JP2011192949A - Laminated type conductive polymer capacitor - Google Patents

Laminated type conductive polymer capacitor Download PDF

Info

Publication number
JP2011192949A
JP2011192949A JP2010079333A JP2010079333A JP2011192949A JP 2011192949 A JP2011192949 A JP 2011192949A JP 2010079333 A JP2010079333 A JP 2010079333A JP 2010079333 A JP2010079333 A JP 2010079333A JP 2011192949 A JP2011192949 A JP 2011192949A
Authority
JP
Japan
Prior art keywords
conductive polymer
capacitor
laminated
layer
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010079333A
Other languages
Japanese (ja)
Inventor
Yasuo Kudo
康夫 工藤
Sadaji Hashimoto
定持 橋本
Hideji Kojima
秀治 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON SENTAN KAGAKU KK
Original Assignee
NIHON SENTAN KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON SENTAN KAGAKU KK filed Critical NIHON SENTAN KAGAKU KK
Priority to JP2010079333A priority Critical patent/JP2011192949A/en
Publication of JP2011192949A publication Critical patent/JP2011192949A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To significantly reduce the cost of a laminated type conductive polymer capacitor so as to be competitive, by solving the problem wherein a winding-type solid electrolytic capacitor using a conductive polymer is now able to satisfy the demand for low price due to rapid cost reduction in ethylenedioxythiophene, while a laminated type conductive polymer capacitor uses a silver paint for laminate bonding, and it is considered that there is no room for cost reduction. <P>SOLUTION: A laminated type conductive polymer capacitor is configured, in a manner such that a material mainly composed of a high-conductivity distributed conductive polymer is used for laminate bonding instead of a silver paint, and consequently, it is possible to achieve significant cost reduction, while maintaining superior high-frequency characteristics. It is also possible to have the colloidal graphite layer interposed between a polymerization conductive polymer layer 3 to be used for internal filling and the distributed conductive polymer to be used for lamination. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電性高分子を陰極導電層に用いた積層型固体電解コンデンサ、いわゆる積層型導電性高分子コンデンサに関するものである。中でも拡面化された表面に陽極酸化被膜が形成された弁金属箔を陽極に用い、前記陽極酸化被膜表面に電解重合により陰極導電層を形成し、さらに液体中に分散された導電性高分子を用いて積層接着した、積層型導電性高分子コンデンサに関するものである。なお、積層に際して電解重合導電性高分子層と前記液体中に分散された導電性高分子から得られる導電性高分子層の間にコロイダルグラファイト層を設けたものも本発明に含まれる。  The present invention relates to a stacked solid electrolytic capacitor using a conductive polymer as a cathode conductive layer, a so-called stacked conductive polymer capacitor. In particular, a conductive polymer dispersed in a liquid is formed by using a valve metal foil having an anodized film formed on the surface of the surface as an anode, forming a cathode conductive layer by electrolytic polymerization on the surface of the anodized film The present invention relates to a laminated type conductive polymer capacitor that is laminated and bonded using the above. In addition, the present invention includes a colloidal graphite layer provided between an electropolymerized conductive polymer layer and a conductive polymer layer obtained from a conductive polymer dispersed in the liquid upon lamination.

一般的に、ポリアニリン、ポリピロールやポリチオフェンに代表される共役二重結合導電性高分子は、化学的酸化重合および電解重合で作製することができる。電解重合を利用した場合には、導電性高分子が電極上に均一なフィルム状に形成されるために電子デバイスとして使用する場合に好適である。  In general, a conjugated double bond conductive polymer represented by polyaniline, polypyrrole or polythiophene can be produced by chemical oxidative polymerization and electrolytic polymerization. When the electropolymerization is used, the conductive polymer is formed on the electrode in a uniform film shape, which is suitable for use as an electronic device.

実際に電解重合ポリピロールを陽極酸化被膜が形成されたエッチドアルミニウム箔表面に二酸化マンガン層介して形成した導電性高分子コンデンサが特許文献1に開示されている。  Patent Document 1 discloses a conductive polymer capacitor in which electrolytically polymerized polypyrrole is actually formed on the surface of an etched aluminum foil on which an anodized film is formed via a manganese dioxide layer.

陰極は電解重合ポリピロール層上にコロイダルグラファイト層と銀ペイント層を順次形成して取り出す。これは二酸化マンガンを陰極導電層に用いたタンタル固体電解コンデンサと同じ伝統的な陰極形成方法である。
電解重合ポリピロールを陰極導電層に用いた積層型導電性高分子コンデンサは特許文献2に開示されている。これは陽極酸化被膜が形成されたエッチドアルミニウム箔表面に二酸化マンガン層介して電解重合ポリピロール層を形成した複数のコンデンサ素子を準備し、各素子の導電性高分子表面にコロイダルグラファイト層と銀ペイント層を設けて積層して積層型導電性高分子コンデンサを製造するものである。
The cathode is taken out by sequentially forming a colloidal graphite layer and a silver paint layer on the electropolymerized polypyrrole layer. This is the same traditional cathode formation method as a tantalum solid electrolytic capacitor using manganese dioxide as the cathode conductive layer.
A multilayer conductive polymer capacitor using electropolymerized polypyrrole as a cathode conductive layer is disclosed in Patent Document 2. This consists of preparing a plurality of capacitor elements in which an electropolymerized polypyrrole layer is formed via a manganese dioxide layer on the etched aluminum foil surface on which the anodized film is formed, and colloidal graphite layers and silver paint are formed on the conductive polymer surface of each element. A layered conductive polymer capacitor is manufactured by providing layers.

