JP2011192594A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2011192594A
JP2011192594A JP2010059322A JP2010059322A JP2011192594A JP 2011192594 A JP2011192594 A JP 2011192594A JP 2010059322 A JP2010059322 A JP 2010059322A JP 2010059322 A JP2010059322 A JP 2010059322A JP 2011192594 A JP2011192594 A JP 2011192594A
Authority
JP
Japan
Prior art keywords
voltage
temperature
fuel cell
storage device
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010059322A
Other languages
Japanese (ja)
Inventor
Junpei Ogawa
純平 小河
Kazuhiro Wake
千大 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010059322A priority Critical patent/JP2011192594A/en
Publication of JP2011192594A publication Critical patent/JP2011192594A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system surely protecting the voltage of a power storage device. <P>SOLUTION: In the fuel cell system 10 including a fuel cell 11, the power storage device 60 storing the electric power generated from the fuel cell, a power storage device charging means 63 disposed between the fuel cell and the power storage device when charging the power storage device, a temperature sensor 42 detecting the temperature relevant to the fuel cell, and a control unit 45 having a low temperature determining means 71 determining whether a temperature detected by the temperature sensor is lower than a predetermined temperature, the control unit has a voltage threshold value changing means 72 setting a low-temperature-state charge start voltage threshold value at which charging of the power storage device is started higher than a normal-state charge start voltage threshold value when the temperature is determined to be higher than the predetermined time, when the temperature is determined to be lower than the predetermined temperature by the low temperature determining means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池システムに関するものである。   The present invention relates to a fuel cell system.

従来から、例えば車両に搭載される燃料電池には、固体高分子電解質膜をアノード電極およびカソード電極で両側から挟んで膜電極構造体を形成し、この膜電極構造体の両側に一対のセパレータを配置して平板状の単位燃料電池(以下、単位セルという。)を構成し、この単位セルを複数積層して燃料電池スタック(以下、燃料電池という。)とするものが知られている。このような燃料電池では、アノード電極とセパレータとの間にアノードガス(燃料ガス)として水素ガスを供給するとともに、カソード電極とセパレータとの間にカソードガス(酸化剤ガス)として空気を供給する。これにより、アノード電極で触媒反応により発生した水素イオンが、固体高分子電解質膜を透過してカソード電極まで移動し、カソード電極で空気中の酸素と電気化学反応を起こし、発電が行われる。   Conventionally, for example, in a fuel cell mounted on a vehicle, a membrane electrode structure is formed by sandwiching a solid polymer electrolyte membrane between an anode electrode and a cathode electrode from both sides, and a pair of separators are provided on both sides of the membrane electrode structure. A flat unit fuel cell (hereinafter referred to as a unit cell) is arranged to form a fuel cell stack (hereinafter referred to as a fuel cell) by stacking a plurality of unit cells. In such a fuel cell, hydrogen gas is supplied as an anode gas (fuel gas) between the anode electrode and the separator, and air is supplied as a cathode gas (oxidant gas) between the cathode electrode and the separator. As a result, hydrogen ions generated by the catalytic reaction at the anode electrode pass through the solid polymer electrolyte membrane and move to the cathode electrode, causing an electrochemical reaction with oxygen in the air at the cathode electrode, thereby generating power.

また、燃料電池を搭載した車両においては、燃料電池で発電された電力を蓄電可能な12Vバッテリが併設されている。この12Vバッテリに蓄電された電力は、車内の空調装置やカーナビゲーションシステムなどを駆動させるために用いられる。   In addition, in a vehicle equipped with a fuel cell, a 12V battery capable of storing electric power generated by the fuel cell is additionally provided. The electric power stored in the 12V battery is used to drive an in-vehicle air conditioner, a car navigation system, and the like.

さらに、電源として燃料電池および高電圧バッテリを併設した燃料電池システムを備え、該燃料電池システムにより車両走行用のモータを駆動する燃料電池車両が提案されている。この燃料電池車両では、高電圧バッテリの電力を利用して車両(燃料電池)を起動するとともに、車両走行や補機電力のアシストを行い、あるいは高電圧バッテリのみで所謂EV(Electric Vehicle)走行が行われる。   Furthermore, a fuel cell vehicle is proposed that includes a fuel cell system in which a fuel cell and a high-voltage battery are provided as power sources, and drives a motor for driving the vehicle by the fuel cell system. In this fuel cell vehicle, the vehicle (fuel cell) is activated using the power of the high voltage battery, and the vehicle travels and assists the auxiliary power, or the so-called EV (electric vehicle) travel is performed only with the high voltage battery. Done.

そして、このような燃料電池車両において、車両の再始動を確実に行うために、車両の停止時に高電圧バッテリに必要電力を蓄電するように構成した技術が提案されている(例えば、特許文献1〜3参照)。   And in such a fuel cell vehicle, in order to perform restart of a vehicle reliably, the technique comprised so that required electric power might be stored in a high voltage battery at the time of a vehicle stop is proposed (for example, patent document 1). To 3).

特許文献1では、GPS電波による車両位置の測位データと日付データとから最低外気温を予測し、この予測結果に基づいてバッテリの必要電力を予測するようにしている。   In Patent Document 1, the minimum outside air temperature is predicted from the positioning data of the vehicle position by GPS radio waves and the date data, and the required power of the battery is predicted based on the prediction result.

特許文献2では、外気温に基づいて、再始動時のバッテリ温度を予測し、この予測バッテリ温度に基づきバッテリの必要電力を予測するようにしている。   In Patent Document 2, the battery temperature at restart is predicted based on the outside air temperature, and the required power of the battery is predicted based on the predicted battery temperature.

特許文献3では、次回のエンジン(モータ)始動時のバッテリ温度を予測し、バッテリから所定の出力を得るためのバッテリ温度予測値に応じたSOCを設定し、SOC検出値がSOC設定値となるようにバッテリの充放電を制御するようにしている。   In Patent Document 3, the battery temperature at the next engine (motor) start is predicted, the SOC is set according to the predicted battery temperature value for obtaining a predetermined output from the battery, and the SOC detection value becomes the SOC set value. Thus, charging / discharging of the battery is controlled.

特開2004−146075号公報JP 2004-146075 A 特開2007−311309号公報JP 2007-31309 A 特開平11−355967号公報JP 11-355967 A

しかしながら、上記特許文献1〜3に係る技術では、再始動時のバッテリ温度を予測により求めており、精度よく停止時などのバッテリ充電量を決定することができない。また、特許文献1に係る技術では、GPSなどの測位データ受信機を必須の構成要件としているため、ガレージ内など電波を受信できない環境下では外気温を予測することができない。また、特許文献2に係る技術では、車両起動時に温度センサにより外気温を検出するようにしているが、車両起動時には、温度センサにより検出される外気温が急激に変化するため、温度センサにより検出される検出温度(外気温)の精度が低くなる。さらに、特許文献3に係る技術では、バッテリのSOC設定値を見ながらバッテリの充放電を制御しているが、SOCは精度よく検出・制御することが困難であり、無駄に充電してしまうことがある。結果として、バッテリを適切な状態に蓄電することができず、特に冬季にはバッテリの電圧低下が生じて起動できなくなる虞がある   However, in the technologies according to Patent Documents 1 to 3, the battery temperature at the time of restart is obtained by prediction, and the battery charge amount at the time of stop and the like cannot be determined accurately. Further, in the technique according to Patent Document 1, since a positioning data receiver such as GPS is an essential constituent requirement, the outside air temperature cannot be predicted in an environment where radio waves cannot be received such as in a garage. In the technique according to Patent Document 2, the outside air temperature is detected by the temperature sensor when the vehicle is started. However, when the vehicle is started, the outside air temperature detected by the temperature sensor changes abruptly. The accuracy of the detected temperature (outside air temperature) is lowered. Furthermore, in the technology according to Patent Document 3, charging / discharging of the battery is controlled while looking at the SOC setting value of the battery, but it is difficult to accurately detect and control the SOC, and the battery is charged wastefully. There is. As a result, it is not possible to store the battery in an appropriate state, and there is a possibility that the battery may drop and become unable to start up, especially in winter.

そこで、本発明は、上記事情を鑑みてなされたものであり、蓄電装置の電圧を確実に保護することができる燃料電池システムを提供するものである。   Therefore, the present invention has been made in view of the above circumstances, and provides a fuel cell system that can reliably protect the voltage of a power storage device.

