JP2011192521A - Ion beam processing method, and ion beam processing device - Google Patents

Ion beam processing method, and ion beam processing device Download PDF

Info

Publication number
JP2011192521A
JP2011192521A JP2010057281A JP2010057281A JP2011192521A JP 2011192521 A JP2011192521 A JP 2011192521A JP 2010057281 A JP2010057281 A JP 2010057281A JP 2010057281 A JP2010057281 A JP 2010057281A JP 2011192521 A JP2011192521 A JP 2011192521A
Authority
JP
Japan
Prior art keywords
sample
ion beam
heat
heat conducting
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010057281A
Other languages
Japanese (ja)
Inventor
Mitsuji Tsujita
充司 辻田
Yuki Tanaka
有希 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2010057281A priority Critical patent/JP2011192521A/en
Publication of JP2011192521A publication Critical patent/JP2011192521A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion beam processing method capable of preventing damage on a cross section by heat in cross section processing by irradiation of an ion beam. <P>SOLUTION: In the ion beam processing device including an ion gun 2 to generate the ion beam, a specimen stand 7 to mount a specimen 6 to be processed, and a shielding plate 8 to shield a part of the ion beam, a heat conducting member 9 is disposed on a lower surface of the specimen 6, a heat conducting member 10 is disposed on an upper surface of the specimen 6, a non-shielding part 10a is formed by shifting and projecting the heat conducting member 10 from an end part 8a of the shielding plate, the ion beam is irradiated to the non-shielding part 10a, and the cross section processing of the specimen 6 is performed. Even when heat is generated on the cross section by the processing, the heat is released to the outside through the heat conducting members 9 and 10, and damage of a specimen cross section 6a by the high temperature heat can be avoided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は,試料に断面加工を行うイオンビーム加工方法及び加工装置,特に加工断面において,熱によるダメージの発生を抑えるようにしたイオンビーム加工方法及びイオン加工装置に関する。   The present invention relates to an ion beam processing method and processing apparatus for processing a cross section of a sample, and more particularly to an ion beam processing method and an ion processing apparatus configured to suppress the occurrence of damage caused by heat in a processed cross section.

近年,複雑化,微細化が進むデバイスや,高機能化された材料の研究開発,製造プロセス開発,品質管理において,走査電子顕微鏡(SEM),透過電子顕微鏡(TEM)およびそれらに付属する分析装置による解析が不可欠となっている。そのような中で,デバイス,材料の断面構造や内部構造を観察するためには,その構造や組成を変化させずに断面を作製することが必要となるケースが多くなっている。   Scanning electron microscope (SEM), transmission electron microscope (TEM), and analyzers attached to them in research and development, manufacturing process development, and quality control of devices that have become increasingly complex and miniaturized in recent years. Analysis by is indispensable. Under such circumstances, in order to observe the cross-sectional structure and internal structure of devices and materials, it is often necessary to prepare a cross-section without changing the structure and composition.

上記のような材料の断面作製方法としては,試料の構造および材質,分析目的に応じて様々なものが用いられており,割段法,機械研磨法,ミクロトーム法,FIB(集束イオンビーム)法,CP(クロスセクションポリッシャー)法などがある。これらの中で,有機物の断面作製に適しているのはミクロトーム法であるが,この方法では,試料の前処理に熟練度が必要であり,且つ,加工された断面は切断時のせん断応力の影響を受けたものになる。   Various methods are used for the cross-section preparation of the material as described above, depending on the structure and material of the sample, and the purpose of analysis. The splitting method, mechanical polishing method, microtome method, FIB (focused ion beam) method. CP (cross section polisher) method. Of these, the microtome method is suitable for preparing cross sections of organic materials. However, this method requires a certain level of skill in sample pretreatment, and the processed cross section has a shear stress at the time of cutting. Will be affected.

一方,前記CP(クロスセクションポリッシャー)法はブロードなArイオンビームを用いた断面作製技術であり,加工された断面は加工時の影響を比較的受けない加工方法として評価されている。   On the other hand, the CP (cross section polisher) method is a technique for producing a cross section using a broad Ar ion beam, and the processed cross section is evaluated as a processing method that is relatively unaffected by the processing.

前記CP法の原理を図8に示す。図8において,試料の上にイオンビームを遮蔽するための板(遮蔽板)を置き,試料を遮蔽板より若干突き出して非遮蔽部を形成し,イオン銃からのArイオンビームを,遮蔽板より突出した試料の非遮蔽部に照射して研削することによって,試料の断面を作製する。
このCP法による切断は,高速イオンの運動エネルギーにより表面近傍の試料原子を弾き飛ばすことで行っている。この試料原子を弾き飛ばすといった衝撃や,切断された原子が試料断面に再付着したりすることにより,加工部(断面)に熱が発生する(例えば特許文献1参照)。このようにして,作製した試料の加工部(断面)に熱によるダメージが加わる。そのため,CP法では,このように高速イオンの運動エネルギーにより表面近傍の試料原子を弾き飛ばすことによって,熱の影響を受けやすい有機物の加工(断面作製)には適用が困難である。
The principle of the CP method is shown in FIG. In FIG. 8, a plate (shielding plate) for shielding the ion beam is placed on the sample, the sample is protruded slightly from the shielding plate to form a non-shielding portion, and the Ar ion beam from the ion gun is sent from the shielding plate. The cross section of the sample is prepared by irradiating and grinding the unshielded part of the protruding sample.
The cutting by the CP method is performed by blowing off sample atoms near the surface by the kinetic energy of fast ions. Heat is generated in the processed portion (cross section) by impact such as flipping off the sample atoms or when the cut atoms are reattached to the cross section of the sample (see, for example, Patent Document 1). In this way, heat damage is applied to the processed part (cross section) of the manufactured sample. For this reason, the CP method is difficult to apply to the processing (cross-section preparation) of organic substances that are easily affected by heat by flipping off sample atoms near the surface by the kinetic energy of fast ions.

特開2000−329663号公報JP 2000-329663 A

上記したように,従来の高速イオンビーム照射による試料の断面加工は,加工された断面が加工時の影響を比較的受けない加工方法として有用であるが,作製した試料の断面に熱によるダメージが加わるため,熱の影響を受けやすい試料(紙面などの上に印字されたトナー,フィルム等)の断面を作製するには,上記高速イオンビーム照射による加工方法では断面作成が困難であった。そこで,熱の影響を受けやすい試料の断面作成を実現するため従来は,イオンビームの加速電圧を小さくして,イオンを長時間照射するといった方法で断面処理を行い,熱の発生による試料のダメージ低減を試みてきた。しかし,それだけでは十分に,ダメージを抑えることが出来なかったし,長時間のイオン照射により,加工の効率が低下するものであった。   As described above, the conventional cross-section processing of a sample by high-speed ion beam irradiation is useful as a processing method in which the processed cross-section is relatively unaffected by the processing, but the cross-section of the prepared sample is not damaged by heat. For this reason, in order to produce a cross section of a sample (toner, film, etc. printed on paper or the like) that is easily affected by heat, it is difficult to create a cross section by the processing method using high-speed ion beam irradiation. Therefore, in order to create a cross-section of a sample that is easily affected by heat, conventionally, the cross-section processing is performed by reducing the acceleration voltage of the ion beam and irradiating ions for a long time. I have tried to reduce it. However, the damage could not be sufficiently suppressed by itself, and the processing efficiency was lowered by long-time ion irradiation.

この発明は,上記問題点に着目してなされたものであって,イオンビームの照射による断面加工において,加工処理により発生する熱により,加工部(断面)にダメージを与えることのない,あるいは少なく,効率の良いイオンビーム加工方法及び加工装置を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, and in the cross-section processing by ion beam irradiation, the processed portion (cross-section) is not damaged by the heat generated by the processing or less. An object of the present invention is to provide an efficient ion beam processing method and processing apparatus.

上記目的を達成するために本発明のイオンビーム加工方法は,イオンビーム銃から発射されるイオンビームを試料の被加工部に照射することで前記試料を加工するイオンビーム加工方法であって,前記試料における前記被加工部の前記イオンビームの軸線に直角,あるいは略直角な少なくとも一方の面に熱伝導部材を接触して設置しておき,前記試料の被加工部に前記イオンビームを照射することで発生する前記被加工部の熱を,前記熱伝導部へ逃がしつつ加工するものである。
本発明のイオンビーム加工方法では,前記熱伝導部材が,前記試料のイオンビーム照射方向上流側と下流側の両面に配置されてなるものであっても良い。上下両面に配置された熱伝導部材を通じてイオンビーム加工によって生じた熱が速やかに試料から逃げることができるので,加工部における熱によるダメージが最小限に抑えられる。
また,前記熱伝導部材は,最小限前記試料のイオンビーム照射方向上流側と下流側のいずれか片面に配置されていればよい。試料の形状などの都合から,試料の片面にしか熱伝導部材を配置できない場合があっても,上記片面に配置した熱伝導部材によって試料の加工部の熱を効果的に逃がすことが出来る。
また,熱伝導部材の配置の別例として,前記熱伝導部材が,前記試料のイオンビーム照射方向上流側と下流側のいずれか片面に配置されてなり,前記試料の他の片面に,断熱部材が配置されてなるものであってもよい。試料の性質,使用用途,方法などの違いによって,試料のイオンビーム照射方向上流側と下流側のいずれか一方への熱の伝導を抑えたい場合がありうる。このような場合には,上記断熱部材がその方向への熱伝導を抑制するので,不都合を生じない。一方,その反対側には熱伝導部材が配置され,そこから熱を逃がすことが出来るので,試料の加工部における熱の蓄積によるダメージが回避される。
上記した本発明のイオンビーム加工方法は,これを装置面から捉えることでイオンビーム加工装置として把握することも出来る。その場合のイオンビーム加工装置は,イオン銃から発射されるイオンビームを試料の被加工部に照射することで前記試料を加工するイオンビーム加工装置であって,前記被加工部の前記イオンビームの軸線に直角,あるいは略直角な少なくとも一方の面に熱伝導部材を接触しておき,前記試料の被加工部に前記イオンビームを照射することで発生する前記試料の被加工部の熱を熱伝導部材に逃がしつつ加工するものが考えられる。
In order to achieve the above object, an ion beam processing method of the present invention is an ion beam processing method for processing a sample by irradiating a processing target portion of the sample with an ion beam emitted from an ion beam gun, A heat conducting member is placed in contact with at least one surface of the sample that is perpendicular to or substantially perpendicular to the ion beam axis of the workpiece, and the workpiece is irradiated with the ion beam. The heat of the part to be processed generated in step 1 is processed while escaping to the heat conduction part.
In the ion beam processing method of the present invention, the heat conducting member may be arranged on both the upstream side and the downstream side in the ion beam irradiation direction of the sample. Since heat generated by ion beam processing can escape quickly from the sample through the heat conducting members arranged on the upper and lower surfaces, damage due to heat in the processed portion can be minimized.
Further, it is sufficient that the heat conducting member is disposed on one side of the sample upstream or downstream in the ion beam irradiation direction at the minimum. Even if the heat conducting member may be arranged only on one side of the sample due to the shape of the sample, etc., the heat of the processed part of the sample can be effectively released by the heat conducting member arranged on the one side.
Further, as another example of the arrangement of the heat conducting member, the heat conducting member is arranged on either one of the upstream side and the downstream side in the ion beam irradiation direction of the sample, and the heat insulating member is provided on the other side of the sample. May be arranged. Depending on the nature of the sample, the intended use, and the method, it may be desirable to suppress heat conduction to either the upstream or downstream side of the sample in the ion beam irradiation direction. In such a case, since the heat insulating member suppresses heat conduction in that direction, there is no inconvenience. On the other hand, a heat conducting member is disposed on the opposite side, and heat can be released therefrom, so that damage due to heat accumulation in the processed portion of the sample is avoided.
The above-described ion beam processing method of the present invention can be grasped as an ion beam processing apparatus by grasping this from the surface of the apparatus. In this case, the ion beam processing apparatus is an ion beam processing apparatus that processes the sample by irradiating an ion beam emitted from an ion gun onto the processed part of the sample. A heat conducting member is brought into contact with at least one surface perpendicular to or substantially perpendicular to the axis, and the heat of the work part of the sample generated by irradiating the work part of the sample with the ion beam is conducted. What is processed while letting it escape to a member can be considered.

本発明にかかるイオンビーム加工方法によれば,前記被加工部の前記イオンビームの軸線に直角,あるいは略直角な少なくとも一方の面に熱伝導部材を接触しておく構成とすることにより,イオンビームを試料に照射して,加工する過程で発生する熱を熱伝導部材を通して逃がすので,試料加工部(加工断面)の温度上昇によるダメージを抑えることが出来る。また,温度上昇によるダメージが抑えられるのでイオンビーム銃への電圧を下げて長時間加工するようなことが必要でなく,加工の効率を高く保つことが出来る。
これにより,具体的な数字として,溶融温度が65℃以上の有機物の断面加工が可能となった。従って,従来,イオンビーム照射による熱の発生により,作製できる試料に制限が見られたが,本発明によって,イオンビーム加工装置による幅広い範囲の試料への加工処理が可能となった。
According to the ion beam processing method of the present invention, a heat conducting member is brought into contact with at least one surface of the portion to be processed which is perpendicular to or substantially perpendicular to the axis of the ion beam. Since the heat generated in the process of irradiating the sample is released through the heat conducting member, damage due to the temperature rise in the sample processing part (process cross section) can be suppressed. In addition, since damage due to temperature rise can be suppressed, it is not necessary to reduce the voltage to the ion beam gun for long-time processing, and the processing efficiency can be kept high.
As a result, as a specific figure, cross-section processing of an organic material having a melting temperature of 65 ° C. or higher is possible. Therefore, conventionally, there has been a limit to the samples that can be produced due to the generation of heat by ion beam irradiation. However, the present invention makes it possible to process a wide range of samples using an ion beam processing apparatus.

この発明の一実施形態に係るイオンビーム加工装置の概略構成を示す図である。It is a figure showing a schematic structure of an ion beam processing device concerning one embodiment of this invention. この発明の他の実施施形態に係るイオンビーム加工装置の概略構成を示す図である。It is a figure which shows schematic structure of the ion beam processing apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施施形態に係るイオンビーム加工装置の概略構成を示す図である。It is a figure which shows schematic structure of the ion beam processing apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施施形態に係るイオンビーム加工装置の概略構成を示す図である。It is a figure which shows schematic structure of the ion beam processing apparatus which concerns on other embodiment of this invention. 同実施形態に係るイオンビーム加工装置を含む実施例,比較例の実験結果を表に示した図表である。It is the table | surface which showed the experimental result of the Example containing the ion beam processing apparatus which concerns on the same embodiment, and a comparative example in the table | surface. 同実験時の実施例2と比較例5の加工面を走査電子顕微鏡で撮影した写真である。It is the photograph which image | photographed the processed surface of Example 2 and the comparative example 5 at the time of the experiment with the scanning electron microscope. 他の実施形態に係るイオンビーム加工装置を含む実施例,比較例の実験結果を表に示した図表である。It is the table | surface which showed the experimental result of the Example containing the ion beam processing apparatus which concerns on other embodiment, and a comparative example in the table | surface. 従来のイオンビーム加工装置の概略構成を説明する図である。It is a figure explaining schematic structure of the conventional ion beam processing apparatus.

以下,添付した図面を参照して,本発明を具体化した実施の形態により,この発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings by embodiments of the present invention.

まず,この発明の一実施形態に係るイオンビーム加工装置の概略構成を示す図1参照する。
このイオンビーム加工装置1は,真空度:11.5×10―3paとした真空チャンバ1aを有し,この真空チャンバ1a内に,Arイオンビーム4を発射するイオン銃2と,Arプラズマ2aを発生させるための電圧をイオン銃2に供給するArイオン加速電圧源3と,イオン銃2からのArイオンビーム4を受けて試料に加工処理を行う試料設置部5とを備えている。
この実施形態にかかるイオンビーム加工装置1における上記イオン銃2,Arイオン加速電圧源3を備え,イオン銃2より試料装着部5の試料6にArイオンビーム4を照射する点は,従来よりのイオンビーム加工装置と,特に変わるところはない。
First, refer to FIG. 1 showing a schematic configuration of an ion beam processing apparatus according to an embodiment of the present invention.
This ion beam processing apparatus 1 has a vacuum chamber 1a having a degree of vacuum of 11.5 × 10 −3 pa, an ion gun 2 for emitting an Ar ion beam 4 and an Ar plasma 2a in the vacuum chamber 1a. An Ar ion acceleration voltage source 3 that supplies a voltage for generating the ion to the ion gun 2 and a sample placement unit 5 that receives the Ar ion beam 4 from the ion gun 2 and processes the sample.
In the ion beam processing apparatus 1 according to this embodiment, the ion gun 2 and the Ar ion acceleration voltage source 3 are provided, and the Ar ion beam 4 is irradiated from the ion gun 2 to the sample 6 of the sample mounting portion 5 in the conventional manner. There is no particular difference from ion beam processing equipment.

更に,試料装着部5において,試料6を載置するための試料台7と,試料6の非加工部をイオンビーム4より遮蔽するための遮蔽板8とが設けられている点も従来のイオンビーム加工装置と同様であるが,一方,試料6の下面に熱伝導部材9を,試料6の上面に熱伝導部材10を設けている点は,この実施形態に特有の構成である。具体的には,試料台7の上面に熱伝導部材9の下面が接着材11により固設され,さらに遮蔽板8の下面に熱伝導部材10の非加工部10bが接着材12により固設されている。また試料6の下面に熱伝導部材9の上面が接着剤13で固設されている。   Further, the sample mounting part 5 is provided with a sample stage 7 for placing the sample 6 and a shielding plate 8 for shielding the non-processed part of the sample 6 from the ion beam 4. Although it is the same as that of the beam processing apparatus, on the other hand, the heat conducting member 9 is provided on the lower surface of the sample 6 and the heat conducting member 10 is provided on the upper surface of the sample 6. Specifically, the lower surface of the heat conducting member 9 is fixed to the upper surface of the sample stage 7 by the adhesive 11, and the non-processed portion 10 b of the heat conducting member 10 is fixed to the lower surface of the shielding plate 8 by the adhesive 12. ing. The upper surface of the heat conducting member 9 is fixed to the lower surface of the sample 6 with an adhesive 13.

この例では,
上記熱伝導部材10としては,厚み500μmのシリコンウエハを使用し,遮蔽板8への接着固定の際,遮蔽板8の端部8aより2mm突き出して非遮蔽部10aとしている。ここで使用されているシリコンウエハの熱伝導率は,168Wm―1K―1である。熱伝導部材9についても,熱伝導部材10と同様のシリコンウエハが使用されている。また,接着剤11〜13としてボンドクイックメンダ(コニシ株式会社製)が使用されている。
In this example,
As the heat conducting member 10, a silicon wafer having a thickness of 500 μm is used and protrudes 2 mm from the end portion 8 a of the shielding plate 8 at the time of bonding and fixing to the shielding plate 8 to be a non-shielding portion 10 a. The thermal conductivity of the silicon wafer used here is 168 Wm− 1 K− 1 . Also for the heat conducting member 9, the same silicon wafer as the heat conducting member 10 is used. Moreover, the bond quick mender (made by Konishi Co., Ltd.) is used as the adhesive agents 11-13.

前記試料装着部5は,上記のように構成され,熱伝導部材9,10は,熱伝導部材10の被遮蔽部10a,試料6の被加工部6bに照射されるイオンビーム4からみれば,イオンビーム4の軸線に直角あるいは略直角な面,つまり試料6の下面と上面に接触して設置されている。この実施形態では,試料6の上面及び下面に熱伝導部材9が配置されており,これはイオンビーム4の軸線に直角な面であるが,熱伝導部材9を設ける面は,必ずしもイオンビーム4の軸線に直角でなくてもよいことは,このような傾いた面からでも十分熱を逃がすことが出来ることから理解される。この実施形態では,このような傾いた面を略直角な面としている。   The sample mounting portion 5 is configured as described above, and the heat conducting members 9 and 10 are viewed from the ion beam 4 irradiated to the shielded portion 10a of the heat conducting member 10 and the workpiece 6b of the sample 6, respectively. It is installed in contact with the surface perpendicular to or substantially perpendicular to the axis of the ion beam 4, that is, the lower surface and the upper surface of the sample 6. In this embodiment, the heat conducting member 9 is disposed on the upper surface and the lower surface of the sample 6, which is a surface perpendicular to the axis of the ion beam 4, but the surface on which the heat conducting member 9 is provided is not necessarily the ion beam 4. The fact that it does not have to be perpendicular to the axis of the axis is understood from the fact that sufficient heat can be released from such an inclined surface. In this embodiment, such an inclined surface is a substantially perpendicular surface.

