる工程。
中間接続箱を移動させ、中間接続箱を送電線の所定の位置に設置する工程。
中間接続箱を設置した後、冷媒容器に冷媒を充填する工程。
On the other hand, the laying method of the superconducting cable transmission line of the present invention is characterized by comprising the following steps.
Connecting the end of the power supply side cable core having the superconducting conductor to the connecting conductor;
Connecting the end portion of the demand side cable core having the superconducting conductor to the connecting conductor so that the traveling direction changes with respect to the traveling direction of the end portion of the power supply side cable core;
A step of assembling the intermediate connection box by storing the ends of both cable cores in the refrigerant container and fixing the connection conductor in the refrigerant container in a state where the ends of both cable cores are connected to the connection conductor.
The step of moving the intermediate connection box and installing the intermediate connection box at a predetermined position of the transmission line.
A step of filling the refrigerant container with the refrigerant after installing the intermediate junction box.

本発明の布設方法によれば、中間接続構造の施工が完了した状態で送電線が布設されることになるので、中間接続構造の施工を十分な作業スペースが確保できる場所で行うことができ、作業性の向上、工期の短縮を図ることができる。   According to the laying method of the present invention, since the transmission line is laid in a state where the construction of the intermediate connection structure is completed, the construction of the intermediate connection structure can be performed in a place where a sufficient work space can be secured, It is possible to improve workability and shorten the construction period.

本発明の超電導ケーブル送電線の中間接続構造は、電力供給側のケーブルコア端部の進行方向に対して需要側のケーブルコア端部の進行方向を変えることができるので、経路設計の自由度の向上を図ることができる。特に、構造物に合わせた経路設計が可能となり、低電圧で受電するような例えば大規模ビルや工場などの産業用途の配電に適用する場合に好適である。   The intermediate connection structure of the superconducting cable transmission line according to the present invention can change the traveling direction of the cable core end on the demand side with respect to the traveling direction of the cable core end on the power supply side. Improvements can be made. In particular, it is possible to design a route according to a structure, and is suitable for application to power distribution for industrial use such as large-scale buildings and factories that receive power at a low voltage.

一方、本発明の超電導ケーブル送電線の布設方法は、中間接続箱を予め組み立てておいて布設現場で所定の位置に設置するので、作業性の向上、工期の短縮を図ることができる。   On the other hand, the method for laying a superconducting cable transmission line according to the present invention can improve the workability and shorten the construction period because the intermediate connection box is assembled in advance and installed at a predetermined position at the laying site.

本発明の中間接続構造に用いる超電導ケーブルの構造の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure of the superconducting cable used for the intermediate | middle connection structure of this invention. 本発明の実施形態1に係る超電導ケーブル送電線の中間接続構造を示す概略正面断面図である。It is a schematic front sectional drawing which shows the intermediate connection structure of the superconducting cable power transmission line which concerns on Embodiment 1 of this invention. 図2のA‐A矢視の概略側面断面図である。FIG. 3 is a schematic side sectional view taken along line AA in FIG. 2. 実施形態1の中間接続構造を備える超電導ケーブル送電線の布設方法の一例を説明する模式図である。It is a schematic diagram explaining an example of the laying method of a superconducting cable power transmission line provided with the intermediate connection structure of Embodiment 1. (A)は、実施形態1の中間接続構造を示す模式図であり、(B)、(C)は、その他の実施形態の中間接続構造を示す模式図である。(A) is a schematic diagram which shows the intermediate | middle connection structure of Embodiment 1, (B), (C) is a schematic diagram which shows the intermediate | middle connection structure of other embodiment. (D)、(E)は、本発明の実施形態に係る中間接続構造の変形例を示す模式図である。(D), (E) is a schematic diagram showing a modification of the intermediate connection structure according to the embodiment of the present invention.

以下、本発明の実施の形態を図を参照して説明する。また、図中において同一部材には同一符号を付している。ここでは、まず、本発明の実施形態に用いる超電導ケーブルの構造を図1を参照して説明し、次いで、本発明の実施形態に係る超電導ケーブル送電線の中間接続構造を図2〜6を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Moreover, the same code | symbol is attached | subjected to the same member in the figure. Here, first, the structure of the superconducting cable used in the embodiment of the present invention will be described with reference to FIG. 1, and then the intermediate connection structure of the superconducting cable transmission line according to the embodiment of the present invention will be described with reference to FIGS. To explain.

図1に示す超電導ケーブル1は、3心のケーブルコア10を撚り合わせて断熱管20内に一括に収納した構造の、所謂3心一括型超電導ケーブルである。断熱管20は、内管21と外管22とからなる二重管構造のコルゲート管であり、両管21,22の間に真空断熱層が形成されている。この真空断熱層には、スーパーインシュレーション(商品名)などの断熱材を配置してもよい。また、外管22の外周面には防食層25が形成されている。   A superconducting cable 1 shown in FIG. 1 is a so-called three-core superconducting cable having a structure in which three-core cable cores 10 are twisted and accommodated together in a heat insulating tube 20. The heat insulating tube 20 is a corrugated tube having a double tube structure including an inner tube 21 and an outer tube 22, and a vacuum heat insulating layer is formed between both the tubes 21 and 22. You may arrange | position heat insulating materials, such as a super insulation (brand name), to this vacuum heat insulation layer. An anticorrosion layer 25 is formed on the outer peripheral surface of the outer tube 22.

