JP2011191735A - Anti-reflective film - Google Patents
Anti-reflective film Download PDFInfo
- Publication number
- JP2011191735A JP2011191735A JP2010275628A JP2010275628A JP2011191735A JP 2011191735 A JP2011191735 A JP 2011191735A JP 2010275628 A JP2010275628 A JP 2010275628A JP 2010275628 A JP2010275628 A JP 2010275628A JP 2011191735 A JP2011191735 A JP 2011191735A
- Authority
- JP
- Japan
- Prior art keywords
- parts
- refractive index
- index layer
- low refractive
- coating solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003667 anti-reflective effect Effects 0.000 title abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 154
- 238000000576 coating method Methods 0.000 claims abstract description 112
- 239000011248 coating agent Substances 0.000 claims abstract description 107
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 76
- 239000010419 fine particle Substances 0.000 claims abstract description 75
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 59
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 53
- 239000002019 doping agent Substances 0.000 claims abstract description 52
- 229920000447 polyanionic polymer Polymers 0.000 claims abstract description 12
- 229920000123 polythiophene Polymers 0.000 claims abstract description 12
- 229920000767 polyaniline Polymers 0.000 claims abstract description 5
- 229920000128 polypyrrole Polymers 0.000 claims abstract description 5
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 claims description 33
- 229940005642 polystyrene sulfonic acid Drugs 0.000 claims description 32
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 28
- 239000002131 composite material Substances 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 13
- 239000010410 layer Substances 0.000 abstract description 134
- 239000002356 single layer Substances 0.000 abstract description 7
- 238000005299 abrasion Methods 0.000 abstract description 2
- 238000010030 laminating Methods 0.000 abstract description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 114
- 239000000243 solution Substances 0.000 description 93
- 238000004519 manufacturing process Methods 0.000 description 91
- 239000010408 film Substances 0.000 description 72
- 239000007787 solid Substances 0.000 description 69
- 238000002360 preparation method Methods 0.000 description 35
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 34
- 239000003999 initiator Substances 0.000 description 34
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 28
- 239000000126 substance Substances 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 14
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 11
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- -1 polyethylene terephthalate Polymers 0.000 description 7
- 238000000108 ultra-filtration Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- GFJHLDVJFOQWLT-UHFFFAOYSA-N 3-hexoxythiophene Chemical compound CCCCCCOC=1C=CSC=1 GFJHLDVJFOQWLT-UHFFFAOYSA-N 0.000 description 3
- HGDGACBSGVRCSM-UHFFFAOYSA-N 3-methoxy-4-methylthiophene Chemical compound COC1=CSC=C1C HGDGACBSGVRCSM-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012452 mother liquor Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 229910001388 sodium aluminate Inorganic materials 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical compound CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000120 polyethyl acrylate Polymers 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- JSOMPMRZESLPSM-UHFFFAOYSA-N 3-(2-methylpropyl)aniline Chemical compound CC(C)CC1=CC=CC(N)=C1 JSOMPMRZESLPSM-UHFFFAOYSA-N 0.000 description 1
- ATWNFFKGYPYZPJ-UHFFFAOYSA-N 3-butyl-1h-pyrrole Chemical compound CCCCC=1C=CNC=1 ATWNFFKGYPYZPJ-UHFFFAOYSA-N 0.000 description 1
- INZDUCBKJIQWBX-UHFFFAOYSA-N 3-hexoxy-4-methyl-1h-pyrrole Chemical compound CCCCCCOC1=CNC=C1C INZDUCBKJIQWBX-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- SFMJNHNUOVADRW-UHFFFAOYSA-N n-[5-[9-[4-(methanesulfonamido)phenyl]-2-oxobenzo[h][1,6]naphthyridin-1-yl]-2-methylphenyl]prop-2-enamide Chemical compound C1=C(NC(=O)C=C)C(C)=CC=C1N1C(=O)C=CC2=C1C1=CC(C=3C=CC(NS(C)(=O)=O)=CC=3)=CC=C1N=C2 SFMJNHNUOVADRW-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002863 poly(1,4-phenylene oxide) polymer Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、例えばプラズマディスプレイパネル(PDP)、液晶ディスプレイパネル(LCD)等に適用され、単層構成で十分な反射防止性能を有し、かつ帯電防止性能にも優れた反射防止フィルムに関する。 The present invention relates to an antireflection film which is applied to, for example, a plasma display panel (PDP), a liquid crystal display panel (LCD) and the like, has a sufficient antireflection performance with a single layer structure, and is excellent in antistatic performance.
近年、プラズマディスプレイパネル、液晶ディスプレイパネル等の電子画像表示装置(電子ディスプレイ)は、テレビやモニター用途として著しい進歩を遂げ、広く普及している。これら電子画像表示装置は、大型化に伴い、外光の映り込みによる視認性の低下が問題となっている。そのため、透明基材フィルムの表面に反射防止層を設けて形成された反射防止フィルムをディスプレイ表面に貼り合わせ、視認性を高める方法が一般的に採用されている。 2. Description of the Related Art In recent years, electronic image display devices (electronic displays) such as plasma display panels and liquid crystal display panels have made remarkable progress for television and monitor applications and have become widespread. As these electronic image display devices are increased in size, there is a problem that visibility is reduced due to reflection of external light. Therefore, a method is generally adopted in which an antireflection film formed by providing an antireflection layer on the surface of a transparent substrate film is bonded to the display surface to enhance visibility.
さらに、静電気によるディスプレイ表面への埃などの付着を防止するために、これらの反射防止フィルムには帯電防止性能を有することが求められている。例えば、中空シリカ微粒子と多官能(メタ)アクリレートからなる低屈折率層を設けてなる反射防止フィルムが知られている(特許文献1を参照)。しかしながら、特許文献1に記載の反射防止フィルムは反射防止性能には優れるものの、帯電防止性能を付与するためには帯電防止性能を有するハードコート層もしくは帯電防止層を透明基材フィルムと低屈折率層の間に設ける必要があり、塗工回数が増えてしまう結果生産性が低下する。 Furthermore, in order to prevent dust and the like from adhering to the display surface due to static electricity, these antireflection films are required to have antistatic performance. For example, an antireflection film having a low refractive index layer comprising hollow silica fine particles and polyfunctional (meth) acrylate is known (see Patent Document 1). However, although the antireflection film described in Patent Document 1 is excellent in antireflection performance, in order to impart antistatic performance, a hard coat layer or antistatic layer having antistatic performance is used as a transparent base film and a low refractive index. It is necessary to provide it between the layers, and as a result of increasing the number of coatings, productivity is lowered.
また、π共役系導電性高分子は、良好な導電性を示すことから各種の帯電防止剤や電極材料等の工業材料として使用されている。このπ共役系導電性高分子は、ドーパントと呼ばれる物質をドーピングすることによって、高い導電性が付与される。例えば、π共役系導電性高分子とドーパントからなる複合体と多官能(メタ)アクリレートとを含有するコーティング剤組成物が知られている(特許文献2を参照)。 Further, π-conjugated conductive polymers are used as industrial materials such as various antistatic agents and electrode materials because they exhibit good conductivity. This π-conjugated conductive polymer is imparted with high conductivity by doping a substance called a dopant. For example, a coating agent composition containing a complex composed of a π-conjugated conductive polymer and a dopant and a polyfunctional (meth) acrylate is known (see Patent Document 2).
しかしながら、π共役系導電性高分子とドーパントからなる複合体は屈折率がおよそ1.5と高いことから、低屈折率層を形成するための材料としては適しておらず、高屈折率層を形成するための材料として使用されるのが一般的であった。そのため、帯電防止性能には優れるものの、反射防止性能を付与させようとした場合には、π共役系導電性高分子とドーパントからなる複合体と多官能(メタ)アクリレートとを含有するコーティング層の上に、反射防止層を少なくとも一層設ける必要がある。その場合、塗工回数が増えてしまうため、生産性が低下する。加えて、反射防止フィルムには、その製造時や使用時における十分な耐熱性や耐擦傷性が求められている。 However, a complex composed of a π-conjugated conductive polymer and a dopant has a high refractive index of about 1.5, and therefore is not suitable as a material for forming a low refractive index layer. Typically used as a material for forming. Therefore, although antistatic performance is excellent, when it is intended to impart antireflection performance, a coating layer containing a complex composed of a π-conjugated conductive polymer and a dopant and a polyfunctional (meth) acrylate is used. On top of this, it is necessary to provide at least one antireflection layer. In that case, since the number of times of coating increases, productivity decreases. In addition, antireflection films are required to have sufficient heat resistance and scratch resistance during production and use.
本発明の目的とするところは、単層構成で十分な反射防止性能を有し、かつ帯電防止性能にも優れるとともに、耐熱性及び耐擦傷性に優れる反射防止フィルムを提供することにある。 An object of the present invention is to provide an antireflection film having a single layer structure and sufficient antireflection performance, excellent antistatic performance, and excellent heat resistance and scratch resistance.
前記の目的を達成するために、第1の発明の反射防止フィルムは、透明基材フィルム上に低屈折率層が直接積層されて構成されている反射防止フィルムであって、前記低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体を含有し、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部を含むとともに、(c)π共役系導電性高分子とドーパントからなる複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定された低屈折率層用塗液の硬化物であることを特徴とする。 In order to achieve the above object, an antireflection film according to a first invention is an antireflection film in which a low refractive index layer is directly laminated on a transparent substrate film, and the low refractive index layer Contains (a) a polyfunctional (meth) acrylate, (b) a hollow silica fine particle, and (c) a complex composed of a π-conjugated conductive polymer and a dopant, and (a) 100 mass of a polyfunctional (meth) acrylate. (B) 40 to 250 parts by mass of hollow silica fine particles and (c) 1 to 25 parts by mass of a complex composed of a π-conjugated conductive polymer and a dopant, and (c) a π-conjugated conductive polymer And a cured product of a coating solution for a low refractive index layer in which the mass ratio of the π-conjugated conductive polymer and the dopant in the composite composed of the dopant is set to 1: 1 to 1: 5.
第2の発明の反射防止フィルムは、第1の発明において、前記π共役系導電性高分子がポリチオフェン類であることを特徴とする。
第3の発明の反射防止フィルムは、第2の発明において、前記ポリチオフェン類がポリ(3,4−エチレンジオキシチオフェン)であることを特徴とする。
The antireflection film of the second invention is characterized in that, in the first invention, the π-conjugated conductive polymer is a polythiophene.
The antireflection film of the third invention is characterized in that, in the second invention, the polythiophene is poly (3,4-ethylenedioxythiophene).
第4の発明の反射防止フィルムは、第1の発明において、前記π共役系導電性高分子がポリピロール類又はポリアニリン類であることを特徴とする。
第5の発明の反射防止フィルムは、第1から第4のいずれか1項に記載の発明において、前記ドーパントがポリアニオンであることを特徴とする。
The antireflection film of a fourth invention is characterized in that, in the first invention, the π-conjugated conductive polymer is a polypyrrole or a polyaniline.
The antireflection film of the fifth invention is characterized in that, in the invention described in any one of the first to fourth inventions, the dopant is a polyanion.
第6の発明の反射防止フィルムは、第5の発明において、前記ポリアニオンがポリスチレンスルホン酸であることを特徴とする。 The antireflection film of a sixth invention is characterized in that, in the fifth invention, the polyanion is polystyrene sulfonic acid.
本発明によれば、次のような効果を発揮することができる。
第1の発明の反射防止フィルムは、透明基材フィルム上に低屈折率層が直接積層されている。そして、前記低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体を含有する低屈折率層用塗液の硬化物である。該低屈折率層用塗液は、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部を含むとともに、(c)π共役系導電性高分子とドーパントからなる複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定されている。
According to the present invention, the following effects can be exhibited.
In the antireflection film of the first invention, the low refractive index layer is directly laminated on the transparent substrate film. The low refractive index layer is for a low refractive index layer containing (a) polyfunctional (meth) acrylate, (b) hollow silica fine particles, and (c) a complex composed of a π-conjugated conductive polymer and a dopant. It is a cured product of the coating liquid. The coating solution for the low refractive index layer comprises (b) 40 to 250 parts by mass of hollow silica fine particles and (c) a π-conjugated conductive polymer and a dopant per 100 parts by mass of (a) polyfunctional (meth) acrylate. 1 to 25 parts by mass of the composite, and (c) the mass ratio of the π-conjugated conductive polymer and the dopant in the composite consisting of the π-conjugated conductive polymer and the dopant is 1: 1 to 1: 5. Is set.
このため、低屈折率層の機能により反射防止作用が発現され、反射防止フィルムをプラズマディスプレイパネル、液晶ディスプレイパネル等の電子画像表示装置のディスプレイ表面に貼合せることにより、蛍光灯などの外部光源から照射された光線の反射を抑え、視認性を高めることができる。同時に、低屈折率層にはπ共役系導電性高分子とドーパントからなる複合体が含まれていることから帯電防止作用が発現され、反射防止フィルムを電子画像装置のディスプレイ表面に貼合せることにより、静電気によるディスプレイ表面への埃などの付着を抑えることができる。その上、主に(a)多官能(メタ)アクリレートの硬化物のもつ性質に基づいて反射防止フィルムの耐擦傷性を向上させることができる。 For this reason, the anti-reflective action is exhibited by the function of the low refractive index layer, and an anti-reflection film is attached to the display surface of an electronic image display device such as a plasma display panel or a liquid crystal display panel, thereby allowing an external light source such as a fluorescent lamp to Visibility of irradiated light can be suppressed and visibility can be improved. At the same time, since the low refractive index layer contains a composite composed of a π-conjugated conductive polymer and a dopant, an antistatic effect is exhibited, and an antireflection film is bonded to the display surface of an electronic image device. In addition, adhesion of dust and the like to the display surface due to static electricity can be suppressed. In addition, the scratch resistance of the antireflection film can be improved mainly based on the properties of the cured product of (a) polyfunctional (meth) acrylate.
加えて、(c)π共役系導電性高分子とドーパントからなる複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定されていることから、良好な導電性を発現できるとともに、良好な耐熱性を発揮することができる。 In addition, (c) the mass ratio of the π-conjugated conductive polymer and the dopant in the complex composed of the π-conjugated conductive polymer and the dopant is set to 1: 1 to 1: 5, so that In addition to exhibiting excellent electrical conductivity, it is possible to exhibit good heat resistance.
第2の発明の反射防止フィルムは、前記π共役系導電性高分子がポリチオフェン類であることから、第1の発明の効果に加えて、より少ない含有量で良好な導電性を発現することができる。 In the antireflection film of the second invention, since the π-conjugated conductive polymer is a polythiophene, in addition to the effects of the first invention, good conductivity can be expressed with a smaller content. it can.
第3の発明の反射防止フィルムは、前記ポリチオフェン類がポリ(3,4−エチレンジオキシチオフェン)であることから、第2の発明の効果に加えて、さらに少ない含有量で良好な導電性を発現することができる上に、材料を容易に入手することが可能である。 In the antireflection film of the third invention, since the polythiophene is poly (3,4-ethylenedioxythiophene), in addition to the effect of the second invention, good conductivity is achieved with a smaller content. In addition to being able to express, the material is readily available.
第4の発明の反射防止フィルムは、前記π共役系導電性高分子がポリピロール類又はポリアニリン類であることから、第1の発明の効果に加えて、より少ない含有量で良好な導電性を発現することができる。 In the antireflection film of the fourth invention, since the π-conjugated conductive polymer is polypyrrole or polyaniline, in addition to the effect of the first invention, good conductivity is expressed with a smaller content. can do.
第5の発明の反射防止フィルムは、前記ドーパントがポリアニオンであることから、第1から第4のいずれか1項に記載の発明の効果に加えて、より少ない含有量で良好な導電性を発現することができる。 In the antireflection film of the fifth invention, since the dopant is a polyanion, in addition to the effects of the invention according to any one of the first to fourth, the good conductivity is expressed with a smaller content. can do.
第6の発明の反射防止フィルムは、ポリアニオンがポリスチレンスルホン酸であることから第5の発明の効果に加えて、より少ない含有量で良好な導電性を発現できる上に、材料を容易に入手することが可能である。 In addition to the effects of the fifth invention, the antireflection film of the sixth invention can exhibit good conductivity with a smaller content and easily obtain materials since the polyanion is polystyrene sulfonic acid. It is possible.
以下、本発明を具体化した実施形態について詳細に説明する。
本実施形態の反射防止フィルムは、透明基材フィルム上に低屈折率層が直接積層されて構成されている。そして、低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体を含有する低屈折率層用塗液の硬化物(硬化膜)である。低屈折率層用塗液は、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部を含むとともに、前記(c)複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail.
The antireflection film of this embodiment is configured by directly laminating a low refractive index layer on a transparent substrate film. The low refractive index layer is a coating for a low refractive index layer containing a composite comprising (a) polyfunctional (meth) acrylate, (b) hollow silica fine particles, and (c) a π-conjugated conductive polymer and a dopant. It is a liquid cured product (cured film). The coating solution for the low refractive index layer is composed of (b) 40 to 250 parts by mass of hollow silica fine particles and (c) a π-conjugated conductive polymer and a dopant per 100 parts by mass of (a) polyfunctional (meth) acrylate. 1 to 25 parts by mass, and the mass ratio of the π-conjugated conductive polymer and the dopant in the composite (c) is set to 1: 1 to 1: 5.
次に、この反射防止フィルムの構成要素について順に説明する。
<透明基材フィルム>
反射防止フィルムに用いられる透明基材フィルムは透明性を有している限り特に制限されないが、光の反射を抑えるため屈折率(n)が1.55〜1.70の範囲内のものが好ましい。そのような透明基材フィルムを形成する材料としては、例えばポリエチレンテレフタレート(PET、n=1.65)等のポリエステル、ポリカーボネート(PC、n=1.59)、ポリアリレート(PAR、n=1.60)及びポリエーテルスルフォン(PES、n=1.65)等が好ましい。これらのうち、ポリエステルフィルム特にポリエチレンテレフタレートフィルムが成形の容易性の点で好ましい。
Next, components of the antireflection film will be described in order.
<Transparent substrate film>
The transparent base film used for the antireflection film is not particularly limited as long as it has transparency, but preferably has a refractive index (n) in the range of 1.55 to 1.70 in order to suppress light reflection. . As a material for forming such a transparent substrate film, for example, polyester such as polyethylene terephthalate (PET, n = 1.65), polycarbonate (PC, n = 1.59), polyarylate (PAR, n = 1. 60) and polyethersulfone (PES, n = 1.65) are preferred. Of these, a polyester film, particularly a polyethylene terephthalate film, is preferable in terms of ease of molding.
透明基材フィルムの厚みは、好ましくは25〜400μm、さらに好ましくは50〜200μmである。なお、透明基材フィルムには、各種の添加剤が含まれていてもよい。そのような添加剤としては例えば、紫外線吸収剤、帯電防止剤、安定剤、可塑剤、滑剤、難燃剤等が挙げられる。また、透明基材フィルムと低屈折率層の密着性を高めるために、透明基材フィルムと低屈折率層の間に公知の干渉防止層を設けてもよい。なお、干渉防止層は、透明基材フィルムの製造時に公知の方法で透明基材フィルム表面に形成することができ、或いは予め干渉防止層が形成された透明基材フィルムの市販品を使用することもできる。
<低屈折率層>
低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体(導電性高分子、錯体)を含有する低屈折率層用塗液の硬化物である。低屈折率層の厚みは、kλ/4とすることが光の干渉作用により表面反射が減少し、透過率が向上するため好ましい。ここで、λは光の波長400〜650nm、kは1又は3を表す。このように低屈折率層の厚みをkλ/4とすることで反射防止の効果をより高めることができる。この場合、kが1のときには、反射防止性能(視感度反射率)が向上し、kが3のときには耐擦傷性が向上する。
The thickness of the transparent substrate film is preferably 25 to 400 μm, more preferably 50 to 200 μm. In addition, various additives may be contained in the transparent base film. Examples of such additives include ultraviolet absorbers, antistatic agents, stabilizers, plasticizers, lubricants, flame retardants, and the like. Moreover, in order to improve the adhesiveness of a transparent base film and a low refractive index layer, you may provide a well-known interference prevention layer between a transparent base film and a low refractive index layer. The interference prevention layer can be formed on the surface of the transparent substrate film by a known method during the production of the transparent substrate film, or a commercially available product of a transparent substrate film on which an interference prevention layer has been formed in advance is used. You can also.
<Low refractive index layer>
The low refractive index layer contains (a) polyfunctional (meth) acrylate, (b) hollow silica fine particles, and (c) a complex composed of a π-conjugated conductive polymer and a dopant (conductive polymer, complex). It is a cured product of the coating solution for the low refractive index layer. The thickness of the low refractive index layer is preferably kλ / 4 because surface reflection is reduced by light interference and the transmittance is improved. Here, λ represents a wavelength of light of 400 to 650 nm, and k represents 1 or 3. Thus, the antireflection effect can be further enhanced by setting the thickness of the low refractive index layer to kλ / 4. In this case, when k is 1, antireflection performance (luminosity reflectance) is improved, and when k is 3, scratch resistance is improved.
低屈折率層の屈折率は1.20〜1.44であることが好ましい。屈折率が1.20未満の場合には、多官能(メタ)アクリレートの含有量が少なくなるため、低屈折率層は十分な塗膜強度を有することが難しくなる。一方、屈折率が1.44を超える場合には、十分な反射防止性能が得られない。
〔多官能(メタ)アクリレート〕
前記多官能(メタ)アクリレートは、紫外線や電子線のような活性エネルギー線を照射することにより、硬化反応を生じる樹脂であり、その種類は特に制限されない。塗膜の強度や耐擦傷性を向上させるという観点から、単官能(メタ)アクリレートではなく、多官能(メタ)アクリレートが用いられる。ここで、単官能(メタ)アクリレートとは、分子内に1個のアクリロイル基(CH2=CHCO−)又はメタクリロイル基(CH2=C(CH3)CO−)を有する樹脂を示し、多官能(メタ)アクリレートとは分子内に2個以上のアクリロイル基又はメタクリロイル基を有する樹脂を示す。
The refractive index of the low refractive index layer is preferably 1.20 to 1.44. When the refractive index is less than 1.20, the content of the polyfunctional (meth) acrylate is reduced, so that it is difficult for the low refractive index layer to have sufficient coating strength. On the other hand, when the refractive index exceeds 1.44, sufficient antireflection performance cannot be obtained.
[Multifunctional (meth) acrylate]
The polyfunctional (meth) acrylate is a resin that causes a curing reaction when irradiated with active energy rays such as ultraviolet rays and electron beams, and the type thereof is not particularly limited. From the viewpoint of improving the strength and scratch resistance of the coating film, polyfunctional (meth) acrylate is used instead of monofunctional (meth) acrylate. Here, the monofunctional (meth) acrylate indicates a resin having one acryloyl group (CH 2 ═CHCO—) or methacryloyl group (CH 2 ═C (CH 3 ) CO—) in the molecule, and is polyfunctional. (Meth) acrylate refers to a resin having two or more acryloyl groups or methacryloyl groups in the molecule.
この多官能(メタ)アクリレートは特に制限されず、公知の多官能(メタ)アクリレートを使用することができる。また、低屈折率層の屈折率をより低くするため、含フッ素多官能(メタ)アクリレートを使用することもできる。多官能(メタ)アクリレートとしては、例えば2〜6官能のアクリレートが用いられる。
(中空シリカ微粒子)
前記中空シリカ微粒子は、シリカ(二酸化珪素、SiO2)がほぼ球状に形成され、その外殻内に中空部を有する微粒子である。中空シリカ微粒子の平均粒子径は好ましくは10〜100nm、より好ましくは20〜60nmである。中空シリカ微粒子の平均粒子径が10nmより小さい場合、中空シリカ微粒子の製造が難しくなって好ましくない。一方、平均粒子径が100nmより大きい場合、低屈折率層における光の散乱が大きくなり、薄膜においては反射が大きくなり、反射防止機能が低下する。
This polyfunctional (meth) acrylate is not particularly limited, and a known polyfunctional (meth) acrylate can be used. Moreover, in order to make the refractive index of a low refractive index layer lower, fluorine-containing polyfunctional (meth) acrylate can also be used. As the polyfunctional (meth) acrylate, for example, a bifunctional to hexafunctional acrylate is used.
(Hollow silica fine particles)
The hollow silica fine particles are fine particles in which silica (silicon dioxide, SiO 2 ) is formed in a substantially spherical shape and has a hollow portion in the outer shell. The average particle diameter of the hollow silica fine particles is preferably 10 to 100 nm, more preferably 20 to 60 nm. When the average particle diameter of the hollow silica fine particles is smaller than 10 nm, it is not preferable because the production of the hollow silica fine particles becomes difficult. On the other hand, when the average particle size is larger than 100 nm, the light scattering in the low refractive index layer increases, the reflection increases in the thin film, and the antireflection function decreases.
この中空シリカ微粒子は、有機溶剤に分散された市販のものをそのまま使用することができ、或いは市販の各種シリカ粉体を有機溶剤に分散して使用することもできる。該中空シリカ微粒子は、例えば特開2006−21938号公報に開示された、外殻内部に空洞を有する中空で球状のシリカ系微粒子の製造方法により合成することもできる。この方法に基づいて、後述する製造例1の変性中空シリカ微粒子(ゾル)が製造されている。また、中空シリカ微粒子の表面を、重合性二重結合を有するシランカップリング剤によって変性した変性中空シリカ微粒子を使用することもできる。
(π共役系導電性高分子とドーパントからなる複合体)
π共役系導電性高分子とドーパントからなる複合体とは、π共役系導電性高分子をドーパントによりドーピングしたものを示す。その屈折率はおよそ1.5である。π共役系導電性高分子を単独で用いても導電性は発現されないが、ドーパントによりドーピングすることによって、π共役系導電性高分子上を自由に動くことが可能な電子が生じ、導電性が得られるようになる。
As the hollow silica fine particles, commercially available particles dispersed in an organic solvent can be used as they are, or various commercially available silica powders can be dispersed in an organic solvent. The hollow silica fine particles can also be synthesized by a method for producing hollow spherical silica-based fine particles having a cavity inside the outer shell, as disclosed in, for example, JP-A-2006-21938. Based on this method, modified hollow silica fine particles (sol) of Production Example 1 described later are produced. In addition, modified hollow silica fine particles obtained by modifying the surface of the hollow silica fine particles with a silane coupling agent having a polymerizable double bond can also be used.
(Composite composed of π-conjugated conductive polymer and dopant)
The complex composed of a π-conjugated conductive polymer and a dopant refers to a π-conjugated conductive polymer doped with a dopant. Its refractive index is approximately 1.5. Even if a π-conjugated conductive polymer is used alone, conductivity is not exhibited, but doping with a dopant generates electrons that can move freely on the π-conjugated conductive polymer, and the conductivity is low. It will be obtained.
π共役系導電性高分子は、分子構造中にπ共役構造(二重結合が単結合を隔てて隣接している構造)を有する高分子化合物である。ここで高分子化合物とは、分子量が10,000以上の化合物のことを示す。π共役系導電性高分子としては、公知のものを使用することができる。このうち、導電性及び外部環境における安定性の点からポリチオフェン類、ポリピロール類又はポリアニリン類を用いるのが好ましく、特にポリチオフェン類を用いるのが好ましい。 The π-conjugated conductive polymer is a polymer compound having a π-conjugated structure (a structure in which double bonds are adjacent to each other with a single bond) in the molecular structure. Here, the polymer compound means a compound having a molecular weight of 10,000 or more. A well-known thing can be used as (pi) conjugated system conductive polymer. Of these, polythiophenes, polypyrroles or polyanilines are preferably used from the viewpoint of conductivity and stability in the external environment, and polythiophenes are particularly preferably used.
ポリチオフェン類の具体例としては、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3−メチルチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)等が挙げられる。 Specific examples of polythiophenes include poly (3,4-ethylenedioxythiophene), poly (3-methylthiophene), poly (3,4-ethylenedioxythiophene), poly (3-hexyloxythiophene), poly (3-methyl-4-methoxythiophene) and the like.
ドーパント(dopant)は、π共役系導電性高分子をドーピング(錯体形成)することにより、π共役系導電性高分子上を自由に動くことが可能な電子を生じさせ、π共役系導電性高分子に導電性を発現させる物質である。ドーパントは、公知のものを使用することができる。このうち、π共役系導電性高分子をドーピングした際の導電性をより高めることができるという点から、ポリアニオンをドーパントとすることが特に好ましい。 The dopant (dopant) generates electrons that can move freely on the π-conjugated conductive polymer by doping (complex formation) with the π-conjugated conductive polymer. It is a substance that develops conductivity in molecules. A well-known thing can be used for a dopant. Among these, it is particularly preferable to use a polyanion as a dopant from the viewpoint that the conductivity when the π-conjugated conductive polymer is doped can be further increased.
ポリアニオンとは分子内にアニオン性基を有する化合物である。ポリアニオンの具体例として、例えばポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアクリル酸エチルスルホン酸などが挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。π共役系導電性高分子とドーパントの組み合わせは特に制限されないが、導電性及び外部環境における安定性の点からポリチオフェン類とポリアニオンの組み合わせが好ましい。 A polyanion is a compound having an anionic group in the molecule. Specific examples of the polyanion include polystyrene sulfonic acid, polyvinyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, and the like. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient. The combination of the π-conjugated conductive polymer and the dopant is not particularly limited, but a combination of polythiophenes and polyanions is preferable from the viewpoint of conductivity and stability in the external environment.
π共役系導電性高分子とドーパントの組み合わせは特に制限されないが、導電性及び材料の入手の容易性の点からポリチオフェン類とポリアニオンの組み合わせが好ましく、ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸の組み合わせがより好ましい。 The combination of the π-conjugated conductive polymer and the dopant is not particularly limited, but a combination of polythiophenes and polyanions is preferable from the viewpoint of conductivity and availability of materials, and poly (3,4-ethylenedioxythiophene) and A combination of polystyrene sulfonic acids is more preferred.
π共役系導電性高分子とドーパントの質量比は1:1〜1:5であることが必要である。π共役系導電性高分子とドーパントの質量比が1:1よりも小さい場合には、π共役系導電性高分子が十分にドーピングされず、複合体の導電性が低下する。一方、1:5よりも大きい場合には、過剰に存在するドーパントの影響により、複合体の耐熱性が悪化する。π共役系導電性高分子とドーパントからなる複合体としては、市販のものを使用してもよいし、公知の方法により合成したものを使用してもよい。また、π共役系導電性高分子とドーパントからなる複合体の水分散体を有機溶剤で置き換えて使用してもよい。 The mass ratio between the π-conjugated conductive polymer and the dopant needs to be 1: 1 to 1: 5. When the mass ratio of the π-conjugated conductive polymer and the dopant is smaller than 1: 1, the π-conjugated conductive polymer is not sufficiently doped, and the conductivity of the composite is lowered. On the other hand, when it is larger than 1: 5, the heat resistance of the composite deteriorates due to the influence of an excessive dopant. As a complex comprising a π-conjugated conductive polymer and a dopant, a commercially available product may be used, or a compound synthesized by a known method may be used. Further, an aqueous dispersion of a complex composed of a π-conjugated conductive polymer and a dopant may be used by replacing with an organic solvent.
低屈折率層用塗液における多官能(メタ)アクリレート、中空シリカ微粒子、π共役系導電性高分子とドーパントからなる複合体の各々の含有量は、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部である。中空シリカ微粒子の含有量が40質量部よりも少ない場合には、反射防止フィルムの十分な反射防止性能が得られず、250質量部よりも多い場合には、反射防止フィルムの耐擦傷性が低下する。 The content of the polyfunctional (meth) acrylate, the hollow silica fine particles, the composite composed of the π-conjugated conductive polymer and the dopant in the coating solution for the low refractive index layer is (a) 100 mass of polyfunctional (meth) acrylate. Per part, (b) 40 to 250 parts by mass of hollow silica fine particles and (c) 1 to 25 parts by mass of a composite composed of a π-conjugated conductive polymer and a dopant. When the content of the hollow silica fine particles is less than 40 parts by mass, sufficient antireflection performance of the antireflection film cannot be obtained, and when it is more than 250 parts by mass, the scratch resistance of the antireflection film is lowered. To do.
また、π共役系導電性高分子とドーパントからなる複合体の含有量が1質量部よりも少ない場合には、反射防止フィルムの十分な帯電防止性能が得られず、25質量部よりも多い場合には、相対的に多官能(メタ)アクリレートの含有量が減少するために、反射防止フィルムの耐擦傷性が低下する。
(希釈溶剤)
前記低屈折率層用塗液には任意の溶媒を用いることができる。溶媒として具体的には、メタノール、エタノール、イソプロピルアルコール、ブタノール、イソブチルアルコール、メチルグリコール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジアセトンアルコール等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、プロピレングリコールモノメチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル類が挙げられる。
(その他の成分)
また、本発明の効果を損なわない範囲において、その他の成分を低屈折率層用塗液に添加することができる。そのようなその他の成分としては、例えば重合体、重合開始剤、重合禁止剤、酸化防止剤、分散剤、界面活性剤、光安定剤及びレベリング剤等の添加剤が挙げられる。
<低屈折率層の形成方法>
透明基材フィルムの表面に低屈折率層を形成する方法は特に制限されないが、低屈折率層用塗液をロールコート法、スピンコート法、コイルバー法、ディップコート法、ダイコート法等の塗布方法により透明基材フィルムの表面に塗布した後、紫外線を照射する方法等が挙げられる。このような方法により、低屈折率層用塗液が硬化して硬化物が得られ、低屈折率層が形成される。低屈折率層用塗液の塗布方法としては、ロールコート法等の低屈折率層を連続的に形成できる方法が生産性の点より好ましい。
In addition, when the content of the complex composed of the π-conjugated conductive polymer and the dopant is less than 1 part by mass, sufficient antistatic performance of the antireflection film cannot be obtained, and when the content is more than 25 parts by mass. Since the content of the polyfunctional (meth) acrylate is relatively reduced, the scratch resistance of the antireflection film is lowered.
(Diluted solvent)
Any solvent can be used for the coating liquid for the low refractive index layer. Specific examples of the solvent include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, isobutyl alcohol and methyl glycol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone and diacetone alcohol, methyl acetate, Examples thereof include esters such as ethyl acetate and butyl acetate, and ethers such as propylene glycol monomethyl ether, tetrahydrofuran and 1,4-dioxane.
(Other ingredients)
In addition, other components can be added to the coating solution for the low refractive index layer within a range not impairing the effects of the present invention. Examples of such other components include additives such as a polymer, a polymerization initiator, a polymerization inhibitor, an antioxidant, a dispersant, a surfactant, a light stabilizer, and a leveling agent.
<Method for forming low refractive index layer>
The method for forming the low refractive index layer on the surface of the transparent substrate film is not particularly limited, but the coating solution for the low refractive index layer is a coating method such as a roll coating method, a spin coating method, a coil bar method, a dip coating method, or a die coating method. The method of irradiating an ultraviolet-ray after apply | coating to the surface of a transparent base film by, etc. is mentioned. By such a method, the coating solution for the low refractive index layer is cured to obtain a cured product, and a low refractive index layer is formed. As a method for applying the coating solution for the low refractive index layer, a method capable of continuously forming the low refractive index layer such as a roll coating method is preferable from the viewpoint of productivity.
また、低屈折率層用塗液をロールコート法、スピンコート法、コイルバー法、ディップコート法、ダイコート法等の塗布方法により透明基材フィルム表面に塗布する前に、透明基材フィルム表面にコロナ放電処理等の前処理を施してもよい。 In addition, before applying the coating solution for the low refractive index layer to the surface of the transparent substrate film by a coating method such as a roll coating method, a spin coating method, a coil bar method, a dip coating method, or a die coating method, A pretreatment such as a discharge treatment may be performed.
以下に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。なお、各例における部は質量部を示し、%は質量%を表す。
〔製造例1、変性中空シリカ微粒子(ゾル)の製造〕
第1工程として、平均粒子径5nm、シリカ(SiO2)濃度20%のシリカゾルと純水とを混合して反応母液を調製し、80℃に加温した。この反応母液のpHは10.5であり、同反応母液にSiO2として1.17%の珪酸ナトリウム水溶液と、アルミナ(Al2O3)として0.83%のアルミン酸ナトリウム水溶液とを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは、珪酸ナトリウム及びアルミン酸ナトリウムの添加直後12.5に上昇し、その後ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20%のSiO2・Al2O3一次粒子分散液(核粒子分散液)を調製した。
Hereinafter, the embodiment will be described more specifically with reference to examples and comparative examples. In addition, the part in each example shows a mass part and% represents the mass%.
[Production Example 1, production of modified hollow silica fine particles (sol)]
As a first step, a silica sol having an average particle diameter of 5 nm and a silica (SiO 2 ) concentration of 20% and pure water were mixed to prepare a reaction mother liquor, which was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and 1.17% sodium silicate aqueous solution as SiO 2 and 0.83% sodium aluminate aqueous solution as alumina (Al 2 O 3 ) were simultaneously added to the reaction mother liquor. did. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition of sodium silicate and sodium aluminate and remained almost unchanged thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 .Al 2 O 3 primary particle dispersion (core particle dispersion) having a solid concentration of 20%.
次いで、第2工程として、このSiO2・Al2O3一次粒子分散液を採取し、純水を加えて98℃に加温し、この温度を保持しながら、濃度0.5%の硫酸ナトリウムを添加した。続いて、SiO2として濃度1.17%の珪酸ナトリウム水溶液と、Al2O3として濃度0.5%のアルミン酸ナトリウム水溶液とを添加して複合酸化物微粒子分散液(核粒子に第1シリカ被覆層を形成した微粒子分散液)を得た。そして、これを限外濾過膜で洗浄して固形分濃度13%の複合酸化物微粒子分散液とした。 Next, as a second step, this SiO 2 · Al 2 O 3 primary particle dispersion is collected, pure water is added and heated to 98 ° C., and while maintaining this temperature, sodium sulfate having a concentration of 0.5% Was added. Subsequently, an aqueous solution of sodium silicate having a concentration of 1.17% as SiO 2 and an aqueous solution of sodium aluminate having a concentration of 0.5% as Al 2 O 3 were added to form a composite oxide fine particle dispersion (first silica as a core particle). A fine particle dispersion having a coating layer was obtained. And this was wash | cleaned with the ultrafiltration membrane, and it was set as the complex oxide fine particle dispersion liquid of solid content concentration 13%.
第3工程として、この複合酸化物微粒子分散液に純水を加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lとを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、洗浄して固形分濃度20%のシリカ系微粒子(1)の水分散液を得た。 As a third step, pure water was added to the composite oxide fine particle dispersion, and concentrated hydrochloric acid (35.5%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, the aluminum salt dissolved in the ultrafiltration membrane was separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and washed to obtain an aqueous dispersion of silica-based fine particles (1) having a solid concentration of 20%. .
第4工程として、前記固形分濃度20%のシリカ系微粒子(1)の水分散液と、純水、エタノール及び28%アンモニア水との混合液を35℃に加温した後、エチルシリケート(SiO2が28%)を添加してシリカ被膜(第2シリカ被覆層)を形成した。続いて、純水5Lを加えながら、限外濾過膜で洗浄して固形分濃度20%のシリカ系微粒子(2)の分散液を調製した。 As a fourth step, a mixed liquid of the silica-based fine particles (1) having a solid content concentration of 20% and pure water, ethanol and 28% ammonia water is heated to 35 ° C., and then ethyl silicate (SiO 2 2 was 28%) to form a silica coating (second silica coating layer). Subsequently, while adding 5 L of pure water, it was washed with an ultrafiltration membrane to prepare a dispersion of silica-based fine particles (2) having a solid concentration of 20%.
最後に第5工程として、再びシリカ系微粒子(2)の分散液を200℃にて11時間水熱処理した。その後、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20%に調整した。そして、限外濾過膜を用いて、この分散液の分散媒をエタノールに置換し、固形分濃度20%のオルガノゾルを得た。このオルガノゾルは、平均粒子径が60nmで、比表面積が110m2/gの中空シリカ微粒子が分散されたオルガノゾル(以下、「中空シリカゾルA」と称する。)であった。 Finally, as a fifth step, the dispersion of silica-based fine particles (2) was hydrothermally treated again at 200 ° C. for 11 hours. Thereafter, it was washed with an ultrafiltration membrane while adding 5 L of pure water to adjust the solid content concentration to 20%. Then, using an ultrafiltration membrane, the dispersion medium of this dispersion was replaced with ethanol to obtain an organosol having a solid content concentration of 20%. This organosol was an organosol in which hollow silica fine particles having an average particle diameter of 60 nm and a specific surface area of 110 m 2 / g were dispersed (hereinafter referred to as “hollow silica sol A”).
該中空シリカゾルA(シリカ固形分濃度20%)200gを用意し、限外濾過膜にて、メタノールへの溶媒置換を行い、SiO2分が20%のオルガノゾル100g(水分量はSiO2分に対して0.5%)を調製した。そこへ28%アンモニア水溶液を前記オルガノゾル100gに対してアンモニアとして100ppmとなるように加え、十分に混合し、次にγ−アクリロイルオキシプロピルトリメトキシシラン〔商品名:KBM5103、信越化学工業(株)製〕3.6gを添加し、反応液とした。 200 g of the hollow silica sol A (silica solid content concentration 20%) is prepared, and solvent replacement with methanol is performed with an ultrafiltration membrane, and 100 g of organosol having a SiO 2 content of 20% (the water content is relative to the SiO 2 content). 0.5%). Thereto, 28% aqueous ammonia solution was added to 100 g of the organosol so as to be 100 ppm as ammonia, mixed well, and then γ-acryloyloxypropyltrimethoxysilane [trade name: KBM5103, manufactured by Shin-Etsu Chemical Co., Ltd. 3.6 g was added to obtain a reaction solution.
これを50℃に加温し、撹拌しながら50℃で6時間加熱を行なった。加熱終了後、反応液を常温まで冷却し、さらにロータリーエバポレーターでイソプロピルアルコールへ溶媒置換を行い、SiO2濃度20%の被覆中空微粒子からなるオルガノゾルを得た。このオルガノゾルは、平均粒子径が60nm、屈折率1.25、空隙率40〜45%で、比表面積が130m2/g、熱質量測定法(TG)による質量減少割合が3.6%の変性中空シリカ微粒子が分散されたオルガノゾル(変性中空シリカ微粒子ゾル)であった。
〔製造例2、低屈折率層用塗液の調製〕
(製造例2−1、低屈折率層用塗液(L−1)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で1部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4308部混合して低屈折率層用塗液L−1を調製した。
(製造例2−2、低屈折率層用塗液(L−2)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で2.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4188部混合して低屈折率層用塗液L−2を調製した。
(製造例2−3、低屈折率層用塗液(L−3)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−3を調製した。
(製造例2−4、低屈折率層用塗液(L−4)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で7.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3788部混合して低屈折率層用塗液L−4を調製した。
(製造例2−5、低屈折率層用塗液(L−5)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で10部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3588部混合して低屈折率層用塗液L−5を調製した。
(製造例2−6、低屈折率層用塗液(L−6)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で12.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3388部混合して低屈折率層用塗液L−6を調製した。
(製造例2−7、低屈折率層用塗液(L−7)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で25部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを2388部混合して低屈折率層用塗液L−7を調製した。
(製造例2−8、低屈折率層用塗液(L−8)の調製)
(a)1,10-ジアクリロイルオキシ-2,9-ジヒドロキシ-4,4,5,5,6,6,7,7,-オクタフルオロデカン〔OD2H2A〕を100部、(b) 前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で12.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3388部混合して低屈折率層用塗液L−8を調製した。
(製造例2−9、低屈折率層用塗液(L−9)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で233部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で10部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を16.7部及びイソプロピルアルコールを4911部混合して低屈折率層用塗液L−9を調製した。
(製造例2−10、低屈折率層用塗液(L−10)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で100部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で6部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を10部及びイソプロピルアルコールを3110部混合して低屈折率層用塗液L−10を調製した。
(製造例2−11、低屈折率層用塗液(L−11)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で67部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を8.4部及びイソプロピルアルコールを2664部混合して低屈折率層用塗液L−11を調製した。
(製造例2−12、低屈折率層用塗液(L−12)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で43部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で4.3部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を7.2部及びイソプロピルアルコールを2337部混合して低屈折率層用塗液L−12を調製した。
(製造例2−13、低屈折率層用塗液(L−13)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/1の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−13を調製した。
(製造例2−14、低屈折率層用塗液(L−14)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−14を調製した。
(製造例2−15、低屈折率層用塗液(L−15)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン/ポリビニルスルホン酸=1/2.5の複合体を固形分換算で2.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4188部混合して低屈折率層用塗液L−15を調製した。
(製造例2−16、低屈折率層用塗液(L−16)の調製)
(a) ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリアクリル酸エチルスルホン酸=1/2.5の複合体を固形分換算で7.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3788部混合して低屈折率層用塗液L−16を調製した。
(製造例2−17、低屈折率層用塗液(L−17)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリアクリル酸エチルスルホン酸=1/2.5の複合体を固形分換算で25部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを2388部混合して低屈折率層用塗液L−17を調製した。
(製造例2−18、低屈折率層用塗液(L−18)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリチエニルメチルスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−18を調製した。
(製造例2−19、低屈折率層用塗液(L−19)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3−メチルチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で1部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4308部混合して低屈折率層用塗液L−19を調製した。
(製造例2−20、低屈折率層用塗液(L−20)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3−ヘキシルオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−20を調製した。
(製造例2−21、低屈折率層用塗液(L−21)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3−メチル−4メトキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で10部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3588部混合して低屈折率層用塗液L−21を調製した。
(製造例2−22、低屈折率層用塗液(L−22)の調製)
(a)1,10-ジアクリロイルオキシ-2,9-ジヒドロキシ-4,4,5,5,6,6,7,7,-オクタフルオロデカン〔OD2H2A〕を100部、(b) 前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3−メチル−4メトキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で12.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3388部混合して低屈折率層用塗液L−22 を調製した。
(製造例2−23、低屈折率層用塗液(L−23)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3―ヘキシルオキシチオフェン)/ポリアクリル酸エチルスルホン酸=1/2.5の複合体を固形分換算で12.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3388部混合して低屈折率層用塗液L−23を調製した。
(製造例2−24、低屈折率層用塗液(L−24)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(2―メチルアニリン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−24を調製した。
(製造例2−25、低屈折率層用塗液(L−25)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3―イソブチルアニリン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−25を調製した。
(製造例2−26、低屈折率層用塗液(L−26)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3―ブチルピロール)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−26を調製した。
(製造例2−27、低屈折率層用塗液(L−27)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3―メチル−4−ヘキシルオキシピロール)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−27を調製した。
(製造例2−28、低屈折率層用塗液(L−28)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(オキシ−1,4−フェニレン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−28を調製した。
(製造例2−29、低屈折率層用塗液(L−29)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4388部混合して低屈折率層用塗液L−29を調製した。
(製造例2−30、低屈折率層用塗液(L−30)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で37.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを1388部混合して低屈折率層用塗液L−30を調製した。
(製造例2−31、低屈折率層用塗液(L−31)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で25部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で3.8部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を6.3部及びイソプロピルアルコールを2090部混合して低屈折率層用塗液L−31を調製した。
(製造例2−32、低屈折率層用塗液(L−32)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で400部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で15部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を25部及びイソプロピルアルコールを7175部混合して低屈折率層用塗液L−32を調製した。
(製造例2−33、低屈折率層用塗液(L−33)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/0.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−33を調製した。
(製造例2−34、低屈折率層用塗液(L−34)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/6.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−34を調製した。
(実施例1−1)
厚み100μmのポリエチレンテレフタレート(PET)フィルム〔東洋紡績(株)製、商品名:A4300〕の上に前記製造例2−1で調製した低屈折率層用塗液(L−1)を、光学膜厚がkλ/4(k:1、λ:550nm)になるようにグラビアコート法で塗布し、乾燥後、窒素雰囲気下で400mJ/cm2の出力にて紫外線を照射して硬化させることにより、反射防止フィルムを作製した。
This was heated to 50 ° C. and heated at 50 ° C. for 6 hours with stirring. After completion of the heating, the reaction solution was cooled to room temperature, and further the solvent was replaced with isopropyl alcohol by a rotary evaporator to obtain an organosol composed of coated hollow fine particles having a SiO 2 concentration of 20%. This organosol has an average particle size of 60 nm, a refractive index of 1.25, a porosity of 40 to 45%, a specific surface area of 130 m 2 / g, and a mass reduction ratio by thermal mass measurement (TG) of 3.6%. It was an organosol (modified hollow silica fine particle sol) in which hollow silica fine particles were dispersed.
[Production Example 2, preparation of coating solution for low refractive index layer]
(Production Example 2-1, preparation of coating solution for low refractive index layer (L-1))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 1 part of a poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 1308 parts of isopropyl alcohol and 4308 parts of isopropyl alcohol were mixed to prepare a coating solution L-1 for a low refractive index layer.
(Production Example 2-2, Preparation of Coating Solution for Low Refractive Index Layer (L-2))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 2.5 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 1188 parts of isopropyl alcohol were mixed to prepare a coating solution L-2 for a low refractive index layer.
(Production Example 2-3, preparation of coating solution for low refractive index layer (L-3))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts of (c) poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 2.5 complex in terms of solid content, 5 parts, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-3 for a low refractive index layer.
(Production Example 2-4, Preparation of Coating Solution for Low Refractive Index Layer (L-4))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 7.5 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 1788 parts of isopropyl alcohol were mixed to prepare a coating solution L-4 for a low refractive index layer.
(Production Example 2-5, Preparation of Low Refractive Index Layer Coating Liquid (L-5))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight conversion, (c) 10 parts by weight of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 composite, photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals Co., Ltd., trade name: Irgacure 907] and 3588 parts of isopropyl alcohol were mixed to prepare a coating solution L-5 for a low refractive index layer.
(Production Example 2-6, Preparation of Low Refractive Index Layer Coating Liquid (L-6))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 12.5 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals, Inc., trade name: Irgacure 907] and 3388 parts of isopropyl alcohol were mixed to prepare a coating solution L-6 for a low refractive index layer.
(Production Example 2-7, Preparation of Coating Solution for Low Refractive Index Layer (L-7))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 25 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. 12.5 parts manufactured by Trade Name: Irgacure 907] and 2388 parts isopropyl alcohol were mixed to prepare a coating solution L-7 for a low refractive index layer.
(Production Example 2-8, Preparation of Coating Solution for Low Refractive Index Layer (L-8))
(a) 100 parts of 1,10-diacryloyloxy-2,9-dihydroxy-4,4,5,5,6,6,7,7, -octafluorodecane [OD2H2A], (b) the above production example 150 parts of the modified hollow silica fine particle sol obtained in 1 in terms of solid content, and a composite of (c) poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content 12.5 parts, 12.5 parts of photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 3388 parts of isopropyl alcohol were mixed to obtain a coating solution L-8 for a low refractive index layer. Was prepared.
(Production Example 2-9, preparation of coating solution for low refractive index layer (L-9))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 233 parts, (c) 10 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. 16.7 parts made by trade name: Irgacure 907] and 4911 parts isopropyl alcohol were mixed to prepare a coating solution L-9 for a low refractive index layer.
(Production Example 2-10, preparation of coating solution for low refractive index layer (L-10))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 100 parts by weight conversion, (c) 6 parts by weight of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 composite, and photopolymerization initiator [Ciba Specialty 10 parts of Chemicals Co., Ltd., trade name: Irgacure 907] and 3110 parts of isopropyl alcohol were mixed to prepare a coating solution L-10 for a low refractive index layer.
(Production Example 2-11, Preparation of Coating Solution for Low Refractive Index Layer (L-11))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 67 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 2664 parts of isopropyl alcohol were mixed to prepare a coating solution L-11 for a low refractive index layer.
(Production Example 2-12, preparation of coating solution for low refractive index layer (L-12))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 43 parts, (c) 4.3 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 2337 parts of isopropyl alcohol were mixed to prepare a coating solution L-12 for a low refractive index layer.
(Production Example 2-13, Preparation of Coating Solution for Low Refractive Index Layer (L-13))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1/1 in terms of solid content, photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd. , Trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-13 for a low refractive index layer.
(Production Example 2-14, preparation of coating solution for low refractive index layer (L-14))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight, 5 parts by weight of a composite of (c) poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1/5, and a photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-14 for a low refractive index layer.
(Preparation of Production Example 2-15, coating liquid for low refractive index layer (L-15))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 2.5 parts of poly (3,4-ethylenedioxythiophene / polyvinylsulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 1188 parts of isopropyl alcohol were mixed to prepare a coating solution L-15 for a low refractive index layer.
(Production Example 2-16, Preparation of Coating Solution for Low Refractive Index Layer (L-16))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts of (c) poly (3,4-ethylenedioxythiophene) / polyacrylic acid ethylsulfonic acid = 1 / 2.5 complex in terms of solid content, 7.5 parts, photopolymerization initiator [Ciba -12.5 parts of Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 3788 parts of isopropyl alcohol were mixed to prepare a coating solution L-16 for a low refractive index layer.
(Production Example 2-17, Preparation of Coating Solution for Low Refractive Index Layer (L-17))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 25 parts of poly (3,4-ethylenedioxythiophene) / polyethyl acrylate sulfonate = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals Co., Ltd., trade name: Irgacure 907] and 2388 parts of isopropyl alcohol were mixed to prepare a coating solution L-17 for a low refractive index layer.
(Production Example 2-18, preparation of coating solution for low refractive index layer (L-18))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polythienylmethylsulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 19.8 parts of isopropyl alcohol were mixed to prepare a coating solution L-18 for a low refractive index layer.
(Production Example 2-19, preparation of coating solution for low refractive index layer (L-19))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 1 part of a poly (3-methylthiophene) / polystyrenesulfonic acid = 1 / 2.5 complex in terms of solid content, a photopolymerization initiator [manufactured by Ciba Specialty Chemicals, (Trade name: Irgacure 907) and 4308 parts of isopropyl alcohol were mixed to prepare a coating solution L-19 for a low refractive index layer.
(Production Example 2-20, Preparation of Low Refractive Index Layer Coating Liquid (L-20))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 5 parts of poly (3-hexyloxythiophene) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd. , Trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-20 for a low refractive index layer.
(Production Example 2-21, Preparation of Coating Solution for Low Refractive Index Layer (L-21))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight conversion, (c) 10 parts by weight of poly (3-methyl-4methoxythiophene) / polystyrene sulfonic acid = 1 / 2.5 composite, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 1588 parts of isopropyl alcohol and 3588 parts of isopropyl alcohol were mixed to prepare a coating solution L-21 for a low refractive index layer.
(Production Example 2-22, Preparation of Coating Solution for Low Refractive Index Layer (L-22))
(a) 100 parts of 1,10-diacryloyloxy-2,9-dihydroxy-4,4,5,5,6,6,7,7, -octafluorodecane [OD2H2A], (b) the above production example 150 parts of the modified hollow silica fine particle sol obtained in 1 in terms of solid content, and 12 parts of the composite of (c) poly (3-methyl-4methoxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content. .5 parts, 12.5 parts of photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 3388 parts of isopropyl alcohol were mixed to prepare a coating solution L-22 for low refractive index layer. Prepared.
(Production Example 2-23, preparation of coating solution for low refractive index layer (L-23))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts by weight, (c) 12.5 parts of poly (3-hexyloxythiophene) / polyethyl acrylate sulfonate = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals, Inc., trade name: Irgacure 907] and 3388 parts of isopropyl alcohol were mixed to prepare a coating solution L-23 for a low refractive index layer.
(Production Example 2-24, Preparation of Low Refractive Index Layer Coating Liquid (L-24))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, 5 parts of a composite of (c) poly (2-methylaniline) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd., product Name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-24 for a low refractive index layer.
(Production Example 2-25, preparation of coating solution for low refractive index layer (L-25))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 5 parts of poly (3-isobutylaniline) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [manufactured by Ciba Specialty Chemicals, 12.5 parts of trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-25 for a low refractive index layer.
(Production Example 2-26, preparation of coating solution for low refractive index layer (L-26))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight, 5 parts by weight of the composite of (c) poly (3-butylpyrrole) / polystyrene sulfonic acid = 1 / 2.5, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. Manufactured product, trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-26 for a low refractive index layer.
(Production Example 2-27, preparation of coating solution for low refractive index layer (L-27))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts by weight, (c) 5 parts of poly (3-methyl-4-hexyloxypyrrole) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 19.8 parts of isopropyl alcohol were mixed to prepare a coating solution L-27 for a low refractive index layer.
(Production Example 2-28, preparation of coating solution for low refractive index layer (L-28))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 5 parts of poly (oxy-1,4-phenylene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. 12.5 parts by trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-28 for a low refractive index layer.
(Production Example 2-29, preparation of coating solution for low refractive index layer (L-29))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight, 12.5 parts of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907) and 4388 parts of isopropyl alcohol were mixed to prepare a coating solution L- for a low refractive index layer. 29 was prepared.
(Production Example 2-30, Preparation of Coating Solution for Low Refractive Index Layer (L-30))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 37.5 parts of a poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, a photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals Co., Ltd., trade name: Irgacure 907] and 1388 parts of isopropyl alcohol were mixed to prepare a coating solution L-30 for a low refractive index layer.
(Production Example 2-31, preparation of coating solution for low refractive index layer (L-31))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 25 parts by weight, (c) 3.8 parts by weight of a poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 composite, and a photopolymerization initiator [Ciba 6.3 parts of Specialty Chemicals, trade name: Irgacure 907] and 2090 parts of isopropyl alcohol were mixed to prepare a coating solution L-31 for a low refractive index layer.
(Production Example 2-32, preparation of coating solution for low refractive index layer (L-32))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 400 parts, (c) 15 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 7175 parts of isopropyl alcohol were mixed to prepare a coating solution L-32 for a low refractive index layer.
(Production Example 2-33, Preparation of coating solution for low refractive index layer (L-33))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 0.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. 12.5 parts by trade name: Irgacure 907] and 3988 parts isopropyl alcohol were mixed to prepare a coating solution L-33 for a low refractive index layer.
(Production Example 2-34, Preparation of coating solution for low refractive index layer (L-34))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 6.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-34 for a low refractive index layer.
(Example 1-1)
A coating solution for low refractive index layer (L-1) prepared in Production Example 2-1 on a polyethylene terephthalate (PET) film (product name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm is used as an optical film. By applying a gravure coating method so that the thickness becomes kλ / 4 (k: 1, λ: 550 nm), drying, and then curing by irradiation with ultraviolet rays at an output of 400 mJ / cm 2 in a nitrogen atmosphere, An antireflection film was produced.
得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を以下に記載する方法で行い、それらの評価結果を表1に示した。
(視感度反射率)
測定面の裏面反射を除くため、裏面をサンドペーパーで粗し、黒色塗料で塗り潰したものを分光光度計〔日本分光(株)製、商品名:U−best560〕により、光の波長380nm〜780nmの5°、−5°正反射スペクトルを測定した。得られる光の波長380nm〜780nmの分光反射率と、CIE標準イルミナントD65の相対分光分布を用いて、JIS Z8701で想定されているXYZ表色系における、反射による物体色の三刺激値Yを視感度反射率(%)とした。
(表面抵抗率)
デジタル絶縁計〔東亜DKK(株)製、商品名:SM−8220〕を用いて、反射防止フィルムの表面抵抗率(Ω/□)を測定した。なお、表1〜表3において、「RANGE OVER」は表面抵抗率が測定限界を超えるほど高くなったことを意味する。
(3)耐熱性
反射防止フィルムを80℃に設定された恒温槽の中に放置し、1000時間後に恒温槽から取り出して表面抵抗率を測定した。恒温槽に入れる前に測定した表面抵抗率と比較して、表面抵抗率の上昇が2桁以内に抑えられていれば○、表面抵抗率が3桁以上上昇した場合には×とした。
(4)耐擦傷性
(株)本光製作所製消しゴム摩耗試験機の先端に、#0000のスチールウールを固定し、2.5N(250gf)及び1N(100gf)の荷重をかけて、反射防止フィルム表面上を10回往復摩擦した後の表面の傷を目視で観察し、以下のA〜Eの6段階で評価した。
The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance by the methods described below, and the evaluation results are shown in Table 1.
(Visibility reflectance)
In order to remove the back surface reflection of the measurement surface, the back surface was roughened with sandpaper and painted with a black paint, and a light wavelength of 380 nm to 780 nm was measured with a spectrophotometer [trade name: U-best 560 manufactured by JASCO Corporation]. The 5 ° and −5 ° specular reflection spectra were measured. Viewing the tristimulus value Y of the object color due to reflection in the XYZ color system assumed in JIS Z8701, using the spectral reflectance of the obtained light with a wavelength of 380 nm to 780 nm and the relative spectral distribution of the CIE standard illuminant D65. Sensitivity reflectance (%) was used.
(Surface resistivity)
The surface resistivity (Ω / □) of the antireflection film was measured using a digital insulation meter [manufactured by Toa DKK Co., Ltd., trade name: SM-8220]. In Tables 1 to 3, “RANGE OVER” means that the surface resistivity increased as it exceeded the measurement limit.
(3) Heat resistance The antireflection film was left in a thermostat set at 80 ° C., taken out from the thermostat after 1000 hours, and the surface resistivity was measured. Compared with the surface resistivity measured before putting in the thermostatic bath, it was marked with ○ when the increase in surface resistivity was suppressed within 2 digits, and when the surface resistivity was increased by 3 digits or more.
(4) Scratch resistance An anti-reflective film with # 0000 steel wool fixed to the tip of an eraser abrasion tester manufactured by Honko Seisakusho Co., Ltd. and a load of 2.5 N (250 gf) and 1 N (100 gf) applied. The surface scratches after 10 reciprocating rubs on the surface were visually observed and evaluated according to the following 6 grades A to E.
A:傷なし、A':傷1〜3本、B:傷4〜10本、C:傷11〜20本、D:傷21〜30本、E:31本以上
(実施例1−2〜実施例1−14)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、製造例2−2〜製造例2−14で調製した低屈折率層用塗液(L−2〜L−14)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表1に示した。
A: No scratch, A ′: 1-3 scratches, B: 4-10 scratches, C: 11-20 scratches, D: 21-30 scratches, E: 31 or more (Examples 1-2) Example 1-14)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), the coating solution for low refractive index layer (L-2 to L) prepared in Production Example 2-2 to Production Example 2-14 was used. An antireflection film was obtained in the same manner as in Example 1-1 except that -14) was used. The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 1.
(実施例2−1〜実施例2−4)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、製造例2−15〜製造例2−18で調製した低屈折率層用塗液(L−15〜L−18)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表2に示した。
(Example 2-1 to Example 2-4)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), the coating solution for low refractive index layer (L-15 to L) prepared in Production Example 2-15 to Production Example 2-18 was used. An antireflection film was obtained in the same manner as in Example 1-1 except that -18) was used. The obtained antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 2.
(実施例3−1〜実施例3−5)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、製造例2−19〜製造例2−23で調製した低屈折率層用塗液(L−19〜L−23)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表3に示した。
(Example 3-1 to Example 3-5)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), the coating solution for low refractive index layer (L-19 to L) prepared in Production Example 2-19 to Production Example 2-23 was used. An antireflection film was obtained in the same manner as in Example 1-1 except that -23) was used. The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 3.
(実施例4−1〜実施例4−5)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、製造例2−24〜製造例2−28で調製した低屈折率層用塗液(L−24〜L−28)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表4に示した。
(Example 4-1 to Example 4-5)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), the coating solution for low refractive index layer (L-24 to L-L) prepared in Production Example 2-24 to Production Example 2-28 was used. An antireflection film was obtained in the same manner as in Example 1-1 except that -28) was used. The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 4.
(比較例1−1〜比較例1−6)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、比較例1−1では製造例2−29で調製した低屈折率層用塗液(L−29)を用い、比較例1−2では製造例2−30で調製した低屈折率層用塗液(L−30)を用い、比較例1−3では製造例2−31で調製した低屈折率層用塗液(L−31)を用い、比較例1−4では製造例2−32で調製した低屈折率層用塗液(L−32)を用い、比較例1−5では製造例2−33で調製した低屈折率層用塗液(L−33)を用い、比較例1−6では製造例2−34で調製した低屈折率層用塗液(L−34)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表5に示した。
(Comparative Example 1-1 to Comparative Example 1-6)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), in Comparative Example 1-1, the coating solution for low refractive index layer (L-29) prepared in Production Example 2-29 was used. In Comparative Example 1-2, the coating solution for low refractive index layer (L-30) prepared in Production Example 2-30 was used, and in Comparative Example 1-3, for low refractive index layer prepared in Production Example 2-31. Using the coating liquid (L-31), Comparative Example 1-4 used the coating liquid for low refractive index layer (L-32) prepared in Production Example 2-32, and Comparative Example 1-5 was Production Example 2-33. The coating solution for low refractive index layer (L-33) prepared in Step 1 was used, and in Comparative Example 1-6, the coating solution for low refractive index layer (L-34) prepared in Production Example 2-34 was used. An antireflection film was obtained in the same manner as in Example 1-1. The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 5.
また、比較例1−4では、中空シリカ微粒子の含有量が過剰であるため、相対的に多官能(メタ)アクリレートの含有量が減少し、耐擦傷性が悪化するという結果に到った。比較例1−5では、π共役系導電性高分子に対してドーパントの量が過少であるため、π共役系導電性高分子が十分にドーピングされず、導電性が低くなり、帯電防止性が低下した。さらに、比較例1−6では、π共役系導電性高分子に対してドーパントの量が多過ぎるため、過剰に存在するドーパントの影響により、耐熱性が悪化した。 Moreover, in Comparative Example 1-4, since the content of the hollow silica fine particles was excessive, the content of the polyfunctional (meth) acrylate was relatively decreased, and the scratch resistance was deteriorated. In Comparative Example 1-5, since the amount of the dopant is too small with respect to the π-conjugated conductive polymer, the π-conjugated conductive polymer is not sufficiently doped, resulting in low conductivity and antistatic properties. Declined. Furthermore, in Comparative Example 1-6, since the amount of the dopant was too much with respect to the π-conjugated conductive polymer, the heat resistance deteriorated due to the influence of the excessive dopant.
Claims (6)
前記低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体を含有し、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部を含むとともに、(c)π共役系導電性高分子とドーパントからなる複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定された低屈折率層用塗液の硬化物であることを特徴とする反射防止フィルム。 An antireflection film comprising a low refractive index layer directly laminated on a transparent substrate film,
The low refractive index layer contains (a) a polyfunctional (meth) acrylate, (b) a hollow silica fine particle, and (c) a complex composed of a π-conjugated conductive polymer and a dopant; (B) Hollow silica fine particles 40 to 250 parts by mass and (c) π-conjugated system conductive polymer and dopant 1 to 25 parts by mass per 100 parts by mass of (meth) acrylate, and (c) π-conjugated A cured product of a coating solution for a low refractive index layer in which the mass ratio of the π-conjugated conductive polymer and the dopant in the composite comprising the conductive polymer and the dopant is set to 1: 1 to 1: 5 Antireflection film characterized by
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010275628A JP5771967B2 (en) | 2010-02-17 | 2010-12-10 | Antireflection film |
TW100104862A TWI476109B (en) | 2010-02-17 | 2011-02-15 | Anti-reflection film |
KR1020110013207A KR101727326B1 (en) | 2010-02-17 | 2011-02-15 | Anti-reflection film |
CN201110038993.8A CN102162864B (en) | 2010-02-17 | 2011-02-15 | Anti-reflection film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010032453 | 2010-02-17 | ||
JP2010032453 | 2010-02-17 | ||
JP2010275628A JP5771967B2 (en) | 2010-02-17 | 2010-12-10 | Antireflection film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011191735A true JP2011191735A (en) | 2011-09-29 |
JP5771967B2 JP5771967B2 (en) | 2015-09-02 |
Family
ID=44796673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010275628A Active JP5771967B2 (en) | 2010-02-17 | 2010-12-10 | Antireflection film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5771967B2 (en) |
KR (1) | KR101727326B1 (en) |
TW (1) | TWI476109B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4977796B1 (en) * | 2011-11-10 | 2012-07-18 | 尾池工業株式会社 | Conductive film |
CN109065212A (en) * | 2018-08-08 | 2018-12-21 | 吴飞 | The preparation method of the conducting solution of conductive electrode and the preparation method of conductive electrode |
CN113064226A (en) * | 2021-04-30 | 2021-07-02 | 宁波甬安光科新材料科技有限公司 | Flexible anti-static antireflection optical film, anti-static antireflection coating liquid and preparation method |
CN113204063A (en) * | 2021-04-30 | 2021-08-03 | 宁波甬安光科新材料科技有限公司 | Anti-static antireflection optical film, anti-static coating liquid, antireflection coating liquid, preparation method and application |
JP2021177212A (en) * | 2020-05-08 | 2021-11-11 | リケンテクノス株式会社 | Low refractive index b stage coated film, laminated film, three-dimensional compact, and method for manufacturing these |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9221715B2 (en) | 2013-07-25 | 2015-12-29 | Apple Inc. | Chemical strengthening of anti-reflective coatings (ARC) |
KR102077797B1 (en) | 2016-02-19 | 2020-02-14 | 주식회사 엘지화학 | Photocurable coating composition for forming low refractive layer |
KR102257923B1 (en) | 2018-01-24 | 2021-05-27 | 주식회사 엘지화학 | Anti-reflective film, polarizing plate, and display apparatus |
KR102267594B1 (en) | 2018-01-24 | 2021-06-18 | 주식회사 엘지화학 | Anti-reflective film, polarizing plate, and display apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006119355A (en) * | 2004-10-21 | 2006-05-11 | Nitto Denko Corp | Antistatic adhesive optical film and image display device |
JP2007500374A (en) * | 2004-04-14 | 2007-01-11 | エルジー・ケム・リミテッド | Coating antireflection coating composition and coating film excellent in stain resistance |
JP2007119765A (en) * | 2005-09-29 | 2007-05-17 | Dainippon Printing Co Ltd | Coating composition for low refractive index layer and anti-reflection film |
JP2007529094A (en) * | 2004-03-11 | 2007-10-18 | バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Functional layers for optical applications based on polythiophene |
WO2007142142A1 (en) * | 2006-06-02 | 2007-12-13 | Dai Nippon Printing Co., Ltd. | Optical laminate, polarizing plate, and image display device |
JP2010237648A (en) * | 2009-03-09 | 2010-10-21 | Toppan Printing Co Ltd | Antireflection film, production method thereof, polarizing plate and transmission type liquid crystal display |
JP2011031501A (en) * | 2009-07-31 | 2011-02-17 | Fujifilm Corp | Optical laminated body |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5064649B2 (en) | 2003-08-28 | 2012-10-31 | 大日本印刷株式会社 | Anti-reflection laminate |
JP4686381B2 (en) * | 2005-03-07 | 2011-05-25 | 富士フイルム株式会社 | Antireflection film, polarizing plate and image display device using the same |
JP2007327018A (en) * | 2005-06-24 | 2007-12-20 | Jsr Corp | Curable resin composition and antireflective film |
JP2007216610A (en) * | 2006-02-20 | 2007-08-30 | Teijin Dupont Films Japan Ltd | Antireflective film |
JP5374824B2 (en) | 2007-03-13 | 2013-12-25 | 荒川化学工業株式会社 | Conductive polymer / dopant complex organic solvent dispersion, conductive composition and coating agent composition |
TWI327958B (en) * | 2007-05-28 | 2010-08-01 | Daxon Technology Inc | Antireflective film and method for making thereof |
JP2009036817A (en) * | 2007-07-31 | 2009-02-19 | Konica Minolta Opto Inc | Antireflective coating, and polarizing plate and image display device using the same |
KR20090118724A (en) * | 2008-05-14 | 2009-11-18 | 도레이새한 주식회사 | Antireflective film with excellent scratch resistance and surface slip property |
-
2010
- 2010-12-10 JP JP2010275628A patent/JP5771967B2/en active Active
-
2011
- 2011-02-15 TW TW100104862A patent/TWI476109B/en active
- 2011-02-15 KR KR1020110013207A patent/KR101727326B1/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007529094A (en) * | 2004-03-11 | 2007-10-18 | バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Functional layers for optical applications based on polythiophene |
JP2007500374A (en) * | 2004-04-14 | 2007-01-11 | エルジー・ケム・リミテッド | Coating antireflection coating composition and coating film excellent in stain resistance |
JP2006119355A (en) * | 2004-10-21 | 2006-05-11 | Nitto Denko Corp | Antistatic adhesive optical film and image display device |
JP2007119765A (en) * | 2005-09-29 | 2007-05-17 | Dainippon Printing Co Ltd | Coating composition for low refractive index layer and anti-reflection film |
WO2007142142A1 (en) * | 2006-06-02 | 2007-12-13 | Dai Nippon Printing Co., Ltd. | Optical laminate, polarizing plate, and image display device |
JP2010237648A (en) * | 2009-03-09 | 2010-10-21 | Toppan Printing Co Ltd | Antireflection film, production method thereof, polarizing plate and transmission type liquid crystal display |
JP2011031501A (en) * | 2009-07-31 | 2011-02-17 | Fujifilm Corp | Optical laminated body |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4977796B1 (en) * | 2011-11-10 | 2012-07-18 | 尾池工業株式会社 | Conductive film |
CN109065212A (en) * | 2018-08-08 | 2018-12-21 | 吴飞 | The preparation method of the conducting solution of conductive electrode and the preparation method of conductive electrode |
CN109065212B (en) * | 2018-08-08 | 2023-09-05 | 吴飞 | Preparation method of conductive solution of conductive electrode and preparation method of conductive electrode |
JP2021177212A (en) * | 2020-05-08 | 2021-11-11 | リケンテクノス株式会社 | Low refractive index b stage coated film, laminated film, three-dimensional compact, and method for manufacturing these |
JP7492371B2 (en) | 2020-05-08 | 2024-05-29 | リケンテクノス株式会社 | Low refractive index B-stage coating film, laminated film, three-dimensional molded body, and manufacturing method thereof |
CN113064226A (en) * | 2021-04-30 | 2021-07-02 | 宁波甬安光科新材料科技有限公司 | Flexible anti-static antireflection optical film, anti-static antireflection coating liquid and preparation method |
CN113204063A (en) * | 2021-04-30 | 2021-08-03 | 宁波甬安光科新材料科技有限公司 | Anti-static antireflection optical film, anti-static coating liquid, antireflection coating liquid, preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
KR101727326B1 (en) | 2017-04-14 |
TW201129477A (en) | 2011-09-01 |
KR20110095169A (en) | 2011-08-24 |
TWI476109B (en) | 2015-03-11 |
JP5771967B2 (en) | 2015-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5771967B2 (en) | Antireflection film | |
JP5655660B2 (en) | Near-infrared shielding film and near-infrared shielding body using the same | |
EP1735645B1 (en) | Anti-reflective coating composition and coating film with excellent stain resistance | |
TWI356769B (en) | ||
TWI449762B (en) | Antistatic coating, method for manufacturing antistatic film and antistatic film obtained thereby | |
JP2007246905A (en) | Conductive coating composition for protective film and method of manufacturing coating film using the same | |
KR20120140253A (en) | Antireflection laminate | |
US20130168595A1 (en) | Nanometer thermal insulation coating and method of manufacturing the same | |
JP2012048195A (en) | Antireflection film | |
JP5428592B2 (en) | Conductive hard coat film and antireflection film | |
JP5696581B2 (en) | Antistatic hard coat coating material and optical member | |
JP2010181613A (en) | Antireflection film | |
TW200300950A (en) | Conductive film, manufacturing method thereof, and substrate having the same | |
KR20100074024A (en) | Reflection preventing film | |
CN102162864B (en) | Anti-reflection film | |
JP5782916B2 (en) | Antireflection film composition containing modified hollow silica fine particles and antireflection film using the same | |
JP2012220658A (en) | Near infrared ray shielding film | |
JP5671803B2 (en) | Antireflection film | |
JP3449123B2 (en) | Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film | |
JP6393970B2 (en) | HARD COAT COMPOSITION, HARD COAT FILM, AND ANTI-REFLECTION FILM | |
JP2011242463A (en) | Low reflection film and producing method thereof | |
JP2006330397A (en) | Anti-reflection laminated body and its manufacturing method | |
JP2003306615A (en) | Coating solution for forming low-resistance film or low- refraction film, and method for producing the low- resistance film or low-reflection low-resistance film | |
KR102094581B1 (en) | Composition for hydrophobic and UV curable thin film and hydrophobic thin film made from the same | |
JP5251780B2 (en) | Optical laminate, method for producing optical laminate, polarizing plate, and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5771967 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |