JP2011193568A - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
JP2011193568A
JP2011193568A JP2010055426A JP2010055426A JP2011193568A JP 2011193568 A JP2011193568 A JP 2011193568A JP 2010055426 A JP2010055426 A JP 2010055426A JP 2010055426 A JP2010055426 A JP 2010055426A JP 2011193568 A JP2011193568 A JP 2011193568A
Authority
JP
Japan
Prior art keywords
acceleration
value
estimated value
electric vehicle
vehicle control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010055426A
Other languages
Japanese (ja)
Other versions
JP5515885B2 (en
Inventor
Yasuyuki Noto
泰之 能登
Kyoken Kin
亨権 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010055426A priority Critical patent/JP5515885B2/en
Publication of JP2011193568A publication Critical patent/JP2011193568A/en
Application granted granted Critical
Publication of JP5515885B2 publication Critical patent/JP5515885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a delay in estimation of acceleration caused by the vibration of the γ-/δ-axis current of PMSM or the mechanical vibration. <P>SOLUTION: An electric vehicle control device includes: a sensorless vector control part 2A which has a positional error estimation part 31 that estimates a positional error of a rotor from the voltage command of an inverter 3 for driving PMSM4 and a current detected value and a phase estimation part 25A that calculates the positional estimate of the rotor from the positional error estimate and executes vector control based on a torque command and the rotor position estimate; an acceleration estimation part 32 which estimates the acceleration of PMSM4 based on the positional error estimate; and an idling skid control part 7A which estimates the idling state between wheels and rails based on the acceleration estimate generated by this acceleration estimation part 32 and generates an acceleration torque for adjusting the torque command. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気車の主電動機としての永久磁石同期電動機を位置・速度センサレスベクトル制御により可変速駆動する電気車制御装置に関するものである。   The present invention relates to an electric vehicle control apparatus that drives a permanent magnet synchronous motor as a main motor of an electric vehicle at a variable speed by position / speed sensorless vector control.

永久磁石同期電動機を位置・速度センサレスベクトル制御する電気車制御装置として、特許文献1に記載された従来技術が知られている。
図3は、この従来技術に基づいて構成された電気車制御装置のブロック図である。
As an electric vehicle control device that performs position / speed sensorless vector control of a permanent magnet synchronous motor, the prior art described in Patent Document 1 is known.
FIG. 3 is a block diagram of an electric vehicle control device configured based on this prior art.

図3において、電気車制御装置1は、永久磁石同期電動機4に対するトルク指令値が入力されてベクトル制御を実行するセンサレスベクトル制御部2と、このセンサレスベクトル制御部2により生成された三相の電圧指令値vua ,vva ,vwa に基づくPWM信号により半導体スイッチング素子がオンオフ駆動されるインバータ部3と、このインバータ部3によって回転が制御される永久磁石同期電動機(以下、PMSMともいう)4と、インバータ部3から永久磁石同期電動機4に供給される三相電流iua,iva,iwaを検出してセンサレスベクトル制御部2に与える電流センサ5と、微分演算部6と、空転滑走制御部7と、加算器8とを備えている。 In FIG. 3, the electric vehicle control device 1 includes a sensorless vector control unit 2 that executes vector control by inputting a torque command value for the permanent magnet synchronous motor 4, and a three-phase voltage generated by the sensorless vector control unit 2. An inverter unit 3 in which the semiconductor switching element is driven on and off by a PWM signal based on the command values v ua * , v va * , and v wa * , and a permanent magnet synchronous motor (hereinafter also referred to as PMSM) whose rotation is controlled by the inverter unit 3 4), a current sensor 5 that detects and supplies the three-phase currents i ua , i va , i wa supplied from the inverter unit 3 to the permanent magnet synchronous motor 4 to the sensorless vector control unit 2, and a differential calculation unit 6 The idling and sliding control unit 7 and the adder 8 are provided.

センサレスベクトル制御部2は、入力されたトルク指令値からγ,δ軸(磁極軸に平行なd軸、及び、このd軸に直交するq軸を制御装置内で推定した制御軸)電流指令値iγa ,iδa をそれぞれ生成する電流指令生成部21と、これらのγ軸電流指令値iγa 、δ軸電流指令値iδa と電流センサ5からフィードバックされたγ軸電流検出値iγa、δ軸電流検出値iδaとからPI(比例・積分)制御を実行してγ軸電圧指令値vγa 、δ軸電圧指令値vδa をそれぞれ生成するACR制御部22と、これらのγ軸電圧指令値vγa 、δ軸電圧指令値vδa を回転子位置推定値θに従い座標変換して三相各相の電圧指令値vua ,vva ,vwa を生成し、インバータ部3に供給する座標変換部23と、前記電流センサ5による三相各相の電流検出値iua,iva,iwaを位置推定値θに従い座標変換する座標変換部24と、γ軸電圧指令値vγa 、δ軸電圧指令値vδa 、γ軸電流検出値iγa、δ軸電流検出値iδaが入力されて永久磁石同期電動機4の回転子位置を推定し、この位置推定値θを座標変換部23,24にそれぞれ供給する位相推定部25と、を備えている。 The sensorless vector control unit 2 calculates the γ and δ axes (the control axis in which the d axis parallel to the magnetic pole axis and the q axis orthogonal to the d axis are estimated in the control device) from the input torque command value. The current command generator 21 for generating i γa * and i δa * , the γ-axis current command value i γa * , the δ-axis current command value i δa *, and the γ-axis current detection value fed back from the current sensor 5 an ACR control unit 22 that performs PI (proportional / integral) control from i γa and δ-axis current detection value i δa to generate γ-axis voltage command value v γa * and δ-axis voltage command value v δa * , respectively; These γ-axis voltage command value v γa * and δ-axis voltage command value v δa * are coordinate-transformed according to the rotor position estimated value θ # to obtain voltage command values v ua * , v va * , v wa for each of the three phases. * and supplies to the inverter unit 3 coordinate converter 23 The current sensor 5 by the three-phase current of each phase detected value i ua, i va, a coordinate transformation unit 24 for coordinate transformation i wa accordance position estimate theta #, gamma-axis voltage value v .gamma.a *, [delta] -axis voltage The command value v δa * , the γ-axis current detection value i γa , and the δ-axis current detection value i δa are input to estimate the rotor position of the permanent magnet synchronous motor 4, and this position estimation value θ # is converted into the coordinate conversion unit 23, And a phase estimator 25 to be supplied to each of 24.

また、微分演算部6は、位相推定部25から出力された位置推定値θを微分して速度推定値ωを生成する。
空転滑走制御部7は、入力された速度推定値ωの変化率(加速度推定値)がある一定値を超えた場合に、電気車の車輪に空転が発生したと判定し、トルク調整信号(加速トルクまたは減速トルク)を生成して出力する。
加算器8は、空転滑走制御部7から出力されるトルク調整信号をトルク指令値に加算して、センサレスベクトル制御部2に入力されるトルク指令値を調整する。
以上のような構成により、位置センサ及び速度センサを用いずに電気車の空転滑走制御を行うことができる。
Further, the differential calculation unit 6 differentiates the position estimation value θ # output from the phase estimation unit 25 to generate a speed estimation value ω # .
The idling / sliding control unit 7 determines that idling has occurred in the wheel of the electric vehicle when the rate of change (acceleration estimated value) of the input estimated speed value ω # exceeds a certain value, and the torque adjustment signal ( (Acceleration torque or deceleration torque) is generated and output.
The adder 8 adjusts the torque command value input to the sensorless vector control unit 2 by adding the torque adjustment signal output from the idling / sliding control unit 7 to the torque command value.
With the configuration described above, it is possible to perform idling control of an electric vehicle without using a position sensor and a speed sensor.

特開2008−86085号公報(段落[0024]〜[0027]、図3等)JP 2008-86085 A (paragraphs [0024] to [0027], FIG. 3 etc.)

上述した従来技術では、電流センサ5による電流検出誤差やインバータ部3の短絡防止時間(デッドタイム)等の影響によってγ,δ軸電流が振動する場合があり、また、電動機4の機械系が振動する場合もある。このようにγ,δ軸電流や機械系が振動する場合、位相推定部25による位置推定値θや微分演算部6による速度推定値ωが振動することになり、速度推定値ωを微分して求める加速度推定値も振動する。 In the above-described prior art, the γ and δ axis currents may vibrate due to the influence of the current detection error by the current sensor 5 and the short-circuit prevention time (dead time) of the inverter unit 3, and the mechanical system of the motor 4 vibrates. There is also a case. When the γ and δ axis currents and the mechanical system vibrate in this way, the position estimation value θ # by the phase estimation unit 25 and the speed estimation value ω # by the differential calculation unit 6 vibrate, and the speed estimation value ω # The estimated acceleration value obtained by differentiation also vibrates.

加速度推定値が振動すると、空転滑走制御部7が空転を誤検知するおそれがある。これを防止するためには、空転滑走制御部7において加速度推定値をフィルタに通す等の振動低減対策をとる必要があるが、このような振動低減対策をとると加速度推定に遅れが生じ、結果として空転滑走制御に遅れが生じるという問題がある。
そこで、本発明の解決課題は、γ,δ軸電流や機械系の振動に起因した加速度推定の遅れ、ひいては空転滑走制御の遅れを低減可能とした電気車制御装置を提供することにある。
When the estimated acceleration value vibrates, there is a possibility that the idling / sliding control unit 7 may erroneously detect idling. In order to prevent this, it is necessary to take measures for vibration reduction such as passing the estimated acceleration value through a filter in the idling / sliding control unit 7, but if such measures for vibration reduction are taken, the acceleration estimation is delayed. There is a problem that a delay occurs in the idling control.
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric vehicle control apparatus that can reduce the delay in acceleration estimation due to the γ and δ axis currents and the vibration of the mechanical system, and hence the idle sliding control delay.

上記課題を解決するため、請求項1に係る発明は、電気車の主電動機としての永久磁石同期電動機を、位置・速度センサレス制御により可変速駆動する電気車制御装置において、
前記電動機を駆動するインバータ部の電圧指令値と前記電動機の電流検出値とから前記電動機の回転子位置真値と回転子位置推定値との位置誤差を推定する位置誤差推定手段、及び、前記位置誤差の推定値から前記回転子位置推定値を演算する位相推定手段、を有し、前記電動機のトルク指令値及び前記回転子位置推定値に基づいてベクトル制御を実行するセンサレスベクトル制御手段と、
前記位置誤差の推定値に基づいて前記電動機の加速度を推定する加速度推定手段と、
この加速度推定手段により生成された加速度推定値に基づいて車輪とレールとの間の空転状態を推定し、前記トルク指令値を調整するための加減速トルクを生成する空転滑走制御手段と、を備えたものである。
In order to solve the above-mentioned problem, an invention according to claim 1 is an electric vehicle control device that drives a permanent magnet synchronous motor as a main motor of an electric vehicle at a variable speed by position / speed sensorless control.
Position error estimating means for estimating a position error between a rotor position true value and a rotor position estimated value of the motor from a voltage command value of an inverter unit that drives the motor and a current detection value of the motor; and the position Phase estimation means for calculating the rotor position estimated value from an estimated value of error, and sensorless vector control means for executing vector control based on the torque command value of the electric motor and the rotor position estimated value;
Acceleration estimating means for estimating the acceleration of the electric motor based on the estimated value of the position error;
An idle running control means for estimating an idling state between the wheel and the rail based on the acceleration estimated value generated by the acceleration estimating means and generating an acceleration / deceleration torque for adjusting the torque command value. It is a thing.

請求項2に係る発明は、請求項1に記載した電気車制御装置において、前記加速度推定手段は、前記位置誤差推定値に比例する項と、前記位置誤差推定値に比例する項の微分値とを加算して前記加速度推定値を演算するものである。   According to a second aspect of the present invention, in the electric vehicle control device according to the first aspect, the acceleration estimating means includes a term proportional to the position error estimated value and a differential value of the term proportional to the position error estimated value. Are added to calculate the estimated acceleration value.

請求項3に係る発明は、請求項1または2に記載した電気車制御装置において、前記加速度推定手段は、前記位置誤差推定値に比例する項の振動成分を低減する第1の振動低減対策手段と、前記位置誤差推定値に比例する項の微分値の振動成分を低減する第2の振動低減対策手段と、第1及び第2の振動低減対策手段の出力を加算して前記加速度推定値を演算する加算手段と、を備えたものである。   According to a third aspect of the present invention, in the electric vehicle control device according to the first or second aspect, the acceleration estimation unit is a first vibration reduction countermeasure unit that reduces a vibration component of a term proportional to the position error estimated value. And the output of the second vibration reduction countermeasure means for reducing the vibration component of the differential value of the term proportional to the position error estimated value, and the outputs of the first and second vibration reduction countermeasure means to add the acceleration estimated value. Adding means for calculating.

請求項4に係る発明は、請求項1〜3のいずれか1項に記載した電気車制御装置において、前記インバータ部の出力側の各相電圧を検出する電圧検出手段を備え、この電圧検出手段による電圧検出値を、前記インバータ部の電圧指令値に代えて用いるものである。   The invention according to claim 4 is the electric vehicle control device according to any one of claims 1 to 3, further comprising voltage detection means for detecting each phase voltage on the output side of the inverter unit, and the voltage detection means. Is used in place of the voltage command value of the inverter unit.

本発明においては、電動機の回転子位置真値と回転子位置推定値との位置誤差推定値に比例する項と、位置誤差推定値に比例する項の微分値とを加算することにより加速度を推定している。従って、γ,δ軸電流や機械系が振動して位置誤差推定値が振動する場合にも、位置誤差推定値に比例する項と位置誤差推定値に比例する項の微分値とに対し、フィルタを用いてそれぞれ異なる振動低減対策をとることが可能であり、その結果を加算することで適切な加速度推定値を得ることができる。
よって、従来技術のように速度推定値を微分して求めた加速度推定値に基づいて振動低減対策をとる場合に比べ、振動低減対策部における遅れを低減することができ、加速度推定の遅れ、ひいては空転滑走制御の遅れを低減することが可能になる。
In the present invention, the acceleration is estimated by adding the term proportional to the position error estimated value between the rotor position true value and the rotor position estimated value of the motor and the differential value of the term proportional to the position error estimated value. is doing. Therefore, even when the position error estimated value vibrates due to vibrations of the γ and δ axis currents and the mechanical system, a filter is applied to the term proportional to the position error estimated value and the differential value of the term proportional to the position error estimated value. Can be used to take different vibration reduction measures, and by adding the results, an appropriate acceleration estimated value can be obtained.
Therefore, compared with the case of taking the vibration reduction countermeasure based on the acceleration estimated value obtained by differentiating the speed estimated value as in the prior art, the delay in the vibration reduction countermeasure section can be reduced, the acceleration estimation delay, and thus It becomes possible to reduce the delay of idling control.

本発明の第1実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of 1st Embodiment of this invention. 図1における位相推定部及び加速度推定部の構成を示すブロック図である。It is a block diagram which shows the structure of the phase estimation part in FIG. 1, and an acceleration estimation part. 従来技術に基づく電気車制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric vehicle control apparatus based on a prior art.

以下、図に沿って本発明の実施形態を説明する。
図1は本実施形態の構成を示すブロック図であり、図3に示した従来技術の各構成要素と同一機能を有するものには同一の符号を付してある。以下では、図3と異なる部分を中心に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the present embodiment. Components having the same functions as those of the conventional components shown in FIG. 3 are denoted by the same reference numerals. Below, it demonstrates centering on a different part from FIG.

まず、図1に示す電気車制御装置1Aでは、図3における位相推定部25、微分演算部6及び空転滑走制御部7に代えて、位置誤差推定部31、位相推定部25A、加速度推定部32及び空転滑走制御部7Aを備えている。ここで、位置誤差推定部31は、ACR制御部22からのγ軸電圧指令値vγa 、δ軸電圧指令値vδa と、座標変換部24からのγ軸電流検出値iγa、δ軸電流検出値iδaとを用いてPMSM4の回転子の位置誤差(回転子位置真値と回転子位置推定値との位置誤差)を推定し、位相推定部25Aは、位置誤差推定値(Δθ)から位置推定値θ及び速度推定値ωを生成する。そして、この速度推定値ωは位置誤差推定部31に入力されている。また、加速度推定部32は、位置誤差推定値(Δθ)に基づいて加速度を推定するように構成されている。
更に、空転滑走制御部7Aは、加速度推定部32から入力された加速度推定値αがある一定値を超えた場合に電気車の車輪に空転が発生したと判定し、トルク調整信号(加速トルクまたは減速トルク)を生成して加算器8に出力するものである。
なお、この実施形態では、電流指令生成部21、ACR制御部22、座標変換部23,24、位置誤差推定部31及び位相推定部25Aにより、センサレスベクトル制御部2Aが構成されている。
First, in the electric vehicle control apparatus 1A shown in FIG. 1, a position error estimation unit 31, a phase estimation unit 25A, and an acceleration estimation unit 32 are used instead of the phase estimation unit 25, the differential calculation unit 6 and the idling sliding control unit 7 in FIG. And an idling control unit 7A. Here, the position error estimation unit 31 includes the γ-axis voltage command value v γa * and the δ-axis voltage command value v δa * from the ACR control unit 22, and the γ-axis current detection values i γa and δ from the coordinate conversion unit 24. The position error of the PMSM4 rotor (position error between the rotor position true value and the rotor position estimated value) is estimated using the detected shaft current value i δa, and the phase estimation unit 25A obtains the position error estimated value (Δθ ) to produce a position estimate theta # and velocity estimates omega # from #. The estimated speed value ω # is input to the position error estimating unit 31. Moreover, the acceleration estimation part 32 is comprised so that an acceleration may be estimated based on position error estimated value ((DELTA) (theta)) # .
Further, the idling / sliding control unit 7A determines that idling has occurred in the wheel of the electric vehicle when the estimated acceleration value α # input from the acceleration estimating unit 32 exceeds a certain value, and determines a torque adjustment signal (acceleration torque). (Or deceleration torque) is generated and output to the adder 8.
In this embodiment, a sensorless vector control unit 2A is configured by the current command generation unit 21, the ACR control unit 22, the coordinate conversion units 23 and 24, the position error estimation unit 31, and the phase estimation unit 25A.

上記構成において、位置誤差推定部31は、例えば以下のようにして回転子位置誤差を推定する。
推定座標であるγ,δ座標の回転角速度をω(電気角)とし、γ軸はu相軸からθ(電気角)の位相角上にあり、磁石の磁極に平行なd軸よりΔθ(電気角)だけ遅れているものとする。γ,δ座標における永久磁石同期電動機4の電圧方程式は、数式1のように表される。
In the above configuration, the position error estimation unit 31 estimates the rotor position error as follows, for example.
The rotational angular velocity of the estimated coordinates γ and δ is ω # (electrical angle), the γ-axis is above the phase angle of θ # (electrical angle) from the u-phase axis, and Δθ from the d-axis parallel to the magnetic pole of the magnet It is assumed that it is delayed by (electrical angle). The voltage equation of the permanent magnet synchronous motor 4 in the γ and δ coordinates is expressed as Equation 1.

Figure 2011193568
Figure 2011193568

数式1において、PLγγa=PLγδSδa=PLγδSγa=PLδδa=0とすると、電動機4の電圧方程式は数式2のようになる。 In Equation 1, if PL γ i γa = PL γ δS i δa = PL γδS i γa = PL δ i δa = 0, the voltage equation of the electric motor 4 becomes as shown in Equation 2.

Figure 2011193568
Figure 2011193568

位置誤差推定部31では、数式2に基づく数式3によって電動機4の位置誤差推定値(Δθ)を演算し、出力する。 The position error estimation unit 31 calculates and outputs a position error estimated value (Δθ) # of the electric motor 4 according to Expression 3 based on Expression 2.

Figure 2011193568
Figure 2011193568

なお、位置誤差の推定には、他の方式を用いても良い。
また、図示されていないが、電圧センサによりインバータ部3の出力側の各相電圧を検出してγ,δ軸電圧に座標変換し、そのγ,δ軸電圧検出値を数式3におけるγ,δ軸電圧指令値vγa ,vδa に代えて用いても良い。
Other methods may be used for estimating the position error.
Although not shown, each voltage on the output side of the inverter unit 3 is detected by a voltage sensor and converted into γ and δ-axis voltages, and the detected γ and δ-axis voltage values are converted to γ, δ in Equation 3. The shaft voltage command values v γa * and v δa * may be used instead.

図2は、図1における位相推定部25A及び加速度推定部32の構成を示すブロック図である。
位相推定部25Aは、図2に示すように、乗算器41,42、加算器44及び積分器43,45から構成されている。すなわち、乗算器41により位置誤差推定値(Δθ)にゲインKを乗じた信号と、乗算器42により位置誤差推定値(Δθ)にゲインKを乗じた信号を積分器43により積分した信号とを加算器44によって加算し、その結果を速度推定値ωとして出力すると共に、この速度推定値ωを積分器45により積分して回転子位置推定値θを出力する。
上述した位相推定部25Aの演算内容は、数式4,数式5に示すとおりである。なお、これらの数式において、sはラプラス演算子である。
FIG. 2 is a block diagram showing the configuration of the phase estimation unit 25A and the acceleration estimation unit 32 in FIG.
As shown in FIG. 2, the phase estimation unit 25 </ b> A includes multipliers 41 and 42, an adder 44, and integrators 43 and 45. That is, a signal obtained by multiplying the position error estimated value (Δθ) # by the gain K p by the multiplier 41 and a signal obtained by multiplying the position error estimated value (Δθ) # by the multiplier 42 by the gain K i are integrated by the integrator 43. and a signal obtained by adding by the adder 44, the result outputs as a velocity estimate omega # a, the estimated speed value omega # is integrated by the integrator 45 outputs a rotor position estimate theta #.
The calculation contents of the phase estimation unit 25A described above are as shown in Equations 4 and 5. In these mathematical expressions, s is a Laplace operator.

Figure 2011193568
Figure 2011193568

Figure 2011193568
Figure 2011193568

加速度推定部32は、図2に示すように、乗算器51,52、微分器53、第1,第2の振動低減対策部54,55及び加算器56から構成されている。
まず、乗算器52により位置誤差推定値(Δθ)に積分ゲインKを乗じた信号が第1の振動低減対策部54に入力される。一方、乗算器51により位置誤差推定値(Δθ)に比例ゲインKを乗じた信号を微分器53によって微分した信号が、第2の振動低減対策部55に入力される。そして、これらの第1,第2の振動低減対策部54,55の出力信号を加算器56にて加算することにより、加速度推定値αが演算される。
As shown in FIG. 2, the acceleration estimation unit 32 includes multipliers 51 and 52, a differentiator 53, first and second vibration reduction countermeasure units 54 and 55, and an adder 56.
First, a signal obtained by multiplying the position error estimated value (Δθ) # by the integral gain K i is input to the first vibration reduction countermeasure unit 54 by the multiplier 52. On the other hand, a signal obtained by differentiating the signal obtained by multiplying the position error estimated value (Δθ) # by the proportional gain K p by the multiplier 51 using the differentiator 53 is input to the second vibration reduction countermeasure unit 55. Then, by adding the output signals of the first and second vibration reduction countermeasure units 54 and 55 by the adder 56, the estimated acceleration value α # is calculated.

ここで、第1の振動低減対策部54を時定数Tのローパスフィルタにより構成し、第2の振動低減対策部55を時定数Tのローパスフィルタにより構成すると、加速度推定値αは数式6によって表される。なお、数式6における各ゲインK,Kは数式4と同じものである。 Here, if the first vibration reduction countermeasure unit 54 is configured by a low-pass filter having a time constant T a and the second vibration reduction countermeasure unit 55 is configured by a low-pass filter having a time constant T b , the acceleration estimated value α # is expressed by a mathematical formula. Represented by 6. The gains K p and K i in Expression 6 are the same as those in Expression 4.

Figure 2011193568
Figure 2011193568

第1,第2の振動低減対策部54,55がなければ(つまり、T=T=0)、数式6は数式7となり、前述した数式4の速度推定値ωを微分したものと同一となる。すなわち、本実施形態では、速度推定値ωを微分することなく加速度推定値αを演算することができる。 Without the first and second vibration reduction countermeasures 54 and 55 (that is, T a = T b = 0), Formula 6 becomes Formula 7, and the speed estimated value ω # of Formula 4 described above is differentiated. It will be the same. That is, in this embodiment, the acceleration estimated value α # can be calculated without differentiating the speed estimated value ω # .

Figure 2011193568
Figure 2011193568

γ,δ軸電流や機械系が振動する場合、これに伴って位置誤差推定値(Δθ)が振動する。位置誤差推定値(Δθ)が振動すると、図2において、乗算器52の出力及び微分器53の出力がそれぞれ振動する。
この場合、本実施形態では、位置誤差推定値(Δθ)に比例する項に振動低減対策を施した信号と、位置誤差推定値(Δθ)に比例する項の微分値に振動低減対策を施した信号とを加算することで加速度推定値αを演算しており、第1,第2の振動低減対策部54,55における各フィルタの時定数に応じて異なる振動低減対策をとることができる。
従って、図3に示したように速度推定値を微分して加速度推定値を演算し、この加速度推定値に応じて振動低減対策をとる場合に比べ、振動低減対策部での遅れを低減することが可能である。
When the γ and δ axis currents and the mechanical system vibrate, the position error estimated value (Δθ) # vibrates accordingly. When the position error estimated value (Δθ) # vibrates, the output of the multiplier 52 and the output of the differentiator 53 vibrate in FIG.
In this case, in the present embodiment, a signal subjected to the vibration reduction measures to term proportional to the position error estimate ([Delta] [theta]) #, vibration reduction measures on the differential value of the term proportional to the position error estimate ([Delta] [theta]) # The estimated acceleration value α # is calculated by adding the applied signals, and different vibration reduction measures can be taken depending on the time constants of the filters in the first and second vibration reduction countermeasure units 54 and 55. it can.
Therefore, as shown in FIG. 3, the estimated acceleration value is calculated by differentiating the estimated speed value, and the delay in the vibration reduction countermeasure unit is reduced as compared with the case where the vibration reduction countermeasure is taken according to the estimated acceleration value. Is possible.

また、前述した加速度推定部32による数式6に比べて演算が若干複雑になることを許容できるのであれば、図2の位相推定部25Aにより求めた速度推定値ωを用いて、数式8により加速度推定値αを求めても良い。 Further, if it is allowed to allow the calculation to be slightly complicated as compared with the equation 6 by the acceleration estimation unit 32 described above, the equation (8) is used by using the velocity estimation value ω # obtained by the phase estimation unit 25A of FIG. The acceleration estimated value α # may be obtained.

Figure 2011193568
Figure 2011193568

なお、第1,第2の振動低減対策部54,55は必ずしも両方必要ではなく、いずれか一方の振動低減対策部を備えていても良い。   Note that the first and second vibration reduction countermeasures 54 and 55 are not necessarily required, and either one of the vibration reduction countermeasures may be provided.

1A:電気車制御装置
2A:センサレスベクトル制御部
3:インバータ部
4:永久磁石同期電動機
5:電流センサ
7A:空転滑走制御部
8:加算器
21:電流指令生成部
22:ACR制御部
23,24:座標変換部
25A:位相推定部
31:位置誤差推定部
32:加速度推定部
41,42:乗算器
43,45:積分器
44:加算器
51,52:乗算器
53:微分器
54,55:振動低減対策部
56:加算器
DESCRIPTION OF SYMBOLS 1A: Electric vehicle control apparatus 2A: Sensorless vector control part 3: Inverter part 4: Permanent magnet synchronous motor 5: Current sensor 7A: Idling sliding control part 8: Adder 21: Current command generation part 22: ACR control part 23, 24 : Coordinate conversion unit 25A: phase estimation unit 31: position error estimation unit 32: acceleration estimation unit 41, 42: multiplier 43, 45: integrator 44: adder 51, 52: multiplier 53: differentiator 54, 55: Vibration reduction countermeasure part 56: Adder

Claims (4)

電気車の主電動機としての永久磁石同期電動機を、位置・速度センサレス制御により可変速駆動する電気車制御装置において、
前記電動機を駆動するインバータ部の電圧指令値と前記電動機の電流検出値とから前記電動機の回転子位置真値と回転子位置推定値との位置誤差を推定する位置誤差推定手段、及び、前記位置誤差の推定値から前記回転子位置推定値を演算する位相推定手段、を有し、前記電動機のトルク指令値及び前記回転子位置推定値に基づいてベクトル制御を実行するセンサレスベクトル制御手段と、
前記位置誤差の推定値に基づいて前記電動機の加速度を推定する加速度推定手段と、
この加速度推定手段により生成された加速度推定値に基づいて車輪とレールとの間の空転状態を推定し、前記トルク指令値を調整するための加減速トルクを生成する空転滑走制御手段と、
を備えたことを特徴とする電気車制御装置。
In an electric vehicle control device that drives a permanent magnet synchronous motor as a main motor of an electric vehicle at a variable speed by position / speed sensorless control,
Position error estimating means for estimating a position error between a rotor position true value and a rotor position estimated value of the motor from a voltage command value of an inverter unit that drives the motor and a current detection value of the motor; and the position Phase estimation means for calculating the rotor position estimated value from an estimated value of error, and sensorless vector control means for executing vector control based on the torque command value of the electric motor and the rotor position estimated value;
Acceleration estimating means for estimating the acceleration of the electric motor based on the estimated value of the position error;
An idle running control means for estimating an idling state between the wheel and the rail based on the acceleration estimated value generated by the acceleration estimating means, and generating an acceleration / deceleration torque for adjusting the torque command value;
An electric vehicle control device comprising:
請求項1に記載した電気車制御装置において、
前記加速度推定手段は、
前記位置誤差推定値に比例する項と、前記位置誤差推定値に比例する項の微分値とを加算して前記加速度推定値を演算することを特徴とする電気車制御装置。
In the electric vehicle control device according to claim 1,
The acceleration estimation means includes
An electric vehicle control apparatus that calculates the acceleration estimated value by adding a term proportional to the position error estimated value and a differential value of the term proportional to the position error estimated value.
請求項1または2に記載した電気車制御装置において、
前記加速度推定手段は、
前記位置誤差推定値に比例する項の振動成分を低減する第1の振動低減対策手段と、前記位置誤差推定値に比例する項の微分値の振動成分を低減する第2の振動低減対策手段と、第1及び第2の振動低減対策手段の出力を加算して前記加速度推定値を演算する加算手段と、を備えたことを特徴とする電気車制御装置。
In the electric vehicle control device according to claim 1 or 2,
The acceleration estimation means includes
First vibration reduction countermeasure means for reducing a vibration component of a term proportional to the position error estimated value; and second vibration reduction countermeasure means for reducing a vibration component of a differential value of a term proportional to the position error estimated value; An electric vehicle control device comprising: adding means for adding the outputs of the first and second vibration reduction countermeasure means to calculate the acceleration estimated value.
請求項1〜3のいずれか1項に記載した電気車制御装置において、
前記インバータ部の出力側の各相電圧を検出する電圧検出手段を備え、この電圧検出手段による電圧検出値を、前記インバータ部の電圧指令値に代えて用いることを特徴とする電気車制御装置。
In the electric vehicle control device according to any one of claims 1 to 3,
An electric vehicle control device comprising voltage detection means for detecting each phase voltage on the output side of the inverter section, and using a voltage detection value by the voltage detection means instead of the voltage command value of the inverter section.
JP2010055426A 2010-03-12 2010-03-12 Electric vehicle control device Active JP5515885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055426A JP5515885B2 (en) 2010-03-12 2010-03-12 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055426A JP5515885B2 (en) 2010-03-12 2010-03-12 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JP2011193568A true JP2011193568A (en) 2011-09-29
JP5515885B2 JP5515885B2 (en) 2014-06-11

Family

ID=44797907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055426A Active JP5515885B2 (en) 2010-03-12 2010-03-12 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP5515885B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014222A (en) * 2012-07-04 2014-01-23 Fuji Electric Co Ltd Motor drive device
US9998048B2 (en) 2014-05-02 2018-06-12 Canon Kabushiki Kaisha Motor control apparatus for vector-controlling sensorless motor
WO2022118822A1 (en) * 2020-12-04 2022-06-09 株式会社日立製作所 Drive device and drive method for rotary electric machine, and railway vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2932101C (en) * 2015-06-10 2023-10-03 Rolls-Royce Corporation Synchronizing motors for an electric propulsion system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268974A (en) * 2000-03-15 2001-09-28 Fuji Electric Co Ltd Controller for permanent magnet synchronous motor
JP2002325307A (en) * 2001-04-25 2002-11-08 Kiyoshi Oishi Control device for electric rolling stock
JP2008099350A (en) * 2006-10-06 2008-04-24 Fuji Electric Fa Components & Systems Co Ltd Vector controller of induction motor
JP2008148445A (en) * 2006-12-11 2008-06-26 Fuji Electric Systems Co Ltd Drive control device for railway vehicle
JP2009095135A (en) * 2007-10-09 2009-04-30 Fuji Electric Systems Co Ltd Controller of synchronous electric motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268974A (en) * 2000-03-15 2001-09-28 Fuji Electric Co Ltd Controller for permanent magnet synchronous motor
JP2002325307A (en) * 2001-04-25 2002-11-08 Kiyoshi Oishi Control device for electric rolling stock
JP2008099350A (en) * 2006-10-06 2008-04-24 Fuji Electric Fa Components & Systems Co Ltd Vector controller of induction motor
JP2008148445A (en) * 2006-12-11 2008-06-26 Fuji Electric Systems Co Ltd Drive control device for railway vehicle
JP2009095135A (en) * 2007-10-09 2009-04-30 Fuji Electric Systems Co Ltd Controller of synchronous electric motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014222A (en) * 2012-07-04 2014-01-23 Fuji Electric Co Ltd Motor drive device
US9998048B2 (en) 2014-05-02 2018-06-12 Canon Kabushiki Kaisha Motor control apparatus for vector-controlling sensorless motor
WO2022118822A1 (en) * 2020-12-04 2022-06-09 株式会社日立製作所 Drive device and drive method for rotary electric machine, and railway vehicle

Also Published As

Publication number Publication date
JP5515885B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP4988329B2 (en) Beatless control device for permanent magnet motor
US20170264227A1 (en) Inverter control device and motor drive system
US20160156297A1 (en) Motor drive system, motor control apparatus and motor control method
KR20070046862A (en) Vector controller of induction motor
JP3914108B2 (en) DC brushless motor control device
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP5428202B2 (en) Control device for permanent magnet type synchronous motor
WO2014115626A1 (en) Induction motor control device and induction motor control method
JPWO2015025356A1 (en) Motor drive system and motor control device
JP6726390B2 (en) Controller for permanent magnet type synchronous motor
JP2004289959A (en) Method and apparatus for controlling permanent-magnet synchronous motor
JP4583257B2 (en) AC rotating machine control device
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP5277724B2 (en) Control device for permanent magnet type synchronous motor
WO2018047524A1 (en) Motor control method, motor control system, and electric power steering system
JP5515885B2 (en) Electric vehicle control device
JP3914107B2 (en) DC brushless motor control device
JP5104219B2 (en) Control device for permanent magnet type synchronous motor
JP3612636B2 (en) Vector control method for synchronous motor
JP6248847B2 (en) Control device for permanent magnet type synchronous motor
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP4305698B2 (en) Synchronous motor position and speed estimation device
JP6060778B2 (en) Rotating machine control device
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP5104213B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250