一方、ケーブルコア10は、中心から順にフォーマ11、超電導導体12、絶縁層13、シールド層14、保護層15を配置した構造である。超電導導体12及びシールド層14は、Bi2223系超電導テープ線材を巻回することで形成されている。また、絶縁層13は、PPLP(登録商標、Polypropylene Laminated Paper)を巻回することで形成されている。   On the other hand, the cable core 10 has a structure in which a former 11, a superconducting conductor 12, an insulating layer 13, a shield layer 14, and a protective layer 15 are arranged in order from the center. The superconducting conductor 12 and the shield layer 14 are formed by winding a Bi2223 superconducting tape wire. The insulating layer 13 is formed by winding PPLP (registered trademark, Polypropylene Laminated Paper).

(実施形態1)
図2、3に示す本発明の実施形態1に係る超電導ケーブル送電線の中間接続構造は、上記した超電導ケーブル1と同じ構造の超電導ケーブル1a,1bの各ケーブルコア10a,10bの端部同士を接続する中間接続箱3aを備える。ここでは、超電導ケーブル1aと超電導ケーブル1bとが送電線の一部区間を構成し、電力供給側の超電導ケーブル1a(ケーブルコア10a)から需要側の超電導ケーブル1b(ケーブルコア10b)に向かって送電される。また、超電導ケーブル1a,1bは、3.3kV、1000A級の送電用ケーブルである。
(Embodiment 1)
The intermediate connection structure of the superconducting cable transmission line according to the first embodiment of the present invention shown in FIGS. 2 and 3 includes the ends of the cable cores 10a and 10b of the superconducting cables 1a and 1b having the same structure as the superconducting cable 1 described above. An intermediate connection box 3a to be connected is provided. Here, superconducting cable 1a and superconducting cable 1b constitute a part of the transmission line, and power is transmitted from superconducting cable 1a (cable core 10a) on the power supply side toward superconducting cable 1b (cable core 10b) on the demand side. Is done. The superconducting cables 1a and 1b are 3.3 kV, 1000 A class power transmission cables.

ケーブルコア10a,10bは、低電圧送電用である。また、中間接続箱30aは、冷媒が充填され、接続されるケーブルコア10a,10bの端部が収納される冷媒容器30と、冷媒容器30内に固定され、ケーブルコア10a,10bの端部が接続される接続用導体50とを備える。ここでは、各超電導ケーブル1a,1bの3つのケーブルコア10a,10bのうち、1つのケーブルコアについてのみ図示する。   The cable cores 10a and 10b are for low-voltage power transmission. Further, the intermediate connection box 30a is filled with a refrigerant, the refrigerant container 30 in which the ends of the cable cores 10a and 10b to be connected are accommodated, and the ends of the cable cores 10a and 10b are fixed in the refrigerant container 30. And a connecting conductor 50 to be connected. Here, only one cable core is illustrated among the three cable cores 10a and 10b of the superconducting cables 1a and 1b.

この例では、各超電導ケーブル1a,1bの断熱管20の端部からそれぞれケーブルコア10a,10bの端部が引き出され、各断熱管20の端部が冷媒容器30に設けられたケーブル導入口31a,31bに連結されることで、各ケーブルコア10a,10bが冷媒容器30に収納されている。また、冷媒容器30は、真空容器40に収納され、冷媒容器30と真空容器40との間に真空断熱層が形成されている。   In this example, the end portions of the cable cores 10a and 10b are drawn out from the end portions of the heat insulation pipes 20 of the superconducting cables 1a and 1b, respectively, and the end portions of the heat insulation pipes 20 are provided in the refrigerant container 30. , 31b, the cable cores 10a, 10b are housed in the refrigerant container 30. The refrigerant container 30 is housed in the vacuum container 40, and a vacuum heat insulating layer is formed between the refrigerant container 30 and the vacuum container 40.

冷媒容器30に収納された各ケーブルコア10a,10bの端部は、段剥ぎされ、超電導導体12が露出しており、接続用導体50に接続されている。接続用導体50は、銅製の部材であり、柱状の基部51と、この基部51から並列に突出する2つの接続部52とを有する。そして、各ケーブルコア10a,10bの超電導導体12が接続用導体50の接続部52に接続されることで、接続用導体50により、ケーブルコア10a,10bの端部同士が電気的に接続されている。具体的には、各ケーブルコア10a,10bの超電導導体12と接続用導体50の接続部52とがアタッチメント53(例、マルチコンタクト(商品名))を介して接続されている。アタッチメント53は、銅製の円柱状の部材であり、一端側にケーブルコアのフォーマ11を挿入可能な第一挿入穴と、他端側に接続用導体50の接続部52を挿入可能な第二挿入穴とを有する。アタッチメント53の第一挿入穴の内周面には、複数の弾性接触子を備え、これら弾性接触子の弾性により、挿入されたケーブルコア10a(10b)のフォーマ11を把持し、超電導導体12がアタッチメント53に半田接続されている。また、アタッチメント53の第二挿入穴も第一挿入穴と同様の構成であり、挿入された接続用導体50の接続部52を把持している。これにより、アタッチメント53を介して、各ケーブルコア10a,10bの端部が接続用導体50に電気的に接続され、接続用導体50により、各ケーブルコア10a,10bの端部同士が電気的に接続されている。   The ends of the cable cores 10a and 10b accommodated in the refrigerant container 30 are stripped, the superconducting conductor 12 is exposed, and is connected to the connecting conductor 50. The connection conductor 50 is a copper member, and has a columnar base 51 and two connection portions 52 protruding in parallel from the base 51. Then, by connecting the superconducting conductor 12 of each cable core 10a, 10b to the connection portion 52 of the connection conductor 50, the ends of the cable cores 10a, 10b are electrically connected to each other by the connection conductor 50. Yes. Specifically, the superconducting conductor 12 of each cable core 10a, 10b and the connecting portion 52 of the connecting conductor 50 are connected via an attachment 53 (for example, multi-contact (trade name)). The attachment 53 is a cylindrical member made of copper, and has a first insertion hole into which the cable core former 11 can be inserted on one end side, and a second insertion into which the connection portion 52 of the connection conductor 50 can be inserted on the other end side. With holes. The inner peripheral surface of the first insertion hole of the attachment 53 is provided with a plurality of elastic contacts, and the elasticity of these elastic contacts holds the former 11 of the inserted cable core 10a (10b), and the superconducting conductor 12 The attachment 53 is soldered. Further, the second insertion hole of the attachment 53 has the same configuration as the first insertion hole, and holds the connection portion 52 of the inserted connection conductor 50. Thereby, the end portions of the cable cores 10a and 10b are electrically connected to the connection conductor 50 via the attachment 53, and the end portions of the cable cores 10a and 10b are electrically connected to each other by the connection conductor 50. It is connected.