上記の課題を解決するために、請求項1に記載した発明は、アノード電極に燃料ガスを、カソード電極に酸化剤ガスを供給し発電を行う燃料電池(例えば、実施形態における燃料電池11)と、該燃料電池で発電された電力を蓄電可能な蓄電装置(例えば、実施形態における12Vバッテリ60)と、該蓄電装置に前記電力を充電する際に、前記燃料電池と前記蓄電装置との間に配される蓄電装置充電手段(例えば、実施形態におけるダウンバータ63)と、前記燃料電池に関する温度を検出可能な温度センサ(例えば、実施形態における温度センサ42)と、該温度センサによって検出された前記温度が所定温度よりも低いか否かを判定する低温判定手段(例えば、実施形態における低温判定部71)を有する制御部(例えば、実施形態におけるECU45)と、を備えた燃料電池システム(例えば、実施形態における燃料電池システム10)において、前記制御部は、前記低温判定手段において前記温度が前記所定温度よりも低いと判定した場合に、前記蓄電装置への充電を開始する低温時充電開始電圧閾値(例えば、実施形態における低温時充電開始電圧閾値V1)を、前記温度が前記所定温度以上と判定した場合の通常時充電開始電圧閾値(例えば、実施形態における通常時充電開始電圧閾値V3)よりも高く設定する電圧閾値変更手段(例えば、実施形態における12VBATT充電電圧閾値変換部72)を備えていることを特徴としている。   In order to solve the above problems, the invention described in claim 1 is a fuel cell (for example, the fuel cell 11 in the embodiment) that generates power by supplying a fuel gas to the anode electrode and an oxidant gas to the cathode electrode. A power storage device capable of storing the power generated by the fuel cell (for example, the 12V battery 60 in the embodiment), and when charging the power to the power storage device, between the fuel cell and the power storage device Power storage device charging means (for example, the downverter 63 in the embodiment) arranged, a temperature sensor (for example, the temperature sensor 42 in the embodiment) capable of detecting the temperature related to the fuel cell, and the temperature sensor detected by the temperature sensor A control unit (for example, in the embodiment) having low temperature determination means (for example, the low temperature determination unit 71 in the embodiment) for determining whether or not the temperature is lower than a predetermined temperature. ECU 45), the control unit determines that the temperature is lower than the predetermined temperature in the low temperature determination means, the fuel cell system (for example, the fuel cell system 10 in the embodiment) A low-temperature charge start voltage threshold (for example, low-temperature charge start voltage threshold V1 in the embodiment) that starts charging the power storage device is a normal-time charge start voltage threshold (for example, when the temperature is determined to be equal to or higher than the predetermined temperature). The voltage threshold value changing means (for example, 12VBATT charge voltage threshold value conversion unit 72 in the embodiment) that is set higher than the normal charging start voltage threshold value V3 in the embodiment is provided.

請求項2に記載した発明は、前記電圧閾値変更手段は、前記低温判定手段において前記温度が前記所定温度よりも低いと判定した場合に、前記蓄電装置への充電を終了する低温時充電終了電圧閾値(例えば、実施形態における低温時充電終了電圧閾値V2)を、前記温度が前記所定温度以上と判定した場合の通常時充電終了電圧閾値(例えば、実施形態における通常時充電終了電圧閾値V4)よりも高く設定することを特徴としている。   According to a second aspect of the present invention, the voltage threshold value changing means is a low temperature charge end voltage for ending charging of the power storage device when the low temperature determining means determines that the temperature is lower than the predetermined temperature. A threshold (for example, low temperature charge end voltage threshold V2 in the embodiment) is based on a normal charge end voltage threshold (for example, normal charge end voltage threshold V4 in the embodiment) when the temperature is determined to be equal to or higher than the predetermined temperature. It is also characterized by being set high.

請求項3に記載した発明は、前記制御部は、前記低温判定手段において前記温度が前記所定温度よりも低いと判定した場合に、前記蓄電装置充電手段の出力を、前記温度が前記所定温度以上と判定した場合の前記蓄電装置充電手段の出力よりも大きくする出力変更手段(例えば、実施形態におけるダウンバータ出力変換部73)を備えていることを特徴としている。   According to a third aspect of the present invention, when the control unit determines that the temperature is lower than the predetermined temperature in the low temperature determination unit, the control unit outputs the output of the power storage device charging unit so that the temperature is equal to or higher than the predetermined temperature. Output changing means (for example, the downverter output conversion unit 73 in the embodiment) that makes the output larger than the output of the power storage device charging means when it is determined.

請求項4に記載した発明は、前記蓄電装置の電圧を監視する蓄電装置監視手段(例えば、実施形態における電圧センサ65)を備え、前記制御部は、前記蓄電装置の電圧が所定電圧以下になったか否かを判定する電圧判定手段(例えば、実施形態における12VBATT電圧判定部75)を有し、該電圧判定手段において前記電圧が前記所定電圧以下であると判定した場合に、前記出力変更手段は前記蓄電装置充電手段の出力をさらに大きく設定することを特徴としている。   The invention described in claim 4 includes power storage device monitoring means for monitoring the voltage of the power storage device (for example, the voltage sensor 65 in the embodiment), and the control unit has a voltage of the power storage device equal to or lower than a predetermined voltage. Voltage determining means (for example, 12VBATT voltage determining unit 75 in the embodiment) for determining whether the voltage is equal to or lower than the predetermined voltage in the voltage determining means, the output changing means The output of the power storage device charging means is set to be larger.

請求項5に記載した発明は、前記蓄電装置の電圧を監視する蓄電装置監視手段を備え、前記燃料電池の発電停止中に、前記制御部は、前記蓄電装置の電圧が所定電圧以下になったか否かを判定する電圧判定手段を有し、前記蓄電装置監視手段により前記電圧を定期的に監視し、前記電圧判定手段において前記電圧が前記所定電圧以下であると判定した場合に、前記蓄電装置充電手段により前記蓄電装置の充電を開始することを特徴としている。   The invention described in claim 5 is provided with power storage device monitoring means for monitoring the voltage of the power storage device, and during the power generation stop of the fuel cell, the control unit determines whether the voltage of the power storage device has become a predetermined voltage or less. Voltage determination means for determining whether or not the voltage is periodically monitored by the power storage device monitoring means, and when the voltage determination means determines that the voltage is equal to or lower than the predetermined voltage, the power storage device Charging means starts charging the power storage device.

請求項1に記載した発明によれば、低温判定手段によって所定温度よりも低い低温状態であると判定した場合に、低温時充電開始電圧閾値を通常時充電開始電圧閾値よりも高く設定するように構成したため、蓄電装置の電圧が低下しすぎる前に充電を開始することができる。したがって、蓄電装置の電圧を確実に保護することができる。   According to the first aspect of the present invention, when the low temperature determination means determines that the low temperature state is lower than the predetermined temperature, the low temperature charge start voltage threshold is set higher than the normal charge start voltage threshold. Since it comprised, charge can be started before the voltage of an electrical storage apparatus falls too much. Therefore, the voltage of the power storage device can be reliably protected.

請求項2に記載した発明によれば、低温判定手段によって所定温度よりも低い低温状態であると判定した場合に、低温時充電終了電圧閾値を通常時充電終了電圧閾値よりも高く設定するように構成したため、蓄電装置に十分充電させることができる。したがって、蓄電装置の電圧を確実に保護することができるとともに、蓄電装置を有効に利用することができる。   According to the second aspect of the present invention, when the low temperature determination means determines that the low temperature state is lower than the predetermined temperature, the low temperature charge end voltage threshold is set higher than the normal charge end voltage threshold. Since it comprised, the electrical storage apparatus can be fully charged. Therefore, the voltage of the power storage device can be reliably protected and the power storage device can be used effectively.

請求項3に記載した発明によれば、低温判定手段によって所定温度よりも低い低温状態であると判定した場合に、蓄電装置充電手段の出力を通常時よりも大きくするように構成したため、蓄電装置への充電を促進することができる。したがって、蓄電装置への充電効率を向上することができる。   According to the third aspect of the present invention, when the low temperature determination unit determines that the low temperature state is lower than the predetermined temperature, the output of the power storage device charging unit is configured to be larger than normal. Can facilitate charging. Therefore, the efficiency of charging the power storage device can be improved.

請求項4に記載した発明によれば、低温判定手段によって所定温度よりも低い低温状態であると判定し、かつ、蓄電装置の電圧が所定電圧以下になった場合に、蓄電装置充電手段の出力をさらに大きくするように構成したため、蓄電装置への充電をさらに促進することができる。したがって、蓄電装置への充電効率を向上することができる。   According to the fourth aspect of the present invention, when the low temperature determination unit determines that the low temperature state is lower than the predetermined temperature, and the voltage of the power storage device becomes equal to or lower than the predetermined voltage, the output of the power storage device charging unit Therefore, charging to the power storage device can be further promoted. Therefore, the efficiency of charging the power storage device can be improved.

請求項5に記載した発明によれば、燃料電池の発電停止中で、低温判定手段によって所定温度よりも低い低温状態であると判定し、かつ、蓄電装置の電圧が所定電圧以下になった場合に、蓄電装置の充電を開始するように構成したため、蓄電装置の電圧が低下しすぎる前に充電を開始することができる。したがって、蓄電装置の電圧を確実に保護することができる。   According to the invention described in claim 5, when the power generation of the fuel cell is stopped, it is determined by the low temperature determination means that the low temperature state is lower than the predetermined temperature, and the voltage of the power storage device becomes equal to or lower than the predetermined voltage. In addition, since the charging of the power storage device is started, charging can be started before the voltage of the power storage device decreases too much. Therefore, the voltage of the power storage device can be reliably protected.

