JP2011191735A - Anti-reflective film - Google Patents

Anti-reflective film Download PDF

Info

Publication number
JP2011191735A
JP2011191735A JP2010275628A JP2010275628A JP2011191735A JP 2011191735 A JP2011191735 A JP 2011191735A JP 2010275628 A JP2010275628 A JP 2010275628A JP 2010275628 A JP2010275628 A JP 2010275628A JP 2011191735 A JP2011191735 A JP 2011191735A
Authority
JP
Japan
Prior art keywords
parts
refractive index
index layer
low refractive
coating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010275628A
Other languages
Japanese (ja)
Other versions
JP5771967B2 (en
Inventor
Takuji Hasegawa
卓司 長谷川
Shinya Hikita
真也 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2010275628A priority Critical patent/JP5771967B2/en
Priority to TW100104862A priority patent/TWI476109B/en
Priority to KR1020110013207A priority patent/KR101727326B1/en
Priority to CN201110038993.8A priority patent/CN102162864B/en
Publication of JP2011191735A publication Critical patent/JP2011191735A/en
Application granted granted Critical
Publication of JP5771967B2 publication Critical patent/JP5771967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-reflective film of a single layer structure and having sufficient anti-reflection performance, with excellent antistatic performance, heat resistance and abrasion resistance. <P>SOLUTION: The anti-reflective film is configured by directly laminating low-refractive index layer on a transparent base film. The low-refractive index layer is a cured matter of a coating solution for low-refractive index layer containing a complex consisting of: (a) multifunctional (meth)acrylate; (b) hollow silica particles, and (c) π-conjugated conductive polymer and dopant. The coating solution for low-refractive index layer contains per 100 pts.mass multifunctional (meth)acrylate (a), 40-250 pts.mass hollow silica fine particles (b) and 1-25 pts.mass complex (c), and the mass ratio of the π-conjugated conductive polymer to dopant in the complex is set to 1:1-1:5. Polythiophenes, polypyrroles or polyanilines are preferred as the π-conjugated conductive polymer, and polyanion is preferred as the dopant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばプラズマディスプレイパネル(PDP)、液晶ディスプレイパネル(LCD)等に適用され、単層構成で十分な反射防止性能を有し、かつ帯電防止性能にも優れた反射防止フィルムに関する。   The present invention relates to an antireflection film which is applied to, for example, a plasma display panel (PDP), a liquid crystal display panel (LCD) and the like, has a sufficient antireflection performance with a single layer structure, and is excellent in antistatic performance.

近年、プラズマディスプレイパネル、液晶ディスプレイパネル等の電子画像表示装置(電子ディスプレイ)は、テレビやモニター用途として著しい進歩を遂げ、広く普及している。これら電子画像表示装置は、大型化に伴い、外光の映り込みによる視認性の低下が問題となっている。そのため、透明基材フィルムの表面に反射防止層を設けて形成された反射防止フィルムをディスプレイ表面に貼り合わせ、視認性を高める方法が一般的に採用されている。   2. Description of the Related Art In recent years, electronic image display devices (electronic displays) such as plasma display panels and liquid crystal display panels have made remarkable progress for television and monitor applications and have become widespread. As these electronic image display devices are increased in size, there is a problem that visibility is reduced due to reflection of external light. Therefore, a method is generally adopted in which an antireflection film formed by providing an antireflection layer on the surface of a transparent substrate film is bonded to the display surface to enhance visibility.

さらに、静電気によるディスプレイ表面への埃などの付着を防止するために、これらの反射防止フィルムには帯電防止性能を有することが求められている。例えば、中空シリカ微粒子と多官能(メタ)アクリレートからなる低屈折率層を設けてなる反射防止フィルムが知られている(特許文献1を参照)。しかしながら、特許文献1に記載の反射防止フィルムは反射防止性能には優れるものの、帯電防止性能を付与するためには帯電防止性能を有するハードコート層もしくは帯電防止層を透明基材フィルムと低屈折率層の間に設ける必要があり、塗工回数が増えてしまう結果生産性が低下する。   Furthermore, in order to prevent dust and the like from adhering to the display surface due to static electricity, these antireflection films are required to have antistatic performance. For example, an antireflection film having a low refractive index layer comprising hollow silica fine particles and polyfunctional (meth) acrylate is known (see Patent Document 1). However, although the antireflection film described in Patent Document 1 is excellent in antireflection performance, in order to impart antistatic performance, a hard coat layer or antistatic layer having antistatic performance is used as a transparent base film and a low refractive index. It is necessary to provide it between the layers, and as a result of increasing the number of coatings, productivity is lowered.

また、π共役系導電性高分子は、良好な導電性を示すことから各種の帯電防止剤や電極材料等の工業材料として使用されている。このπ共役系導電性高分子は、ドーパントと呼ばれる物質をドーピングすることによって、高い導電性が付与される。例えば、π共役系導電性高分子とドーパントからなる複合体と多官能(メタ)アクリレートとを含有するコーティング剤組成物が知られている(特許文献2を参照)。   Further, π-conjugated conductive polymers are used as industrial materials such as various antistatic agents and electrode materials because they exhibit good conductivity. This π-conjugated conductive polymer is imparted with high conductivity by doping a substance called a dopant. For example, a coating agent composition containing a complex composed of a π-conjugated conductive polymer and a dopant and a polyfunctional (meth) acrylate is known (see Patent Document 2).

しかしながら、π共役系導電性高分子とドーパントからなる複合体は屈折率がおよそ1.5と高いことから、低屈折率層を形成するための材料としては適しておらず、高屈折率層を形成するための材料として使用されるのが一般的であった。そのため、帯電防止性能には優れるものの、反射防止性能を付与させようとした場合には、π共役系導電性高分子とドーパントからなる複合体と多官能(メタ)アクリレートとを含有するコーティング層の上に、反射防止層を少なくとも一層設ける必要がある。その場合、塗工回数が増えてしまうため、生産性が低下する。加えて、反射防止フィルムには、その製造時や使用時における十分な耐熱性や耐擦傷性が求められている。   However, a complex composed of a π-conjugated conductive polymer and a dopant has a high refractive index of about 1.5, and therefore is not suitable as a material for forming a low refractive index layer. Typically used as a material for forming. Therefore, although antistatic performance is excellent, when it is intended to impart antireflection performance, a coating layer containing a complex composed of a π-conjugated conductive polymer and a dopant and a polyfunctional (meth) acrylate is used. On top of this, it is necessary to provide at least one antireflection layer. In that case, since the number of times of coating increases, productivity decreases. In addition, antireflection films are required to have sufficient heat resistance and scratch resistance during production and use.

特開2005−99778号公報JP 2005-99778 A 特開2008−222850号公報JP 2008-222850 A

本発明の目的とするところは、単層構成で十分な反射防止性能を有し、かつ帯電防止性能にも優れるとともに、耐熱性及び耐擦傷性に優れる反射防止フィルムを提供することにある。   An object of the present invention is to provide an antireflection film having a single layer structure and sufficient antireflection performance, excellent antistatic performance, and excellent heat resistance and scratch resistance.

前記の目的を達成するために、第1の発明の反射防止フィルムは、透明基材フィルム上に低屈折率層が直接積層されて構成されている反射防止フィルムであって、前記低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体を含有し、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部を含むとともに、(c)π共役系導電性高分子とドーパントからなる複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定された低屈折率層用塗液の硬化物であることを特徴とする。   In order to achieve the above object, an antireflection film according to a first invention is an antireflection film in which a low refractive index layer is directly laminated on a transparent substrate film, and the low refractive index layer Contains (a) a polyfunctional (meth) acrylate, (b) a hollow silica fine particle, and (c) a complex composed of a π-conjugated conductive polymer and a dopant, and (a) 100 mass of a polyfunctional (meth) acrylate. (B) 40 to 250 parts by mass of hollow silica fine particles and (c) 1 to 25 parts by mass of a complex composed of a π-conjugated conductive polymer and a dopant, and (c) a π-conjugated conductive polymer And a cured product of a coating solution for a low refractive index layer in which the mass ratio of the π-conjugated conductive polymer and the dopant in the composite composed of the dopant is set to 1: 1 to 1: 5.

第2の発明の反射防止フィルムは、第1の発明において、前記π共役系導電性高分子がポリチオフェン類であることを特徴とする。
第3の発明の反射防止フィルムは、第2の発明において、前記ポリチオフェン類がポリ(3,4−エチレンジオキシチオフェン)であることを特徴とする。
The antireflection film of the second invention is characterized in that, in the first invention, the π-conjugated conductive polymer is a polythiophene.
The antireflection film of the third invention is characterized in that, in the second invention, the polythiophene is poly (3,4-ethylenedioxythiophene).

第4の発明の反射防止フィルムは、第1の発明において、前記π共役系導電性高分子がポリピロール類又はポリアニリン類であることを特徴とする。
第5の発明の反射防止フィルムは、第1から第4のいずれか1項に記載の発明において、前記ドーパントがポリアニオンであることを特徴とする。
The antireflection film of a fourth invention is characterized in that, in the first invention, the π-conjugated conductive polymer is a polypyrrole or a polyaniline.
The antireflection film of the fifth invention is characterized in that, in the invention described in any one of the first to fourth inventions, the dopant is a polyanion.

第6の発明の反射防止フィルムは、第5の発明において、前記ポリアニオンがポリスチレンスルホン酸であることを特徴とする。   The antireflection film of a sixth invention is characterized in that, in the fifth invention, the polyanion is polystyrene sulfonic acid.

本発明によれば、次のような効果を発揮することができる。
第1の発明の反射防止フィルムは、透明基材フィルム上に低屈折率層が直接積層されている。そして、前記低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体を含有する低屈折率層用塗液の硬化物である。該低屈折率層用塗液は、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部を含むとともに、(c)π共役系導電性高分子とドーパントからなる複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定されている。
According to the present invention, the following effects can be exhibited.
In the antireflection film of the first invention, the low refractive index layer is directly laminated on the transparent substrate film. The low refractive index layer is for a low refractive index layer containing (a) polyfunctional (meth) acrylate, (b) hollow silica fine particles, and (c) a complex composed of a π-conjugated conductive polymer and a dopant. It is a cured product of the coating liquid. The coating solution for the low refractive index layer comprises (b) 40 to 250 parts by mass of hollow silica fine particles and (c) a π-conjugated conductive polymer and a dopant per 100 parts by mass of (a) polyfunctional (meth) acrylate. 1 to 25 parts by mass of the composite, and (c) the mass ratio of the π-conjugated conductive polymer and the dopant in the composite consisting of the π-conjugated conductive polymer and the dopant is 1: 1 to 1: 5. Is set.