このようにして得られた積層型導電性高分子コンデンサは小型・大容量でかつ電気伝導度の高い銀ペイント層で陰極を取り出しているために、高周波特性が極めて優れている点が特長である。
従来のアルミニウム積層型導電性高分子コンデンサの断面図を図1に示す。3枚積層の場合を示しているが、実際には必要に応じて積層枚数をさらに多くする場合がある。エッチドアルミニウム陽極箔表面1にアルミナ被膜2を陽極酸化によって形成し、その表面にその場重合導電性高分子層3を形成する。アルミニウムコンデンサの場合には電解重合ポリピロールの場合が多いが、化学重合ポリエチレンジオキシチオフェン層を形成してもいい。その後コロイダルグラファイト層4を介して銀ペイント5で積層接着する。
この製法の課題は銀ペイント層が高価であることが挙げられる。
The multilayer conductive polymer capacitor thus obtained is characterized by extremely excellent high-frequency characteristics because the cathode is taken out with a silver paint layer having a small size, large capacity and high electrical conductivity. .
A cross-sectional view of a conventional aluminum laminated conductive polymer capacitor is shown in FIG. Although the case of stacking three sheets is shown, there may be a case where the number of stacked layers is actually increased as necessary. An alumina coating 2 is formed on the etched aluminum anode foil surface 1 by anodic oxidation, and an in situ polymerized conductive polymer layer 3 is formed on the surface. In the case of an aluminum capacitor, it is often an electropolymerized polypyrrole, but a chemically polymerized polyethylene dioxythiophene layer may be formed. Thereafter, the silver paint 5 is laminated and bonded through the colloidal graphite layer 4.
The problem of this manufacturing method is that the silver paint layer is expensive.

一方、陽極箔と陰極箔とをセパレータを介して巻回したアルミニウムコンデンサ素子に化学重合ポリエチレンジオキシチオフェンを形成した導電性高分子コンデンサも大容量コンデンサとして開発されている。これについては、例えば特許文献3に開示されている。
ここでは銀ペイントは使用されないが、セパレータが陽・陰極間に存在するためにESR(等価直列抵抗)が低くできないという課題がある。エチレンジオキシチオフェンが高価であるという課題もあったが、特許文献1の特許が満了に伴い、参入メーカーが多くなり価格下落が急激に進んでおり、この課題は克服されつつある。
On the other hand, a conductive polymer capacitor in which chemically polymerized polyethylene dioxythiophene is formed on an aluminum capacitor element in which an anode foil and a cathode foil are wound via a separator has also been developed as a large capacity capacitor. This is disclosed in Patent Document 3, for example.
Although silver paint is not used here, there exists a subject that ESR (equivalent series resistance) cannot be made low because a separator exists between positive and negative electrodes. There was also a problem that ethylenedioxythiophene was expensive, but with the expiration of the patent of Patent Document 1, the number of participating manufacturers increased and the price declined rapidly, and this problem is being overcome.

また、タンタル固体電解コンデンサにおいては、図2に示すように、従来ブロック状の焼結体をコンデンサ素子に用いている。図2では省略されているが、化成被膜とその場重合導電性高分子層を有するタンタル焼結体6は、タンタル微粉末を焼結し、この表面にタンタラ誘電体被膜を形成し、さらにその上にその場重合導電性高分子層3が形成されている。そのうえにコロイダルグラファイト層4を介して銀ペイント層5を形成して陰極としている。なお、陽極リード7はタンタル線であるが、この一部にもタンタラ誘電体層8が形成されている。この焼結体タイプのコンデンサは焼結体深部からも容量を引き出しているために導電パスが長くなり、導電性高分子を用いた場合でもESRを十分に小さくすることは困難であった。
図3に示すように、タンタル焼結体を薄く成形して焼結体内部に二酸化マンガン層9ならびに焼結体表面に二酸化マンガン10を形成し、前記薄い焼結体コンデンサ素子をコロイダルグラファイト4ならびに銀ペイント5を用いて複数枚積層することにより、周波数特性を向上させる提案がなされている。この場合高周波特性は改善されるが、銀ペイントの量が増えるために価格の上昇を招来するという課題があった。
特許文献4に開示されているように、ポリエチレンジオキシチオフェンを陰極導電層に用いるコンデンサが1989年に出願されたが、2009年に期間が満了した。これに伴い、エチレンジオキシチオフェン供給に参入するメーカーが多く現れ、大幅な価格低下が進んでいる。この導電性高分子は巻回型アルミニウム導電性高分子コンデンサに使用されており、その影響を受けてこのコンデンサ価格低下も急激に進んでいる。
Further, in the tantalum solid electrolytic capacitor, as shown in FIG. 2, a conventional block-shaped sintered body is used for the capacitor element. Although omitted in FIG. 2, the tantalum sintered body 6 having a chemical conversion film and an in-situ polymerized conductive polymer layer sinters fine tantalum powder, forms a tantalum dielectric film on this surface, and further An in situ polymerized conductive polymer layer 3 is formed thereon. On top of that, a silver paint layer 5 is formed via a colloidal graphite layer 4 to form a cathode. The anode lead 7 is a tantalum wire, but a tantala dielectric layer 8 is also formed on a part thereof. Since this sintered body type capacitor has a capacity drawn from the deep part of the sintered body, the conductive path becomes long, and even when a conductive polymer is used, it is difficult to sufficiently reduce ESR.
As shown in FIG. 3, a tantalum sintered body is thinly formed to form a manganese dioxide layer 9 inside the sintered body and manganese dioxide 10 on the surface of the sintered body, and the thin sintered body capacitor element is made of colloidal graphite 4 and Proposals have been made to improve frequency characteristics by laminating a plurality of sheets using silver paint 5. In this case, although the high-frequency characteristics are improved, there is a problem that the price increases due to an increase in the amount of silver paint.
As disclosed in Patent Document 4, a capacitor using polyethylenedioxythiophene as a cathode conductive layer was filed in 1989, but the period expired in 2009. Along with this, many manufacturers have entered the ethylenedioxythiophene supply, and the price has been drastically decreasing. This conductive polymer is used in a wound aluminum conductive polymer capacitor, and the capacitor price is rapidly decreasing under the influence.

さらにまた、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の複合体を水に分散させ、これから媒体を揮発させることにより得られる導電性高分子の電気伝導度が1000S/cmにまで向上させられることが発表された。これは、例えば非特許文献1に開示されている。このような高い電気伝導度を有する導電性高分子を高価な銀ペイントに代えて用いれば、高周波特性の優れた積層型固体電解コンデンサが実現できる。  Furthermore, the electrical conductivity of the conductive polymer obtained by dispersing a complex of polyethylenedioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) in water and volatilizing the medium is increased to 1000 S / cm. It has been announced that This is disclosed in Non-Patent Document 1, for example. If such a conductive polymer having high electrical conductivity is used instead of expensive silver paint, a multilayer solid electrolytic capacitor having excellent high frequency characteristics can be realized.