なお、接続用導体50は、図3に示すように、超電導ケーブル1a,1bのケーブルコア10a,10bと同数存在し、3つの接続用導体50により、各超電導ケーブル1a,1bの対応するケーブルコア10a,10bの端部同士が電気的にそれぞれ接続されている。これら接続用導体50は、絶縁性の保持部材54により間隔をあけて一括に保持され、接続用導体50間の絶縁が確保されており、この保持部材54が冷媒容器30にボルトで固定されることで、冷媒容器30内に固定されている。また、接続用導体50との接続箇所において、超電導ケーブル1a(1b)の各ケーブルコア10a(10b)端部間に隙間が形成されており、冷媒容器30に冷媒が充填されることで、冷媒により、ケーブルコア10a(10b)同士の絶縁を図ることができる。そのため、ケーブルコア10a,10b端部と接続用導体50との接続箇所の外側に補強絶縁層が設けられていない。   As shown in FIG. 3, there are the same number of connecting conductors 50 as the cable cores 10a and 10b of the superconducting cables 1a and 1b. The three connecting conductors 50 allow the corresponding cable cores of the superconducting cables 1a and 1b. The ends of 10a and 10b are electrically connected to each other. These connecting conductors 50 are collectively held at intervals by an insulating holding member 54 to ensure insulation between the connecting conductors 50, and this holding member 54 is fixed to the refrigerant container 30 with bolts. Thus, the refrigerant container 30 is fixed. In addition, a gap is formed between the ends of the cable cores 10a (10b) of the superconducting cable 1a (1b) at the connection point with the connection conductor 50, and the refrigerant container 30 is filled with the refrigerant, As a result, the cable cores 10a (10b) can be insulated from each other. For this reason, the reinforcing insulating layer is not provided outside the connection portion between the end portions of the cable cores 10a and 10b and the connection conductor 50.

また、各ケーブルコア10a,10bの端部が接続用導体50に接続されることで、ケーブルコア10a端部の進行方向に対してケーブルコア10b端部の進行方向が変わっている。具体的には、ケーブルコア10a端部の進行方向とケーブルコア10b端部の進行方向とが互いにずれて逆向きになる(図5(A)参照。図中の矢印はケーブルコア端部の進行方向を示す)。この場合、送電線における中間接続構造の設置位置にU字状の曲がり部が設けられる。   In addition, since the end portions of the cable cores 10a and 10b are connected to the connecting conductor 50, the traveling direction of the end portion of the cable core 10b is changed with respect to the traveling direction of the end portion of the cable core 10a. Specifically, the traveling direction of the end portion of the cable core 10a and the traveling direction of the end portion of the cable core 10b are shifted from each other and are opposite to each other (see FIG. 5A). Show directions). In this case, a U-shaped bent portion is provided at the installation position of the intermediate connection structure in the power transmission line.

さらに、中間接続箱3aには、冷媒容器30に冷媒を供給するための冷媒導入口32と、冷媒容器30に冷媒が充填されたことを検知するための冷媒排出口33が設けられている。これら冷媒導入口32及び冷媒排出口33はいずれも、冷媒容器30に連通し、冷媒容器30の鉛直上方に開口している。   Further, the intermediate connection box 3a is provided with a refrigerant introduction port 32 for supplying the refrigerant to the refrigerant container 30, and a refrigerant discharge port 33 for detecting that the refrigerant is filled in the refrigerant container 30. Both the refrigerant introduction port 32 and the refrigerant discharge port 33 communicate with the refrigerant container 30 and open vertically above the refrigerant container 30.

真空容器40の上面及び正面に、中間接続箱3aを牽引するフックが取り付けられるフック取付部41が設けられている。一方、真空容器40の下面及び背面に、中間接続箱3aを所定位置に固定設置するための脚部42が設けられている。また、冷媒容器30と真空容器40との間の真空断熱層に連通する真空ポート43が設けられており、中間接続箱3aを組み立てた後、真空断熱層を真空引きすることができる。   On the upper surface and the front surface of the vacuum vessel 40, a hook attachment portion 41 to which a hook that pulls the intermediate connection box 3a is attached is provided. On the other hand, leg portions 42 for fixing and installing the intermediate connection box 3a at predetermined positions are provided on the lower surface and the rear surface of the vacuum vessel 40. Further, a vacuum port 43 communicating with the vacuum heat insulating layer between the refrigerant container 30 and the vacuum container 40 is provided, and the vacuum heat insulating layer can be evacuated after assembling the intermediate connection box 3a.