本発明の実施形態における燃料電池自動車の概略構成図である。1 is a schematic configuration diagram of a fuel cell vehicle according to an embodiment of the present invention. 本発明の実施形態における燃料電池と併設されるバッテリとの関係を示すブロック図である。It is a block diagram which shows the relationship between the fuel cell in embodiment of this invention, and the battery attached. 本発明の実施形態における燃料電池システムがシステム停止後放置中の場合における12Vバッテリへの充電方法を示すフローチャートである。It is a flowchart which shows the charging method to the 12V battery in case the fuel cell system in embodiment of this invention is standing after a system stop. 図3のフローチャートにおいて、ステップS11で冬季と判定された場合の12Vバッテリの充電の流れを示すタイムチャートである。4 is a time chart showing the flow of charging a 12V battery when it is determined in step S11 that it is winter. 本発明の実施形態における燃料電池システムが発電中の場合における12Vバッテリへの充電方法を示すフローチャートである。It is a flowchart which shows the charge method to the 12V battery in case the fuel cell system in embodiment of this invention is generating electric power. 図5のフローチャートにおいて、ステップS21で冬季と判定された場合の12Vバッテリの充電の流れを示すタイムチャートである。6 is a time chart showing the flow of charging a 12V battery when it is determined in step S21 that it is winter.

次に、本発明に係る燃料電池システムの実施形態を図1〜図6に基づいて説明する。なお、本実施形態では燃料電池システムを車両に搭載した場合の説明をする。   Next, an embodiment of a fuel cell system according to the present invention will be described with reference to FIGS. In the present embodiment, a case where the fuel cell system is mounted on a vehicle will be described.

(燃料電池システム)
図1は燃料電池システムの概略構成図である。
図1に示すように、燃料電池システム10の燃料電池11は、水素ガスなどのアノードガスと空気などのカソードガスとの電気化学反応により発電を行う固体高分子膜型燃料電池である。燃料電池11に形成されたアノードガス供給用連通孔13(アノードガス流路21の入口側)にはアノードガス供給配管23が連結され、その上流端部には水素タンク30が接続されている。また、燃料電池11に形成されたカソードガス供給用連通孔15(カソードガス流路22の入口側)にはカソードガス供給配管24が連結され、その上流端部にはエアコンプレッサ33が接続されている。さらに、燃料電池11に形成されたアノードオフガス排出用連通孔14(アノードガス流路21の出口側)にはアノードオフガス排出配管35が連結され、カソードオフガス排出用連通孔16(カソードガス流路22の出口側)にはカソードオフガス排出配管38が連結されている。ここで、アノードガス供給配管23とアノードオフガス排出配管35とでアノードガス流通配管46を構成し、カソードガス供給配管24とカソードオフガス排出配管38とでカソードガス流通配管47を構成している。
(Fuel cell system)
FIG. 1 is a schematic configuration diagram of a fuel cell system.
As shown in FIG. 1, the fuel cell 11 of the fuel cell system 10 is a solid polymer membrane fuel cell that generates electric power by an electrochemical reaction between an anode gas such as hydrogen gas and a cathode gas such as air. An anode gas supply pipe 23 is connected to the anode gas supply communication hole 13 (inlet side of the anode gas passage 21) formed in the fuel cell 11, and a hydrogen tank 30 is connected to the upstream end thereof. A cathode gas supply pipe 24 is connected to the cathode gas supply communication hole 15 (inlet side of the cathode gas flow path 22) formed in the fuel cell 11, and an air compressor 33 is connected to the upstream end thereof. Yes. Further, an anode off gas discharge communication hole 14 (cathode gas flow path 22) is connected to an anode off gas discharge communication hole 14 (an outlet side of the anode gas flow path 21) formed in the fuel cell 11. Is connected to a cathode offgas discharge pipe 38. Here, the anode gas supply pipe 23 and the anode off gas discharge pipe 35 constitute an anode gas circulation pipe 46, and the cathode gas supply pipe 24 and the cathode off gas discharge pipe 38 constitute a cathode gas circulation pipe 47.

また、水素タンク30からアノードガス供給配管23に供給された水素ガスは、レギュレータ(不図示)により減圧された後、エゼクタ26を通り、燃料電池11のアノードガス流路21に供給される。また、水素タンク30とエゼクタ26との間には、電磁駆動式の電磁弁25が設けられており、水素タンク30からの水素ガスの供給を遮断することができるように構成されている。   Further, the hydrogen gas supplied from the hydrogen tank 30 to the anode gas supply pipe 23 is decompressed by a regulator (not shown), then passes through the ejector 26 and is supplied to the anode gas flow path 21 of the fuel cell 11. In addition, an electromagnetically driven electromagnetic valve 25 is provided between the hydrogen tank 30 and the ejector 26 so that the supply of hydrogen gas from the hydrogen tank 30 can be shut off.

また、アノードオフガス排出配管35は、エゼクタ26に接続され、燃料電池11を通過し排出されたアノードオフガスを再度燃料電池11のアノードガスとして再利用できるように構成されている。さらに、アノードオフガス排出配管35には、途中で3本の配管が分岐して設けられており、燃料電池11で生成された生成水(ドレイン)を排出するためのドレイン排出配管36と、アノード配管内の水素濃度を適正に保持するために配管内のガス(オフガス)を排出するためのパージガス排出配管37と、燃料電池11の停止中に掃気処理を行う際に掃気ガス(空気)を排出するための掃気ガス排出配管32と、が設けられている。   The anode off gas discharge pipe 35 is connected to the ejector 26 so that the anode off gas discharged through the fuel cell 11 can be reused as the anode gas of the fuel cell 11 again. Further, the anode off-gas discharge pipe 35 is provided with three pipes branched in the middle, and a drain discharge pipe 36 for discharging generated water (drain) generated by the fuel cell 11, and an anode pipe. A purge gas discharge pipe 37 for discharging the gas (off-gas) in the pipe to properly maintain the hydrogen concentration in the pipe, and a scavenging gas (air) when the scavenging process is performed while the fuel cell 11 is stopped. Scavenging gas discharge piping 32 is provided.

ドレイン排出配管36、パージガス排出配管37および掃気ガス排出配管32は、それらの下流でともに希釈ボックス31に接続されている。そして、ドレイン排出配管36には電磁駆動式のドレイン弁51が設けられており、パージガス排出配管37には電磁駆動式のパージ弁52が設けられており、掃気ガス排出配管32には電磁駆動式のエア排出弁48が設けられている。なお、アノードオフガス排出配管35とドレイン排出配管36との分岐地点には気液分離器としてキャッチタンク53が設けられている。   The drain discharge pipe 36, the purge gas discharge pipe 37 and the scavenging gas discharge pipe 32 are all connected to the dilution box 31 downstream thereof. The drain discharge pipe 36 is provided with an electromagnetically driven drain valve 51, the purge gas discharge pipe 37 is provided with an electromagnetically driven purge valve 52, and the scavenging gas discharge pipe 32 is electromagnetically driven. The air discharge valve 48 is provided. Note that a catch tank 53 is provided as a gas-liquid separator at a branch point between the anode off-gas discharge pipe 35 and the drain discharge pipe 36.

次に、空気(カソードガス)はエアコンプレッサ33によって加圧され、カソードガス供給配管24を通過した後、燃料電池11のカソードガス流路22に供給される。この空気中の酸素が酸化剤として発電に供された後、燃料電池11からカソードオフガスとしてカソードオフガス排出配管38に排出される。カソードオフガス排出配管38は希釈ボックス31に接続され、その後、車外へと排気される。なお、カソードオフガス排出配管38には背圧弁34が設けられている。なお、カソードガス供給配管24とカソードオフガス排出配管38との間に加湿器(不図示)を架け渡して設け、カソードガスがカソードオフガスに含まれる水分の移動により加湿されるように構成してもよい。   Next, air (cathode gas) is pressurized by the air compressor 33, passes through the cathode gas supply pipe 24, and is then supplied to the cathode gas flow path 22 of the fuel cell 11. After this oxygen in the air is used as an oxidizing agent for power generation, it is discharged from the fuel cell 11 to the cathode offgas discharge pipe 38 as cathode offgas. The cathode offgas discharge pipe 38 is connected to the dilution box 31 and then exhausted to the outside of the vehicle. A back pressure valve 34 is provided in the cathode off gas discharge pipe 38. A humidifier (not shown) may be provided between the cathode gas supply pipe 24 and the cathode offgas discharge pipe 38 so that the cathode gas is humidified by movement of moisture contained in the cathode offgas. Good.