特開平01−310529号公報Japanese Unexamined Patent Publication No. 01-310529 特開平06−124858号公報Japanese Patent Laid-Open No. 06-124858 特開平10−310829号公報Japanese Patent Laid-Open No. 10-310829 特開平02−15611号公報Japanese Patent Laid-Open No. 02-15611

http://techon.nikkeibp.co.jp/article/NEWS/20090629/172378/ 導電率1000S/cmの高分子膜をドイツH.C.Starckがサンプル出荷(2009年6月29日)http: // techon. nikkeibp. co. jp / article / NEWS / 20090629/172378 / A polymer film having a conductivity of 1000 S / cm was obtained from German H.C. C. Starck ships sample (June 29, 2009)

モノマー原料が安価なポリピロールを用いるエッチドアルミニウム箔を積層してなる積層型導電性高分子コンデンサは各コンデンサ素子箔の積層に、銀粉をバインダに混合した銀ペイントを用いるために価格が高いという課題があった。  A multilayer conductive polymer capacitor made by laminating etched aluminum foil using polypyrrole, which is an inexpensive monomer raw material, is expensive due to the use of silver paint mixed with silver powder in the binder of each capacitor element foil was there.

一方、ポリエチレンジオキシチオフェンを用いた巻回型アルミニウム導電性高分子コンデンサにおいては、陽・陰極間にセパレータ層を介して充填されるポリエチレンジオキシチオフェンの量がタンタル導電性高分子コンデンサと比較して桁違いに多いために、比較的価格の高かったエチレンジオキシチオフェンモノマーの価格も関連して、コンデンサの価格を低減することが困難であり、両者に大きな価格差が従来はなかった。  On the other hand, in a wound aluminum conductive polymer capacitor using polyethylene dioxythiophene, the amount of polyethylene dioxythiophene filled between the positive and negative electrodes through a separator layer is smaller than that of a tantalum conductive polymer capacitor. Since the price of ethylenedioxythiophene monomer, which is relatively expensive, is difficult to reduce the price of the capacitor, there has never been a large price difference between the two.

しかしながら、前述したように、ポリエチレンジオキシチオフェンを用いるコンデンサの特許満了に伴い、エチレンジオキシチオフェンモノマーの価格が大幅に下落してきており、電解重合ポリピロールと銀ペイントを用いる積層型アルミニウム導電性高分子コンデンサが価格面で不利になりつつある。  However, as mentioned above, with the expiration of the patent for capacitors using polyethylene dioxythiophene, the price of ethylenedioxythiophene monomer has dropped significantly, and laminated aluminum conductive polymer using electropolymerized polypyrrole and silver paint Capacitors are becoming less expensive.

なお、タンタル導電性高分子コンデンサは、大容量でありながら容積が小さいため使用する導電性高分子および銀ペイントの量が少ないため、上記のような課題はない。ただし、タンタル粉末が高価であることならびに、ブロック状電極を使用しているという構造上から陰極導電層のESR(等価直列抵抗)をアルミニウム導電性高分子コンデンサの場合ほど小さくできないために周波数特性が若干劣る。  Since the tantalum conductive polymer capacitor has a large capacity and a small volume, the amount of the conductive polymer and silver paint to be used is small. However, the frequency characteristics are low because the tantalum powder is expensive and the ESR (equivalent series resistance) of the cathode conductive layer cannot be made as small as in the case of the aluminum conductive polymer capacitor because of the structure of using the block-like electrode. Somewhat inferior.

本発明は、上記従来技術の課題を解決するもので、その場重合導電性高分子を陰極導電層に形成した平板型コンデンサを積層した、高周波特性に優れかつ安価な積層型導電性高分子コンデンサを提供することを目的としたものである。  The present invention solves the above-mentioned problems of the prior art, and is a laminated type conductive polymer capacitor that is excellent in high-frequency characteristics and inexpensive by laminating a plate type capacitor in which an in-situ polymerized conductive polymer is formed on a cathode conductive layer. Is intended to provide.

本発明の請求項1に記載の発明は、箔状弁金属表面に誘電体被膜とその場重合導電性高分子で陰極導電層とを形成し、さらに液体中に分散された導電性高分子を主体とした導電性高分子を用いて前記誘電体被膜ならびに陰極導電層が形成された各箔状弁金属を積層した、積層型導電性高分子コンデンサであり銀ペイントを使用しないために安価に提供できることが特徴である。  According to the first aspect of the present invention, there is provided a conductive polymer dispersed in a liquid, wherein a dielectric coating and a cathode conductive layer are formed on the surface of a foil-like valve metal with an in-situ polymerized conductive polymer. A laminated conductive polymer capacitor in which the above-mentioned dielectric coating and each foil-shaped valve metal with a cathode conductive layer formed using a conductive polymer as a main component are provided at low cost because silver paint is not used. It is a feature that can be done.

本発明の請求項2に記載の発明は、その場重合が電解重合または化学重合である積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 2 of the present invention is a laminated conductive polymer capacitor whose in-situ polymerization is electrolytic polymerization or chemical polymerization, and has a feature that a low ESR capacitor can be provided at low cost.

本発明の請求項3に記載の発明は、その場重合導電性高分子がポロピロールあるいはその誘導体もしくはポリチフェンあるいはその誘導体であることを特徴とする積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 3 of the present invention is a laminated conductive polymer capacitor characterized in that the in-situ polymerized conductive polymer is polypyrrole or a derivative thereof, polythiophene or a derivative thereof, and a capacitor having a low ESR. Can be provided at low cost.

本発明の請求項4に記載の発明は、液体中に分散された導電性高分子がポリエチレンジオキシチオフェン主体としたものから選ばれる一種である積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。液体中に分散された導電性高分子層には個別のコンデンサ素子の積層を容易にするためのバインダを含んでも良い  The invention according to claim 4 of the present invention is a multilayer conductive polymer capacitor in which the conductive polymer dispersed in the liquid is a kind selected from those mainly composed of polyethylenedioxythiophene, and has a low ESR. The capacitor can be provided at a low cost. The conductive polymer layer dispersed in the liquid may include a binder for facilitating the lamination of individual capacitor elements.

本発明の請求項5に記載の発明は、箔状弁金属がエッチドアルミニウム箔、タンタル焼結体薄膜あるいはニオブ焼結体薄膜のいずれかである積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 5 of the present invention is a laminated conductive polymer capacitor in which the foil-shaped valve metal is any one of an etched aluminum foil, a tantalum sintered thin film or a niobium sintered thin film, and has a low ESR. The capacitor can be provided at low cost.

本発明の請求項6に記載の発明は、各箔状弁金属電極が陽極端子を有し、前記陽極端子が電気的に接合された構造を有する積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 6 of the present invention is a multilayer conductive polymer capacitor having a structure in which each foil-like valve metal electrode has an anode terminal and the anode terminal is electrically joined, and has a low ESR. The capacitor can be provided at low cost.

本発明の請求項7に記載の発明は、箔状弁金属表面に誘電体被膜とその場重合導電性高分子で陰極導電層とを形成し、さらにコロイダルグラファイト層を介して液体中に分散された導電性高分子層を用いて前記誘電体被膜ならびに陰極導電層が形成された各箔状弁金属を積層した、積層型導電性高分子コンデンサである。コロイダルグラファイト層を介在させることにより、その場重合導電性高分子層と液体中に分散された導電性高分子層との密着性を向上させ、ESRの改善のためにより高い効果が得られる。  According to the seventh aspect of the present invention, a dielectric coating and a cathode conductive layer are formed on the surface of a foil-like valve metal with an in-situ polymerized conductive polymer, and further dispersed in a liquid via a colloidal graphite layer. A laminated type conductive polymer capacitor in which the respective foil-like valve metals on which the dielectric coating and the cathode conductive layer are formed are laminated using the conductive polymer layer. By interposing the colloidal graphite layer, the adhesion between the in-situ polymerized conductive polymer layer and the conductive polymer layer dispersed in the liquid is improved, and a higher effect is obtained for improving the ESR.

本発明の請求項8に記載の発明は、その場重合が電解重合または化学重合である請求項7記載の積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 8 of the present invention is the laminated conductive polymer capacitor according to claim 7, wherein the in-situ polymerization is electrolytic polymerization or chemical polymerization, and has a feature that a low ESR capacitor can be provided at low cost. .

本発明の請求項9に記載の発明は、その場重合導電性高分子がポロピロールあるいはその誘導体もしくはポリチフェンあるいはその誘導体である請求項7または8記載の積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 9 of the present invention is the multilayer conductive polymer capacitor according to claim 7 or 8, wherein the in-situ polymerized conductive polymer is polypyrrole or a derivative thereof, polythiophene or a derivative thereof, and has a low ESR. The capacitor can be provided at low cost.

本発明の請求項10に記載の発明は、液体中に分散された導電性高分子がポリエチレンジオキシチオフェンを主体としたものから選ばれる一種である請求項7から9記載の積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 10 of the present invention is one in which the conductive polymer dispersed in the liquid is one selected from those mainly composed of polyethylenedioxythiophene. It is a molecular capacitor and has a feature that a low ESR capacitor can be provided at low cost.

本発明の請求項11に記載の発明は、箔状弁金属がエッチドアルミニウム箔、タンタル焼結体薄膜あるいはニオブ焼結体薄膜である請求7から10記載の積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 11 of the present invention is the laminated conductive polymer capacitor according to any one of claims 7 to 10, wherein the foil-shaped valve metal is an etched aluminum foil, a tantalum sintered thin film or a niobium sintered thin film. The low ESR capacitor can be provided at low cost.

本発明の請求項12に記載の発明は、各箔状弁金属電極が陽極端子を有し、前記陽極端子が電気的に接合された構造を有する請求7から11記載の積層型導電性高分子コンデンサであり、低ESRのコンデンサを安価に提供できる特徴を有する。  The invention according to claim 12 of the present invention is the laminated conductive polymer according to any one of claims 7 to 11, wherein each foil-shaped valve metal electrode has an anode terminal, and the anode terminal is electrically joined. The capacitor is characterized in that a low ESR capacitor can be provided at low cost.

陽極酸化被膜とその場重合導電性高分子が形成された箔状コンデンサ素子を、銀ペイントを使用することなく、電気伝導度の高い液体中に分散された導電性高分子を主体とした導電性高分子を用いて積層しているために、低ESRの積層型導電性高分子コンデンサが安価に得られるという特徴を有する。さらにその場重合導電性高分子層と電気伝導度の高い液体中に分散された導電性高分子を主体とした導電性高分子層の間にコロイダルグラファイト層を設けることにより、両導電性高分子の密着性を改善することができ、さらに低ESRの導電性高分子コンデンサを提供することができるという特徴を有するために産業上の利用価値が極めて高い。  Conductive film mainly composed of conductive polymer dispersed in a liquid with high electrical conductivity without using silver paint. Since the polymer is laminated, a low ESR multilayer conductive polymer capacitor can be obtained at a low cost. Furthermore, by providing a colloidal graphite layer between the in-situ polymerized conductive polymer layer and a conductive polymer layer mainly composed of a conductive polymer dispersed in a liquid having high electrical conductivity, In addition, the present invention has a feature that it can improve the adhesiveness of the resin, and can provide a conductive polymer capacitor having a low ESR.

導電性高分子を陰極導電層に用いた従来の積層型アルミニウム固体電解コンデンサ構造を示す断面図Sectional view showing a conventional laminated aluminum solid electrolytic capacitor structure using a conductive polymer for the cathode conductive layer 従来の導電性高分子を陰極導電層に用いた従来のタンタル焼結体固体電解コンデンサ構造を示す断面図Sectional view showing a conventional tantalum sintered solid electrolytic capacitor structure using a conventional conductive polymer for the cathode conductive layer 従来の二酸化マンガンを陰極導電層に用いた従来の積層型タンタル焼結体固体電解コンデンサ構造を示す断面図Sectional view showing a conventional multilayer tantalum sintered solid electrolytic capacitor structure using conventional manganese dioxide as the cathode conductive layer 本発明の実施例1における導電性高分子を陰極導電層に用いた積層型アルミニウム固体電解コンデンサ構造を示す断面図Sectional drawing which shows the laminated aluminum solid electrolytic capacitor structure which used the conductive polymer in Example 1 of this invention for the cathode conductive layer 本発明の実施例2における導電性高分子を陰極導電層に用いた積層型アルミニウム固体電解コンデンサ構造を示す断面図Sectional drawing which shows the laminated aluminum solid electrolytic capacitor structure which used the conductive polymer in Example 2 of this invention for the cathode conductive layer 本発明の実施例3における導電性高分子を陰極導電層に用いた積層型タンタル焼結体固体電解コンデンサ構造を示す断面図Sectional drawing which shows the laminated type tantalum sintered compact solid electrolytic capacitor structure which used the conductive polymer in Example 3 of this invention for the cathode conductive layer 本発明の実施例4における導電性高分子を陰極導電層に用いた積層型タンタル焼結体固体電解コンデンサ構造を示す断面図Sectional drawing which shows the laminated type tantalum sintered compact solid electrolytic capacitor structure which used the electroconductive polymer in Example 4 of this invention for the cathode conductive layer 本発明の実施例1におけるアルミニウム箔上に導電性高分子からなる陰極導電層を形成したコンデンサ素子の構造を示す断面図Sectional drawing which shows the structure of the capacitor | condenser element which formed the cathode conductive layer which consists of a conductive polymer on the aluminum foil in Example 1 of this invention

以下図面を用いて本発明の実施例を説明する。本発明の典型的な事例が本実施例に記載されているが、本発明は本発明の実施の形態に限定されるものではない。  Embodiments of the present invention will be described below with reference to the drawings. Although typical examples of the present invention are described in the examples, the present invention is not limited to the embodiments of the present invention.