次に、上記した実施形態1の中間接続構造を備える超電導ケーブル送電線の布設方法の一例を図4を参照して説明する。   Next, an example of a method for laying a superconducting cable transmission line provided with the intermediate connection structure of the first embodiment will be described with reference to FIG.

ここでは、図4に示すような、地上から高さ方向に延び、建屋100の屋上から水平方向に突き出した載置部110の位置にU字状の曲がり部uが設けられ、再び地上に戻る送電線経路Pを考え、この経路設計に従って超電導ケーブル送電線を布設する場合を例に説明する。   Here, as shown in FIG. 4, a U-shaped bent portion u is provided at the position of the mounting portion 110 that extends in the height direction from the ground and protrudes in the horizontal direction from the roof of the building 100, and returns to the ground again. Considering the transmission line route P, a case where a superconducting cable transmission line is laid according to this route design will be described as an example.

まず、予め地上で中間接続箱3aの組み立てを行い、中間接続構造の施工を行う。具体的には、超電導ケーブル1a,1bの断熱管端部からケーブルコア10a,10b端部を引き出し、ケーブルコア10a,10b端部を段剥ぎして超電導導体を露出させる。次いで、超電導導体を露出させた各ケーブルコア10a,10b端部をそれぞれ接続用導体50に接続する。次に、両ケーブルコア10a,10bの端部を接続用導体50に接続した状態で、両ケーブルコア10a,10bの端部を収納するように冷媒容器を取り付け、接続用導体50を冷媒容器内に固定する。最後に、この冷媒容器を収納するように真空容器を取り付け、中間接続箱3aを組み立てる。   First, the intermediate connection box 3a is assembled on the ground beforehand, and the intermediate connection structure is constructed. Specifically, the ends of the cable cores 10a and 10b are pulled out from the ends of the heat insulating tubes of the superconducting cables 1a and 1b, and the ends of the cable cores 10a and 10b are stripped to expose the superconducting conductor. Next, the ends of the cable cores 10a and 10b where the superconducting conductors are exposed are connected to the connection conductors 50, respectively. Next, with the ends of both cable cores 10a and 10b connected to the connection conductor 50, a refrigerant container is attached so as to accommodate the ends of both cable cores 10a and 10b, and the connection conductor 50 is placed inside the refrigerant container. To fix. Finally, a vacuum container is attached so as to accommodate the refrigerant container, and the intermediate connection box 3a is assembled.

中間接続箱3aを組み立てた後、中間接続箱3a(真空容器40)の上面に設けられたフック取付部41にフックを引っ掛け、中間接続箱3aをクレーンで吊り上げて所定の位置(この例では、建屋100の載置部110)に設置し、中間接続箱3aの下面に設けられた脚部42を載置部110に固定する。次に、中間接続箱3aに設けられた冷媒導入口32から冷媒を供給し、超電導ケーブル1a,1bの断熱管内にも冷媒を行き渡らせると共に、冷媒容器に冷媒を充填する。以上により、中間接続構造が設置される載置部110の位置にU字状の曲がり部が設けられた送電線の布設が完了する。   After assembling the intermediate connection box 3a, the hook is hooked on the hook mounting portion 41 provided on the upper surface of the intermediate connection box 3a (vacuum vessel 40), and the intermediate connection box 3a is lifted with a crane (in this example, It is installed on the mounting part 110) of the building 100, and the leg part 42 provided on the lower surface of the intermediate connection box 3a is fixed to the mounting part 110. Next, the refrigerant is supplied from the refrigerant introduction port 32 provided in the intermediate connection box 3a, and the refrigerant is distributed in the heat insulating pipes of the superconducting cables 1a and 1b, and the refrigerant container is filled with the refrigerant. Thus, the installation of the power transmission line in which the U-shaped bent portion is provided at the position of the mounting portion 110 where the intermediate connection structure is installed is completed.

この例では、中間接続箱3aが送電線経路Pの最も高い位置に設置されるため、中間接続箱3aの冷媒導入口32から冷媒を供給することで、送電線全体に冷媒を行き渡らせることができる(図2、3参照)。その際、中間接続箱3aの冷媒排出口33の開口から冷媒が流出することをもって、送電線全体に冷媒が行き渡ったことを確認することができる。   In this example, since the intermediate connection box 3a is installed at the highest position in the transmission line path P, the refrigerant can be distributed throughout the transmission line by supplying the refrigerant from the refrigerant inlet 32 of the intermediate connection box 3a. (See FIGS. 2 and 3). At that time, it can be confirmed that the refrigerant has spread over the entire transmission line by the refrigerant flowing out from the opening of the refrigerant discharge port 33 of the intermediate connection box 3a.

このような布設方法を採用することで、中間接続構造の施工を十分な作業スペースが確保できる地上で行うことができるので、建屋100の載置部110に十分な作業スペースが確保できない場合にも対応でき、作業性の向上、工期の短縮を図ることができる。また、この実施形態1の中間接続箱3aから分岐を取って、屋上から建屋の各階に配電することも可能である。   By adopting such a laying method, the construction of the intermediate connection structure can be performed on the ground where a sufficient work space can be secured, so even when a sufficient work space cannot be secured on the mounting part 110 of the building 100 It is possible to cope with it, improving workability and shortening the construction period. It is also possible to take a branch from the intermediate connection box 3a of Embodiment 1 and distribute power from the roof to each floor of the building.