また、エアコンプレッサ33と燃料電池11との間を繋ぐカソードガス供給配管24において、配管が分岐され掃気ガス導入配管54の一端が接続されている。掃気ガス導入配管54は、アノードガス供給配管23におけるエゼクタ26と燃料電池11との間に他端が接続されている。つまり、エアコンプレッサ33にて加圧された空気を燃料電池11のアノードガス流路21およびアノードガス流通配管46に供給できるようになっている。なお、掃気ガス導入配管54には電磁駆動式の電磁弁55が設けられており、エアコンプレッサ33からの空気の供給を遮断できるように構成されている。   Further, in the cathode gas supply pipe 24 connecting the air compressor 33 and the fuel cell 11, the pipe is branched and one end of the scavenging gas introduction pipe 54 is connected. The other end of the scavenging gas introduction pipe 54 is connected between the ejector 26 and the fuel cell 11 in the anode gas supply pipe 23. That is, the air pressurized by the air compressor 33 can be supplied to the anode gas passage 21 and the anode gas distribution pipe 46 of the fuel cell 11. The scavenging gas introduction pipe 54 is provided with an electromagnetically driven solenoid valve 55 so that the supply of air from the air compressor 33 can be shut off.

ここで、燃料電池11には温度センサ42が設けられている。例えば、温度センサ42の検出温度により、燃料電池11の内部の温度と略同一の温度を検知することができるようになっている。温度センサ42からの検出結果(センサ出力)は、制御装置(ECU)45へ伝達され、その検出結果に基づいて、各種制御(後に詳述する。)を実行するか否かを決定するように構成されている。   Here, the fuel cell 11 is provided with a temperature sensor 42. For example, the temperature detected by the temperature sensor 42 can detect substantially the same temperature as the temperature inside the fuel cell 11. A detection result (sensor output) from the temperature sensor 42 is transmitted to a control unit (ECU) 45, and based on the detection result, it is determined whether or not to execute various controls (described in detail later). It is configured.

さらに、燃料電池11で発電された電力(電流)はモータなどの電力消費デバイス50へ供給されるように構成されている。   Furthermore, the power (current) generated by the fuel cell 11 is configured to be supplied to a power consuming device 50 such as a motor.

図2は、燃料電池11と併設されるバッテリとの関係を示すブロック図である。図2に示すように、燃料電池11にはモータなどの電力消費デバイス50が接続されている。また、本実施形態の車両には、燃料電池11から発電された電力を充電可能な高電圧バッテリ59および12Vバッテリ(12VBATT)60が併設されている。燃料電池11と両バッテリ59,60との間には、電圧調整用のボルテージコントロールユニット(以下、VCUという。)62が配されている。また、燃料電池11と12Vバッテリ60との間、かつ、高電圧バッテリ59と12Vバッテリ60との間には、充電手段として機能するダウンバータ(D/V)63が配されている。さらに、12Vバッテリ60には、出力電圧を検出可能なる電圧計(蓄電装置監視手段)65が設けられている。   FIG. 2 is a block diagram showing the relationship between the fuel cell 11 and the battery provided together. As shown in FIG. 2, a power consuming device 50 such as a motor is connected to the fuel cell 11. Further, the vehicle of the present embodiment is provided with a high voltage battery 59 and a 12V battery (12VBATT) 60 that can be charged with electric power generated from the fuel cell 11. A voltage control voltage control unit (hereinafter referred to as VCU) 62 is disposed between the fuel cell 11 and the batteries 59 and 60. Further, a downverter (D / V) 63 functioning as a charging means is disposed between the fuel cell 11 and the 12V battery 60 and between the high voltage battery 59 and the 12V battery 60. Further, the 12V battery 60 is provided with a voltmeter (power storage device monitoring means) 65 capable of detecting the output voltage.

このように構成された燃料電池システム10では、燃料電池11により発電された電力を直接電力消費デバイス50に供給することができるとともに、高電圧バッテリ59や12Vバッテリ60に充電することができる。なお、高電圧バッテリ59は、モータなどを駆動するための電力として利用され、12Vバッテリ60は、空調機やカーナビゲーションシステムなど(図示せず)を駆動するための電力として利用される。   In the fuel cell system 10 configured as described above, the power generated by the fuel cell 11 can be directly supplied to the power consuming device 50, and the high voltage battery 59 and the 12V battery 60 can be charged. The high voltage battery 59 is used as power for driving a motor or the like, and the 12V battery 60 is used as power for driving an air conditioner, a car navigation system, or the like (not shown).

ここで、ECU45は、温度センサ42によって検出された燃料電池11の温度Tが予め設定された所定温度T0よりも低いか否かを判定する低温判定部71と、低温判定部71において検出された温度Tが所定温度T0よりも低いと判定した場合に、12Vバッテリ60への充電を開始する低温時充電開始電圧閾値V1を、検出された温度Tが所定温度T0以上と判定した場合の通常時充電開始電圧閾値V3よりも高く設定するとともに、12Vバッテリ60への充電を終了する低温時充電終了電圧閾値V2を、検出された温度Tが所定温度T0以上と判定した場合の通常時充電終了電圧閾値V4よりも高く設定する12VBATT充電電圧閾値変換部72と、低温判定部71において温度Tが所定温度T0よりも低いと判定した場合に、ダウンバータ63の出力を、温度Tが所定温度T0以上と判定した場合のダウンバータ63の出力よりも大きくするダウンバータ出力変換部73と、12Vバッテリ60の電圧Vを監視する12VBATT電圧監視部74と、12Vバッテリ60の電圧Vが所定電圧V0(V1またはV3)以下またはV5(V2またはV4)以上になったか否かを判定する12VBATT電圧判定部75と、を備えている。   Here, the ECU 45 is detected by the low temperature determination unit 71 that determines whether the temperature T of the fuel cell 11 detected by the temperature sensor 42 is lower than a predetermined temperature T0 that is set in advance, and the low temperature determination unit 71. When it is determined that the temperature T is lower than the predetermined temperature T0, the normal temperature when the detected temperature T is determined to be equal to or higher than the predetermined temperature T0 as the low-temperature charging start voltage threshold V1 for starting charging the 12V battery 60 The normal charging end voltage when the detected temperature T is determined to be equal to or higher than the predetermined temperature T0 as the low temperature charging end voltage threshold V2 that is set higher than the charging start voltage threshold V3 and ends the charging of the 12V battery 60. When it is determined that the temperature T is lower than the predetermined temperature T0 in the 12VBATT charging voltage threshold value conversion unit 72 set higher than the threshold value V4 and the low temperature determination unit 71, A downverter output conversion unit 73 for making the output of the unverter 63 larger than the output of the downverter 63 when the temperature T is determined to be equal to or higher than the predetermined temperature T0; a 12VBATT voltage monitoring unit 74 for monitoring the voltage V of the 12V battery 60; 12VBATT voltage determination unit 75 for determining whether or not the voltage V of the 12V battery 60 has become equal to or lower than a predetermined voltage V0 (V1 or V3) or V5 (V2 or V4).

また、ECU45には、システム停止中の現在時刻カウント機能であるリアルタイムクロック(RTC)制御部76と、タイマ77とがさらに備えられており、車両の停止中においても定期的(一定時間毎)にECU45の各部を駆動させて、各種制御を実行することができるように構成されている。   Further, the ECU 45 is further provided with a real time clock (RTC) control unit 76, which is a current time counting function while the system is stopped, and a timer 77, and periodically (every fixed time) even when the vehicle is stopped. Various parts of the ECU 45 can be driven to execute various controls.

さらに、12VBATT電圧判定部75において電圧Vが所定電圧V0以下であると判定した場合には、ダウンバータ出力変換部73の指示に基づいてダウンバータ63の出力を通常時よりも大きく設定することができるように構成されている。また、燃料電池システム10の停止中に12VBATT電圧監視部74により12Vバッテリ60の電圧Vを定期的に監視し、12VBATT電圧判定部75において電圧Vが所定電圧V0以下であると判定した場合に、ダウンバータ63を起動させて12Vバッテリ60の充電を開始することができるように構成されている。   Furthermore, when the 12VBATT voltage determination unit 75 determines that the voltage V is equal to or lower than the predetermined voltage V0, the output of the downverter 63 can be set larger than normal based on an instruction from the downverter output conversion unit 73. It is configured to be able to. In addition, when the fuel cell system 10 is stopped, the 12V BATT voltage monitoring unit 74 periodically monitors the voltage V of the 12V battery 60, and the 12V BATT voltage determination unit 75 determines that the voltage V is equal to or lower than the predetermined voltage V0. The downverter 63 is activated so that charging of the 12V battery 60 can be started.

なお、ECU45は、燃料電池11に要求される出力に応じて、電磁弁25を制御して水素タンク30から所定量の水素ガスを燃料電池11に供給することができるようになっている。また、ECU45は、燃料電池11に要求される出力に応じて、エアコンプレッサ33を駆動して所定量の空気を燃料電池11に供給するとともに、背圧弁34を制御してカソードガス流路22への空気の供給圧力を調整できるように構成されている。   The ECU 45 can supply a predetermined amount of hydrogen gas from the hydrogen tank 30 to the fuel cell 11 by controlling the electromagnetic valve 25 according to the output required for the fuel cell 11. Further, the ECU 45 drives the air compressor 33 according to the output required for the fuel cell 11 to supply a predetermined amount of air to the fuel cell 11 and controls the back pressure valve 34 to the cathode gas flow path 22. The air supply pressure can be adjusted.