図8は実施例1のコンデンサ素子の構造を示す断面図である。  FIG. 8 is a cross-sectional view showing the structure of the capacitor element of the first embodiment.

上記コンデンサ素子は、長さ8mm×幅3.5mmのエッチドアルミニウム陽極箔1を長さ方向に4mmと3mmの部分に仕切るように、両面に渡って幅1mmのポリイミド粘着テープ12を貼り付けた。  The capacitor element was affixed with a polyimide adhesive tape 12 having a width of 1 mm across both sides so as to partition the etched aluminum anode foil 1 having a length of 8 mm and a width of 3.5 mm into 4 mm and 3 mm portions in the length direction. .

次にエッチドアルミニウム陽極箔1の長さ3mm部分から通電し、長さ4mmの部分を70℃の3%アジピン酸アンモニウム溶液を用いて、定電圧3Vを印加して、陽極酸化により、バリア型アルミナ誘電体被膜2を形成した。このときのコンデンサ素子の容量を化成液中で測定したところ20μFであった。その後脱イオン水で洗浄後乾燥した。  Next, electricity was applied from a 3 mm long portion of the etched aluminum anode foil 1, and a constant voltage of 3 V was applied to the 4 mm long portion using a 3% ammonium adipate solution at 70 ° C. An alumina dielectric coating 2 was formed. The capacitance of the capacitor element at this time was measured in the chemical conversion solution and found to be 20 μF. Thereafter, it was washed with deionized water and dried.

次にエッチドアルミニウム陽極箔1の長さ4mmの部分を30%硝酸マンガン水溶液に浸漬後、250℃に加熱して熱分解二酸化マンガン層(図示せず)を形成した。  Next, a 4 mm long portion of etched aluminum anode foil 1 was immersed in a 30% aqueous manganese nitrate solution and heated to 250 ° C. to form a pyrolytic manganese dioxide layer (not shown).

次にステンレス製の重合開始電極をポリイミド粘着テープの上に接触させ、ピロールモノマー0.3Mとナフタレンスルホン酸ナトリウム0.1Mを含む重合陽電解液に浸漬して、別途重合溶液内に離隔して設けた陰極との間に3Vの直流電圧を印加して電解重合を行い、その場でポリピロールからなるその場重合導電性高分子層3を形成した。この素子のその場重合導電性高分子層3の部分にヂメチルスルホキシド(DMSO)を5%添加したPEDOT(ポリエチレンジオキシチオフェン)/PPS(ポリスチレンスルホン酸)分散液(H.C.Stark製 CLEVIOSTM PH750)に変成ポリエチレンテレフタレートからなるバインダ1重量部添加して、これを塗布して図4に示すように3枚積層接着した。このとき同時に陽極リード(図示せず)取り付けて、10個のアルミニウム箔積層型固体電解コンデンサを作製して、1kHzの容量とtanδならびに100kHzの等価直列抵抗(ESR)をそれぞれ測定した。それらの平均値を(表1)に示す。Next, a stainless steel polymerization start electrode is brought into contact with the polyimide adhesive tape, immersed in a polymerization positive electrolyte containing 0.3M pyrrole monomer and 0.1M sodium naphthalene sulfonate, and separately separated in the polymerization solution. Electropolymerization was performed by applying a DC voltage of 3 V between the provided cathode and the in-situ polymerized conductive polymer layer 3 made of polypyrrole was formed on the spot. PEDOT (polyethylenedioxythiophene) / PPS (polystyrene sulfonic acid) dispersion in which 5% of dimethyl sulfoxide (DMSO) is added to the in-situ polymerized conductive polymer layer 3 of this device (CLEVIOS manufactured by HC Stark) TM PH750) was added with 1 part by weight of a binder made of modified polyethylene terephthalate, and this was applied and laminated and bonded as shown in FIG. At the same time, an anode lead (not shown) was attached at the same time to produce 10 aluminum foil laminated solid electrolytic capacitors, and a capacity of 1 kHz, tan δ, and an equivalent series resistance (ESR) of 100 kHz were measured. Their average values are shown in (Table 1).

Figure 2011192949
Figure 2011192949

(比較例1)
上記の実施例1においてその場重合導電性高分子層3の上にアクアダッグでカーボン層を設け、さらに銀ペイントユニメックH9430S(ナミックス製)を用いて積層した以外次に、実施例1と同様にして10個の積層型アルミニウム固体電解コンデンサを作製し、実施例1と同じ評価を行った。その結果を(表1)に示す。
(Comparative Example 1)
Next, in the same manner as in Example 1, except that a carbon layer was formed on the in-situ polymerized conductive polymer layer 3 by Aquadug and laminated using silver paint Unimec H9430S (Namics). Ten laminated aluminum solid electrolytic capacitors were manufactured and evaluated in the same manner as in Example 1. The results are shown in (Table 1).

これらの比較から、得られた積層型アルミニウム固体電解コンデンサには特性の差がほとんど見られず、本発明の積層型アルミニウム固体電解コンデンサは銀を使用しないために大幅なコストダウンが可能になった。これは積層に使用したPEDOT/PSSを主体とした導電性高分子の電気伝導度が約750S/cmと極めて高いための効果である。  From these comparisons, there was almost no difference in the characteristics of the obtained multilayer aluminum solid electrolytic capacitor, and the multilayer aluminum solid electrolytic capacitor of the present invention did not use silver, so it was possible to significantly reduce the cost. . This is because the electric conductivity of the conductive polymer mainly composed of PEDOT / PSS used for lamination is as high as about 750 S / cm.