(その他の実施形態)
上記した実施形態1の中間接続構造とは別の、その他の実施形態の中間接続構造について説明する。
(Other embodiments)
An intermediate connection structure according to another embodiment different from the intermediate connection structure according to the first embodiment will be described.

図5(B)に示す実施形態に係る中間接続構造は、ケーブルコア10a,10bの端部と接続用導体50との接続形態が、実施形態1の中間接続構造と異なり、ケーブルコア10a端部の進行方向とケーブルコア10b端部の進行方向とが交差する例である(図中の矢印は、ケーブルコア端部の進行方向を示す。図5(C)、図6も同じ)。中間接続箱3bは、接続用導体50の接続部がL字状に配されており、各ケーブルコア10a,10bの端部が接続用導体50に接続されることで、ケーブルコア10a端部の進行方向とケーブルコア10b端部の進行方向とが直交している。この場合、送電線における中間接続構造の設置位置にL字状の曲がり部が設けられる。例えば、各ケーブルコア10a,10bを同一水平面上に配置して、水平方向に布設した送電線の途中にL字状の曲がり部を設けることができる。   The intermediate connection structure according to the embodiment shown in FIG. 5B is different from the intermediate connection structure of the first embodiment in the connection form between the end portions of the cable cores 10a and 10b and the connection conductor 50. This is an example in which the traveling direction of the cable core 10b and the traveling direction of the end portion of the cable core 10b intersect each other (the arrow in the figure indicates the traveling direction of the cable core end portion. In the intermediate connection box 3b, the connection portions of the connection conductors 50 are arranged in an L shape, and the end portions of the cable cores 10a and 10b are connected to the connection conductors 50, so that the end portions of the cable cores 10a are connected. The traveling direction and the traveling direction of the end portion of the cable core 10b are orthogonal to each other. In this case, an L-shaped bent portion is provided at the installation position of the intermediate connection structure in the transmission line. For example, the cable cores 10a and 10b can be arranged on the same horizontal plane, and an L-shaped bent portion can be provided in the middle of the transmission line laid in the horizontal direction.

また、この例では、ケーブルコア10a端部の進行方向に対してケーブルコア10b端部の進行方向が三次元的に交差するように中間接続箱3bを設置することも可能である。この場合、ケーブルコア10a端部の進行方向に対してケーブルコア10b端部の進行方向を高さ方向に変更することができ、送電線の途中に高低差を設ける必要があるときに対応することができる。例えば送電線経路の途中に鉛直方向の高低差がある場合、高低差を設ける位置にこの中間接続箱3bを設置することで、進行方向を水平方向から鉛直方向に又はその逆に変更することができる。特に、送電線をビルや橋梁などの構造物の壁面に沿って布設するときに好適に利用可能である。   In this example, it is also possible to install the intermediate connection box 3b so that the traveling direction of the cable core 10b end portion three-dimensionally intersects with the traveling direction of the cable core 10a end portion. In this case, the traveling direction of the cable core 10b end can be changed to the height direction with respect to the traveling direction of the cable core 10a end, and this corresponds to the case where a height difference needs to be provided in the middle of the transmission line. Can do. For example, when there is a vertical difference in the middle of the transmission line route, the traveling direction can be changed from the horizontal direction to the vertical direction or vice versa by installing this intermediate connection box 3b at the position where the height difference is provided. it can. In particular, it can be suitably used when laying power transmission lines along the wall surfaces of structures such as buildings and bridges.

図5(C)に示す実施形態に係る中間接続構造は、ケーブルコア10a,10bの端部と接続用導体50との接続形態が、ケーブルコア10a端部の進行方向とケーブルコア10b端部の進行方向とが互いにずれ、かつ、ケーブルコア10a端部の進行方向の延長方向とケーブルコア10b端部の進行方向とが同じ向きになる例である。中間接続箱3cは、接続用導体50の接続部が互いに反対向き、かつ、平行に配されている。この場合、送電線における中間接続構造の設置位置にZ字状の曲がり部が設けられる。   In the intermediate connection structure according to the embodiment shown in FIG. 5C, the connection form between the end portions of the cable cores 10a and 10b and the connection conductor 50 is such that the traveling direction of the end portion of the cable core 10a and the end portion of the cable core 10b are the same. In this example, the traveling directions are shifted from each other, and the extending direction of the cable core 10a end and the cable core 10b end are the same. In the intermediate connection box 3c, the connection portions of the connection conductors 50 are arranged in opposite directions and in parallel. In this case, a Z-shaped bent portion is provided at the installation position of the intermediate connection structure in the power transmission line.

以上説明した本発明の実施形態に係る中間接続構造は、送電線経路の設計の自由度を向上させることができ、また、構造物に合わせた経路設計が可能となるため、例えば大規模ビルや工場などの産業用途の配電に適している。   The intermediate connection structure according to the embodiment of the present invention described above can improve the degree of freedom of design of the transmission line route, and also enables route design according to the structure. Suitable for power distribution in industrial applications such as factories.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記した実施形態では電力供給側と需要側のケーブルコアの本数が同じである場合を例に説明したが、電力供給側と需要側のケーブルコアの本数が異なってもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, in the above-described embodiment, the case where the number of cable cores on the power supply side and the demand side is the same has been described as an example, but the number of cable cores on the power supply side and the demand side may be different.