次に、上述のように構成された燃料電池システム10における12Vバッテリ60への充電方法について説明する。
図3は燃料電池システム10がシステム停止後放置中の場合における12Vバッテリ60への充電方法を説明するフローチャートであり、車両が停止して燃料電池システム10がシステム停止後放置状態になった時点(イグニションスイッチがオフされた時点)からこのフローチャートがスタートする。
Next, a method for charging the 12V battery 60 in the fuel cell system 10 configured as described above will be described.
FIG. 3 is a flowchart for explaining a method of charging the 12V battery 60 when the fuel cell system 10 is left after the system is stopped. When the vehicle is stopped and the fuel cell system 10 is left after the system is stopped ( This flowchart starts from the time when the ignition switch is turned off.

図3に示すように、ステップS11では、ECU45の指示により燃料電池11に設けられた温度センサ42の温度Tを検出し、低温判定部71において温度Tが予め設定された所定温度T0(例えば、5℃)よりも低いか否かを判定する。温度Tが所定温度T0よりも低い場合には冬季であると判定しステップS12へ進み、温度Tが所定温度T0以上の場合には冬季でない通常時と判定しステップS13へ進む。   As shown in FIG. 3, in step S <b> 11, the temperature T of the temperature sensor 42 provided in the fuel cell 11 is detected by an instruction from the ECU 45, and the low temperature determination unit 71 sets the temperature T in advance to a predetermined temperature T <b> 0 (for example, It is determined whether the temperature is lower than 5 ° C. If the temperature T is lower than the predetermined temperature T0, it is determined that it is winter, and the process proceeds to step S12. If the temperature T is equal to or higher than the predetermined temperature T0, it is determined that the normal time is not winter and the process proceeds to step S13.

ステップS12では、冬季の低温環境下にいると判定したため、12Vバッテリ60の充電を開始する電圧閾値を、通常時充電開始電圧閾値V3より高い電圧に設定された低温時充電開始電圧閾値V1に設定するとともに、12Vバッテリ60の充電を終了する電圧閾値を、通常時充電終了電圧閾値V4より高い電圧に設定された低温時充電終了電圧閾値V2に設定し、ステップS14へ進む。   In step S12, since it is determined that the vehicle is in a low-temperature environment in winter, the voltage threshold value for starting charging of the 12V battery 60 is set to the low-temperature charge start voltage threshold value V1 set to a voltage higher than the normal charge start voltage threshold value V3. At the same time, the voltage threshold for terminating the charging of the 12V battery 60 is set to the low temperature charging end voltage threshold V2 set to a voltage higher than the normal charging end voltage threshold V4, and the process proceeds to step S14.

ステップS13では、冬季以外の通常の温度環境下にいると判定したため、12VBATT充電電圧閾値変換部72において12Vバッテリ60の充電を開始する電圧閾値を通常時充電開始電圧閾値V3に設定するとともに、12Vバッテリ60の充電を終了する電圧閾値を通常時充電終了電圧閾値V4に設定し、ステップS14へ進む。   In step S13, since it is determined that the vehicle is in a normal temperature environment other than winter, the 12VBATT charge voltage threshold converter 72 sets the voltage threshold for starting charging of the 12V battery 60 to the normal charge start voltage threshold V3 and 12V The voltage threshold value for terminating the charging of the battery 60 is set to the normal-time charging termination voltage threshold value V4, and the process proceeds to step S14.

ステップS14では、RTC制御部76が所定のタイミング(例えば10分毎)で起動しているか否かを判定し、RTC制御部76が起動している場合にはステップS15へ進み、RTC制御部76が起動していない場合にはそのまま処理を終了する。   In step S14, it is determined whether or not the RTC control unit 76 is activated at a predetermined timing (for example, every 10 minutes). If the RTC control unit 76 is activated, the process proceeds to step S15, and the RTC control unit 76 is activated. If is not activated, the process is terminated.

ステップS15では、12VBATT電圧監視部74からの指示により12Vバッテリ60に設けられた電圧センサ65の検出値(電圧V)を読み取り、12VBATT電圧判定部75において電圧Vが予め設定された所定電圧V0以下か否かを判定する。電圧Vが所定電圧V0以下の場合にはステップS16へ進み、電圧Vが所定電圧V0より高い場合はステップS19へ進む。なお、所定電圧V0は、低温時の場合は低温時充電開始電圧閾値V1が適用され、通常時の場合は通常時充電開始電圧閾値V3が適用される。   In step S15, a detection value (voltage V) of the voltage sensor 65 provided in the 12V battery 60 is read according to an instruction from the 12VBATT voltage monitoring unit 74, and the voltage V is equal to or lower than a predetermined voltage V0 set in advance in the 12VBATT voltage determination unit 75. It is determined whether or not. When the voltage V is less than or equal to the predetermined voltage V0, the process proceeds to step S16, and when the voltage V is higher than the predetermined voltage V0, the process proceeds to step S19. The predetermined voltage V0 is the low temperature charge start voltage threshold V1 when the temperature is low, and the normal charge start voltage threshold V3 when the time is normal.

ステップS16では、12Vバッテリ60の電圧Vが所定電圧V0(充電開始電圧閾値)以下になったため、充電を開始する。つまり、ダウンバータ63を用いて12Vバッテリ60の充電を開始し、ステップS17へ進む。   In step S16, since the voltage V of the 12V battery 60 has become equal to or lower than the predetermined voltage V0 (charging start voltage threshold), charging is started. That is, charging of the 12V battery 60 is started using the downverter 63, and the process proceeds to step S17.

ステップS17では、12VBATT電圧監視部74からの指示により12Vバッテリ60に設けられた電圧センサ65の検出値(電圧V)を読み取り、12VBATT電圧判定部75において電圧Vが予め設定された所定電圧V5以上か否かを判定する。電圧Vが所定電圧V5以上の場合にはステップS18へ進み、電圧Vが所定電圧V5より低い場合はステップS16へ戻り、引き続き充電を継続する。なお、所定電圧V5は、低温時の場合は低温時充電終了電圧閾値V2が適用され、通常時の場合は通常時充電終了電圧閾値V4が適用される。   In step S17, the detection value (voltage V) of the voltage sensor 65 provided in the 12V battery 60 is read according to an instruction from the 12VBATT voltage monitoring unit 74, and the voltage V is set to a predetermined voltage V5 or higher by the 12VBATT voltage determination unit 75 in advance. It is determined whether or not. When the voltage V is equal to or higher than the predetermined voltage V5, the process proceeds to step S18. When the voltage V is lower than the predetermined voltage V5, the process returns to step S16, and charging is continued. The predetermined voltage V5 is applied with the low temperature charge end voltage threshold V2 when the temperature is low, and with the normal charge end voltage threshold V4 when the time is normal.

ステップS18では、12Vバッテリ60の電圧Vが所定電圧V5(充電終了電圧閾値)以上になったため、充電を終了する。12Vバッテリ60の充電が終了したらステップS19へ進む。   In step S18, since the voltage V of the 12V battery 60 has become equal to or higher than the predetermined voltage V5 (charging end voltage threshold), charging is finished. When charging of the 12V battery 60 is completed, the process proceeds to step S19.

ステップS19では、RTC制御部76の起動を停止して、処理を終了する。   In step S19, the activation of the RTC control unit 76 is stopped and the process is terminated.

図4は図3のフローチャートにおいて、ステップS11で冬季と判定された場合の12Vバッテリ60の充電方法を説明するタイムチャートである。
図4に示すように、燃料電池システム10がシステム停止後放置状態になったときからこのタイムチャートはスタートしている。
FIG. 4 is a time chart for explaining a charging method of the 12V battery 60 when it is determined in step S11 that it is winter in the flowchart of FIG.
As shown in FIG. 4, the time chart starts when the fuel cell system 10 is left after being stopped.

(第1期間:システム停止後放置中)
第1期間は、まだRTC制御部76が起動する前であるため、実際には12Vバッテリ60の電圧値は検出されていない。また、12Vバッテリ60への充電を開始・終了する電圧閾値は、冬季と判定されているため、それぞれ低温時充電開始電圧閾値V1および低温時充電終了電圧閾値V2に設定されている。
(First period: left after system shutdown)
Since the first period is still before the RTC controller 76 is activated, the voltage value of the 12V battery 60 is not actually detected. Further, since the voltage threshold value for starting and ending charging of the 12V battery 60 is determined to be winter, the low temperature charging start voltage threshold value V1 and the low temperature charging end voltage threshold value V2 are set, respectively.

(第2期間:RTC起動中)
第2期間は、RTC制御部76が起動することにより、12Vバッテリ60の電圧Vを電圧センサ65によって検出する。この電圧Vが低温時充電開始電圧閾値V1と低温時充電終了電圧閾値V2との間である場合には、12Vバッテリ60の充電を行わず、電圧の監視のみを継続する。
(Second period: RTC is running)
In the second period, the voltage V of the 12V battery 60 is detected by the voltage sensor 65 when the RTC control unit 76 is activated. When the voltage V is between the low temperature charge start voltage threshold V1 and the low temperature charge end voltage threshold V2, the 12V battery 60 is not charged and only voltage monitoring is continued.