このため、低屈折率層の機能により反射防止作用が発現され、反射防止フィルムをプラズマディスプレイパネル、液晶ディスプレイパネル等の電子画像表示装置のディスプレイ表面に貼合せることにより、蛍光灯などの外部光源から照射された光線の反射を抑え、視認性を高めることができる。同時に、低屈折率層にはπ共役系導電性高分子とドーパントからなる複合体が含まれていることから帯電防止作用が発現され、反射防止フィルムを電子画像装置のディスプレイ表面に貼合せることにより、静電気によるディスプレイ表面への埃などの付着を抑えることができる。その上、主に(a)多官能(メタ)アクリレートの硬化物のもつ性質に基づいて反射防止フィルムの耐擦傷性を向上させることができる。   For this reason, the anti-reflective action is exhibited by the function of the low refractive index layer, and an anti-reflection film is attached to the display surface of an electronic image display device such as a plasma display panel or a liquid crystal display panel, thereby allowing an external light source such as a fluorescent lamp to Visibility of irradiated light can be suppressed and visibility can be improved. At the same time, since the low refractive index layer contains a composite composed of a π-conjugated conductive polymer and a dopant, an antistatic effect is exhibited, and an antireflection film is bonded to the display surface of an electronic image device. In addition, adhesion of dust and the like to the display surface due to static electricity can be suppressed. In addition, the scratch resistance of the antireflection film can be improved mainly based on the properties of the cured product of (a) polyfunctional (meth) acrylate.

加えて、(c)π共役系導電性高分子とドーパントからなる複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定されていることから、良好な導電性を発現できるとともに、良好な耐熱性を発揮することができる。   In addition, (c) the mass ratio of the π-conjugated conductive polymer and the dopant in the complex composed of the π-conjugated conductive polymer and the dopant is set to 1: 1 to 1: 5, so that In addition to exhibiting excellent electrical conductivity, it is possible to exhibit good heat resistance.

第2の発明の反射防止フィルムは、前記π共役系導電性高分子がポリチオフェン類であることから、第1の発明の効果に加えて、より少ない含有量で良好な導電性を発現することができる。   In the antireflection film of the second invention, since the π-conjugated conductive polymer is a polythiophene, in addition to the effects of the first invention, good conductivity can be expressed with a smaller content. it can.

第3の発明の反射防止フィルムは、前記ポリチオフェン類がポリ(3,4−エチレンジオキシチオフェン)であることから、第2の発明の効果に加えて、さらに少ない含有量で良好な導電性を発現することができる上に、材料を容易に入手することが可能である。   In the antireflection film of the third invention, since the polythiophene is poly (3,4-ethylenedioxythiophene), in addition to the effect of the second invention, good conductivity is achieved with a smaller content. In addition to being able to express, the material is readily available.

第4の発明の反射防止フィルムは、前記π共役系導電性高分子がポリピロール類又はポリアニリン類であることから、第1の発明の効果に加えて、より少ない含有量で良好な導電性を発現することができる。   In the antireflection film of the fourth invention, since the π-conjugated conductive polymer is polypyrrole or polyaniline, in addition to the effect of the first invention, good conductivity is expressed with a smaller content. can do.

第5の発明の反射防止フィルムは、前記ドーパントがポリアニオンであることから、第1から第4のいずれか1項に記載の発明の効果に加えて、より少ない含有量で良好な導電性を発現することができる。   In the antireflection film of the fifth invention, since the dopant is a polyanion, in addition to the effects of the invention according to any one of the first to fourth, the good conductivity is expressed with a smaller content. can do.

第6の発明の反射防止フィルムは、ポリアニオンがポリスチレンスルホン酸であることから第5の発明の効果に加えて、より少ない含有量で良好な導電性を発現できる上に、材料を容易に入手することが可能である。   In addition to the effects of the fifth invention, the antireflection film of the sixth invention can exhibit good conductivity with a smaller content and easily obtain materials since the polyanion is polystyrene sulfonic acid. It is possible.

以下、本発明を具体化した実施形態について詳細に説明する。
本実施形態の反射防止フィルムは、透明基材フィルム上に低屈折率層が直接積層されて構成されている。そして、低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体を含有する低屈折率層用塗液の硬化物(硬化膜)である。低屈折率層用塗液は、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部を含むとともに、前記(c)複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail.
The antireflection film of this embodiment is configured by directly laminating a low refractive index layer on a transparent substrate film. The low refractive index layer is a coating for a low refractive index layer containing a composite comprising (a) polyfunctional (meth) acrylate, (b) hollow silica fine particles, and (c) a π-conjugated conductive polymer and a dopant. It is a liquid cured product (cured film). The coating solution for the low refractive index layer is composed of (b) 40 to 250 parts by mass of hollow silica fine particles and (c) a π-conjugated conductive polymer and a dopant per 100 parts by mass of (a) polyfunctional (meth) acrylate. 1 to 25 parts by mass, and the mass ratio of the π-conjugated conductive polymer and the dopant in the composite (c) is set to 1: 1 to 1: 5.

次に、この反射防止フィルムの構成要素について順に説明する。
<透明基材フィルム>
反射防止フィルムに用いられる透明基材フィルムは透明性を有している限り特に制限されないが、光の反射を抑えるため屈折率(n)が1.55〜1.70の範囲内のものが好ましい。そのような透明基材フィルムを形成する材料としては、例えばポリエチレンテレフタレート(PET、n=1.65)等のポリエステル、ポリカーボネート(PC、n=1.59)、ポリアリレート(PAR、n=1.60)及びポリエーテルスルフォン(PES、n=1.65)等が好ましい。これらのうち、ポリエステルフィルム特にポリエチレンテレフタレートフィルムが成形の容易性の点で好ましい。
Next, components of the antireflection film will be described in order.
<Transparent substrate film>
The transparent base film used for the antireflection film is not particularly limited as long as it has transparency, but preferably has a refractive index (n) in the range of 1.55 to 1.70 in order to suppress light reflection. . As a material for forming such a transparent substrate film, for example, polyester such as polyethylene terephthalate (PET, n = 1.65), polycarbonate (PC, n = 1.59), polyarylate (PAR, n = 1. 60) and polyethersulfone (PES, n = 1.65) are preferred. Of these, a polyester film, particularly a polyethylene terephthalate film, is preferable in terms of ease of molding.

透明基材フィルムの厚みは、好ましくは25〜400μm、さらに好ましくは50〜200μmである。なお、透明基材フィルムには、各種の添加剤が含まれていてもよい。そのような添加剤としては例えば、紫外線吸収剤、帯電防止剤、安定剤、可塑剤、滑剤、難燃剤等が挙げられる。また、透明基材フィルムと低屈折率層の密着性を高めるために、透明基材フィルムと低屈折率層の間に公知の干渉防止層を設けてもよい。なお、干渉防止層は、透明基材フィルムの製造時に公知の方法で透明基材フィルム表面に形成することができ、或いは予め干渉防止層が形成された透明基材フィルムの市販品を使用することもできる。
<低屈折率層>
低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体(導電性高分子、錯体)を含有する低屈折率層用塗液の硬化物である。低屈折率層の厚みは、kλ/4とすることが光の干渉作用により表面反射が減少し、透過率が向上するため好ましい。ここで、λは光の波長400〜650nm、kは1又は3を表す。このように低屈折率層の厚みをkλ/4とすることで反射防止の効果をより高めることができる。この場合、kが1のときには、反射防止性能(視感度反射率)が向上し、kが3のときには耐擦傷性が向上する。
The thickness of the transparent substrate film is preferably 25 to 400 μm, more preferably 50 to 200 μm. In addition, various additives may be contained in the transparent base film. Examples of such additives include ultraviolet absorbers, antistatic agents, stabilizers, plasticizers, lubricants, flame retardants, and the like. Moreover, in order to improve the adhesiveness of a transparent base film and a low refractive index layer, you may provide a well-known interference prevention layer between a transparent base film and a low refractive index layer. The interference prevention layer can be formed on the surface of the transparent substrate film by a known method during the production of the transparent substrate film, or a commercially available product of a transparent substrate film on which an interference prevention layer has been formed in advance is used. You can also.
<Low refractive index layer>
The low refractive index layer contains (a) polyfunctional (meth) acrylate, (b) hollow silica fine particles, and (c) a complex composed of a π-conjugated conductive polymer and a dopant (conductive polymer, complex). It is a cured product of the coating solution for the low refractive index layer. The thickness of the low refractive index layer is preferably kλ / 4 because surface reflection is reduced by light interference and the transmittance is improved. Here, λ represents a wavelength of light of 400 to 650 nm, and k represents 1 or 3. Thus, the antireflection effect can be further enhanced by setting the thickness of the low refractive index layer to kλ / 4. In this case, when k is 1, antireflection performance (luminosity reflectance) is improved, and when k is 3, scratch resistance is improved.