図6(D)に示す実施形態の変形例に係る中間接続構造は、電力供給側の1つのケーブルコア10aの端部と需要側の2つのケーブルコア10bの端部とが接続用導体50に接続されている例である。中間接続箱3dは、接続用導体50の3つの接続部がY字状に配されており、ケーブルコアの端部がそれぞれ接続されることで、送電線における中間接続構造の設置位置にY字状の分岐部を設けることができる。この例では、接続用導体50の接続部をY字状に配置しているが、接続部をT字状に配置して、T字状の分岐部を実現してもよい。また、ケーブルコア10aの端部と接続する接続部を変更してもよい。さらに、少なくとも1つのケーブルコア端部の進行方向に対して、他の少なくとも一つのケーブルコア端部の進行方向を高さ方向に変更するように、各ケーブルコア端部を接続用導体に接続してもよい。   In the intermediate connection structure according to the modification of the embodiment shown in FIG. 6 (D), the connection conductor 50 includes the end of one cable core 10a on the power supply side and the end of the two cable cores 10b on the demand side. This is an example of connection. In the intermediate connection box 3d, the three connection portions of the connection conductor 50 are arranged in a Y shape, and the end portions of the cable core are connected to each other, so that the Y position is set at the installation position of the intermediate connection structure in the transmission line. Can be provided. In this example, the connecting portion of the connecting conductor 50 is arranged in a Y shape, but the connecting portion may be arranged in a T shape to realize a T-shaped branch portion. Further, the connecting portion connected to the end portion of the cable core 10a may be changed. Further, each cable core end is connected to the connecting conductor so that the traveling direction of at least one other cable core end is changed to the height direction with respect to the traveling direction of at least one cable core end. May be.

図6(E)に示す実施形態の変形例に係る中間接続構造は、電力供給側の2つのケーブルコア10aの端部と需要側の2つのケーブルコア10bの端部とが接続用導体50に接続されている例である。中間接続箱3eは、接続用導体50の4つの接続部がH字状に配されており、ケーブルコアの端部がそれぞれ接続されることで、送電線における中間接続構造の設置位置にH字状の分岐部を設けることができる。この例では、接続用導体50の接続部をH字状に配置しているが、接続部をX字状(十字状)に配置して、X字状(十字状)の分岐部を実現してもよい。さらに、少なくとも1つのケーブルコア端部の進行方向に対して、他の少なくとも一つのケーブルコア端部の進行方向を高さ方向に変更するように、各ケーブルコア端部を接続用導体に接続してもよい。   In the intermediate connection structure according to the modification of the embodiment shown in FIG. 6E, the end portions of the two cable cores 10a on the power supply side and the end portions of the two cable cores 10b on the demand side are connected conductors 50. This is an example of connection. In the intermediate connection box 3e, the four connection portions of the connection conductor 50 are arranged in an H shape, and the end portions of the cable core are connected to each other, so that the intermediate connection structure in the transmission line has an H shape. Can be provided. In this example, the connecting portion of the connecting conductor 50 is arranged in an H shape, but the connecting portion is arranged in an X shape (cross shape) to realize an X shape (cross shape) branching portion. May be. Further, each cable core end is connected to the connecting conductor so that the traveling direction of at least one other cable core end is changed to the height direction with respect to the traveling direction of at least one cable core end. May be.

本発明の超電導ケーブル送電線の中間接続構造、及び超電導ケーブル送電線の布設方法は、例えば大規模ビルや工場などの産業用途の配電の分野に好適に利用可能である。   The intermediate connection structure of the superconducting cable transmission line and the method for laying the superconducting cable transmission line of the present invention can be suitably used in the field of power distribution for industrial use such as large-scale buildings and factories.

1,1a,1b 超電導ケーブル
10,10a,10b 超電導ケーブルコア
11 フォーマ 12 超電導導体 13 絶縁層
14 シールド層 15 保護層
20 断熱管
21 内管 22 外管 25 防食層
3a,3b,3c,3d,3e 中間接続箱
30 冷媒容器
31a,31b ケーブル導入口
32 冷媒導入口 33 冷媒排出口
40 真空容器
41 フック取付部 42 脚部 43 真空ポート
50 接続用導体
51 基部 52 接続部 53 アタッチメント
54 保持部材
100 建屋 110 載置部
P 送電線経路 u 曲がり部
1,1a, 1b Superconducting cable
10,10a, 10b Superconducting cable core
11 Former 12 Superconducting conductor 13 Insulating layer
14 Shield layer 15 Protective layer
20 Insulated pipe
21 Inner tube 22 Outer tube 25 Anticorrosion layer
3a, 3b, 3c, 3d, 3e Intermediate connection box
30 Refrigerant container
31a, 31b Cable inlet
32 Refrigerant inlet 33 Refrigerant outlet
40 vacuum vessel
41 Hook mounting part 42 Leg part 43 Vacuum port
50 Connecting conductor
51 Base 52 Connection 53 Attachment
54 Holding member
100 Building 110 Placement
P Transmission line path u Curved part

Claims (8)