上記の実施例1において、その場重合導電性高分子3の上にコロイダルグラファイト層4を設けた以外、実施例1と同様にして図5に示すようなコンデンサを10個作製し、実施例1と同じ評価を行った。その結果を(表1)に示す。  Ten capacitors as shown in FIG. 5 were produced in the same manner as in Example 1 except that the colloidal graphite layer 4 was provided on the in-situ polymerized conductive polymer 3 in Example 1 above. The same evaluation was performed. The results are shown in (Table 1).

実施例2では、コロイダルグラファイト層4を設けることにより,少しではあるが、容量、tanδ、ESRに改善傾向が見られる。これはコロイダルグラファイト層4を介在させることにより、その場重合導電性高分子層3と.分散型導電性高分子層10の密着性ならびに被覆性が改善されと結果と考えられる。  In Example 2, by providing the colloidal graphite layer 4, the capacity, tan δ, and ESR tend to be improved, although slightly. This is achieved by interposing a colloidal graphite layer 4 and an in situ polymerization conductive polymer layer 3. It is considered that the adhesion and covering properties of the dispersion-type conductive polymer layer 10 are improved.

その場重合導電性高分子3が電解重合ポリピロールの場合は、平坦で緻密は膜が形成されているために、コロイダルグラファイト層4を介在させたことによる効果は目立たないが、その場重合導電性高分子3を化学重合で形成することもでき、その場合粉末状の導電性高分子層が形成されるため、コロイダルグラファイト層4を介在させることにより密着性・被覆性が向上し、その効果が大きく現れる。なお、ここで積層に分散型の導電性高分子を用いた場合について述べたが、導電性が同様に高いものであれば、溶解型導電性高分子を用いることも可能である。  In the case where the in-situ polymerized conductive polymer 3 is an electropolymerized polypyrrole, since a flat and dense film is formed, the effect of interposing the colloidal graphite layer 4 is not noticeable. The polymer 3 can also be formed by chemical polymerization, in which case a powdered conductive polymer layer is formed, and the adhesion / coverability is improved by interposing the colloidal graphite layer 4, and the effect is improved. It appears greatly. Note that although the case where a dispersive conductive polymer is used for the lamination is described here, a soluble conductive polymer can be used as long as the conductivity is similarly high.

まず、0.33mm×2.1mm×1.6mmのタンタルリード付き薄型タンタル焼結体素子を準備した。リード線は平面図の面積の小さい部分から引き出した。このタンタル焼結体に対して、リン酸5mlを1000mlの脱イオン水に溶解した電解液を用い、約90℃で18V印加して、タンタラ誘電体被膜8を陽極酸化によって形成した。その後脱イオン水を用いて洗浄し、105℃で乾燥させた。このときの容量を2Nの硫酸中で測定したところ42μFであった。  First, a thin tantalum sintered body element with a tantalum lead of 0.33 mm × 2.1 mm × 1.6 mm was prepared. The lead wire was drawn out from a portion having a small area in the plan view. To this tantalum sintered body, an tantalum dielectric coating 8 was formed by anodic oxidation using an electrolytic solution in which 5 ml of phosphoric acid was dissolved in 1000 ml of deionized water and applying 18 V at about 90 ° C. Thereafter, it was washed with deionized water and dried at 105 ° C. The capacity at this time was measured in 2N sulfuric acid and found to be 42 μF.

その後実施例1と同様にしてその場重合電解重合膜3を形成して、コンデンサ素子を完成させた。さらに実施例1と同様に分散型導電性高分子層10を用いて3枚積層した積層型タンタル固体電解コンデンサを作製した。
この焼結体をエチレンジオキシチオフェン:p−トルレンスルホン酸第二鉄:メタノール:18:10:10(重量比)なる溶液に浸漬後、80℃で1時間加熱して、ポリエチレンジオキシチオフェン層を内部に形成させ、その後エタノールで洗浄した。この操作を内部および表面が導電性高分子で充填されるまで繰り返した。
Thereafter, an in-situ polymerized electrolytic polymer film 3 was formed in the same manner as in Example 1 to complete the capacitor element. Further, similarly to Example 1, a laminated tantalum solid electrolytic capacitor was produced by laminating three sheets using the dispersed conductive polymer layer 10.
This sintered body was immersed in a solution of ethylenedioxythiophene: p-toluenesulfonic acid ferric acid: methanol: 18: 10: 10 (weight ratio) and then heated at 80 ° C. for 1 hour to obtain polyethylenedioxythiophene. A layer was formed inside and then washed with ethanol. This operation was repeated until the inside and the surface were filled with the conductive polymer.

この薄型タンタル焼結体素子を、図6に示すように実施例1と同じ分散型導電性高分子を用いて、積層すると共に陽極リード(不図示)を取り付けて10個の積層型タンタル固体電解コンデンサを完成させた。このコンデンサについて、実施例1と同様の測定を行い、それらの結果を(表1)に示す。  As shown in FIG. 6, this thin tantalum sintered body element is laminated using the same dispersion type conductive polymer as in Example 1, and 10 anodes of laminated tantalum solid electrolysis are attached by attaching anode leads (not shown). The capacitor was completed. This capacitor was measured in the same manner as in Example 1, and the results are shown in (Table 1).

(比較例2)
実施例3において、図2に示すように、0.33mm×2.1mm×1.6mmのタンタルリード付き薄型タンタル焼結体素子に替えて1.3mm×2.1mm×1.6mmのタンタル焼結体を用い、さらに積層を実施例2と同様にコロイダルグラファイト層4を介在させて銀ペイント層5を形成した以外、実施例3と同様にタンタル固体電解コンデンサを10個作製した。それらの特性を(表1)に示す。
(Comparative Example 2)
In Example 3, 1.3 mm × 2.1 mm × 1.6 mm tantalum sintered instead of a thin tantalum sintered body with a tantalum lead of 0.33 mm × 2.1 mm × 1.6 mm as shown in FIG. Ten tantalum solid electrolytic capacitors were prepared in the same manner as in Example 3, except that the silver paint layer 5 was formed by using the ligature and further laminating the colloidal graphite layer 4 in the same manner as in Example 2. Their characteristics are shown in (Table 1).

比較例2のコンデンサは積層していないため、深部にその場重合導電性高分子層3を形成することが困難で、容量が低い。さらに厚さが厚いため深部からの引き出し抵抗が大きいことに起因してtanδとESRが大きくなる傾向が見られる。本発明による積層型タンタル固体電解コンデンサは高価な銀ペイントを使用していないため安価であり、また薄い箔状タンタル焼結体を積層して用いているため、従来のブロック状電極を用いた場合に比較して、優れた高周波特性のコンデンサが得られる。  Since the capacitor of Comparative Example 2 is not laminated, it is difficult to form the in-situ polymerized conductive polymer layer 3 in the deep part, and the capacitance is low. Further, since tan δ and ESR tend to increase due to the large thickness, the resistance to drawing from the deep portion is large. The multilayer tantalum solid electrolytic capacitor according to the present invention is inexpensive because it does not use expensive silver paint, and because it uses thin foil-like tantalum sintered body, it uses a conventional block electrode. Compared to the above, a capacitor having excellent high frequency characteristics can be obtained.

実施例3において、コロイダルグラファイト層4を介在させた以外は、実施例3と同様にして、図7に示す積層型タンタル固体電解コンデンサを作製し、実施例1と同様の評価を行った。それらの結果を(表1)に示す。コロイダルグラファイト層4を介在させ留ことにより、その場重合導電性高分子層3と分散型導電性高分子層11との密着性ならびに被覆性が改善され、さらなる容量の増加ならびにtanδとESRの低下が実現できていることが明らかである。  In Example 3, a laminated tantalum solid electrolytic capacitor shown in FIG. 7 was produced in the same manner as in Example 3 except that the colloidal graphite layer 4 was interposed, and the same evaluation as in Example 1 was performed. The results are shown in (Table 1). By interposing the colloidal graphite layer 4, the in-situ polymerized conductive polymer layer 3 and the dispersive conductive polymer layer 11 are improved in adhesion and covering properties, and further increase in capacity and decrease in tan δ and ESR. It is clear that is realized.

実施例ではその場重合導電性高分子として電解重合ポリピロールを用いた場合と化学重合ポリエチレンジオキシチオフェンを用いた場合についてのみ述べたが、他の導電性高分子を用いてもよく、本発明はそれらの種類に限定されない。また実施例では、分散型導電性高分子としてPEDOT/PSSを主成分とした場合についてのみ述べたが、本発明はその種類に限定されない。
ポリピロールを分散させたものを用いることもできる
また、陽極弁金属としてニオブを用いた場合も同様の結果が得られることが容易に推察される。
In the examples, only the case of using electropolymerized polypyrrole and the case of using chemically polymerized polyethylene dioxythiophene as the in-situ polymerized conductive polymer were described, but other conductive polymers may be used, and the present invention It is not limited to those types. In the embodiments, only the case where PEDOT / PSS is the main component as the dispersive conductive polymer has been described, but the present invention is not limited to that type.
It is also possible to use a material in which polypyrrole is dispersed. It is easily assumed that the same result can be obtained when niobium is used as the anode valve metal.

本発明による積層型固体電解コンデンサは高価な銀ペイントに替えて,導電性の極めて高い分散型導電性高分子を主体とした接着剤で積層しているために、安価で高周波特性の優れた特性が実現できる。特に特開平01−310529号公報に開示された特許が2009年に満了し、エチレンジオキシチオフェンモノマーならびに酸化剤であるp−トルエンスルホン酸第二鉄の急激にコストダウンが進んでおり、もっぱらこの導電性高分子を用いる巻回型アルミニウム固体電解コンデンサの価格低下が進んでいる。積層型は従来銀ペイントで接着していたために、相対的に割高になるという課題があったがDMSOを添加したPEDOT/PSSに代表される高電気伝導度の分散型導電性高分子を銀ペイント層の替りに用いることにより、特性をほとんど低下させることなく、大幅なコストダウンが実現でき、産業上の利用可能性が極めて高い。  Since the multilayer solid electrolytic capacitor according to the present invention is laminated with an adhesive mainly composed of a highly conductive conductive polymer, instead of expensive silver paint, it is inexpensive and has excellent high-frequency characteristics. Can be realized. In particular, the patent disclosed in Japanese Patent Laid-Open No. 01-310529 expired in 2009, and the cost of ethylene dioxythiophene monomer and ferric p-toluenesulfonate as an oxidizing agent has been drastically reduced. The price of wound aluminum solid electrolytic capacitors using a conductive polymer is decreasing. The conventional laminate type had a problem that it was relatively expensive because it was bonded with silver paint. However, the dispersion type conductive polymer with high electrical conductivity represented by PEDOT / PSS to which DMSO was added was applied to silver paint. By using it instead of a layer, it is possible to realize a significant cost reduction with almost no deterioration in characteristics, and industrial applicability is extremely high.

さらに、その後1000S/cmを超える分散型PEDOT/PSSがドイツのH.C.Starck社からサンプル出荷することが2009年6月29日に発表された。また、2009年3月16日に三洋電機社から1400S/cmに達する電気伝導度を有するPEDOT/PSSが発表された。これらを積層接着剤の主材料として用いることにより、さらに高周波特性の優れた積層型固体電解コンデンサを安価に実現することができ、産業上の利用可能性がさらに高まると予測される。  Furthermore, after that, distributed PEDOT / PSS exceeding 1000 S / cm has been developed in Germany. C. Sample shipments from Starck were announced on June 29, 2009. On March 16, 2009, Sanyo Electric Co., Ltd. announced PEDOT / PSS having electrical conductivity reaching 1400 S / cm. By using these as the main material of the laminating adhesive, it is expected that a laminar solid electrolytic capacitor having further excellent high frequency characteristics can be realized at low cost, and industrial applicability is further increased.

Claims (12)

箔状弁金属表面に誘電体被膜とその場重合導電性高分子で陰極導電層とを形成し、さらに液体中に分散された導電性高分子を主体とした導電性高分子層を用いて前記誘電体被膜ならびに陰極導電層が形成された各箔状弁金属を積層した、積層型導電性高分子コンデンサ。    Forming a dielectric coating on the surface of the foil-shaped valve metal and a cathode conductive layer with an in-situ polymerized conductive polymer, and using the conductive polymer layer mainly composed of a conductive polymer dispersed in a liquid A laminated conductive polymer capacitor in which each foil-like valve metal on which a dielectric coating and a cathode conductive layer are formed is laminated. その場重合が電解重合または化学重合である請求項1記載の積層型導電性高分子コンデンサ。    The laminated conductive polymer capacitor according to claim 1, wherein the in-situ polymerization is electrolytic polymerization or chemical polymerization. その場重合導電性高分子がポロピロールあるいはその誘導体もしくはポリチフェンあるいはその誘導体である請求項1および2記載の積層型導電性高分子コンデンサ。      3. The laminated conductive polymer capacitor according to claim 1 or 2, wherein the in-situ polymerized conductive polymer is polypyrrole or a derivative thereof, polythiophene or a derivative thereof. 液体中に分散された導電性高分子子がポリエチレンジオキシチオフェンを主体としたものである請求項1から3記載の積層型導電性高分子コンデンサ。    4. The laminated conductive polymer capacitor according to claim 1, wherein the conductive polymer dispersed in the liquid is mainly composed of polyethylene dioxythiophene. 箔状弁金属がエッチドアルミニウム箔、タンタル焼結体薄膜あるいはニオブ焼結体薄膜である請求1から4記載の積層型導電性高分子コンデンサ。    5. The laminated conductive polymer capacitor according to claim 1, wherein the foil-shaped valve metal is an etched aluminum foil, a tantalum sintered thin film or a niobium sintered thin film. 各箔状弁金属電極が陽極端子を有し、前記陽極端子が電気的に接合された構造を有する請求1から5記載の積層型導電性高分子コンデンサ。    6. The multilayer conductive polymer capacitor according to claim 1, wherein each foil-like valve metal electrode has an anode terminal and the anode terminal is electrically joined. 箔状弁金属表面に誘電体被膜とその場重合導電性高分子で陰極導電層とを形成し、さらにコロイダルグラファイト層を介して液体中に分散された導電性高分子を主体とした導電性高分子層を用いて前記誘電体被膜ならびに陰極導電層が形成された各箔状弁金属を積層した、積層型導電性高分子コンデンサ。    A conductive film composed mainly of a conductive polymer dispersed in a liquid via a colloidal graphite layer is formed by forming a dielectric coating on the surface of the foil-shaped valve metal and a cathode conductive layer with an in-situ polymerized conductive polymer. A laminated conductive polymer capacitor in which each foil-like valve metal on which the dielectric coating and the cathode conductive layer are formed is laminated using a molecular layer. その場重合が電解重合または化学重合である請求項7記載の積層型導電性高分子コンデンサ。    The multilayer conductive polymer capacitor according to claim 7, wherein the in-situ polymerization is electrolytic polymerization or chemical polymerization. その場重合導電性高分子がポロピロールあるいはその誘導体もしくはポリチフェンあるいはその誘導体である請求項7または8記載の積層型導電性高分子コンデンサ。  The multilayer conductive polymer capacitor according to claim 7 or 8, wherein the in-situ polymerized conductive polymer is polypyrrole, a derivative thereof, polythiophene, or a derivative thereof. 液体中に分散された導電性高分子がポリエチレンジオキシチオフェンを主体としたものから選ばれる一種である請求項7から9記載の積層型導電性高分子コンデンサ。    10. The multilayer conductive polymer capacitor according to claim 7, wherein the conductive polymer dispersed in the liquid is one selected from those mainly composed of polyethylene dioxythiophene. 箔状弁金属がエッチドアルミニウム箔、タンタル焼結体薄膜あるいはニオブ焼結体薄膜である請求7から10記載の積層型導電性高分子コンデンサ。    11. The laminated conductive polymer capacitor according to claim 7, wherein the foil-shaped valve metal is an etched aluminum foil, a tantalum sintered thin film or a niobium sintered thin film. 各箔状弁金属電極が陽極端子を有し、前記陽極端子が電気的に接合された構造を有する請求7から11記載の積層型導電性高分子コンデンサ。    12. The laminated conductive polymer capacitor according to claim 7, wherein each foil-like valve metal electrode has an anode terminal, and the anode terminal is electrically joined.
JP2010079333A 2010-03-12 2010-03-12 Laminated type conductive polymer capacitor Pending JP2011192949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079333A JP2011192949A (en) 2010-03-12 2010-03-12 Laminated type conductive polymer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079333A JP2011192949A (en) 2010-03-12 2010-03-12 Laminated type conductive polymer capacitor

Publications (1)

Publication Number Publication Date
JP2011192949A true JP2011192949A (en) 2011-09-29

Family

ID=44797535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079333A Pending JP2011192949A (en) 2010-03-12 2010-03-12 Laminated type conductive polymer capacitor

Country Status (1)

Country Link
JP (1) JP2011192949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104086868A (en) * 2014-07-01 2014-10-08 安徽江威精密制造有限公司 Special filler for corrosion-resistant capacitor film and preparation method of special filler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104086868A (en) * 2014-07-01 2014-10-08 安徽江威精密制造有限公司 Special filler for corrosion-resistant capacitor film and preparation method of special filler
CN104086868B (en) * 2014-07-01 2016-05-04 安徽江威精密制造有限公司 A kind of corrosion resistant electric capacitor film filler special and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2018020985A1 (en) Electrolytic capacitor and production method thereof
US8945240B2 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP4524873B2 (en) Multilayer solid electrolytic capacitor
TW201117244A (en) Solid electrolytic capacitor and method of manufacturing thereof
WO2020153242A1 (en) Electrolytic capacitor and method for production thereof
WO2016174818A1 (en) Electrolytic capacitor and production method for same
JP5623214B2 (en) Solid electrolytic capacitor
JP5321964B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP7108811B2 (en) Electrolytic capacitor and manufacturing method thereof
JPWO2015198587A1 (en) Electrolytic capacitor
JP2011192949A (en) Laminated type conductive polymer capacitor
JP4868054B2 (en) Multilayer solid electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JP2004087713A (en) Aluminum solid electrolytic capacitor
CN109891535B (en) Solid electrolytic capacitor
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP2018037458A (en) Solid electrolytic capacitor
JP5799196B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6476410B2 (en) Electrolytic capacitor
JP6760272B2 (en) Electrolytic capacitor
WO2006129639A1 (en) Solid electrolytic capacitor and method for manufacturing same
US20230402233A1 (en) Electrolytic capacitor
JP6578510B2 (en) Electrolytic capacitor and manufacturing method thereof
WO2022191050A1 (en) Electrolytic capacitor and method for producing same
JP2022039775A (en) Solid electrolytic capacitor element and solid electrolytic capacitor