(第3期間:システム停止後放置中)
第2期間の所定時間内に、12Vバッテリ60の電圧Vが低温時充電開始電圧閾値V1と低温時充電終了電圧閾値V2との間から外れなかった場合には、再びシステム停止後放置状態になる。
(3rd period: left after system shutdown)
If the voltage V of the 12V battery 60 does not deviate between the low temperature charging start voltage threshold V1 and the low temperature charging end voltage threshold V2 within the predetermined time of the second period, the system is again left after the system is stopped. .

(第4期間:RTC起動中)
第4期間は、RTC制御部76が再び起動する。また、12Vバッテリ60の電圧Vを電圧センサ65によって検出する。この電圧Vが低温時充電開始電圧閾値V1と低温時充電終了電圧閾値V2との間である場合には、12Vバッテリ60の充電を行わず、電圧の監視のみを継続し、電圧Vが低温時充電開始電圧閾値V1以下になった時点で、12Vバッテリ60の充電を開始する。このとき、ダウンバータ63を介して充電を開始する。そして、12Vバッテリ60の電圧Vが低温時充電終了電圧閾値V2以上になるまで充電を行い、12Vバッテリ60の電圧Vが低温時充電終了電圧閾値V2以上になったら充電を終了するとともに、RTC制御部76の起動を終了させて再びシステム停止後放置状態にする。
(4th period: RTC is running)
In the fourth period, the RTC control unit 76 is activated again. Further, the voltage V of the 12V battery 60 is detected by the voltage sensor 65. When the voltage V is between the low temperature charge start voltage threshold V1 and the low temperature charge end voltage threshold V2, the 12V battery 60 is not charged and only voltage monitoring is continued, and the voltage V is low. When the charging start voltage threshold value V1 or less is reached, charging of the 12V battery 60 is started. At this time, charging is started via the downverter 63. Then, charging is performed until the voltage V of the 12V battery 60 becomes equal to or higher than the low temperature charging end voltage threshold V2, and when the voltage V of the 12V battery 60 becomes equal to or higher than the low temperature charging end voltage threshold V2, the charging is terminated and RTC control is performed. The start of the unit 76 is terminated, and the system is left again after being stopped.

(第5期間:システム停止後放置中)
12Vバッテリ60への充電が終了したため、再びシステム停止後放置状態にする。
(5th period: left after system shutdown)
Since the charging to the 12V battery 60 is completed, the system is again left after being stopped.

図5は燃料電池システム10が発電中の場合における12Vバッテリ60への充電方法を説明するフローチャートであり、車両が起動中で燃料電池システム10が発電状態の時点(イグニションスイッチがオンされた時点)からこのフローチャートがスタートする。   FIG. 5 is a flowchart for explaining a method of charging the 12V battery 60 when the fuel cell system 10 is generating power. When the vehicle is started and the fuel cell system 10 is in a power generation state (when the ignition switch is turned on). This flowchart starts from.

図5に示すように、ステップS21では、ECU45の指示により燃料電池11に設けられた温度センサ42の温度Tを検出し、低温判定部71において温度Tが予め設定された所定温度T0よりも低いか否かを判定する。温度Tが所定温度T0よりも低い場合には冬季であると判定しステップS22へ進み、温度Tが所定温度T0以上の場合には冬季でない通常時と判定しステップS24へ進む。   As shown in FIG. 5, in step S21, the temperature T of the temperature sensor 42 provided in the fuel cell 11 is detected by an instruction from the ECU 45, and the temperature T is lower than a predetermined temperature T0 set in advance in the low temperature determination unit 71. It is determined whether or not. If the temperature T is lower than the predetermined temperature T0, it is determined that it is winter, and the process proceeds to step S22. If the temperature T is equal to or higher than the predetermined temperature T0, it is determined that the normal time is not winter and the process proceeds to step S24.

ステップS22では、冬季の低温環境下にいると判定したため、12Vバッテリ60の充電を開始する電圧閾値を、通常時充電開始電圧閾値V3より高い電圧に設定された低温時充電開始電圧閾値V1に設定するとともに、12Vバッテリ60の充電を終了する電圧閾値を、通常時充電終了電圧閾値V4より高い電圧に設定された低温時充電終了電圧閾値V2に設定し、ステップS23へ進む。   In step S22, since it is determined that the vehicle is in a low temperature environment in winter, the voltage threshold value for starting charging of the 12V battery 60 is set to the low temperature charge start voltage threshold value V1 set to a voltage higher than the normal charge start voltage threshold value V3. At the same time, the voltage threshold value for ending the charging of the 12V battery 60 is set to the low temperature charging end voltage threshold value V2 set to a voltage higher than the normal charging end voltage threshold value V4, and the process proceeds to step S23.

ステップS23では、ダウンバータ出力変換部73においてダウンバータ63の出力を通常時の出力VT0よりも大きいVT1(出力、中)に設定し、ステップS26へ進む。   In step S23, the downverter output converter 73 sets the output of the downverter 63 to VT1 (output, medium) larger than the normal output VT0, and the process proceeds to step S26.

ステップS24では、冬季以外の通常の温度環境下にいると判定したため、12VBATT充電電圧閾値変換部72において12Vバッテリ60の充電を開始する電圧閾値を通常時充電開始電圧閾値V3に設定するとともに、12Vバッテリ60の充電を終了する電圧閾値を通常時充電終了電圧閾値V4に設定し、ステップS25へ進む。   In step S24, since it is determined that the vehicle is in a normal temperature environment other than winter, the 12VBATT charge voltage threshold converter 72 sets the voltage threshold for starting charging of the 12V battery 60 to the normal charge start voltage threshold V3 and 12V The voltage threshold value for terminating the charging of the battery 60 is set to the normal-time charging termination voltage threshold value V4, and the process proceeds to step S25.

ステップS25では、ダウンバータ出力変換部73においてダウンバータ63の出力を通常時の出力VT0(出力、小)のままとして、ステップS26へ進む。   In step S25, the output of the downverter 63 is kept at the normal output VT0 (output, small) in the downverter output conversion unit 73, and the process proceeds to step S26.

ステップS26では、12VBATT電圧監視部74からの指示により12Vバッテリ60に設けられた電圧センサ65の検出値(電圧V)を読み取り、12VBATT電圧判定部75において電圧Vが予め設定された所定電圧V0以下か否かを判定する。電圧Vが所定電圧V0以下の場合にはステップS27へ進み、電圧Vが所定電圧V0より高い場合はステップS29へ進む。なお、所定電圧V0は、低温時の場合は低温時充電開始電圧閾値V1が適用され、通常時の場合は通常時充電開始電圧閾値V3が適用される。   In step S26, the detection value (voltage V) of the voltage sensor 65 provided in the 12V battery 60 is read according to an instruction from the 12VBATT voltage monitoring unit 74, and the voltage V is equal to or lower than a predetermined voltage V0 set in advance in the 12VBATT voltage determination unit 75. It is determined whether or not. When the voltage V is less than or equal to the predetermined voltage V0, the process proceeds to step S27, and when the voltage V is higher than the predetermined voltage V0, the process proceeds to step S29. The predetermined voltage V0 is the low temperature charge start voltage threshold V1 when the temperature is low, and the normal charge start voltage threshold V3 when the time is normal.

ステップS27では、ダウンバータ出力変換部73においてダウンバータ63の出力をステップS23で設定した出力VT1よりもさらに大きいVT2(出力、大)に設定し、ステップS28へ進む。このようにダウンバータ63の出力を大きくすることにより12Vバッテリ60への充電を促進する。   In step S27, the downverter output converter 73 sets the output of the downverter 63 to VT2 (output, large) that is larger than the output VT1 set in step S23, and the process proceeds to step S28. Thus, charging the 12V battery 60 is promoted by increasing the output of the downverter 63.

ステップS28では、12VBATT電圧監視部74からの指示により12Vバッテリ60に設けられた電圧センサ65の検出値(電圧V)を読み取り、12VBATT電圧判定部75において電圧Vが予め設定された所定電圧V5以上か否かを判定する。電圧Vが所定電圧V5以上の場合にはステップS29へ進み、電圧Vが所定電圧V5より低い場合はそのまま処理を終了する。なお、所定電圧V5は、低温時の場合は低温時充電終了電圧閾値V2が適用され、通常時の場合は通常時充電終了電圧閾値V4が適用される。   In step S28, the detection value (voltage V) of the voltage sensor 65 provided in the 12V battery 60 is read according to an instruction from the 12VBATT voltage monitoring unit 74, and the voltage V is set to a predetermined voltage V5 or higher by the 12VBATT voltage determination unit 75 in advance. It is determined whether or not. When the voltage V is equal to or higher than the predetermined voltage V5, the process proceeds to step S29, and when the voltage V is lower than the predetermined voltage V5, the process is ended as it is. The predetermined voltage V5 is applied with the low temperature charge end voltage threshold V2 when the temperature is low, and with the normal charge end voltage threshold V4 when the time is normal.

ステップS29では、12Vバッテリ60の電圧が充電開始電圧閾値と充電終了電圧閾値との間の電圧であるため、ダウンバータ63の出力を通常時の出力VT0よりも大きいVT1(出力、中)に設定し、処理を終了する。なお、通常時の場合にはダウンバータ63の出力を通常時の出力VT0に設定してもよい。   In step S29, since the voltage of the 12V battery 60 is a voltage between the charging start voltage threshold and the charging end voltage threshold, the output of the downverter 63 is set to VT1 (output, medium) larger than the normal output VT0. Then, the process ends. In the normal case, the output of the downverter 63 may be set to the normal output VT0.

図6は図4のフローチャートにおいて、ステップS11で冬季と判定された場合の12Vバッテリ60の充電方法を説明するタイムチャートである。
図6に示すように、燃料電池システム10が発電状態になったときからこのタイムチャートはスタートしている。なお、ダウンバータ63の出力は通常時の出力VT0よりも大きい出力VT1に設定されている。
FIG. 6 is a time chart for explaining the charging method of the 12V battery 60 when it is determined in step S11 that the winter season in the flowchart of FIG.
As shown in FIG. 6, this time chart starts when the fuel cell system 10 is in a power generation state. The output of the downverter 63 is set to an output VT1 that is larger than the normal output VT0.

燃料電池11の発電中に、12VBATT電圧監視部74において12Vバッテリ60の電圧Vを電圧センサ65によって検出し、12VBATT電圧判定部75において電圧Vが低温時充電開始電圧閾値V1と低温時充電終了電圧閾値V2との間の電圧値になっているか否かを判定する。   During power generation of the fuel cell 11, the voltage V of the 12V battery 60 is detected by the voltage sensor 65 in the 12VBATT voltage monitoring unit 74, and the voltage V is detected by the 12VBATT voltage determination unit 75 as the low temperature charge start voltage threshold V1 and the low temperature charge end voltage. It is determined whether or not the voltage value is between the threshold value V2.

12Vバッテリ60の電圧Vが低温時充電開始電圧閾値V1以下になると、ダウンバータ63の出力を出力VT1よりもさらに大きい出力VT2に設定して、12Vバッテリ60への充電を促進する。   When the voltage V of the 12V battery 60 becomes equal to or lower than the low temperature charging start voltage threshold V1, the output of the downverter 63 is set to an output VT2 that is larger than the output VT1, and the charging of the 12V battery 60 is promoted.

そして、12Vバッテリ60の電圧Vが低温時充電終了電圧閾値V2以上になると、ダウンバータ63の出力を小さくして、12Vバッテリ60への充電を終了する。   When the voltage V of the 12V battery 60 becomes equal to or higher than the low-temperature charging end voltage threshold V2, the output of the downverter 63 is reduced and the charging of the 12V battery 60 is ended.

本実施形態によれば、低温判定部71において、温度センサ42によって検出された温度Tが所定温度T0よりも低い低温状態であると判定した場合に、低温時充電開始電圧閾値V1を通常時充電開始電圧閾値V3よりも高く設定するように構成したため、12Vバッテリ60の電圧が低下しすぎる前に充電を開始することができる。したがって、12Vバッテリ60の電圧を確実に保護することができる。   According to the present embodiment, when the low temperature determination unit 71 determines that the temperature T detected by the temperature sensor 42 is in a low temperature state lower than the predetermined temperature T0, the low temperature charge start voltage threshold V1 is charged in the normal time. Since it is configured to set higher than the start voltage threshold value V3, charging can be started before the voltage of the 12V battery 60 decreases too much. Therefore, the voltage of the 12V battery 60 can be reliably protected.

また、低温判定部71において低温状態であると判定した場合に、低温時充電終了電圧閾値V2を通常時充電終了電圧閾値V4よりも高く設定するように構成したため、12Vバッテリ60に十分充電させることができる。したがって、12Vバッテリ60の電圧を確実に保護することができるとともに、12Vバッテリ60を有効に利用することができる。   In addition, when the low temperature determination unit 71 determines that the temperature is low, the low temperature charge end voltage threshold V2 is set to be higher than the normal charge end voltage threshold V4, so that the 12V battery 60 is sufficiently charged. Can do. Therefore, the voltage of the 12V battery 60 can be reliably protected and the 12V battery 60 can be used effectively.

また、低温判定部71において低温状態であると判定した場合に、ダウンバータ63の出力を通常時よりも大きくするように構成したため、12Vバッテリ60への充電を促進することができる。したがって、12Vバッテリ60への充電効率を向上することができる。   In addition, when the low temperature determination unit 71 determines that the temperature is low, the output of the downverter 63 is configured to be larger than normal, so that charging of the 12V battery 60 can be promoted. Therefore, the charging efficiency to the 12V battery 60 can be improved.

さらに、低温判定部71において低温状態であると判定し、かつ、12Vバッテリ60の電圧Vが低温時充電開始電圧閾値V1以下になった場合に、ダウンバータ63の出力をさらに大きくするように構成したため、12Vバッテリ60への充電をさらに促進することができる。したがって、12Vバッテリ60への充電効率を向上することができる。   Further, when the low temperature determination unit 71 determines that the temperature is low and the voltage V of the 12V battery 60 is equal to or lower than the low temperature charge start voltage threshold V1, the output of the downverter 63 is further increased. Therefore, charging to the 12V battery 60 can be further promoted. Therefore, the charging efficiency to the 12V battery 60 can be improved.

そして、燃料電池システム10の発電停止中で、低温判定部71において低温状態であると判定し、かつ、12Vバッテリ60の電圧Vが低温時充電開始電圧閾値V1以下になった場合に、12Vバッテリ60の充電を開始するように構成したため、12Vバッテリ60の電圧が低下しすぎる前に充電を開始することができる。したがって、12Vバッテリ60の電圧を確実に保護することができる。   When the power generation of the fuel cell system 10 is stopped, the low temperature determination unit 71 determines that the temperature is low, and the voltage V of the 12V battery 60 becomes equal to or lower than the low temperature charge start voltage threshold V1. Since the charging of 60 is started, charging can be started before the voltage of the 12V battery 60 decreases too much. Therefore, the voltage of the 12V battery 60 can be reliably protected.

なお、本発明は上述した実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な構造や形状などはほんの一例に過ぎず、適宜変更が可能である。   The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific structure and shape described in the embodiment are merely examples, and can be changed as appropriate.

例えば、本実施形態では、燃料電池11に直接温度センサ42を設けた場合の説明をしたが、アノードオフガス排出配管35におけるアノードオフガス排出用連通孔14の直後(下流側)に、温度センサを設け、該温度センサの検出値に基づいて12Vバッテリの充電可否を判定するように構成してもよい。また、温度センサを2箇所以上に設置し、それらの平均値によって12Vバッテリの充電可否を判定するように構成してもよい。
また、本実施形態では、低温時の状況を冬季の低温環境下として例示したが、四季の温度差が少ない地域での利用を考慮するときなどでは、特定の低温状況下にあるか否かの見方でフローチャートを設定してもよい。
For example, in the present embodiment, the case where the temperature sensor 42 is directly provided in the fuel cell 11 has been described. However, a temperature sensor is provided immediately after (on the downstream side) the anode offgas discharge communication hole 14 in the anode offgas discharge pipe 35. Further, it may be configured to determine whether or not the 12V battery can be charged based on the detection value of the temperature sensor. Moreover, you may comprise so that the temperature sensor may be installed in two or more places, and the chargeability of a 12V battery may be determined by those average values.
Further, in this embodiment, the situation at low temperature is exemplified as a low temperature environment in winter, but when considering use in an area where the temperature difference between the four seasons is small, whether or not it is under a specific low temperature situation. A flowchart may be set according to the viewpoint.

10…燃料電池システム 11…燃料電池 42…温度センサ 45…ECU(制御部) 60…12Vバッテリ(蓄電装置) 63…ダウンバータ(蓄電装置充電手段) 65…電圧センサ(蓄電装置監視手段) 71…低温判定部(低温判定手段) 72…12VBATT充電電圧閾値変換部(電圧閾値変更手段) 73…ダウンバータ出力変換部(出力変更手段) 75…12VBATT電圧判定部(電圧判定手段) V1…低温時充電開始電圧閾値 V2…低温時充電終了電圧閾値 V3…通常時充電開始電圧閾値 V4…通常時充電終了電圧閾値   DESCRIPTION OF SYMBOLS 10 ... Fuel cell system 11 ... Fuel cell 42 ... Temperature sensor 45 ... ECU (control part) 60 ... 12V battery (power storage device) 63 ... Downverter (power storage device charging means) 65 ... Voltage sensor (power storage device monitoring means) 71 ... Low temperature determination unit (low temperature determination unit) 72... 12 VBATT charge voltage threshold conversion unit (voltage threshold change unit) 73. Downverter output conversion unit (output change unit) 75... 12 VBATT voltage determination unit (voltage determination unit) V1. Start voltage threshold V2 ... Low temperature charge end voltage threshold V3 ... Normal charge start voltage threshold V4 ... Normal charge end voltage threshold

Claims (5)

アノード電極に燃料ガスを、カソード電極に酸化剤ガスを供給し発電を行う燃料電池と、
該燃料電池で発電された電力を蓄電可能な蓄電装置と、
該蓄電装置に前記電力を充電する際に、前記燃料電池と前記蓄電装置との間に配される蓄電装置充電手段と、
前記燃料電池に関する温度を検出可能な温度センサと、
該温度センサによって検出された前記温度が所定温度よりも低いか否かを判定する低温判定手段を有する制御部と、を備えた燃料電池システムにおいて、
前記制御部は、
前記低温判定手段において前記温度が前記所定温度よりも低いと判定した場合に、前記蓄電装置への充電を開始する低温時充電開始電圧閾値を、前記温度が前記所定温度以上と判定した場合の通常時充電開始電圧閾値よりも高く設定する電圧閾値変更手段を備えていることを特徴とする燃料電池システム。
A fuel cell that generates power by supplying fuel gas to the anode electrode and oxidant gas to the cathode electrode; and
A power storage device capable of storing electric power generated by the fuel cell;
A power storage device charging means disposed between the fuel cell and the power storage device when charging the power to the power storage device;
A temperature sensor capable of detecting a temperature related to the fuel cell;
A fuel cell system comprising: a controller having low temperature determination means for determining whether or not the temperature detected by the temperature sensor is lower than a predetermined temperature;
The controller is
When the low temperature determination means determines that the temperature is lower than the predetermined temperature, the low temperature charge start voltage threshold value for starting charging the power storage device is a normal value when the temperature is determined to be equal to or higher than the predetermined temperature. A fuel cell system comprising a voltage threshold value changing means for setting a voltage higher than the hourly charging start voltage threshold value.
前記電圧閾値変更手段は、
前記低温判定手段において前記温度が前記所定温度よりも低いと判定した場合に、前記蓄電装置への充電を終了する低温時充電終了電圧閾値を、前記温度が前記所定温度以上と判定した場合の通常時充電終了電圧閾値よりも高く設定することを特徴とする請求項1に記載の燃料電池システム。
The voltage threshold value changing means includes
When the low temperature determination means determines that the temperature is lower than the predetermined temperature, the low temperature charge end voltage threshold for ending charging of the power storage device is normal when the temperature is determined to be equal to or higher than the predetermined temperature. The fuel cell system according to claim 1, wherein the fuel cell system is set to be higher than an hourly charge end voltage threshold value.
前記制御部は、
前記低温判定手段において前記温度が前記所定温度よりも低いと判定した場合に、前記蓄電装置充電手段の出力を、前記温度が前記所定温度以上と判定した場合の前記蓄電装置充電手段の出力よりも大きくする出力変更手段を備えていることを特徴とする請求項1または2に記載の燃料電池システム。
The controller is
When the low temperature determination unit determines that the temperature is lower than the predetermined temperature, the output of the power storage device charging unit is greater than the output of the power storage device charging unit when the temperature is determined to be equal to or higher than the predetermined temperature. The fuel cell system according to claim 1 or 2, further comprising output changing means for increasing the output.
前記蓄電装置の電圧を監視する蓄電装置監視手段を備え、
前記制御部は、
前記蓄電装置の電圧が所定電圧以下になったか否かを判定する電圧判定手段を有し、
該電圧判定手段において前記電圧が前記所定電圧以下であると判定した場合に、前記出力変更手段は前記蓄電装置充電手段の出力をさらに大きく設定することを特徴とする請求項3に記載の燃料電池システム。
Power storage device monitoring means for monitoring the voltage of the power storage device,
The controller is
Voltage determining means for determining whether or not the voltage of the power storage device has become equal to or lower than a predetermined voltage;
4. The fuel cell according to claim 3, wherein when the voltage determination unit determines that the voltage is equal to or lower than the predetermined voltage, the output changing unit sets the output of the power storage device charging unit to be larger. system.
前記蓄電装置の電圧を監視する蓄電装置監視手段を備え、
前記燃料電池の発電停止中に、
前記制御部は、
前記蓄電装置の電圧が所定電圧以下になったか否かを判定する電圧判定手段を有し、
前記蓄電装置監視手段により前記電圧を定期的に監視し、
前記電圧判定手段において前記電圧が前記所定電圧以下であると判定した場合に、前記蓄電装置充電手段により前記蓄電装置の充電を開始することを特徴とする請求項1または2に記載の燃料電池システム。
Power storage device monitoring means for monitoring the voltage of the power storage device,
During the power generation stop of the fuel cell,
The controller is
Voltage determining means for determining whether or not the voltage of the power storage device has become equal to or lower than a predetermined voltage;
The voltage is regularly monitored by the power storage device monitoring means,
3. The fuel cell system according to claim 1, wherein when the voltage determination unit determines that the voltage is equal to or lower than the predetermined voltage, charging of the power storage device is started by the power storage device charging unit. .
JP2010059322A 2010-03-16 2010-03-16 Fuel cell system Pending JP2011192594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010059322A JP2011192594A (en) 2010-03-16 2010-03-16 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059322A JP2011192594A (en) 2010-03-16 2010-03-16 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2011192594A true JP2011192594A (en) 2011-09-29

Family

ID=44797271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059322A Pending JP2011192594A (en) 2010-03-16 2010-03-16 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2011192594A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930052A3 (en) * 2014-04-08 2015-12-09 Samsung SDI Co., Ltd. Fuel cell hybrid system
CN106064560A (en) * 2015-04-20 2016-11-02 高雄应用科技大学 Fuel Cell Hybrid Power System And Control Method Thereof
CN110015158A (en) * 2017-12-15 2019-07-16 蔚来汽车有限公司 Vehicle A-battery management system and vehicle A-battery management method
CN112440744A (en) * 2019-08-29 2021-03-05 北京新能源汽车股份有限公司 Control method for electric quantity management of storage battery, vehicle control unit and management system
JP2023509173A (en) * 2019-12-31 2023-03-07 永安行科技股▲フン▼有限公司 Power supply method and system for hydrogen fuel cell stack, hydrogen fuel-powered moped vehicle and its transmission method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930052A3 (en) * 2014-04-08 2015-12-09 Samsung SDI Co., Ltd. Fuel cell hybrid system
CN106064560A (en) * 2015-04-20 2016-11-02 高雄应用科技大学 Fuel Cell Hybrid Power System And Control Method Thereof
CN110015158A (en) * 2017-12-15 2019-07-16 蔚来汽车有限公司 Vehicle A-battery management system and vehicle A-battery management method
CN112440744A (en) * 2019-08-29 2021-03-05 北京新能源汽车股份有限公司 Control method for electric quantity management of storage battery, vehicle control unit and management system
CN112440744B (en) * 2019-08-29 2022-05-17 北京新能源汽车股份有限公司 Control method for electric quantity management of storage battery, vehicle control unit and management system
JP2023509173A (en) * 2019-12-31 2023-03-07 永安行科技股▲フン▼有限公司 Power supply method and system for hydrogen fuel cell stack, hydrogen fuel-powered moped vehicle and its transmission method and system
JP7352995B2 (en) 2019-12-31 2023-09-29 永安行科技股▲フン▼有限公司 Power supply method and system for hydrogen fuel cell stack, hydrogen fuel-powered moped vehicle and its transmission method and system

Similar Documents

Publication Publication Date Title
JP4332568B2 (en) Mobile device
JP4860930B2 (en) Method for stopping fuel cell system and fuel cell system
US7767352B2 (en) Fuel cell system and charge amount adjustment method for energy storage
US7776481B2 (en) Fuel cell system and method of controlling electrical energy discharged in the fuel cell system
US20080248351A1 (en) Fuel Cell System
JP2011192594A (en) Fuel cell system
JP6597580B2 (en) Fuel cell system
JP4893919B2 (en) Fuel cell system and moving body
KR101240986B1 (en) Method for removing oxygen of fuel cell
JP2010239743A (en) Power generation system, and method for stopping operation of the same
CN101536231B (en) Fuel cell system, method for controlling the fuel cell system, and mobile object
JP2009009791A (en) Fuel cell system and its control method
JP2010003477A (en) Fuel cell system
JP5328295B2 (en) Fuel cell system and method for stopping fuel cell system
JP2007066680A (en) Fuel cell system
JP4834126B2 (en) Mobile device
JP2006269221A (en) Fuel cell system and its protection method
JP2007128811A (en) Fuel cell system and its control method
JP6683953B2 (en) Fuel cell system
JP2009140747A (en) Fuel cell system, and control method of fuel cell system
JP2009104986A (en) Fuel cell system and scavenging method therefor
JP4685643B2 (en) Fuel cell system and fuel cell control method
JP5418872B2 (en) Fuel cell system
JP2006331774A (en) Fuel cell system, vehicle equipped therewith and its control method
JP2021009832A (en) Fuel cell system