超電導導体を有するケーブルコアと、前記ケーブルコアの端部同士を接続する中間接続箱と、を備える超電導ケーブル送電線の中間接続構造であって、
前記ケーブルコアは、低電圧送電用であり、
この中間接続箱は、
冷媒が充填され、接続される前記ケーブルコアの端部が収納される冷媒容器と、
前記冷媒容器内に固定され、前記ケーブルコアの端部が接続される接続用導体と、
を備え、
前記接続用導体が、前記ケーブルコアの端部同士を電気的に接続し、
この接続用導体を介して、電力供給側の少なくとも1つのケーブルコア端部の進行方向に対して需要側の少なくとも1つのケーブルコア端部の進行方向が変わることを特徴とする超電導ケーブル送電線の中間接続構造。
An intermediate connection structure of a superconducting cable transmission line comprising a cable core having a superconducting conductor and an intermediate connection box for connecting ends of the cable cores,
The cable core is for low-voltage power transmission,
This intermediate connection box
A refrigerant container filled with a refrigerant and containing an end of the connected cable core; and
A connecting conductor fixed in the refrigerant container and connected to an end of the cable core;
With
The connection conductor electrically connects the ends of the cable core;
A superconducting cable transmission line characterized in that the traveling direction of at least one cable core end on the demand side changes via the connecting conductor with respect to the traveling direction of at least one cable core end on the power supply side. Intermediate connection structure.
電力供給側の前記ケーブルコア端部の進行方向と需要側の前記ケーブルコア端部の進行方向とが互いにずれて逆向きになることを特徴とする請求項1に記載の超電導ケーブル送電線の中間接続構造。   The intermediate direction of the superconducting cable transmission line according to claim 1, wherein the traveling direction of the cable core end portion on the power supply side and the traveling direction of the cable core end portion on the demand side are shifted from each other and opposite to each other. Connection structure. 電力供給側の前記ケーブルコア端部の進行方向と需要側の前記ケーブルコア端部の進行方向とが交差することを特徴とする請求項1に記載の超電導ケーブル送電線の中間接続構造。   The intermediate connection structure of a superconducting cable transmission line according to claim 1, wherein a traveling direction of the cable core end on the power supply side intersects a traveling direction of the cable core end on the demand side. 電力供給側の前記ケーブルコア端部の進行方向と需要側の前記ケーブルコア端部の進行方向とが互いにずれ、電力供給側の前記ケーブルコア端部の進行方向の延長方向と需要側の前記ケーブルコア端部の進行方向とが同じ向きになることを特徴とする請求項1に記載の超電導ケーブル送電線の中間接続構造。   The traveling direction of the cable core end on the power supply side and the traveling direction of the cable core end on the demand side are shifted from each other, and the extending direction of the traveling direction of the cable core end on the power supply side and the cable on the demand side The intermediate connection structure for a superconducting cable transmission line according to claim 1, wherein the traveling direction of the core end portion is the same direction. 電力供給側の前記ケーブルコア端部の進行方向に対して需要側の前記ケーブルコア端部の進行方向が三次元的に交差することを特徴とする請求項3に記載の超電導ケーブル送電線の中間接続構造。   The intermediate direction of the superconducting cable transmission line according to claim 3, wherein the traveling direction of the cable core end portion on the demand side three-dimensionally intersects with the traveling direction of the cable core end portion on the power supply side. Connection structure. 前記中間接続箱を牽引するフックが取り付けられるフック取付部を備えることを特徴とする請求項1〜5のいずれか一項に記載の超電導ケーブル送電線の中間接続構造。   The intermediate connection structure for a superconducting cable transmission line according to any one of claims 1 to 5, further comprising a hook attachment portion to which a hook that pulls the intermediate connection box is attached. 前記冷媒容器に前記冷媒を供給するための冷媒導入口と、
前記冷媒容器の鉛直上方に設けられた開口で、この開口から前記冷媒が流出することをもって、前記冷媒容器に前記冷媒が充填されたことを検知するための冷媒排出口と、
を備えることを特徴とする請求項1〜6のいずれか一項に記載の超電導ケーブル送電線の中間接続構造。
A refrigerant inlet for supplying the refrigerant to the refrigerant container;
An opening provided vertically above the refrigerant container, and a refrigerant discharge port for detecting that the refrigerant is filled in the refrigerant container when the refrigerant flows out of the opening;
The intermediate connection structure of the superconducting cable transmission line according to any one of claims 1 to 6, wherein the intermediate connection structure is provided.
超電導導体を有する電力供給側のケーブルコアの端部を接続用導体に接続する工程と、
超電導導体を有する需要側のケーブルコアの端部を、前記電力供給側のケーブルコアの端部の進行方向に対して進行方向が変わるように、前記接続用導体に接続する工程と、
前記両ケーブルコアの端部を前記接続用導体に接続した状態で、前記両ケーブルコアの端部を冷媒容器に収納し、前記接続用導体を冷媒容器内に固定して、中間接続箱を組み立てる工程と、
前記中間接続箱を移動させ、前記中間接続箱を送電線の所定の位置に設置する工程と、
前記中間接続箱を設置した後、前記冷媒容器に冷媒を充填する工程と、
を備えることを特徴とする超電導ケーブル送電線の布設方法。
Connecting the end of the cable core on the power supply side having the superconducting conductor to the connecting conductor;
Connecting the end of the demand-side cable core having a superconducting conductor to the connecting conductor such that the traveling direction changes with respect to the traveling direction of the end of the power supply-side cable core;
With the ends of both cable cores connected to the connection conductor, the ends of the cable cores are housed in a refrigerant container, the connection conductor is fixed in the refrigerant container, and an intermediate connection box is assembled. Process,
Moving the intermediate connection box and installing the intermediate connection box at a predetermined position of a power transmission line;
After installing the intermediate junction box, filling the refrigerant container with a refrigerant;
A method for laying a superconducting cable transmission line, comprising:
JP2010056647A 2010-03-12 2010-03-12 Superconducting cable transmission line intermediate connection structure and superconducting cable transmission line laying method Expired - Fee Related JP5067724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056647A JP5067724B2 (en) 2010-03-12 2010-03-12 Superconducting cable transmission line intermediate connection structure and superconducting cable transmission line laying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056647A JP5067724B2 (en) 2010-03-12 2010-03-12 Superconducting cable transmission line intermediate connection structure and superconducting cable transmission line laying method