低屈折率層の屈折率は1.20〜1.44であることが好ましい。屈折率が1.20未満の場合には、多官能(メタ)アクリレートの含有量が少なくなるため、低屈折率層は十分な塗膜強度を有することが難しくなる。一方、屈折率が1.44を超える場合には、十分な反射防止性能が得られない。
〔多官能(メタ)アクリレート〕
前記多官能(メタ)アクリレートは、紫外線や電子線のような活性エネルギー線を照射することにより、硬化反応を生じる樹脂であり、その種類は特に制限されない。塗膜の強度や耐擦傷性を向上させるという観点から、単官能(メタ)アクリレートではなく、多官能(メタ)アクリレートが用いられる。ここで、単官能(メタ)アクリレートとは、分子内に1個のアクリロイル基(CH=CHCO−)又はメタクリロイル基(CH=C(CH)CO−)を有する樹脂を示し、多官能(メタ)アクリレートとは分子内に2個以上のアクリロイル基又はメタクリロイル基を有する樹脂を示す。
The refractive index of the low refractive index layer is preferably 1.20 to 1.44. When the refractive index is less than 1.20, the content of the polyfunctional (meth) acrylate is reduced, so that it is difficult for the low refractive index layer to have sufficient coating strength. On the other hand, when the refractive index exceeds 1.44, sufficient antireflection performance cannot be obtained.
[Multifunctional (meth) acrylate]
The polyfunctional (meth) acrylate is a resin that causes a curing reaction when irradiated with active energy rays such as ultraviolet rays and electron beams, and the type thereof is not particularly limited. From the viewpoint of improving the strength and scratch resistance of the coating film, polyfunctional (meth) acrylate is used instead of monofunctional (meth) acrylate. Here, the monofunctional (meth) acrylate indicates a resin having one acryloyl group (CH 2 ═CHCO—) or methacryloyl group (CH 2 ═C (CH 3 ) CO—) in the molecule, and is polyfunctional. (Meth) acrylate refers to a resin having two or more acryloyl groups or methacryloyl groups in the molecule.

この多官能(メタ)アクリレートは特に制限されず、公知の多官能(メタ)アクリレートを使用することができる。また、低屈折率層の屈折率をより低くするため、含フッ素多官能(メタ)アクリレートを使用することもできる。多官能(メタ)アクリレートとしては、例えば2〜6官能のアクリレートが用いられる。
(中空シリカ微粒子)
前記中空シリカ微粒子は、シリカ(二酸化珪素、SiO)がほぼ球状に形成され、その外殻内に中空部を有する微粒子である。中空シリカ微粒子の平均粒子径は好ましくは10〜100nm、より好ましくは20〜60nmである。中空シリカ微粒子の平均粒子径が10nmより小さい場合、中空シリカ微粒子の製造が難しくなって好ましくない。一方、平均粒子径が100nmより大きい場合、低屈折率層における光の散乱が大きくなり、薄膜においては反射が大きくなり、反射防止機能が低下する。
This polyfunctional (meth) acrylate is not particularly limited, and a known polyfunctional (meth) acrylate can be used. Moreover, in order to make the refractive index of a low refractive index layer lower, fluorine-containing polyfunctional (meth) acrylate can also be used. As the polyfunctional (meth) acrylate, for example, a bifunctional to hexafunctional acrylate is used.
(Hollow silica fine particles)
The hollow silica fine particles are fine particles in which silica (silicon dioxide, SiO 2 ) is formed in a substantially spherical shape and has a hollow portion in the outer shell. The average particle diameter of the hollow silica fine particles is preferably 10 to 100 nm, more preferably 20 to 60 nm. When the average particle diameter of the hollow silica fine particles is smaller than 10 nm, it is not preferable because the production of the hollow silica fine particles becomes difficult. On the other hand, when the average particle size is larger than 100 nm, the light scattering in the low refractive index layer increases, the reflection increases in the thin film, and the antireflection function decreases.

この中空シリカ微粒子は、有機溶剤に分散された市販のものをそのまま使用することができ、或いは市販の各種シリカ粉体を有機溶剤に分散して使用することもできる。該中空シリカ微粒子は、例えば特開2006−21938号公報に開示された、外殻内部に空洞を有する中空で球状のシリカ系微粒子の製造方法により合成することもできる。この方法に基づいて、後述する製造例1の変性中空シリカ微粒子(ゾル)が製造されている。また、中空シリカ微粒子の表面を、重合性二重結合を有するシランカップリング剤によって変性した変性中空シリカ微粒子を使用することもできる。
(π共役系導電性高分子とドーパントからなる複合体)
π共役系導電性高分子とドーパントからなる複合体とは、π共役系導電性高分子をドーパントによりドーピングしたものを示す。その屈折率はおよそ1.5である。π共役系導電性高分子を単独で用いても導電性は発現されないが、ドーパントによりドーピングすることによって、π共役系導電性高分子上を自由に動くことが可能な電子が生じ、導電性が得られるようになる。
As the hollow silica fine particles, commercially available particles dispersed in an organic solvent can be used as they are, or various commercially available silica powders can be dispersed in an organic solvent. The hollow silica fine particles can also be synthesized by a method for producing hollow spherical silica-based fine particles having a cavity inside the outer shell, as disclosed in, for example, JP-A-2006-21938. Based on this method, modified hollow silica fine particles (sol) of Production Example 1 described later are produced. In addition, modified hollow silica fine particles obtained by modifying the surface of the hollow silica fine particles with a silane coupling agent having a polymerizable double bond can also be used.
(Composite composed of π-conjugated conductive polymer and dopant)
The complex composed of a π-conjugated conductive polymer and a dopant refers to a π-conjugated conductive polymer doped with a dopant. Its refractive index is approximately 1.5. Even if a π-conjugated conductive polymer is used alone, conductivity is not exhibited, but doping with a dopant generates electrons that can move freely on the π-conjugated conductive polymer, and the conductivity is low. It will be obtained.

π共役系導電性高分子は、分子構造中にπ共役構造(二重結合が単結合を隔てて隣接している構造)を有する高分子化合物である。ここで高分子化合物とは、分子量が10,000以上の化合物のことを示す。π共役系導電性高分子としては、公知のものを使用することができる。このうち、導電性及び外部環境における安定性の点からポリチオフェン類、ポリピロール類又はポリアニリン類を用いるのが好ましく、特にポリチオフェン類を用いるのが好ましい。   The π-conjugated conductive polymer is a polymer compound having a π-conjugated structure (a structure in which double bonds are adjacent to each other with a single bond) in the molecular structure. Here, the polymer compound means a compound having a molecular weight of 10,000 or more. A well-known thing can be used as (pi) conjugated system conductive polymer. Of these, polythiophenes, polypyrroles or polyanilines are preferably used from the viewpoint of conductivity and stability in the external environment, and polythiophenes are particularly preferably used.

ポリチオフェン類の具体例としては、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3−メチルチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)等が挙げられる。   Specific examples of polythiophenes include poly (3,4-ethylenedioxythiophene), poly (3-methylthiophene), poly (3,4-ethylenedioxythiophene), poly (3-hexyloxythiophene), poly (3-methyl-4-methoxythiophene) and the like.

ドーパント(dopant)は、π共役系導電性高分子をドーピング(錯体形成)することにより、π共役系導電性高分子上を自由に動くことが可能な電子を生じさせ、π共役系導電性高分子に導電性を発現させる物質である。ドーパントは、公知のものを使用することができる。このうち、π共役系導電性高分子をドーピングした際の導電性をより高めることができるという点から、ポリアニオンをドーパントとすることが特に好ましい。   The dopant (dopant) generates electrons that can move freely on the π-conjugated conductive polymer by doping (complex formation) with the π-conjugated conductive polymer. It is a substance that develops conductivity in molecules. A well-known thing can be used for a dopant. Among these, it is particularly preferable to use a polyanion as a dopant from the viewpoint that the conductivity when the π-conjugated conductive polymer is doped can be further increased.

ポリアニオンとは分子内にアニオン性基を有する化合物である。ポリアニオンの具体例として、例えばポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアクリル酸エチルスルホン酸などが挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。π共役系導電性高分子とドーパントの組み合わせは特に制限されないが、導電性及び外部環境における安定性の点からポリチオフェン類とポリアニオンの組み合わせが好ましい。   A polyanion is a compound having an anionic group in the molecule. Specific examples of the polyanion include polystyrene sulfonic acid, polyvinyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, and the like. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient. The combination of the π-conjugated conductive polymer and the dopant is not particularly limited, but a combination of polythiophenes and polyanions is preferable from the viewpoint of conductivity and stability in the external environment.

π共役系導電性高分子とドーパントの組み合わせは特に制限されないが、導電性及び材料の入手の容易性の点からポリチオフェン類とポリアニオンの組み合わせが好ましく、ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸の組み合わせがより好ましい。   The combination of the π-conjugated conductive polymer and the dopant is not particularly limited, but a combination of polythiophenes and polyanions is preferable from the viewpoint of conductivity and availability of materials, and poly (3,4-ethylenedioxythiophene) and A combination of polystyrene sulfonic acids is more preferred.

π共役系導電性高分子とドーパントの質量比は1:1〜1:5であることが必要である。π共役系導電性高分子とドーパントの質量比が1:1よりも小さい場合には、π共役系導電性高分子が十分にドーピングされず、複合体の導電性が低下する。一方、1:5よりも大きい場合には、過剰に存在するドーパントの影響により、複合体の耐熱性が悪化する。π共役系導電性高分子とドーパントからなる複合体としては、市販のものを使用してもよいし、公知の方法により合成したものを使用してもよい。また、π共役系導電性高分子とドーパントからなる複合体の水分散体を有機溶剤で置き換えて使用してもよい。   The mass ratio between the π-conjugated conductive polymer and the dopant needs to be 1: 1 to 1: 5. When the mass ratio of the π-conjugated conductive polymer and the dopant is smaller than 1: 1, the π-conjugated conductive polymer is not sufficiently doped, and the conductivity of the composite is lowered. On the other hand, when it is larger than 1: 5, the heat resistance of the composite deteriorates due to the influence of an excessive dopant. As a complex comprising a π-conjugated conductive polymer and a dopant, a commercially available product may be used, or a compound synthesized by a known method may be used. Further, an aqueous dispersion of a complex composed of a π-conjugated conductive polymer and a dopant may be used by replacing with an organic solvent.

低屈折率層用塗液における多官能(メタ)アクリレート、中空シリカ微粒子、π共役系導電性高分子とドーパントからなる複合体の各々の含有量は、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部である。中空シリカ微粒子の含有量が40質量部よりも少ない場合には、反射防止フィルムの十分な反射防止性能が得られず、250質量部よりも多い場合には、反射防止フィルムの耐擦傷性が低下する。   The content of the polyfunctional (meth) acrylate, the hollow silica fine particles, the composite composed of the π-conjugated conductive polymer and the dopant in the coating solution for the low refractive index layer is (a) 100 mass of polyfunctional (meth) acrylate. Per part, (b) 40 to 250 parts by mass of hollow silica fine particles and (c) 1 to 25 parts by mass of a composite composed of a π-conjugated conductive polymer and a dopant. When the content of the hollow silica fine particles is less than 40 parts by mass, sufficient antireflection performance of the antireflection film cannot be obtained, and when it is more than 250 parts by mass, the scratch resistance of the antireflection film is lowered. To do.

また、π共役系導電性高分子とドーパントからなる複合体の含有量が1質量部よりも少ない場合には、反射防止フィルムの十分な帯電防止性能が得られず、25質量部よりも多い場合には、相対的に多官能(メタ)アクリレートの含有量が減少するために、反射防止フィルムの耐擦傷性が低下する。
(希釈溶剤)
前記低屈折率層用塗液には任意の溶媒を用いることができる。溶媒として具体的には、メタノール、エタノール、イソプロピルアルコール、ブタノール、イソブチルアルコール、メチルグリコール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジアセトンアルコール等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、プロピレングリコールモノメチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル類が挙げられる。
(その他の成分)
また、本発明の効果を損なわない範囲において、その他の成分を低屈折率層用塗液に添加することができる。そのようなその他の成分としては、例えば重合体、重合開始剤、重合禁止剤、酸化防止剤、分散剤、界面活性剤、光安定剤及びレベリング剤等の添加剤が挙げられる。
<低屈折率層の形成方法>
透明基材フィルムの表面に低屈折率層を形成する方法は特に制限されないが、低屈折率層用塗液をロールコート法、スピンコート法、コイルバー法、ディップコート法、ダイコート法等の塗布方法により透明基材フィルムの表面に塗布した後、紫外線を照射する方法等が挙げられる。このような方法により、低屈折率層用塗液が硬化して硬化物が得られ、低屈折率層が形成される。低屈折率層用塗液の塗布方法としては、ロールコート法等の低屈折率層を連続的に形成できる方法が生産性の点より好ましい。
In addition, when the content of the complex composed of the π-conjugated conductive polymer and the dopant is less than 1 part by mass, sufficient antistatic performance of the antireflection film cannot be obtained, and when the content is more than 25 parts by mass. Since the content of the polyfunctional (meth) acrylate is relatively reduced, the scratch resistance of the antireflection film is lowered.
(Diluted solvent)
Any solvent can be used for the coating liquid for the low refractive index layer. Specific examples of the solvent include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, isobutyl alcohol and methyl glycol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone and diacetone alcohol, methyl acetate, Examples thereof include esters such as ethyl acetate and butyl acetate, and ethers such as propylene glycol monomethyl ether, tetrahydrofuran and 1,4-dioxane.
(Other ingredients)
In addition, other components can be added to the coating solution for the low refractive index layer within a range not impairing the effects of the present invention. Examples of such other components include additives such as a polymer, a polymerization initiator, a polymerization inhibitor, an antioxidant, a dispersant, a surfactant, a light stabilizer, and a leveling agent.
<Method for forming low refractive index layer>
The method for forming the low refractive index layer on the surface of the transparent substrate film is not particularly limited, but the coating solution for the low refractive index layer is a coating method such as a roll coating method, a spin coating method, a coil bar method, a dip coating method, or a die coating method. The method of irradiating an ultraviolet-ray after apply | coating to the surface of a transparent base film by, etc. is mentioned. By such a method, the coating solution for the low refractive index layer is cured to obtain a cured product, and a low refractive index layer is formed. As a method for applying the coating solution for the low refractive index layer, a method capable of continuously forming the low refractive index layer such as a roll coating method is preferable from the viewpoint of productivity.

また、低屈折率層用塗液をロールコート法、スピンコート法、コイルバー法、ディップコート法、ダイコート法等の塗布方法により透明基材フィルム表面に塗布する前に、透明基材フィルム表面にコロナ放電処理等の前処理を施してもよい。   In addition, before applying the coating solution for the low refractive index layer to the surface of the transparent substrate film by a coating method such as a roll coating method, a spin coating method, a coil bar method, a dip coating method, or a die coating method, A pretreatment such as a discharge treatment may be performed.

以下に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。なお、各例における部は質量部を示し、%は質量%を表す。
〔製造例1、変性中空シリカ微粒子(ゾル)の製造〕
第1工程として、平均粒子径5nm、シリカ(SiO)濃度20%のシリカゾルと純水とを混合して反応母液を調製し、80℃に加温した。この反応母液のpHは10.5であり、同反応母液にSiOとして1.17%の珪酸ナトリウム水溶液と、アルミナ(Al)として0.83%のアルミン酸ナトリウム水溶液とを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは、珪酸ナトリウム及びアルミン酸ナトリウムの添加直後12.5に上昇し、その後ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20%のSiO・Al一次粒子分散液(核粒子分散液)を調製した。
Hereinafter, the embodiment will be described more specifically with reference to examples and comparative examples. In addition, the part in each example shows a mass part and% represents the mass%.
[Production Example 1, production of modified hollow silica fine particles (sol)]
As a first step, a silica sol having an average particle diameter of 5 nm and a silica (SiO 2 ) concentration of 20% and pure water were mixed to prepare a reaction mother liquor, which was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and 1.17% sodium silicate aqueous solution as SiO 2 and 0.83% sodium aluminate aqueous solution as alumina (Al 2 O 3 ) were simultaneously added to the reaction mother liquor. did. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition of sodium silicate and sodium aluminate and remained almost unchanged thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 .Al 2 O 3 primary particle dispersion (core particle dispersion) having a solid concentration of 20%.

次いで、第2工程として、このSiO・Al一次粒子分散液を採取し、純水を加えて98℃に加温し、この温度を保持しながら、濃度0.5%の硫酸ナトリウムを添加した。続いて、SiOとして濃度1.17%の珪酸ナトリウム水溶液と、Alとして濃度0.5%のアルミン酸ナトリウム水溶液とを添加して複合酸化物微粒子分散液(核粒子に第1シリカ被覆層を形成した微粒子分散液)を得た。そして、これを限外濾過膜で洗浄して固形分濃度13%の複合酸化物微粒子分散液とした。 Next, as a second step, this SiO 2 · Al 2 O 3 primary particle dispersion is collected, pure water is added and heated to 98 ° C., and while maintaining this temperature, sodium sulfate having a concentration of 0.5% Was added. Subsequently, an aqueous solution of sodium silicate having a concentration of 1.17% as SiO 2 and an aqueous solution of sodium aluminate having a concentration of 0.5% as Al 2 O 3 were added to form a composite oxide fine particle dispersion (first silica as a core particle). A fine particle dispersion having a coating layer was obtained. And this was wash | cleaned with the ultrafiltration membrane, and it was set as the complex oxide fine particle dispersion liquid of solid content concentration 13%.

第3工程として、この複合酸化物微粒子分散液に純水を加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lとを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、洗浄して固形分濃度20%のシリカ系微粒子(1)の水分散液を得た。   As a third step, pure water was added to the composite oxide fine particle dispersion, and concentrated hydrochloric acid (35.5%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, the aluminum salt dissolved in the ultrafiltration membrane was separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and washed to obtain an aqueous dispersion of silica-based fine particles (1) having a solid concentration of 20%. .

第4工程として、前記固形分濃度20%のシリカ系微粒子(1)の水分散液と、純水、エタノール及び28%アンモニア水との混合液を35℃に加温した後、エチルシリケート(SiOが28%)を添加してシリカ被膜(第2シリカ被覆層)を形成した。続いて、純水5Lを加えながら、限外濾過膜で洗浄して固形分濃度20%のシリカ系微粒子(2)の分散液を調製した。 As a fourth step, a mixed liquid of the silica-based fine particles (1) having a solid content concentration of 20% and pure water, ethanol and 28% ammonia water is heated to 35 ° C., and then ethyl silicate (SiO 2 2 was 28%) to form a silica coating (second silica coating layer). Subsequently, while adding 5 L of pure water, it was washed with an ultrafiltration membrane to prepare a dispersion of silica-based fine particles (2) having a solid concentration of 20%.

最後に第5工程として、再びシリカ系微粒子(2)の分散液を200℃にて11時間水熱処理した。その後、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20%に調整した。そして、限外濾過膜を用いて、この分散液の分散媒をエタノールに置換し、固形分濃度20%のオルガノゾルを得た。このオルガノゾルは、平均粒子径が60nmで、比表面積が110m/gの中空シリカ微粒子が分散されたオルガノゾル(以下、「中空シリカゾルA」と称する。)であった。 Finally, as a fifth step, the dispersion of silica-based fine particles (2) was hydrothermally treated again at 200 ° C. for 11 hours. Thereafter, it was washed with an ultrafiltration membrane while adding 5 L of pure water to adjust the solid content concentration to 20%. Then, using an ultrafiltration membrane, the dispersion medium of this dispersion was replaced with ethanol to obtain an organosol having a solid content concentration of 20%. This organosol was an organosol in which hollow silica fine particles having an average particle diameter of 60 nm and a specific surface area of 110 m 2 / g were dispersed (hereinafter referred to as “hollow silica sol A”).

該中空シリカゾルA(シリカ固形分濃度20%)200gを用意し、限外濾過膜にて、メタノールへの溶媒置換を行い、SiO分が20%のオルガノゾル100g(水分量はSiO分に対して0.5%)を調製した。そこへ28%アンモニア水溶液を前記オルガノゾル100gに対してアンモニアとして100ppmとなるように加え、十分に混合し、次にγ−アクリロイルオキシプロピルトリメトキシシラン〔商品名:KBM5103、信越化学工業(株)製〕3.6gを添加し、反応液とした。 200 g of the hollow silica sol A (silica solid content concentration 20%) is prepared, and solvent replacement with methanol is performed with an ultrafiltration membrane, and 100 g of organosol having a SiO 2 content of 20% (the water content is relative to the SiO 2 content). 0.5%). Thereto, 28% aqueous ammonia solution was added to 100 g of the organosol so as to be 100 ppm as ammonia, mixed well, and then γ-acryloyloxypropyltrimethoxysilane [trade name: KBM5103, manufactured by Shin-Etsu Chemical Co., Ltd. 3.6 g was added to obtain a reaction solution.

これを50℃に加温し、撹拌しながら50℃で6時間加熱を行なった。加熱終了後、反応液を常温まで冷却し、さらにロータリーエバポレーターでイソプロピルアルコールへ溶媒置換を行い、SiO濃度20%の被覆中空微粒子からなるオルガノゾルを得た。このオルガノゾルは、平均粒子径が60nm、屈折率1.25、空隙率40〜45%で、比表面積が130m/g、熱質量測定法(TG)による質量減少割合が3.6%の変性中空シリカ微粒子が分散されたオルガノゾル(変性中空シリカ微粒子ゾル)であった。
〔製造例2、低屈折率層用塗液の調製〕
(製造例2−1、低屈折率層用塗液(L−1)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で1部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4308部混合して低屈折率層用塗液L−1を調製した。
(製造例2−2、低屈折率層用塗液(L−2)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で2.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4188部混合して低屈折率層用塗液L−2を調製した。
(製造例2−3、低屈折率層用塗液(L−3)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−3を調製した。
(製造例2−4、低屈折率層用塗液(L−4)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で7.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3788部混合して低屈折率層用塗液L−4を調製した。
(製造例2−5、低屈折率層用塗液(L−5)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で10部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3588部混合して低屈折率層用塗液L−5を調製した。
(製造例2−6、低屈折率層用塗液(L−6)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で12.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3388部混合して低屈折率層用塗液L−6を調製した。
(製造例2−7、低屈折率層用塗液(L−7)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で25部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを2388部混合して低屈折率層用塗液L−7を調製した。
(製造例2−8、低屈折率層用塗液(L−8)の調製)
(a)1,10-ジアクリロイルオキシ-2,9-ジヒドロキシ-4,4,5,5,6,6,7,7,-オクタフルオロデカン〔OD2H2A〕を100部、(b) 前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で12.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3388部混合して低屈折率層用塗液L−8を調製した。
(製造例2−9、低屈折率層用塗液(L−9)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で233部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で10部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を16.7部及びイソプロピルアルコールを4911部混合して低屈折率層用塗液L−9を調製した。
(製造例2−10、低屈折率層用塗液(L−10)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で100部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で6部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を10部及びイソプロピルアルコールを3110部混合して低屈折率層用塗液L−10を調製した。
(製造例2−11、低屈折率層用塗液(L−11)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で67部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を8.4部及びイソプロピルアルコールを2664部混合して低屈折率層用塗液L−11を調製した。
(製造例2−12、低屈折率層用塗液(L−12)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で43部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で4.3部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を7.2部及びイソプロピルアルコールを2337部混合して低屈折率層用塗液L−12を調製した。
(製造例2−13、低屈折率層用塗液(L−13)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/1の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−13を調製した。
(製造例2−14、低屈折率層用塗液(L−14)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−14を調製した。
(製造例2−15、低屈折率層用塗液(L−15)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン/ポリビニルスルホン酸=1/2.5の複合体を固形分換算で2.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4188部混合して低屈折率層用塗液L−15を調製した。
(製造例2−16、低屈折率層用塗液(L−16)の調製)
(a) ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリアクリル酸エチルスルホン酸=1/2.5の複合体を固形分換算で7.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3788部混合して低屈折率層用塗液L−16を調製した。
(製造例2−17、低屈折率層用塗液(L−17)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリアクリル酸エチルスルホン酸=1/2.5の複合体を固形分換算で25部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを2388部混合して低屈折率層用塗液L−17を調製した。
(製造例2−18、低屈折率層用塗液(L−18)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリチエニルメチルスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−18を調製した。
(製造例2−19、低屈折率層用塗液(L−19)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3−メチルチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で1部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4308部混合して低屈折率層用塗液L−19を調製した。
(製造例2−20、低屈折率層用塗液(L−20)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3−ヘキシルオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−20を調製した。
(製造例2−21、低屈折率層用塗液(L−21)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3−メチル−4メトキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で10部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3588部混合して低屈折率層用塗液L−21を調製した。
(製造例2−22、低屈折率層用塗液(L−22)の調製)
(a)1,10-ジアクリロイルオキシ-2,9-ジヒドロキシ-4,4,5,5,6,6,7,7,-オクタフルオロデカン〔OD2H2A〕を100部、(b) 前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3−メチル−4メトキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で12.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3388部混合して低屈折率層用塗液L−22 を調製した。
(製造例2−23、低屈折率層用塗液(L−23)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3―ヘキシルオキシチオフェン)/ポリアクリル酸エチルスルホン酸=1/2.5の複合体を固形分換算で12.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3388部混合して低屈折率層用塗液L−23を調製した。
(製造例2−24、低屈折率層用塗液(L−24)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(2―メチルアニリン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−24を調製した。
(製造例2−25、低屈折率層用塗液(L−25)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3―イソブチルアニリン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−25を調製した。
(製造例2−26、低屈折率層用塗液(L−26)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3―ブチルピロール)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−26を調製した。
(製造例2−27、低屈折率層用塗液(L−27)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3―メチル−4−ヘキシルオキシピロール)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−27を調製した。
(製造例2−28、低屈折率層用塗液(L−28)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(オキシ−1,4−フェニレン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−28を調製した。
(製造例2−29、低屈折率層用塗液(L−29)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを4388部混合して低屈折率層用塗液L−29を調製した。
(製造例2−30、低屈折率層用塗液(L−30)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で37.5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを1388部混合して低屈折率層用塗液L−30を調製した。
(製造例2−31、低屈折率層用塗液(L−31)の調製)
(a)ペンタエリスリトールトリアクリレート〔共栄社化学(株)製、商品名:ライトアクリレートPE−3A、3官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で25部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で3.8部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を6.3部及びイソプロピルアルコールを2090部混合して低屈折率層用塗液L−31を調製した。
(製造例2−32、低屈折率層用塗液(L−32)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で400部、(c) ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/2.5の複合体を固形分換算で15部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を25部及びイソプロピルアルコールを7175部混合して低屈折率層用塗液L−32を調製した。
(製造例2−33、低屈折率層用塗液(L−33)の調製)
(a)UV7600B〔日本合成化学工業(株)製、商品名:紫光UV7600B、6官能ウレタンアクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/0.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−33を調製した。
(製造例2−34、低屈折率層用塗液(L−34)の調製)
(a)ジペンタエリスリトールヘキサアクリレート〔日本化薬(株)製、商品名:DPHA、6官能アクリレート〕を100部、(b)前記製造例1で得られた変性中空シリカ微粒子ゾルを固形分換算で150部、(c)ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸=1/6.5の複合体を固形分換算で5部、光重合開始剤〔チバ・スペシャリティ・ケミカルズ(株)製、商品名:イルガキュア907〕を12.5部及びイソプロピルアルコールを3988部混合して低屈折率層用塗液L−34を調製した。
(実施例1−1)
厚み100μmのポリエチレンテレフタレート(PET)フィルム〔東洋紡績(株)製、商品名:A4300〕の上に前記製造例2−1で調製した低屈折率層用塗液(L−1)を、光学膜厚がkλ/4(k:1、λ:550nm)になるようにグラビアコート法で塗布し、乾燥後、窒素雰囲気下で400mJ/cmの出力にて紫外線を照射して硬化させることにより、反射防止フィルムを作製した。
This was heated to 50 ° C. and heated at 50 ° C. for 6 hours with stirring. After completion of the heating, the reaction solution was cooled to room temperature, and further the solvent was replaced with isopropyl alcohol by a rotary evaporator to obtain an organosol composed of coated hollow fine particles having a SiO 2 concentration of 20%. This organosol has an average particle size of 60 nm, a refractive index of 1.25, a porosity of 40 to 45%, a specific surface area of 130 m 2 / g, and a mass reduction ratio by thermal mass measurement (TG) of 3.6%. It was an organosol (modified hollow silica fine particle sol) in which hollow silica fine particles were dispersed.
[Production Example 2, preparation of coating solution for low refractive index layer]
(Production Example 2-1, preparation of coating solution for low refractive index layer (L-1))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 1 part of a poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 1308 parts of isopropyl alcohol and 4308 parts of isopropyl alcohol were mixed to prepare a coating solution L-1 for a low refractive index layer.
(Production Example 2-2, Preparation of Coating Solution for Low Refractive Index Layer (L-2))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 2.5 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 1188 parts of isopropyl alcohol were mixed to prepare a coating solution L-2 for a low refractive index layer.
(Production Example 2-3, preparation of coating solution for low refractive index layer (L-3))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts of (c) poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 2.5 complex in terms of solid content, 5 parts, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-3 for a low refractive index layer.
(Production Example 2-4, Preparation of Coating Solution for Low Refractive Index Layer (L-4))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 7.5 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 1788 parts of isopropyl alcohol were mixed to prepare a coating solution L-4 for a low refractive index layer.
(Production Example 2-5, Preparation of Low Refractive Index Layer Coating Liquid (L-5))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight conversion, (c) 10 parts by weight of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 composite, photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals Co., Ltd., trade name: Irgacure 907] and 3588 parts of isopropyl alcohol were mixed to prepare a coating solution L-5 for a low refractive index layer.
(Production Example 2-6, Preparation of Low Refractive Index Layer Coating Liquid (L-6))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 12.5 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals, Inc., trade name: Irgacure 907] and 3388 parts of isopropyl alcohol were mixed to prepare a coating solution L-6 for a low refractive index layer.
(Production Example 2-7, Preparation of Coating Solution for Low Refractive Index Layer (L-7))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 25 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. 12.5 parts manufactured by Trade Name: Irgacure 907] and 2388 parts isopropyl alcohol were mixed to prepare a coating solution L-7 for a low refractive index layer.
(Production Example 2-8, Preparation of Coating Solution for Low Refractive Index Layer (L-8))
(a) 100 parts of 1,10-diacryloyloxy-2,9-dihydroxy-4,4,5,5,6,6,7,7, -octafluorodecane [OD2H2A], (b) the above production example 150 parts of the modified hollow silica fine particle sol obtained in 1 in terms of solid content, and a composite of (c) poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content 12.5 parts, 12.5 parts of photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 3388 parts of isopropyl alcohol were mixed to obtain a coating solution L-8 for a low refractive index layer. Was prepared.
(Production Example 2-9, preparation of coating solution for low refractive index layer (L-9))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 233 parts, (c) 10 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. 16.7 parts made by trade name: Irgacure 907] and 4911 parts isopropyl alcohol were mixed to prepare a coating solution L-9 for a low refractive index layer.
(Production Example 2-10, preparation of coating solution for low refractive index layer (L-10))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 100 parts by weight conversion, (c) 6 parts by weight of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 composite, and photopolymerization initiator [Ciba Specialty 10 parts of Chemicals Co., Ltd., trade name: Irgacure 907] and 3110 parts of isopropyl alcohol were mixed to prepare a coating solution L-10 for a low refractive index layer.
(Production Example 2-11, Preparation of Coating Solution for Low Refractive Index Layer (L-11))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 67 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 2664 parts of isopropyl alcohol were mixed to prepare a coating solution L-11 for a low refractive index layer.
(Production Example 2-12, preparation of coating solution for low refractive index layer (L-12))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 43 parts, (c) 4.3 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 2337 parts of isopropyl alcohol were mixed to prepare a coating solution L-12 for a low refractive index layer.
(Production Example 2-13, Preparation of Coating Solution for Low Refractive Index Layer (L-13))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1/1 in terms of solid content, photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd. , Trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-13 for a low refractive index layer.
(Production Example 2-14, preparation of coating solution for low refractive index layer (L-14))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight, 5 parts by weight of a composite of (c) poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1/5, and a photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-14 for a low refractive index layer.
(Preparation of Production Example 2-15, coating liquid for low refractive index layer (L-15))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 2.5 parts of poly (3,4-ethylenedioxythiophene / polyvinylsulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 1188 parts of isopropyl alcohol were mixed to prepare a coating solution L-15 for a low refractive index layer.
(Production Example 2-16, Preparation of Coating Solution for Low Refractive Index Layer (L-16))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts of (c) poly (3,4-ethylenedioxythiophene) / polyacrylic acid ethylsulfonic acid = 1 / 2.5 complex in terms of solid content, 7.5 parts, photopolymerization initiator [Ciba -12.5 parts of Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 3788 parts of isopropyl alcohol were mixed to prepare a coating solution L-16 for a low refractive index layer.
(Production Example 2-17, Preparation of Coating Solution for Low Refractive Index Layer (L-17))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 25 parts of poly (3,4-ethylenedioxythiophene) / polyethyl acrylate sulfonate = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals Co., Ltd., trade name: Irgacure 907] and 2388 parts of isopropyl alcohol were mixed to prepare a coating solution L-17 for a low refractive index layer.
(Production Example 2-18, preparation of coating solution for low refractive index layer (L-18))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polythienylmethylsulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 19.8 parts of isopropyl alcohol were mixed to prepare a coating solution L-18 for a low refractive index layer.
(Production Example 2-19, preparation of coating solution for low refractive index layer (L-19))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 1 part of a poly (3-methylthiophene) / polystyrenesulfonic acid = 1 / 2.5 complex in terms of solid content, a photopolymerization initiator [manufactured by Ciba Specialty Chemicals, (Trade name: Irgacure 907) and 4308 parts of isopropyl alcohol were mixed to prepare a coating solution L-19 for a low refractive index layer.
(Production Example 2-20, Preparation of Low Refractive Index Layer Coating Liquid (L-20))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 5 parts of poly (3-hexyloxythiophene) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd. , Trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-20 for a low refractive index layer.
(Production Example 2-21, Preparation of Coating Solution for Low Refractive Index Layer (L-21))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight conversion, (c) 10 parts by weight of poly (3-methyl-4methoxythiophene) / polystyrene sulfonic acid = 1 / 2.5 composite, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 1588 parts of isopropyl alcohol and 3588 parts of isopropyl alcohol were mixed to prepare a coating solution L-21 for a low refractive index layer.
(Production Example 2-22, Preparation of Coating Solution for Low Refractive Index Layer (L-22))
(a) 100 parts of 1,10-diacryloyloxy-2,9-dihydroxy-4,4,5,5,6,6,7,7, -octafluorodecane [OD2H2A], (b) the above production example 150 parts of the modified hollow silica fine particle sol obtained in 1 in terms of solid content, and 12 parts of the composite of (c) poly (3-methyl-4methoxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content. .5 parts, 12.5 parts of photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 3388 parts of isopropyl alcohol were mixed to prepare a coating solution L-22 for low refractive index layer. Prepared.
(Production Example 2-23, preparation of coating solution for low refractive index layer (L-23))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts by weight, (c) 12.5 parts of poly (3-hexyloxythiophene) / polyethyl acrylate sulfonate = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals, Inc., trade name: Irgacure 907] and 3388 parts of isopropyl alcohol were mixed to prepare a coating solution L-23 for a low refractive index layer.
(Production Example 2-24, Preparation of Low Refractive Index Layer Coating Liquid (L-24))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, 5 parts of a composite of (c) poly (2-methylaniline) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd., product Name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-24 for a low refractive index layer.
(Production Example 2-25, preparation of coating solution for low refractive index layer (L-25))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 5 parts of poly (3-isobutylaniline) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, photopolymerization initiator [manufactured by Ciba Specialty Chemicals, 12.5 parts of trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-25 for a low refractive index layer.
(Production Example 2-26, preparation of coating solution for low refractive index layer (L-26))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight, 5 parts by weight of the composite of (c) poly (3-butylpyrrole) / polystyrene sulfonic acid = 1 / 2.5, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. Manufactured product, trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-26 for a low refractive index layer.
(Production Example 2-27, preparation of coating solution for low refractive index layer (L-27))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts by weight, (c) 5 parts of poly (3-methyl-4-hexyloxypyrrole) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907] and 19.8 parts of isopropyl alcohol were mixed to prepare a coating solution L-27 for a low refractive index layer.
(Production Example 2-28, preparation of coating solution for low refractive index layer (L-28))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 5 parts of poly (oxy-1,4-phenylene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. 12.5 parts by trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-28 for a low refractive index layer.
(Production Example 2-29, preparation of coating solution for low refractive index layer (L-29))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 150 parts by weight, 12.5 parts of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 907) and 4388 parts of isopropyl alcohol were mixed to prepare a coating solution L- for a low refractive index layer. 29 was prepared.
(Production Example 2-30, Preparation of Coating Solution for Low Refractive Index Layer (L-30))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 37.5 parts of a poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 complex in terms of solid content, a photopolymerization initiator [Ciba Specialty 12.5 parts of Chemicals Co., Ltd., trade name: Irgacure 907] and 1388 parts of isopropyl alcohol were mixed to prepare a coating solution L-30 for a low refractive index layer.
(Production Example 2-31, preparation of coating solution for low refractive index layer (L-31))
100 parts of (a) pentaerythritol triacrylate [manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PE-3A, trifunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is solid 25 parts by weight, (c) 3.8 parts by weight of a poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 composite, and a photopolymerization initiator [Ciba 6.3 parts of Specialty Chemicals, trade name: Irgacure 907] and 2090 parts of isopropyl alcohol were mixed to prepare a coating solution L-31 for a low refractive index layer.
(Production Example 2-32, preparation of coating solution for low refractive index layer (L-32))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 400 parts, (c) 15 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 2.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 7175 parts of isopropyl alcohol were mixed to prepare a coating solution L-32 for a low refractive index layer.
(Production Example 2-33, Preparation of coating solution for low refractive index layer (L-33))
100 parts of (a) UV7600B [manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Violet UV7600B, hexafunctional urethane acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 in terms of solid content 150 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid = 1 / 0.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd. 12.5 parts by trade name: Irgacure 907] and 3988 parts isopropyl alcohol were mixed to prepare a coating solution L-33 for a low refractive index layer.
(Production Example 2-34, Preparation of coating solution for low refractive index layer (L-34))
(a) 100 parts of dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd., trade name: DPHA, hexafunctional acrylate], (b) the modified hollow silica fine particle sol obtained in Production Example 1 is converted into solid content 150 parts, (c) 5 parts of poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid = 1 / 6.5 in terms of solid content, photopolymerization initiator [Ciba Specialty Chemicals ( Co., Ltd., trade name: Irgacure 907] and 3988 parts of isopropyl alcohol were mixed to prepare a coating solution L-34 for a low refractive index layer.
(Example 1-1)
A coating solution for low refractive index layer (L-1) prepared in Production Example 2-1 on a polyethylene terephthalate (PET) film (product name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm is used as an optical film. By applying a gravure coating method so that the thickness becomes kλ / 4 (k: 1, λ: 550 nm), drying, and then curing by irradiation with ultraviolet rays at an output of 400 mJ / cm 2 in a nitrogen atmosphere, An antireflection film was produced.

得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を以下に記載する方法で行い、それらの評価結果を表1に示した。
(視感度反射率)
測定面の裏面反射を除くため、裏面をサンドペーパーで粗し、黒色塗料で塗り潰したものを分光光度計〔日本分光(株)製、商品名:U−best560〕により、光の波長380nm〜780nmの5°、−5°正反射スペクトルを測定した。得られる光の波長380nm〜780nmの分光反射率と、CIE標準イルミナントD65の相対分光分布を用いて、JIS Z8701で想定されているXYZ表色系における、反射による物体色の三刺激値Yを視感度反射率(%)とした。
(表面抵抗率)
デジタル絶縁計〔東亜DKK(株)製、商品名:SM−8220〕を用いて、反射防止フィルムの表面抵抗率(Ω/□)を測定した。なお、表1〜表3において、「RANGE OVER」は表面抵抗率が測定限界を超えるほど高くなったことを意味する。
(3)耐熱性
反射防止フィルムを80℃に設定された恒温槽の中に放置し、1000時間後に恒温槽から取り出して表面抵抗率を測定した。恒温槽に入れる前に測定した表面抵抗率と比較して、表面抵抗率の上昇が2桁以内に抑えられていれば○、表面抵抗率が3桁以上上昇した場合には×とした。
(4)耐擦傷性
(株)本光製作所製消しゴム摩耗試験機の先端に、#0000のスチールウールを固定し、2.5N(250gf)及び1N(100gf)の荷重をかけて、反射防止フィルム表面上を10回往復摩擦した後の表面の傷を目視で観察し、以下のA〜Eの6段階で評価した。
The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance by the methods described below, and the evaluation results are shown in Table 1.
(Visibility reflectance)
In order to remove the back surface reflection of the measurement surface, the back surface was roughened with sandpaper and painted with a black paint, and a light wavelength of 380 nm to 780 nm was measured with a spectrophotometer [trade name: U-best 560 manufactured by JASCO Corporation]. The 5 ° and −5 ° specular reflection spectra were measured. Viewing the tristimulus value Y of the object color due to reflection in the XYZ color system assumed in JIS Z8701, using the spectral reflectance of the obtained light with a wavelength of 380 nm to 780 nm and the relative spectral distribution of the CIE standard illuminant D65. Sensitivity reflectance (%) was used.
(Surface resistivity)
The surface resistivity (Ω / □) of the antireflection film was measured using a digital insulation meter [manufactured by Toa DKK Co., Ltd., trade name: SM-8220]. In Tables 1 to 3, “RANGE OVER” means that the surface resistivity increased as it exceeded the measurement limit.
(3) Heat resistance The antireflection film was left in a thermostat set at 80 ° C., taken out from the thermostat after 1000 hours, and the surface resistivity was measured. Compared with the surface resistivity measured before putting in the thermostatic bath, it was marked with ○ when the increase in surface resistivity was suppressed within 2 digits, and when the surface resistivity was increased by 3 digits or more.
(4) Scratch resistance An anti-reflective film with # 0000 steel wool fixed to the tip of an eraser abrasion tester manufactured by Honko Seisakusho Co., Ltd. and a load of 2.5 N (250 gf) and 1 N (100 gf) applied. The surface scratches after 10 reciprocating rubs on the surface were visually observed and evaluated according to the following 6 grades A to E.

A:傷なし、A':傷1〜3本、B:傷4〜10本、C:傷11〜20本、D:傷21〜30本、E:31本以上
(実施例1−2〜実施例1−14)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、製造例2−2〜製造例2−14で調製した低屈折率層用塗液(L−2〜L−14)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表1に示した。
A: No scratch, A ′: 1-3 scratches, B: 4-10 scratches, C: 11-20 scratches, D: 21-30 scratches, E: 31 or more (Examples 1-2) Example 1-14)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), the coating solution for low refractive index layer (L-2 to L) prepared in Production Example 2-2 to Production Example 2-14 was used. An antireflection film was obtained in the same manner as in Example 1-1 except that -14) was used. The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 1.

Figure 2011191735
表1に示したように、実施例1−1〜実施例1−14では、単層構成で十分な反射防止性能を有し、帯電防止性能にも優れ、かつ耐熱性及び耐擦傷性も良好な反射防止フィルムを得ることができた。
(実施例2−1〜実施例2−4)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、製造例2−15〜製造例2−18で調製した低屈折率層用塗液(L−15〜L−18)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表2に示した。
Figure 2011191735
As shown in Table 1, in Examples 1-1 to 1-14, a single layer configuration has sufficient antireflection performance, excellent antistatic performance, and good heat resistance and scratch resistance. An antireflection film could be obtained.
(Example 2-1 to Example 2-4)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), the coating solution for low refractive index layer (L-15 to L) prepared in Production Example 2-15 to Production Example 2-18 was used. An antireflection film was obtained in the same manner as in Example 1-1 except that -18) was used. The obtained antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 2.

Figure 2011191735
表2に示したように、実施例2−1〜実施例2−4では、単層構成で良好な反射防止性能を有し、帯電防止性能が良く、かつ耐熱性及び耐擦傷性も良好な反射防止フィルムを得ることができた。
(実施例3−1〜実施例3−5)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、製造例2−19〜製造例2−23で調製した低屈折率層用塗液(L−19〜L−23)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表3に示した。
Figure 2011191735
As shown in Table 2, Examples 2-1 to 2-4 have a single layer configuration and good antireflection performance, good antistatic performance, and good heat resistance and scratch resistance. An antireflection film could be obtained.
(Example 3-1 to Example 3-5)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), the coating solution for low refractive index layer (L-19 to L) prepared in Production Example 2-19 to Production Example 2-23 was used. An antireflection film was obtained in the same manner as in Example 1-1 except that -23) was used. The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 3.

Figure 2011191735
表3に示したように、実施例3−1〜実施例3−5では、単層構成で良好な反射防止性能を有し、帯電防止性能が良好で、かつ耐熱性及び耐擦傷性も良好な反射防止フィルムを得ることができた。
(実施例4−1〜実施例4−5)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、製造例2−24〜製造例2−28で調製した低屈折率層用塗液(L−24〜L−28)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表4に示した。
Figure 2011191735
As shown in Table 3, Examples 3-1 to 3-5 have a single layer configuration and good antireflection performance, good antistatic performance, and good heat resistance and scratch resistance. An antireflection film could be obtained.
(Example 4-1 to Example 4-5)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), the coating solution for low refractive index layer (L-24 to L-L) prepared in Production Example 2-24 to Production Example 2-28 was used. An antireflection film was obtained in the same manner as in Example 1-1 except that -28) was used. The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 4.

Figure 2011191735
表4に示したように、実施例4−1〜実施例4−5では、単層構成で良好な反射防止性能を有し、帯電防止性能が良く、かつ耐熱性及び耐擦傷性も良好な反射防止フィルムを得ることができた。
(比較例1−1〜比較例1−6)
実施例1−1において、低屈折率層用塗液(L−1)の代わりに、比較例1−1では製造例2−29で調製した低屈折率層用塗液(L−29)を用い、比較例1−2では製造例2−30で調製した低屈折率層用塗液(L−30)を用い、比較例1−3では製造例2−31で調製した低屈折率層用塗液(L−31)を用い、比較例1−4では製造例2−32で調製した低屈折率層用塗液(L−32)を用い、比較例1−5では製造例2−33で調製した低屈折率層用塗液(L−33)を用い、比較例1−6では製造例2−34で調製した低屈折率層用塗液(L−34)を用いた以外は実施例1−1と同様にして、反射防止フィルムを得た。得られた反射防止フィルムについて、視感度反射率、表面抵抗率、耐熱性及び耐擦傷性の評価を行い、それらの結果を表5に示した。
Figure 2011191735
As shown in Table 4, Examples 4-1 to 4-5 have a single layer configuration and good antireflection performance, good antistatic performance, and good heat resistance and scratch resistance. An antireflection film could be obtained.
(Comparative Example 1-1 to Comparative Example 1-6)
In Example 1-1, instead of the coating solution for low refractive index layer (L-1), in Comparative Example 1-1, the coating solution for low refractive index layer (L-29) prepared in Production Example 2-29 was used. In Comparative Example 1-2, the coating solution for low refractive index layer (L-30) prepared in Production Example 2-30 was used, and in Comparative Example 1-3, for low refractive index layer prepared in Production Example 2-31. Using the coating liquid (L-31), Comparative Example 1-4 used the coating liquid for low refractive index layer (L-32) prepared in Production Example 2-32, and Comparative Example 1-5 was Production Example 2-33. The coating solution for low refractive index layer (L-33) prepared in Step 1 was used, and in Comparative Example 1-6, the coating solution for low refractive index layer (L-34) prepared in Production Example 2-34 was used. An antireflection film was obtained in the same manner as in Example 1-1. The resulting antireflection film was evaluated for visibility reflectance, surface resistivity, heat resistance and scratch resistance, and the results are shown in Table 5.

Figure 2011191735
表5に示したように、比較例1−1では、π共役系導電性高分子とドーパントからなる複合体を有していないことから、帯電防止性能が発現されないという結果に到った。また、比較例1−2では、π共役系導電性高分子とドーパントからなる複合体の含有量が多いため、相対的に多官能(メタ)アクリレートの含有量が減少し、耐擦傷性が悪化するという結果であった。比較例1−3では、中空シリカ微粒子の含有量が過少であるため、硬化膜の屈折率が十分に低下せず、視感度反射率が高くなって反射防止性能が劣るという結果を招いた。
Figure 2011191735
As shown in Table 5, since Comparative Example 1-1 did not have a complex composed of a π-conjugated conductive polymer and a dopant, the antistatic performance was not exhibited. In Comparative Example 1-2, since the content of the complex composed of the π-conjugated conductive polymer and the dopant is large, the content of the polyfunctional (meth) acrylate is relatively decreased, and the scratch resistance is deteriorated. It was a result of doing. In Comparative Example 1-3, since the content of the hollow silica fine particles is too small, the refractive index of the cured film is not sufficiently lowered, resulting in high visibility reflectance and poor antireflection performance.

また、比較例1−4では、中空シリカ微粒子の含有量が過剰であるため、相対的に多官能(メタ)アクリレートの含有量が減少し、耐擦傷性が悪化するという結果に到った。比較例1−5では、π共役系導電性高分子に対してドーパントの量が過少であるため、π共役系導電性高分子が十分にドーピングされず、導電性が低くなり、帯電防止性が低下した。さらに、比較例1−6では、π共役系導電性高分子に対してドーパントの量が多過ぎるため、過剰に存在するドーパントの影響により、耐熱性が悪化した。   Moreover, in Comparative Example 1-4, since the content of the hollow silica fine particles was excessive, the content of the polyfunctional (meth) acrylate was relatively decreased, and the scratch resistance was deteriorated. In Comparative Example 1-5, since the amount of the dopant is too small with respect to the π-conjugated conductive polymer, the π-conjugated conductive polymer is not sufficiently doped, resulting in low conductivity and antistatic properties. Declined. Furthermore, in Comparative Example 1-6, since the amount of the dopant was too much with respect to the π-conjugated conductive polymer, the heat resistance deteriorated due to the influence of the excessive dopant.

Claims (6)

透明基材フィルム上に低屈折率層が直接積層されて構成されている反射防止フィルムであって、
前記低屈折率層は、(a)多官能(メタ)アクリレート、(b)中空シリカ微粒子及び(c)π共役系導電性高分子とドーパントからなる複合体を含有し、(a)多官能(メタ)アクリレート100質量部あたり、(b)中空シリカ微粒子40〜250質量部及び(c)π共役系導電性高分子とドーパントからなる複合体1〜25質量部を含むとともに、(c)π共役系導電性高分子とドーパントからなる複合体中のπ共役系導電性高分子とドーパントの質量比が1:1〜1:5に設定された低屈折率層用塗液の硬化物であることを特徴とする反射防止フィルム。
An antireflection film comprising a low refractive index layer directly laminated on a transparent substrate film,
The low refractive index layer contains (a) a polyfunctional (meth) acrylate, (b) a hollow silica fine particle, and (c) a complex composed of a π-conjugated conductive polymer and a dopant; (B) Hollow silica fine particles 40 to 250 parts by mass and (c) π-conjugated system conductive polymer and dopant 1 to 25 parts by mass per 100 parts by mass of (meth) acrylate, and (c) π-conjugated A cured product of a coating solution for a low refractive index layer in which the mass ratio of the π-conjugated conductive polymer and the dopant in the composite comprising the conductive polymer and the dopant is set to 1: 1 to 1: 5 Antireflection film characterized by
前記π共役系導電性高分子がポリチオフェン類であることを特徴とする請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the π-conjugated conductive polymer is a polythiophene. 前記ポリチオフェン類がポリ(3,4−エチレンジオキシチオフェン)であることを特徴とする請求項2に記載の反射防止フィルム。 The antireflection film according to claim 2, wherein the polythiophene is poly (3,4-ethylenedioxythiophene). 前記π共役系導電性高分子がポリピロール類又はポリアニリン類であることを特徴とする請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the π-conjugated conductive polymer is polypyrrole or polyaniline. 前記ドーパントがポリアニオンであることを特徴とする請求項1から請求項4のいずれか1項に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the dopant is a polyanion. 前記ポリアニオンがポリスチレンスルホン酸であることを特徴とする請求項5に記載の反射防止フィルム。 6. The antireflection film according to claim 5, wherein the polyanion is polystyrene sulfonic acid.
JP2010275628A 2010-02-17 2010-12-10 Antireflection film Active JP5771967B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010275628A JP5771967B2 (en) 2010-02-17 2010-12-10 Antireflection film
TW100104862A TWI476109B (en) 2010-02-17 2011-02-15 Anti-reflection film
KR1020110013207A KR101727326B1 (en) 2010-02-17 2011-02-15 Anti-reflection film
CN201110038993.8A CN102162864B (en) 2010-02-17 2011-02-15 Anti-reflection film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010032453 2010-02-17
JP2010032453 2010-02-17
JP2010275628A JP5771967B2 (en) 2010-02-17 2010-12-10 Antireflection film

Publications (2)

Publication Number Publication Date
JP2011191735A true JP2011191735A (en) 2011-09-29
JP5771967B2 JP5771967B2 (en) 2015-09-02

Family

ID=44796673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010275628A Active JP5771967B2 (en) 2010-02-17 2010-12-10 Antireflection film

Country Status (3)

Country Link
JP (1) JP5771967B2 (en)
KR (1) KR101727326B1 (en)
TW (1) TWI476109B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977796B1 (en) * 2011-11-10 2012-07-18 尾池工業株式会社 Conductive film
CN109065212A (en) * 2018-08-08 2018-12-21 吴飞 The preparation method of the conducting solution of conductive electrode and the preparation method of conductive electrode
CN113064226A (en) * 2021-04-30 2021-07-02 宁波甬安光科新材料科技有限公司 Flexible anti-static antireflection optical film, anti-static antireflection coating liquid and preparation method
CN113204063A (en) * 2021-04-30 2021-08-03 宁波甬安光科新材料科技有限公司 Anti-static antireflection optical film, anti-static coating liquid, antireflection coating liquid, preparation method and application
JP2021177212A (en) * 2020-05-08 2021-11-11 リケンテクノス株式会社 Low refractive index b stage coated film, laminated film, three-dimensional compact, and method for manufacturing these

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221715B2 (en) 2013-07-25 2015-12-29 Apple Inc. Chemical strengthening of anti-reflective coatings (ARC)
KR102077797B1 (en) 2016-02-19 2020-02-14 주식회사 엘지화학 Photocurable coating composition for forming low refractive layer
KR102257923B1 (en) 2018-01-24 2021-05-27 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102267594B1 (en) 2018-01-24 2021-06-18 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119355A (en) * 2004-10-21 2006-05-11 Nitto Denko Corp Antistatic adhesive optical film and image display device
JP2007500374A (en) * 2004-04-14 2007-01-11 エルジー・ケム・リミテッド Coating antireflection coating composition and coating film excellent in stain resistance
JP2007119765A (en) * 2005-09-29 2007-05-17 Dainippon Printing Co Ltd Coating composition for low refractive index layer and anti-reflection film
JP2007529094A (en) * 2004-03-11 2007-10-18 バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Functional layers for optical applications based on polythiophene
WO2007142142A1 (en) * 2006-06-02 2007-12-13 Dai Nippon Printing Co., Ltd. Optical laminate, polarizing plate, and image display device
JP2010237648A (en) * 2009-03-09 2010-10-21 Toppan Printing Co Ltd Antireflection film, production method thereof, polarizing plate and transmission type liquid crystal display
JP2011031501A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Optical laminated body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064649B2 (en) 2003-08-28 2012-10-31 大日本印刷株式会社 Anti-reflection laminate
JP4686381B2 (en) * 2005-03-07 2011-05-25 富士フイルム株式会社 Antireflection film, polarizing plate and image display device using the same
JP2007327018A (en) * 2005-06-24 2007-12-20 Jsr Corp Curable resin composition and antireflective film
JP2007216610A (en) * 2006-02-20 2007-08-30 Teijin Dupont Films Japan Ltd Antireflective film
JP5374824B2 (en) 2007-03-13 2013-12-25 荒川化学工業株式会社 Conductive polymer / dopant complex organic solvent dispersion, conductive composition and coating agent composition
TWI327958B (en) * 2007-05-28 2010-08-01 Daxon Technology Inc Antireflective film and method for making thereof
JP2009036817A (en) * 2007-07-31 2009-02-19 Konica Minolta Opto Inc Antireflective coating, and polarizing plate and image display device using the same
KR20090118724A (en) * 2008-05-14 2009-11-18 도레이새한 주식회사 Antireflective film with excellent scratch resistance and surface slip property

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529094A (en) * 2004-03-11 2007-10-18 バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Functional layers for optical applications based on polythiophene
JP2007500374A (en) * 2004-04-14 2007-01-11 エルジー・ケム・リミテッド Coating antireflection coating composition and coating film excellent in stain resistance
JP2006119355A (en) * 2004-10-21 2006-05-11 Nitto Denko Corp Antistatic adhesive optical film and image display device
JP2007119765A (en) * 2005-09-29 2007-05-17 Dainippon Printing Co Ltd Coating composition for low refractive index layer and anti-reflection film
WO2007142142A1 (en) * 2006-06-02 2007-12-13 Dai Nippon Printing Co., Ltd. Optical laminate, polarizing plate, and image display device
JP2010237648A (en) * 2009-03-09 2010-10-21 Toppan Printing Co Ltd Antireflection film, production method thereof, polarizing plate and transmission type liquid crystal display
JP2011031501A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Optical laminated body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977796B1 (en) * 2011-11-10 2012-07-18 尾池工業株式会社 Conductive film
CN109065212A (en) * 2018-08-08 2018-12-21 吴飞 The preparation method of the conducting solution of conductive electrode and the preparation method of conductive electrode
CN109065212B (en) * 2018-08-08 2023-09-05 吴飞 Preparation method of conductive solution of conductive electrode and preparation method of conductive electrode
JP2021177212A (en) * 2020-05-08 2021-11-11 リケンテクノス株式会社 Low refractive index b stage coated film, laminated film, three-dimensional compact, and method for manufacturing these
JP7492371B2 (en) 2020-05-08 2024-05-29 リケンテクノス株式会社 Low refractive index B-stage coating film, laminated film, three-dimensional molded body, and manufacturing method thereof
CN113064226A (en) * 2021-04-30 2021-07-02 宁波甬安光科新材料科技有限公司 Flexible anti-static antireflection optical film, anti-static antireflection coating liquid and preparation method
CN113204063A (en) * 2021-04-30 2021-08-03 宁波甬安光科新材料科技有限公司 Anti-static antireflection optical film, anti-static coating liquid, antireflection coating liquid, preparation method and application

Also Published As

Publication number Publication date
KR101727326B1 (en) 2017-04-14
TW201129477A (en) 2011-09-01
KR20110095169A (en) 2011-08-24
TWI476109B (en) 2015-03-11
JP5771967B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5771967B2 (en) Antireflection film
JP5655660B2 (en) Near-infrared shielding film and near-infrared shielding body using the same
EP1735645B1 (en) Anti-reflective coating composition and coating film with excellent stain resistance
TWI356769B (en)
TWI449762B (en) Antistatic coating, method for manufacturing antistatic film and antistatic film obtained thereby
JP2007246905A (en) Conductive coating composition for protective film and method of manufacturing coating film using the same
KR20120140253A (en) Antireflection laminate
US20130168595A1 (en) Nanometer thermal insulation coating and method of manufacturing the same
JP2012048195A (en) Antireflection film
JP5428592B2 (en) Conductive hard coat film and antireflection film
JP5696581B2 (en) Antistatic hard coat coating material and optical member
JP2010181613A (en) Antireflection film
TW200300950A (en) Conductive film, manufacturing method thereof, and substrate having the same
KR20100074024A (en) Reflection preventing film
CN102162864B (en) Anti-reflection film
JP5782916B2 (en) Antireflection film composition containing modified hollow silica fine particles and antireflection film using the same
JP2012220658A (en) Near infrared ray shielding film
JP5671803B2 (en) Antireflection film
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP6393970B2 (en) HARD COAT COMPOSITION, HARD COAT FILM, AND ANTI-REFLECTION FILM
JP2011242463A (en) Low reflection film and producing method thereof
JP2006330397A (en) Anti-reflection laminated body and its manufacturing method
JP2003306615A (en) Coating solution for forming low-resistance film or low- refraction film, and method for producing the low- resistance film or low-reflection low-resistance film
KR102094581B1 (en) Composition for hydrophobic and UV curable thin film and hydrophobic thin film made from the same
JP5251780B2 (en) Optical laminate, method for producing optical laminate, polarizing plate, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5771967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250