以上述べた実施形態装置において,試料6に加工処理を行う場合は,イオン銃2からのArイオンビーム4を,遮蔽板8の側端面8aよりイオンビーム4の軸線の直交方向に突出した熱伝導部材10の非遮蔽面10aに照射し,このArイオンビーム4で,熱伝導部材10の非遮蔽面10aより下流方向,および試料6の被加工部6bを研削し,試料6の加工断面6aを作製する。
この加工処理の過程で行われる断面形成のための切断は,高速イオンの運動エネルギーにより,表面近傍の試料原子を弾き飛ばすことによって行われ,この試料原子の弾き飛ばしによる切断加工や,切断された原子が試料断面に再付着したりすることにより被加工部6bに発生する熱が,熱伝導部材9,10を経て周囲に放出される。そのために,試料6の加工断面6aに熱によるダメージが加わることがなくなり,或いは軽減される。
In the embodiment apparatus described above, when the sample 6 is processed, the heat conduction in which the Ar ion beam 4 from the ion gun 2 protrudes in the direction perpendicular to the axis of the ion beam 4 from the side end face 8a of the shielding plate 8 is performed. The non-shielding surface 10a of the member 10 is irradiated, and the Ar ion beam 4 grinds the downstream side of the non-shielding surface 10a of the heat conducting member 10 and the part 6b to be processed of the sample 6 so that the processed cross section 6a of the sample 6 is obtained. Make it.
Cutting for cross-section formation performed in the process of this processing is performed by blowing off sample atoms near the surface by the kinetic energy of high-speed ions, and cutting processing or cutting by cutting off sample atoms is performed. Heat generated in the workpiece 6b due to the reattachment of atoms to the cross section of the sample is released to the surroundings through the heat conducting members 9 and 10. Therefore, damage due to heat is not applied to the processing section 6a of the sample 6 or is reduced.

このように,この実施形態装置に係るイオンビーム加工方法によれば,前記試料6における被加工部6bの前記イオンビーム4の軸線に直角,あるいは略直角な面である上流側と下流側の両面に熱伝導部材9,10が配置されているので,イオンビーム4の照射による被加工部6bで発生した熱は,試料6の上下両面から熱伝導部材9,10を通して周囲に放出されることにより,加工断面6aで受ける熱によるダメージをなくし,あるいは軽減できる。     As described above, according to the ion beam processing method according to the apparatus of this embodiment, both the upstream side and the downstream side, which are surfaces perpendicular to or substantially perpendicular to the axis of the ion beam 4 of the portion 6b of the sample 6 are processed. Since the heat conducting members 9 and 10 are arranged on the surface, the heat generated in the processed part 6b by the irradiation of the ion beam 4 is released from the upper and lower surfaces of the sample 6 to the surroundings through the heat conducting members 9 and 10. , Damage due to heat received at the processed cross section 6a can be eliminated or reduced.

上記実施形態にかかるイオンビーム加工方法及び加工装置においては,試料6の下面に熱伝導部材9を,試料6の上面に熱伝導部材10を設けているが,この発明の他の実施形態として,図2,図3に示すイオンビーム加工装置及びこの装置を用いたイオンビーム加工方法としても良い。
図2に示す実施形態装置は,図1に示す実施形態装置の試料装着部5より,試料6の下面の熱伝導部材9を除いたものであり,試料6と遮蔽板8の間にのみ熱伝導部材10を設けたものである。

この実施形態装置において,試料6に加工処理を行う場合は,上記図1のイオンビーム加工装置1の場合と同様に,イオン銃2からのArイオンビーム4を,遮蔽板8の側端面8aよりイオンビーム4の軸線に直交方向に突出した熱伝導部材10の非遮蔽面10aに照射し,このArイオンビーム4で,熱伝導部材10の非遮蔽面10aよりイオンビーム4の下流方向,および試料6の被加工部6bを研削し,試料6の加工断面6aを作製する。
In the ion beam processing method and processing apparatus according to the above embodiment, the heat conduction member 9 is provided on the lower surface of the sample 6 and the heat conduction member 10 is provided on the upper surface of the sample 6. As another embodiment of the present invention, The ion beam processing apparatus shown in FIGS. 2 and 3 and an ion beam processing method using this apparatus may be used.
The embodiment apparatus shown in FIG. 2 is obtained by removing the heat conducting member 9 on the lower surface of the sample 6 from the sample mounting portion 5 of the embodiment apparatus shown in FIG. A conductive member 10 is provided.

In this embodiment apparatus, when the sample 6 is processed, the Ar ion beam 4 from the ion gun 2 is applied from the side end face 8a of the shielding plate 8 as in the case of the ion beam processing apparatus 1 of FIG. The non-shielding surface 10a of the heat conducting member 10 projecting in the direction orthogonal to the axis of the ion beam 4 is irradiated, and with this Ar ion beam 4, the downstream direction of the ion beam 4 from the non-shielding surface 10a of the heat conducting member 10 and the sample 6 to be machined, and a cross section 6a of the sample 6 is produced.

また,図3に示す実施形態装置は,図1に示す実施形態装置の試料装着部5より,試料6の上面の熱伝導部材10を除いたものであり,試料6と試料台7との間にのみ熱伝導部材9を設けたものである。
この実施形態装置においても,試料6に加工処理を行う場合は,イオン銃2からのArイオンビーム4を,遮蔽板8の側端面8aよりイオンビーム4の軸線の直交方向に突き出した試料6の非遮蔽部6cに照射し,このArイオンビーム4で,試料6の被加工部6bを研削し,試料6の加工断面6aを作製する。
これら図2及び図3に示した実施形態装置においても,加工処理時に,試料6の被加工部6bに発生する熱が,熱伝導部材9を経て,試料6から逃がされ,試料6の温度が上昇することによるダメージが軽減,あるいはなくなる。
The embodiment apparatus shown in FIG. 3 is obtained by removing the heat conduction member 10 on the upper surface of the sample 6 from the sample mounting portion 5 of the embodiment apparatus shown in FIG. The heat conducting member 9 is provided only in the case.
Also in this embodiment apparatus, when processing the sample 6, the Ar ion beam 4 from the ion gun 2 is projected from the side end face 8a of the shielding plate 8 in the direction orthogonal to the axis of the ion beam 4. The non-shielding portion 6 c is irradiated, and the processed portion 6 b of the sample 6 is ground with the Ar ion beam 4 to produce a processed cross section 6 a of the sample 6.
2 and 3 also, the heat generated in the processed portion 6b of the sample 6 is released from the sample 6 through the heat conducting member 9 during the processing, and the temperature of the sample 6 is increased. Damage caused by rising is reduced or eliminated.

以上のように,図2,図3に示す実施形態装置に係るイオンビーム加工方法によれば,前記試料6における被加工部6bの前記イオンビーム4の軸線に直角,あるいは略直角な上流側と下流側のいずれか片面に熱伝導部材9あるいは熱伝導部材10を配置しているので,イオンビーム4の照射による被加工部6bで発生した熱を,熱伝導部材9あるいは熱伝導部材10を通して周囲に放出し,加工断面6aに受けるダメージをなくし,あるいは軽減できる。     As described above, according to the ion beam machining method according to the embodiment apparatus shown in FIGS. 2 and 3, the upstream side perpendicular to or substantially perpendicular to the axis of the ion beam 4 of the workpiece 6 b in the sample 6 Since the heat conducting member 9 or the heat conducting member 10 is arranged on either one of the downstream sides, the heat generated in the processed portion 6b by the irradiation of the ion beam 4 is passed through the heat conducting member 9 or the heat conducting member 10 to the surroundings. It is possible to eliminate or reduce damage to the processed cross section 6a.

さらに,この発明の他の実施形態装置を図4に示す。この実施形態装置は,図1に示す装置の試料装着部5の遮蔽板8の下面(試料6の上面)に設けた熱伝導部材10に代えて断熱部材14を備えたものである。この断熱部材14は,一例として厚み2mmの発泡ウレタンゴム(株式会社イノアックコーポレーション製)が使用されている。断熱部材14は,遮蔽板8への固定の際,側端面14aを遮蔽板8の側端面8aと面一に設定している。断熱部材14が容易に加工できる材料の場合には,断熱部材14の側端面14aを遮蔽板8から突出させても良いことは言うまでもない。
一方,試料6は,遮蔽板8及び断熱部材14の側端面8a,14aより2mm突き出されて非遮蔽部6cを形成している。ここで使用の発泡ウレタンゴムの熱伝導率は,0.02W/m―1・k―1である。
この実施形態装置において,試料6に加工処理を行う場合は,イオン銃2からのArイオンビーム4を,遮蔽板8の側端面8a,断熱部材14の側端面14aよりイオンビーム4の軸線に直交方向に突出した試料6の非遮蔽面(被加工部上面)6cに照射し,このArイオンビーム4で,試料6の非遮蔽面6cより下流方向に被加工部6bを研削し,試料6の加工断面6aを作製する。
この実施形態では,断熱部材14が試料6の上面側(前記試料6のイオンビーム4の照射方向上流側)に設けられたが,試料6の下面側(前記試料6のイオンビーム4の照射方向下流側)に設けられても良い。試料6の種類は用途などに応じて,熱を遮断したい方向が異なることがあるので,これらの事情に応じて断熱部材14を配置する面が異なることがありうるのである。
Furthermore, another embodiment of the present invention is shown in FIG. The apparatus according to this embodiment includes a heat insulating member 14 instead of the heat conducting member 10 provided on the lower surface of the shielding plate 8 (the upper surface of the sample 6) of the sample mounting portion 5 of the apparatus shown in FIG. As an example, the heat insulating member 14 is made of foamed urethane rubber (manufactured by Inoac Corporation) having a thickness of 2 mm. When the heat insulating member 14 is fixed to the shielding plate 8, the side end surface 14 a is set flush with the side end surface 8 a of the shielding plate 8. Needless to say, when the heat insulating member 14 is a material that can be easily processed, the side end surface 14 a of the heat insulating member 14 may protrude from the shielding plate 8.
On the other hand, the sample 6 protrudes 2 mm from the side end surfaces 8a and 14a of the shielding plate 8 and the heat insulating member 14 to form a non-shielding portion 6c. The thermal conductivity of the urethane foam rubber used here is 0.02 W / m- 1 · k- 1 .
In this embodiment apparatus, when processing the sample 6, the Ar ion beam 4 from the ion gun 2 is orthogonal to the axis of the ion beam 4 from the side end face 8 a of the shielding plate 8 and the side end face 14 a of the heat insulating member 14. The non-shielding surface (upper surface of the workpiece) 6c of the sample 6 protruding in the direction is irradiated, and the workpiece 6b is ground with the Ar ion beam 4 in the downstream direction from the non-shielding surface 6c of the sample 6. A processed cross section 6a is prepared.
In this embodiment, the heat insulating member 14 is provided on the upper surface side of the sample 6 (upstream side in the irradiation direction of the ion beam 4 of the sample 6), but the lower surface side of the sample 6 (irradiation direction of the ion beam 4 of the sample 6). It may be provided on the downstream side. Since the type of the sample 6 may be different in the direction in which the heat is to be cut off depending on the application, the surface on which the heat insulating member 14 is arranged may be different depending on these circumstances.

この実施形態装置に係るイオンビーム加工方法によれば,前記試料6のイオンビーム4の照射方向上流側と下流側のいずれか片面(下流側面)に熱伝導部材9を配置し,試料6の他の片面(上流側面)に,断熱部材14を配置しているので,イオンビーム4の照射による被加工部6bで発生した熱が,熱伝導部材9を介して放熱され,加工断面6aで受けるダメージをなくし,あるいは軽減できると共に,断熱部材14を配置した面からは放熱されないので,試料6の種類や用途などによって,必要な方向への熱の伝達を遮断することが出来るという効果を発揮しうる。   According to the ion beam processing method according to the apparatus of this embodiment, the heat conducting member 9 is arranged on one side (downstream side surface) on either the upstream side or the downstream side in the irradiation direction of the ion beam 4 of the sample 6. Since the heat insulating member 14 is arranged on one side (upstream side) of the metal, the heat generated in the processed part 6b by the irradiation of the ion beam 4 is radiated through the heat conducting member 9 and is damaged at the processed cross section 6a. Since the heat is not radiated from the surface on which the heat insulating member 14 is disposed, the heat transfer in the necessary direction can be blocked depending on the type and use of the sample 6. .

本願の発明者は,本発明のイオンビーム加工装置の効果を確認するために,実験のための下記の試料装着部5を用意した。
また,熱伝導効果の観察試料として溶融温度65℃の粉体試料と,溶融温度80℃の粉体試料2種を用意し,試料設置部5に設置された試料6の加工側面5aに塗り付けた。
○従来装置のように遮蔽板8,試料台7のいずれにも断熱部材14及び熱伝導部材9を設けない試料装着部5(比較例1)
○遮蔽板8側の断熱部材14を有し,試料台7側の熱伝導部材9を設けない試料装着部5(比較例2)
○遮蔽板8側の断熱部材14を設けず,試料台7側の熱伝導部材9を有する試料装着部5(比較例3)
以上,比較例1〜3は,溶融温度65℃の粉体試料を観察試料として使用。
○従来装置のように遮蔽板8,試料台7のいずれにも断熱部材14及び熱伝導部材9を設けない試料装着部5(比較例4)
○遮蔽板8側の断熱部材14を有し,試料台7側の熱伝導部材9を設けない試料装着部5(比較例5)
○遮蔽板8側の断熱部材14を設けず,試料台7側の熱伝導部材9を有する試料装着部5(比較例6)
以上,比較例4〜6は,溶融温度80℃の粉体試料を観察試料として使用。
○遮蔽板8側の断熱部材14,及び試料台7側の熱伝導部材9の両方を有する試料装着部5(溶融温度65℃の粉体試料を観察試料として使用)(実施例1)
○遮蔽板8側の断熱部材14,及び試料台7側の熱伝導部材9の両方を有する試料装着部5(溶融温度80℃の粉体試料を観察試料として使用)(実施例2)
加工条件は,いずれも同じであり,加速電圧4KV,加工時間10時間で加工処理を行い,それぞれ加工処理を実施し,加工面を走査型電子顕微鏡(SEM)で観察し,熱の影響を観察した。
なお,溶融温度65℃の観察試料は,雰囲気温度が65℃以下では,目視で粉体状態であることが観察され,これを塗りつけた部分の温度が65℃に達すると,溶融して粉体状態から溶融状態に変化することが目視で観察できるものである。溶融温度80℃の観察試料についても,溶融温度が80℃である点を除き同様である。
従って,上記のように試料6の加工側面5aに上記観察試料を塗りつけた状態で,図1〜図4に示したようにイオンビーム銃2からイオンビーム4を試料装着部5に照射して被加工部を加工すると,その時の試料6の温度によって試料加工側面5aに塗りつけた観察試料が溶融したりしなかったりするので,その状態を目視観察することで,試料6の温度状態を判断でき,断熱部材14や熱伝導部材9などによる試料6の放熱効果が判断されるのである。
In order to confirm the effect of the ion beam processing apparatus of the present invention, the inventor of the present application prepared the following sample mounting portion 5 for an experiment.
In addition, a powder sample having a melting temperature of 65 ° C. and two kinds of powder samples having a melting temperature of 80 ° C. are prepared as observation samples for the heat conduction effect, and are applied to the processed side surface 5 a of the sample 6 installed in the sample installation section 5. It was.
A sample mounting portion 5 (Comparative Example 1) in which neither the shielding plate 8 nor the sample stage 7 is provided with the heat insulating member 14 and the heat conducting member 9 as in the conventional apparatus.
A sample mounting portion 5 having a heat insulating member 14 on the shielding plate 8 side and not provided with the heat conducting member 9 on the sample stage 7 side (Comparative Example 2)
A sample mounting portion 5 having no heat insulating member 14 on the shielding plate 8 side and having a heat conducting member 9 on the sample stage 7 side (Comparative Example 3)
As described above, Comparative Examples 1 to 3 use a powder sample having a melting temperature of 65 ° C. as an observation sample.
A sample mounting portion 5 in which neither the shielding plate 8 nor the sample stage 7 is provided with the heat insulating member 14 and the heat conducting member 9 as in the conventional apparatus (Comparative Example 4)
A sample mounting part 5 having a heat insulating member 14 on the shielding plate 8 side and not provided with the heat conducting member 9 on the sample stage 7 side (Comparative Example 5)
A sample mounting portion 5 having no heat insulating member 14 on the shielding plate 8 side and having a heat conducting member 9 on the sample stage 7 side (Comparative Example 6)
As described above, Comparative Examples 4 to 6 use a powder sample having a melting temperature of 80 ° C. as an observation sample.
A sample mounting portion 5 having both a heat insulating member 14 on the shielding plate 8 side and a heat conducting member 9 on the sample stage 7 side (using a powder sample having a melting temperature of 65 ° C. as an observation sample) (Example 1)
Sample mounting portion 5 having both a heat insulating member 14 on the shielding plate 8 side and a heat conducting member 9 on the sample stage 7 side (using a powder sample having a melting temperature of 80 ° C. as an observation sample) (Example 2)
The processing conditions are the same, processing is performed at an acceleration voltage of 4 KV and a processing time of 10 hours, each processing is performed, the processing surface is observed with a scanning electron microscope (SEM), and the influence of heat is observed. did.
Note that the observation sample having a melting temperature of 65 ° C. was visually observed to be in a powder state when the ambient temperature was 65 ° C. or lower. It can be visually observed that the state changes from the state to the molten state. The same applies to the observation sample having a melting temperature of 80 ° C. except that the melting temperature is 80 ° C.
Accordingly, with the observation sample applied to the processed side surface 5a of the sample 6 as described above, the sample mounting portion 5 is irradiated with the ion beam 4 from the ion beam gun 2 as shown in FIGS. When the processing part is processed, the observation sample applied to the sample processing side surface 5a may or may not melt depending on the temperature of the sample 6 at that time, so the state of the sample 6 can be determined by visual observation of the state. The heat radiation effect of the sample 6 by the heat insulating member 14 or the heat conducting member 9 is determined.

上記実験の結果を図5の表に示す。熱の影響は,加工状況の中で観察試料が粉体の状態を留めていたものは,熱の影響を受けていない(放熱良好)として○,一部粉の状態を留めていない(溶融した)ものを△,観察試料が完全に溶融し粉体の状態を留めていないものを×として表示している。目視写真の一例として,比較例5及び実施例2の観察結果の写真を図6に示す。実施例2の写真では,加工箇所付近に○印状の粉の状態を維持しているに対し,比較例5の写真では,加工箇所付近に,○印状の粉の状態を維持せず溶融状態になっていることが観察される。   The results of the experiment are shown in the table of FIG. As for the influence of heat, in the processing situation, if the observation sample remained in the powder state, it was ○ because it was not affected by heat (good heat dissipation), and part of the powder state was not melted (melted) ) Is indicated by Δ, and the observation sample is completely melted and does not remain in the powder state as x. As an example of a visual photograph, photographs of observation results of Comparative Example 5 and Example 2 are shown in FIG. In the photograph of Example 2, the state of the circle-shaped powder is maintained near the processed portion, whereas in the photograph of Comparative Example 5, the state of the circle-shaped powder is not maintained and melted near the processed portion. It is observed that it is in a state.

この実験によって,遮蔽板側にのみ熱伝導部材を装着させると,熱の影響が△であるので,加工時に試料へ80℃付近の熱が加わることが分かった。また,遮蔽板と試料台の両方に熱伝導部材を装着させると,熱の発生は65℃以下に抑えられ,試料の被加工部分における熱的ダメージが十分抑制されることが分かった。   As a result of this experiment, it was found that when a heat conducting member is attached only to the shielding plate side, the effect of heat is Δ, so that heat of about 80 ° C. is applied to the sample during processing. In addition, it was found that when the heat conducting member is attached to both the shielding plate and the sample stage, the generation of heat is suppressed to 65 ° C. or less, and the thermal damage in the processed part of the sample is sufficiently suppressed.

なお,上記した各実施形態においては,いずれも試料装着部に遮蔽板を備える場合について説明したが,本発明では,これに限ることなく,遮蔽板を備えずして,試料にイオンビームを照射して加工するイオンビーム加工方法にも適用できる。   In each of the embodiments described above, the case where the sample mounting portion is provided with the shielding plate has been described. However, the present invention is not limited to this, and the sample is irradiated with the ion beam without the shielding plate. Thus, the present invention can also be applied to an ion beam processing method for processing.

また,断熱部材14を用いずに,試料6の上下両面あるいはいずれかの面側に熱伝導部材10あるいは9を設置した場合についても実験した,この実験は図1〜図3に示した実施形態に沿ったものである。
この加工方法の実験方法を下に示す。
熱伝導効果の観察試料として溶融温度65℃の粉体試料と,溶融温度80℃の粉体試料2種を用意し,試料設置部5に設置された試料6aの加工側面5aに塗り付けた点,及び,加工条件は,いずれも同じであり,加速電圧4KV,加工時間10時間で加工処理を行った。
○従来装置のように遮蔽板8,試料台7のいずれにも熱伝導部材10及び熱伝導部材9を設けない試料装着部5(比較例1a)
○遮蔽板8側の熱伝導部材10を有し,試料台7側の熱伝導部材9を設けない試料装着部5(比較例2a)
○遮蔽板8側の熱伝導部材10を設けず,試料台7側の熱伝導部材9を有する試料装着部5(比較例3a)
以上,比較例1a〜3aは,溶融温度65℃の粉体試料を観察試料として使用。
○従来装置のように遮蔽板8,試料台7のいずれにも熱伝導部材10及び熱伝導部材9を設けない試料装着部5(比較例4a)
○蔽板8側の熱伝導部材10を有し,試料台7側の熱伝導部材9を設けない試料装着部5(比較例5a)
○遮蔽板8側の熱伝導部材10を設けず,試料台7側の熱伝導部材9を有する試料装着部5(比較例6a)
以上,比較例4a〜6aは,溶融温度80℃の粉体試料を観察試料として使用。
○遮蔽板8側の熱伝導部材10,及び試料台7側の熱伝導部材9の両方を有する試料装着部5(溶融温度65℃の粉体試料を観察試料として使用)(実施例1a)
○遮蔽板8側の熱伝導部材10,及び試料台7側の熱伝導部材9の両方を有する試料装着部5(溶融温度80℃の粉体試料を観察試料として使用)(実施例2a)
加工条件は,いずれも同じであり,加速電圧4KV,加工時間10時間で加工処理を行い,それぞれ加工処理を実施し,加工面を走査型電子顕微鏡(SEM)で観察し,熱の影響を観察した。
その結果得られたのが図7の表である。
比較例1aと4aは,前記した断熱部材に関する実験の比較例1及び比較例4と同じである。
比較例5a及び実施例2aの観察結果の写真を撮った。実施例2aの写真では,加工箇所付近に○印状の粉の状態を維持しているに対し,比較例5aの写真では,加工箇所付近に,○印状の粉の状態を維持せず溶融状態になっていることが観察された。写真については前記のように片方に断熱材を用いた場合と同様であったので,写真の提出は割愛する。
このように,熱伝導部材を試料6の片面に添わせて設ければ(比較例2a,3a),いずれの面にも設けなかった場合(比較例1a,比較例3a)よりも熱によるダメージが緩和されていることが理解される。また実施例1a,2aのように両面に熱伝導部材を添わせて設置した場合には,少なくとも80℃以上の熱が発生していないことがわかった。これによって,熱伝導部材9や10による放熱効果が十分に発揮されていることが観察された。
Moreover, it experimented also about the case where the heat-conducting member 10 or 9 was installed in the upper and lower surfaces of the sample 6, or any surface side, without using the heat insulation member 14, This experiment is embodiment shown in FIGS. 1-3. It is along.
The experimental method of this processing method is shown below.
Two powder samples with a melting temperature of 65 ° C. and two powder samples with a melting temperature of 80 ° C. were prepared as observation samples for the heat conduction effect, and applied to the processed side surface 5a of the sample 6a installed in the sample installation section 5 The processing conditions were the same, and the processing was performed with an acceleration voltage of 4 KV and a processing time of 10 hours.
A sample mounting portion 5 (Comparative Example 1a) in which neither the shielding plate 8 nor the sample stage 7 is provided with the heat conducting member 10 and the heat conducting member 9 as in the conventional apparatus.
A sample mounting portion 5 having the heat conducting member 10 on the shielding plate 8 side and not provided with the heat conducting member 9 on the sample stage 7 side (Comparative Example 2a)
A sample mounting portion 5 having no heat conducting member 10 on the shielding plate 8 side and having a heat conducting member 9 on the sample stage 7 side (Comparative Example 3a)
As described above, Comparative Examples 1a to 3a use a powder sample having a melting temperature of 65 ° C. as an observation sample.
A sample mounting portion 5 (Comparative Example 4a) in which neither the shielding plate 8 nor the sample stage 7 is provided with the heat conducting member 10 and the heat conducting member 9 as in the conventional apparatus.
A sample mounting portion 5 having a heat conducting member 10 on the cover plate 8 side and not provided with a heat conducting member 9 on the sample table 7 side (Comparative Example 5a)
A sample mounting portion 5 having no heat conducting member 10 on the shielding plate 8 side and having a heat conducting member 9 on the sample stage 7 side (Comparative Example 6a)
As described above, Comparative Examples 4a to 6a use a powder sample having a melting temperature of 80 ° C. as an observation sample.
A sample mounting portion 5 having both the heat conducting member 10 on the shielding plate 8 side and the heat conducting member 9 on the sample stage 7 side (using a powder sample having a melting temperature of 65 ° C. as an observation sample) (Example 1a)
A sample mounting portion 5 having both the heat conducting member 10 on the shielding plate 8 side and the heat conducting member 9 on the sample stage 7 side (using a powder sample having a melting temperature of 80 ° C. as an observation sample) (Example 2a)
The processing conditions are the same, processing is performed at an acceleration voltage of 4 KV and a processing time of 10 hours, each processing is performed, the processing surface is observed with a scanning electron microscope (SEM), and the influence of heat is observed. did.
The table shown in FIG. 7 was obtained as a result.
Comparative examples 1a and 4a are the same as comparative example 1 and comparative example 4 of the experiment related to the heat insulating member described above.
Pictures of the observation results of Comparative Example 5a and Example 2a were taken. In the photograph of Example 2a, the state of the circle-shaped powder is maintained near the processed portion, whereas in the photograph of Comparative Example 5a, the state of the circle-shaped powder is not maintained and melted near the processed portion. It was observed that it was in a state. Since the photo was the same as the case where the heat insulating material was used on one side as described above, the submission of the photo is omitted.
As described above, if the heat conducting member is provided along one side of the sample 6 (Comparative Examples 2a and 3a), the heat damage is caused more than when the heat conducting member is not provided on either side (Comparative Example 1a and Comparative Example 3a). Is understood to be relaxed. Further, it was found that when the heat conducting member was installed on both sides as in Examples 1a and 2a, heat of at least 80 ° C. or more was not generated. Thus, it was observed that the heat radiation effect by the heat conducting members 9 and 10 was sufficiently exhibited.

1 イオンビーム加工装置
1a 真空チャンバ
2 イオン銃
3 Arイオン加速電圧源
4 Arイオンビーム
5 試料装着部
6 試料
6a 試料の加工断面
6b 試料の被加工部
7 試料台
8 遮蔽板
9,10 熱伝導部材
11,12,13 接着剤
14 断熱部材
DESCRIPTION OF SYMBOLS 1 Ion beam processing apparatus 1a Vacuum chamber 2 Ion gun 3 Ar ion acceleration voltage source 4 Ar ion beam 5 Sample mounting part 6 Sample 6a Sample processing cross section 6b Sample processing part 7 Sample stage 8 Shield plate 9,10 Thermal conduction member 11, 12, 13 Adhesive 14 Heat insulation member

Claims (5)

イオンビーム銃から発射されるイオンビームを試料の被加工部に照射することで前記試料を加工するイオンビーム加工方法であって,
前記試料における前記被加工部の前記イオンビームの軸線に直角,あるいは略直角な少なくとも一方の面に熱伝導部材を接触して設置しておき,前記試料の被加工部に前記イオンビームを照射することで発生する前記被加工部の熱を,前記熱伝導部へ逃がしつつ加工するイオンビーム加工方法。
An ion beam processing method of processing the sample by irradiating a processed portion of the sample with an ion beam emitted from an ion beam gun,
A heat conducting member is placed in contact with at least one surface of the sample that is perpendicular to or substantially perpendicular to the ion beam axis of the workpiece, and the workpiece is irradiated with the ion beam. An ion beam processing method for processing the heat generated in the processing portion while releasing the heat of the processing portion to the heat conducting portion.
前記熱伝導部材が,前記試料のイオンビーム照射方向上流側と下流側の両面に配置されてなるものである請求項1記載のイオンビーム加工方法。   2. The ion beam processing method according to claim 1, wherein the heat conducting members are arranged on both the upstream side and the downstream side in the ion beam irradiation direction of the sample. 前記熱伝導部材が,前記試料のイオンビーム照射方向上流側と下流側のいずれか片面に配置されてなるものである請求項1記載のイオンビーム加工方法。   The ion beam processing method according to claim 1, wherein the heat conducting member is arranged on one side of the sample on either the upstream side or the downstream side in the ion beam irradiation direction. 前記熱伝導部材が,前記試料のイオンビーム照射方向上流側と下流側のいずれか片面に配置されてなり,前記試料の他の片面に,断熱部材が配置されてなる請求項1記載のイオンビーム加工方法。   2. The ion beam according to claim 1, wherein the heat conducting member is disposed on one side of the sample in an upstream side or a downstream side in the ion beam irradiation direction, and a heat insulating member is disposed on the other side of the sample. Processing method. イオン銃から発射されるイオンビームを試料の被加工部に照射することで前記試料を加工するイオンビーム加工装置であって,前記被加工部の前記イオンビームの軸線に直角,あるいは略直角な少なくとも一方の面に熱伝導部材を接触しておき,前記試料の被加工部に前記イオンビームを照射することで発生する前記試料の被加工部の熱を熱伝導部材に逃がしつつ加工するイオンビーム加工装置。
An ion beam processing apparatus for processing a sample by irradiating an ion beam emitted from an ion gun onto the sample to be processed, at least perpendicular to or substantially perpendicular to the axis of the ion beam of the processed portion. Ion beam processing in which a heat conducting member is brought into contact with one surface, and the heat of the processed portion of the sample generated by irradiating the processed portion of the sample with the ion beam is released to the heat conducting member apparatus.
JP2010057281A 2010-03-15 2010-03-15 Ion beam processing method, and ion beam processing device Pending JP2011192521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010057281A JP2011192521A (en) 2010-03-15 2010-03-15 Ion beam processing method, and ion beam processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057281A JP2011192521A (en) 2010-03-15 2010-03-15 Ion beam processing method, and ion beam processing device

Publications (1)

Publication Number Publication Date
JP2011192521A true JP2011192521A (en) 2011-09-29

Family

ID=44797212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057281A Pending JP2011192521A (en) 2010-03-15 2010-03-15 Ion beam processing method, and ion beam processing device

Country Status (1)

Country Link
JP (1) JP2011192521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137995A (en) * 2011-11-28 2013-07-11 Jeol Ltd Ion beam processing device, sample processing method, and sample container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137995A (en) * 2011-11-28 2013-07-11 Jeol Ltd Ion beam processing device, sample processing method, and sample container
US8716683B2 (en) 2011-11-28 2014-05-06 Jeol Ltd. Ion beam processing system and sample processing method

Similar Documents

Publication Publication Date Title
JP6220749B2 (en) Ion gun, ion milling apparatus, and ion milling method
JP4486462B2 (en) Sample preparation method and sample preparation apparatus
JP2004087174A (en) Ion beam device, and working method of the same
JP2010038921A (en) Method of machining work piece with focused ion beam
KR20170036007A (en) Electrode plate coating removal method
WO2015170400A1 (en) Ion milling apparatus and sample processing method
JP2016173874A (en) Ion milling device
US20070228008A1 (en) Medium pressure plasma system for removal of surface layers without substrate loss
US20090179158A1 (en) In-vacuum protective liners
JP2005281773A (en) Deposition-preventive cover, substance generation apparatus, and treated object
JP2011192521A (en) Ion beam processing method, and ion beam processing device
US11257654B2 (en) Ion milling apparatus
JP2008258149A (en) Apparatus for working and observing sample, and method of working and observing cross section
KR100855540B1 (en) Ion implanter, inner structure of ino implater and method of forming a coating layer on the ion implanter
WO2014119351A1 (en) Ion milling device, and ion milling working method
JP2011138678A (en) Ion beam processing method and processing device
JP4170048B2 (en) Ion beam apparatus and ion beam processing method
EP1958232A1 (en) Medium pressure plasma system for removal of surface layers without substrate loss
JP2007190593A (en) Substrate holding device and substrate working device
EP3023763A1 (en) Specimen preparation device
JP2010169459A (en) Sample processing device
WO2016121080A1 (en) Ion milling mask position adjustment method, electron microscope capable of adjusting mask position, mask adjustment device carried by sample stage, and sample mask part for ion milling device
WO2017203676A1 (en) Charged particle beam device
JP6814303B2 (en) Ion milling device
WO2013121938A1 (en) Charged particle beam device, sample mask unit, and conversion member