Publications (2)

Publication Number Publication Date
JP2011193607A true JP2011193607A (en) 2011-09-29
JP5067724B2 JP5067724B2 (en) 2012-11-07

Family

ID=44797939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056647A Expired - Fee Related JP5067724B2 (en) 2010-03-12 2010-03-12 Superconducting cable transmission line intermediate connection structure and superconducting cable transmission line laying method

Country Status (1)

Country Link
JP (1) JP5067724B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027178A (en) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd Connection unit and connection structure
EP2819247A1 (en) * 2013-06-25 2014-12-31 Nexans Method for connecting two superconductive cables in a manner that conducts electricity
FR3017254A1 (en) * 2014-02-05 2015-08-07 Nexans DEVICE FOR CONNECTING A MAIN SUPERCONDUCTING CABLE TO A PLURALITY OF SECONDARY SUPERCONDUCTING CABLES
RU2575880C2 (en) * 2013-06-25 2016-02-20 Нексанс Conducting connection method for two superconductive cables

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984691U (en) * 1972-11-10 1974-07-23
JPS57159004A (en) * 1981-03-26 1982-10-01 Toshiba Corp Cooling method for superconductive conductor with supercritical helium as coolant
JPH05137230A (en) * 1991-11-12 1993-06-01 Hitachi Cable Ltd T-branch provided with potential detector
JP2009140912A (en) * 2007-11-14 2009-06-25 Sumitomo Electric Ind Ltd Terminal connection structure of superconducting cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984691U (en) * 1972-11-10 1974-07-23
JPS57159004A (en) * 1981-03-26 1982-10-01 Toshiba Corp Cooling method for superconductive conductor with supercritical helium as coolant
JPH05137230A (en) * 1991-11-12 1993-06-01 Hitachi Cable Ltd T-branch provided with potential detector
JP2009140912A (en) * 2007-11-14 2009-06-25 Sumitomo Electric Ind Ltd Terminal connection structure of superconducting cable

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027178A (en) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd Connection unit and connection structure
EP2819247A1 (en) * 2013-06-25 2014-12-31 Nexans Method for connecting two superconductive cables in a manner that conducts electricity
CN104253364A (en) * 2013-06-25 2014-12-31 尼克桑斯公司 Method for connecting two superconductive cables in a manner that conducts electricity
KR20150000821A (en) * 2013-06-25 2015-01-05 넥쌍 Mtehod of electrically conductive connection of two superconducting cables
RU2575880C2 (en) * 2013-06-25 2016-02-20 Нексанс Conducting connection method for two superconductive cables
KR102172077B1 (en) 2013-06-25 2020-11-02 넥쌍 Mtehod of electrically conductive connection of two superconducting cables
FR3017254A1 (en) * 2014-02-05 2015-08-07 Nexans DEVICE FOR CONNECTING A MAIN SUPERCONDUCTING CABLE TO A PLURALITY OF SECONDARY SUPERCONDUCTING CABLES
EP2905841A1 (en) * 2014-02-05 2015-08-12 Nexans Device for connecting a main superconducting cable to a plurality of superconducting cables

Also Published As

Publication number Publication date
JP5067724B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
US7719130B2 (en) Power cable line
US7922516B2 (en) Piercing connector for continuous flexible bus
Weber et al. Overview of the underground 34.5 kV HTS power cable program in Albany, NY
KR20070003897A (en) Terminal structure of polyphase superconducting cable
US20170338633A1 (en) Quick connect and disconnect cable junction box
JP5067724B2 (en) Superconducting cable transmission line intermediate connection structure and superconducting cable transmission line laying method
CN109861163B (en) Switching device and switching method for switching three-phase coaxial superconducting cable into three-core superconducting cable
EP2321685B1 (en) Optical fibre composite electric power cable comprising a repair box
JP5724703B2 (en) Method and apparatus for starting superconducting cable
JP2008100657A (en) Power supply system to electric propulsion vehicle
CN206211277U (en) A kind of three-phase coenosarc rigid gas insulated power circuit
JP5474599B2 (en) Superconducting cable laying method and superconducting cable
CN106856666A (en) High voltage transmission line
JP5273572B2 (en) Laying the superconducting cable
WO2020125313A1 (en) Power transmission tower
CN206211278U (en) A kind of three-phase coenosarc rigid gas insulated power circuit
JP2006014547A (en) Superconductive cable connecting apparatus
JP2013073831A (en) Superconducting cable line
CN107834472A (en) A kind of architectural electricity pipe well and system
JP2010165552A (en) Superconducting cable, connection structure using the same, and method for constructing the structure
CN205811543U (en) A kind of 10kV desk-top transformer low voltage cable routing structure
KR101086109B1 (en) Joint box for optical fiber composite power cable
CN106532438A (en) Three-phase co-body rigidity air insulation power transmission circuit
KR101086167B1 (en) Outer case structure for optical fiber composite power cable joint box
JP4471095B2 (en) Branch power drawing structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees